
MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MODULE – 2

A AND L INSTRUCTIONS & INT 21H AND INT 10H PROGRAMMING

ARITHMETIC & LOGIC INSTRUCTIONS AND PROGRAMS
INTRUCTIONS SET DESCRIPTION:

UNSIGNED ADDITION AND SUBTRACTION:

Unsigned numbers are defined as data in which all the bits are used to represent data and no bits are set

aside for the positive or negative sign. This means that the operand can be between 00 and FFH (0 to 255

decimal) for 8-bit data, and between 0000 and FFFFH (0 to 65535 decimal) for 16-bit data.

Addition of Unsigned Numbers:

 The instructions ADD and ADC are used to add two operands. The destination operand can be a

register or in memory. The source operand can be a register, in memory, or immediate.

 Remember that memory-to-memory operations are never allowed in x86 Assembly language.

 The instruction could change any of the ZF, SF, AF, CF, or PF bits of the flag register, depending

on the operands involved. The overflow flag is used only in signed number operations.

MAHESH PRASANNA K., VCET, PUTTUR

1

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
With addition, two cases will be discussed:

CASE1: Addition of Individual Byte and Word Data:

Program 3-1a

These numbers are converted to hex by the assembler as follows: 125 = 7DH, 235 = 0EBH, 197 = 0C5H,

91 = 5BH, 48 = 30H. This program uses AH to accumulate carries as the operands are added to AL

register. Three iterations of the loop are shown below:

1. In the first iteration of the loop, 7DH is added to AL with CF = 0 and AH = 00. CX = 04 and ZF

= 0.

2. In the second iteration of the loop, EBH is added to AL, which results in AL = 68H and CF = 1.

Since a carry occurred, AH is incremented. CX = 03 and ZF = 0.

3. In the third iteration, C5H is added to AL, which makes AL = 2DH. Again a carry occurred, so

AH is incremented again. CX = 02 and ZF = 0.

This process continues until CX = 00 and the zero flag becomes 1, which will cause JNZ to fall through.

Then the result will be saved in the word-sized memory set aside in the data segment.

MAHESH PRASANNA K., VCET, PUTTUR

2

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Although this program works correctly, due to pipelining it is strongly recommended that the

following lines of the program be replaced:

The instruction "JNC OVER" has to empty the queue of pipelined instructions and fetch the instructions

from the OVER target every time the carry is zero (CF = 0). Hence, the "ADC AH, 00" instruction is

much more efficient.

The addition of many word operands works the same way. Register AX (or CX, DX, or BX) could be

used as the accumulator and BX (or any general-purpose 16-bit register) for keeping the carries. Program

3-1b is the same as Program 3-1a, rewritten for word addition.

Program 3-1b

MAHESH PRASANNA K., VCET, PUTTUR

3

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
CASE2: Addition of Multiword Numbers:

Program 3-2

o Assume, a program is needed that will add the total Indian budget for the last 100 years or the

mass of all the planets in the solar system.

o In cases like this, the numbers being added could be up to 8 bytes wide or even more. Since

registers are only 16 bits wide (2 bytes), it is the job of the programmer to write the code to break

down these large numbers into smaller chunks to be processed by the CPU.

o If a 16-bit register is used and the operand is 8 bytes wide, that would take a total of four

iterations. However, if an 8-bit register is used, the same operands would require eight iterations.

 In writing this program, the first thing to be decided was the directive used for coding the data in

the data segment. DQ was chosen since it can represent data as large as 8 bytes wide.

 In the addition of multibyte (or multiword) numbers, the ADC instruction is always used since the

carry must be added to the next-higher byte (or word) in the next iteration. Before executing

MAHESH PRASANNA K., VCET, PUTTUR

4

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

ADC, the carry flag must be cleared (CF = 0) so that in the first iteration, the carry would not be

added. Clearing the carry flag is achieved by the CLC (clear carry) instruction.

 Three pointers have been used: SI for DATA1, DI for DATA2, and BX for DATA3 where the

result is saved.

 There is a new instruction in that program, "LOOP xxxx", which replaces the often used "DEC

CX" and "JNZ xxxx".

When "LOOP xxxx" is executed, CX is decremented automatically, and if CX is not 0, the microprocessor

will jump to target address xxxx. If CX is 0, the next instruction (the one below "LOOP xxxx") is

executed.

Subtraction of Unsigned Numbers:

The x86 uses internal adder circuitry to perform the subtraction command. Hence, the 2's complement

method is used by the microprocessor to perform the subtraction. The steps involved is –

1. Take the 2's complement of the subtrahend (source operand)

2. Add it to the minuend (destination operand)

3. Invert the carry.

These three steps are performed for every SUB instruction by the internal hardware of the x86 CPU. It is

after these three steps that the result is obtained and the flags are set. The following example illustrates

the three steps:

 After the execution of SUB, if CF = 0, the result is positive; if CF = 1, the result is negative and

the destination has the 2's complement of the result.

MAHESH PRASANNA K., VCET, PUTTUR

5

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Normally, the result is left in 2's complement, but the NOT and INC instructions can be used to

change it. The NOT instruction performs the 1’s complement of the operand; then the operand is

incremented to get the 2's complement; as shown in the following example:

SBB (Subtract with Borrow):

This instruction is used for multibyte (multiword) numbers and will take care of the borrow of the lower

operand. If the carry flag is 0, SBB works like SUB. If the carry flag is 1, SBB subtracts 1 from the result.

Notice the "PTR" operand in the following Example.

The PTR (pointer) data directive is used to specify the size of the operand when it differs from the defined

size. In above Example; "WORD PTR" tells the assembler to use a word operand, even though the data is

defined as a double word.

MAHESH PRASANNA K., VCET, PUTTUR

6

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
UNSIGNED MULTIPLICATION AND DIVISION:

One of the major changes from the 8080/85 microprocessor to the 8086 was inclusion of instructions for

multiplication and division. The use of registers AX, AL, AH, and DX is necessary.

Multiplication of Unsigned Numbers:

In discussing multiplication, the following cases will be examined: (1) byte times byte, (2) word times

word, and (3) byte times word.

8-bit * 8-bit AL * BL 16-bit * 16-bit AX * BX

 16-bit AX 32-bit DX AX

byte x byte: In byte-by-byte multiplication, one of the operands must be in the AL register and the

second operand can be either in a register or in memory. After the multiplication, the result is in AX.

In the program above, 25H is multiplied by 65H and the result is saved in word-sized memory named

RESULT. Here, the register addressing mode is used.

The next three examples show the register, direct, and register indirect addressing modes.

 In the register addressing mode example, any 8-bit register could have been used in place BL.

 Similarly, in the register indirect example, BX or DI could have been used as pointers.

 If the register indirect addressing mode is used, the operand size must be specified with the help

of the PTR pseudo-instruction. In the absence of the "BYTE PTR" directive in the example above,

MAHESH PRASANNA K., VCET, PUTTUR

7

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

the assembler could not figure out if it should use a byte or word operand pointed at by SI. This

confusion may cause an error.

word x word: In word-by-word multiplication, one operand must be in AX and the second operand can

be in a register or memory. After the multiplication, registers DX and AX will contain the result. Since

word-by-word multiplication can produce a 32-bit result, DX will hold the higher word and AX the lower

word.

word x byte: This is similar to word-by-word multiplication, except that AL-contains the byte operand

and AH must be set to zero.

Table: Unsigned Multiplication Summary

Division of Unsigned Numbers:

In the division of unsigned numbers, the following cases are discussed:

1. Byte over byte

2. Word over word

3. Word over byte

4. Double-word over word

8-bit AL Q: AL 16-bit AX Q: AX

8-bit BL R: AH 16-bit BX R: DX

MAHESH PRASANNA K., VCET, PUTTUR

8

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

16-bit AX Q: AL 32-bit DA AX Q: AX

 8-bit BL R: AH 16-bit BX R: DX

In divide, there could be cases where the CPU cannot perform the division. In these cases an interrupt is

activated. This is referred to as an exception. In following situations, the microprocessor cannot handle

the division and must call an interrupt:

1. If the denominator is zero (dividing any number by 00)

2. If the quotient is too large for the assigned register.

In the IBM PC and compatibles, if either of these cases happens, the PC will display the "divide error"

message.

byte/byte: In dividing a byte by a byte, the numerator must be in the AL register and AH must be set to

zero. The denominator cannot be immediate but can be in a register or memory. After the DIV instruction

is performed, the quotient is in AL and the remainder is in AH.

word/word: In this case, the numerator is in AX and DX must be cleared. The denominator can be in a

register or memory. After the DIV; AX will have the quotient and the remainder will be in DX.

MAHESH PRASANNA K., VCET, PUTTUR

9

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

word/byte: Here, the numerator is in AX and the denominator can be in a register or memory. After the

DIV instruction, AL will contain the quotient, and AH will contain the remainder. The maximum quotient

is FFH.

The following program divides AX = 2055 by CL = 100. Then AL = 14H (20 decimal) is the quotient and

AH = 37H (55 decimal) is the remainder.

Double-word/word: The numerator is in DX and AX, with the most significant word in DX and the least

significant word in AX. The denominator can be in a register or in memory. After the DIV instruction; the

quotient will be in AX, and the remainder in DX. The maximum quotient is FFFFH.

 In the program above, the contents of DX: AX are divided by a word-sized data value, 10000.

 The 8088/86 automatically uses DX: AX as the numerator anytime the denominator is a word in

size.

 Notice in the example above that DATAl is defined as DD but fetched into a word-size register

with the help of WORD PTR. In the absence of WORD PTR, the assembler will generate an

error.

Table: Unsigned Division Summary

MAHESH PRASANNA K., VCET, PUTTUR

10

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
LOGIC INSTRUCTIONS:

Here, the logic instructions AND, OR, XOR, SHIFT, and COMPARE are discussed with examples.

AND

 This instruction will perform a logical AND on the operands and

place the result in the destination. The destination operand can be a

register or memory. The source operand can be a register, memory,

or immediate.

 AND will automatically change the CF and OF to zero, and PF,

ZF, and SF are set according to the result. The rest of the flags are

either undecided or unaffected.

 AND can be used to mask certain bits of the operand. The task of clearing a bit in a binary

number is called masking. It can also be used to test for a zero operand.

 The above code will AND DH with itself, and set ZF =1, if the result is zero. This makes the CPU

to fetch from the target address XXXX. Otherwise, the instruction below JZ is executed. AND

can thus be used to test if a register contains zero.

OR

 The destination and source operands are ORed and the result is

placed in the destination.

 The destination operand can be a register or in memory. The

source operand can be a register, memory, or immediate.

 OR will automatically change the CF and OF to zero, and PF, ZF,

Inputs Output

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

Inputs Output

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

MAHESH PRASANNA K., VCET, PUTTUR

11

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

and SF are set according to the result. The rest of the flags are either undecided or unaffected.

 The OR instruction can be used to test for a zero operand. For example, "OR BL, 0"will OR the

register BL with 0 and make ZF = 1, if BL is zero. "OR BL, BL" will achieve the same result.

 OR can also be used to set certain bits of an operand to 1.

XOR

 The XOR instruction will eXclusive-OR the operands and place the

result in the destination. XOR sets the result bits to 1 if they are

not equal; otherwise, they are reset to 0.

 The destination operand can be a register or in memory. The

source operand can be a register, memory, or immediate.

 OR will automatically change the CF and OF to zero, and PF, ZF,

and SF are set according to the result. The rest of the flags are either undecided or unaffected.

Inputs Output

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

MAHESH PRASANNA K., VCET, PUTTUR

12

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 XOR can be used to see if two registers have the same value. "XOR BX, CX" will make ZF = 1, if

both registers have the same value, and if they do, the result (0000) is saved in BX, the

destination.

 XOR can also be used to toggle (invert/compliment) bits of an operand. For example, to toggle bit

2 of register AL:

 This would cause bit 2 of AL to change to the opposite value; all other bits would remain

unchanged.

SHIFT

o Shift instructions shift the contents of a register or memory location right or left.

o The number of times (or bits) that the operand is shifted can be specified directly if it is once

only, or through the CL register if it is more than once.

o There are two kinds of shifts:

 Logical – for unsigned operands

 Arithmetic – signed operands.

SHR: This is the logical shift right. The operand is shifted right bit by bit, and for every shift the LSB

(least significant bit) will go to the carry flag (CF) and the MSB (most significant bit) is filled with 0.

 SHR does affect the OF, SF, PF, and ZF flags.

 The operand to be shifted can be in a register or in memory, but immediate addressing mode is

not allowed for shift instructions. For example, "SHR 25, CL" will cause the assembler to give an

error.

Eg:
SHR BH, CL R/M Cy

 0

Shift right Before After

 BH 0100 0100 0001 0001

CL 02H
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

13

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 If the operand is to be shifted once only, this is specified in the SHR instruction itself rather than

placing 1 in the CL. This saves coding of one instruction:

 After the above shift, BX = 7FFFH and CF = 1.

SHL: Shift left is also a logical shift. It is the reverse of SHR. After every shift the LSB is filled with 0

and the MSB goes to CF.

 SHL does affect the OF, SF, PF, and ZF flags.

 The operand to be shifted can be in a register or in memory, but immediate addressing mode is

not allowed for shift instructions. For example, "SHL 25, CL" will cause the assembler to give an

error.

Eg:
SHL BH, CL Cy R/M

 0

Shift left without Cy Before After

BH 0010 0010 1000 1000
 CL 02H
 Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

14

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

COMPARE of Unsigned Numbers:

 The CMP instruction compares two operands and changes the flags according to the result of the

comparison. The operands themselves remain unchanged.

 The destination operand can be in a register or in memory and the source operand can be in a

register, memory, or immediate.

 The compare instruction is really a SUBtraction, except that the values of the operands do not

change.

 The flags are changed according to the execution of SUB. Although all the flags (CF, AF, SF, PF,

ZF, and OF flags) are affected, the only ones of interest are ZF and CF.

 It must be emphasized that in CMP instructions, the operands are unaffected regardless of the

result of the comparison. Only the flags are affected.

Table: Flag Settings for Compare Instruction

Compare Operands CF ZF Remark

destination > source 0 0 destination – source; results CF = 0 & ZF = 0

destination = source 0 1 destination – source; results CF = 0 & ZF = 1

destination < source 1 0 destination – source; results CF = 1 & ZF = 0

 In the program above, AX is greater than the contents of memory location DATA1 (0CCCCH >

235FH); therefore, CF = 0 and JNC (jump no carry) will go to target OVER.

MAHESH PRASANNA K., VCET, PUTTUR

15

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 In the above code, BX is smaller than CX (7888H < 9FFFH), which sets CF = 1, making "JNC

NEXT" fall through so that "ADD BX, 4000H" is executed.

 In the example above, CX and BX still have their original values (CX = 9FFFH and BX =7888H)

after the execution of "CMP BX, CX".

 Notice that CF is always checked for cases of greater or smaller than, but for equal, ZF must be

used.

 The above program sample has a variable named TEMP, which is being checked to see if it has

reached 99.

In the following Program the CMP instruction is used to search for the highest byte in a series of 5 bytes

defined in the data segment.

 The instruction "CMP AL, [BX]" works as follows ([BX] is the contents of the memory location

pointed at by register BX).

• If AL < [BX], then CF = 1 and [BX] becomes the basis of the new comparison.

• If AL > [BX], then CF = 0 and AL is the larger of the two values and remains the basis of

comparison.

 Although JC (jump carry) and JNC (jump no carry) check the carry flag and can be used after a

compare instruction, it is recommended that JA (jump above) and JB (jump below) be used

because,

• The assemblers will unassembled JC as JB, and JNC as JA.

 The below Program searches through five data items to find the highest grade.

 The program has a variable called "Highest" that holds the highest grade found so far. One by

one, the grades are compared to Highest. If any of them is higher, that value is placed in Highest.

 This continues until all data items are checked. A REPEAT-UNTIL structure was chosen in the

program design.

 The program uses register AL to hold the highest grade found so far. AL is given the initial value

of 0. A loop is used to compare each of the 5 bytes with the value in AL.
MAHESH PRASANNA K., VCET, PUTTUR

16

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 If AL contains a higher value, the loop continues to check the next byte. If AL is smaller than the

byte being checked, the contents of AL are replaced by that byte and the loop continues.

Program 3-3

NOTE:

There is a relationship between the pattem of lowercase and uppercase letters, as shown below for A and

a:

A 0100 0001 41H

a 0110 0001 61H

The only bit that changes is d5. To change from lowercase to uppercase , d5 must be masked.

Note that small and capital letters in ASCII have the following values:

MAHESH PRASANNA K., VCET, PUTTUR

17

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Flowchart and Pseudocode for Program 3-3

The following Program uses the CMP instruction to determine if an ASCII character is uppercase or

lowercase.

 The following Program first detects if the letter is in lowercase, and if it is, it is ANDed wit h

1101 1111B = DFH. Otherwise, it is simply left alone.

 To determine if it is a lowercase letter, it is compared with 61H and 7AH to see if it is in the

range a to z. Anything above or below this range should be left alone.

In the following Program, 20H could have been subtracted from the lowercase letters instead of ANDing

with 1101 1111B.

MAHESH PRASANNA K., VCET, PUTTUR

18

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 Program 3-4

BCD AND ASCII CONVERSION:

o BCD (binary coded decimal) is needed because we use the digits 0 to 9 for

numbers in everyday life. Binary representation of 0 to 9 is called BCD.

o In computer literature, one encounters two terms for BCD numbers: (1) unpacked

BCD, and (2) packed BCD.

Unpacked BCD:

o In unpacked BCD, the lower 4 bits of the number represent the BCD number and

the rest of the bits are 0.

• Example: "0000 1001" and "0000 0101" are unpacked BCD for 9 and 5,

respectively.

o In the case of unpacked BCD it takes 1 byte of memory location or a register of 8 bits to contain

the number.

Digit BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

MAHESH PRASANNA K., VCET, PUTTUR

19

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Packed BCD:

o In the case of packed BCD, a single byte has two BCD numbers in it, one in the lower 4 bits and

one in the upper 4 bits.

• For example, "0101 1001" is packed BCD for 59.

o It takes only 1 byte of memory to store the packed BCD operands. This is one reason to use

packed BCD since it is twice as efficient in storing data.

ASCII Numbers:

o In ASCII keyboards, when key "0" is activated, for example, "011 0000" (30H) is provided to the

computer. In the same way, 31H (011 0001) is provided for key "1", and so on, as shown in the

following list:

It must be noted that, although ASCII is standard in many countries, BCD numbers have universal

application. So, the data conversion from ASCII to BCD and vice versa should be studied.

ASCII to BCD Conversion:

To process data in BCD, first the ASCII data provided by the keyboard must be converted to BCD.

Whether it should be converted to packed or unpacked BCD depends on the instructions to be used.

ASCII to Unpacked BCD Conversion:

To convert ASCII data to BCD, the programmer must get rid of the tagged "011" in the higher 4 bits of

the ASCII. To do that, each ASCII number is ANDed with "0000 1111" (0FH), as shown in the next

example. These programs show three different methods for converting the 10 ASCII digits to unpacked

BCD. All use the same data segment:

The data is defined as DB.

• In the following Program 3-5a; the data is accessed in word-sized chunks.

• The Program 3-5b used the PTR directive to access the data.
MAHESH PRASANNA K., VCET, PUTTUR

20

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

• The Program 5-3c uses the based addressing mode (BX+ASC is used as a pointer.

Program 3-5a

Program 3-5b

Program 3-5c

ASCII to Packed BCD Conversion:

To convert ASCII to packed BCD, it is first converted to unpacked BCD (to get rid of the 3) and then

combined to make packed BCD.
For example, for 9 and 5 the keyboard gives 39 and 35, respectively. The goal is to produce 95H or"1001 0101",

which is called packed BCD. This process is illustrated in detail below:

MAHESH PRASANNA K., VCET, PUTTUR

21

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
After this conversion, the packed BCD numbers are processed and the result will be in packed BCD

format. There are special instructions, such as DAA and DAS, which require that the data be in packed

BCD form and give the result in packed BCD.

• For the result to be displayed on the monitor or be printed by the printer, it must be in ASCII

format. Conversion from packed BCD to ASCII is discussed next.

Packed BCD to ASCII Conversion:

To convert packed BCD to ASCII, it must first be converted to unpacked and then the unpacked BCD is

tagged with 011 0000 (30H).

The following shows the process of converting from packed BCD to ASCII:

• After learning bow to convert ASCII to BCD, the application of BCD numbers is the next step.

• There are two instructions that deal specifically with BCD numbers: DAA and DAS.

BCD Addition and Correction:

In BCD addition, after adding packed BCD numbers, the result is no longer BCD. Look at this example:

Adding them gives 0011 1111B (3FH), which is not BCD! A BCD number can- only have digits from

0000 to 1001 (or 0 to 9). The result above should have been 17+ 28 = 45 (0100 0101).

 To correct this problem, the programmer must add 6 (0110) to the low digit: 3F + 06 = 45H.

The same problem could have happened in the upper digit (for example, in 52H + 87H = D9H).

 Again to solve this problem, 6 must be added to the upper digit (D9H + 60H = 139H), to ensure

that the result is BCD (52 + 87 = 139).

MAHESH PRASANNA K., VCET, PUTTUR

22

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
DAA

The DAA (decimal adjust for addition) instruction in x86 microprocessors is provided exactly for the

purpose of correcting the problem associated with BCD addition. DAA will add 6 to the lower nibble or

higher nibble if needed; otherwise, it will leave the result alone.

The following example will clarify these points:

After the program is executed, the DATA3 field will contain 72H (47 + 25 =72).

 Note that DAA works only on AL. In other words, while the source can be an operand of any

addressing mode, the destination must be AL in order for DAA to work.

 It needs to be emphasized that DAA must be used after the addition of BCD operands and that

BCD operands can never have any digit greater than 9. In other words, no A-F digit is allowed.

 It is also important to note that DAA works only after an ADD instruction; it will not work after

the INC instruction.

Summary of DAA Action:

1. If after an ADD or ADC instruction the lower nibble (4 bits) is greater than 9, or if AF = 1, add

0110 to the lower 4 bits.

2. If the upper nibble is greater than 9, or if CF = 1, add 0110 to the upper nibble.

In reality there is no other use for the AF (auxiliary flag) except for BCD addition and correction. For

example, adding 29H and 18H will result in 41H, which is incorrect as far as BCD is concerned.

See the following code:

The above example shows that 6 is added to the upper nibble due to the fact it is greater than 9.

Eg1: ; AL = 0011 1001 = 39 BCD

 ; CL = 0001 0010 = 12 BCD
ADD AL, CL ; AL = 0100 1011 = 4BH
DAA ; Since 1011 > 9; Add correction factor 06.
 ; AL = 0101 0001 = 51 BCD

MAHESH PRASANNA K., VCET, PUTTUR

23

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Eg2: ; AL = 1001 0110 = 96 BCD

 ; BL = 0000 0111 = 07 BCD
ADD AL, BL ; AL = 1001 1101 = 9DH
DAA ; Since 1101 > 9; Add correction factor 06
 ; AL = 1010 0011 = A3H
 ; Since 1010 > 9; Add correction factor 60
 ; AL = 0000 0011 = 03 BCD. The result is 103.

More Examples:
1: Add decimal numbers 22 and 18.

MOV AL, 22H ; (AL)= 22H
ADD AL, 18H ; (AL) = 3AH Illegal, incorrect answer!
DAA ; (AL) = 40H Just treat it as decimalwith CF = 0

 3AH In this case, DAA same as ADD AL, 06H
+06H When LS hex digit in AL is >9, add 6 to it
=40H

2: Add decimal numbers 93 and 34.

MOV AL, 93H ; (AL)= 93H
ADD AL, 34H ; (AL) = C7H, CF = 0 Illegal & Incorrect!
DAA

 ; (AL) = 27H Just treat it as decimal with CF = 1

 C7H In this case, DAA same as ADD AL, 60H
+60H When MS hex digit in AL is >9, add 6 to it
=27H

3: Add decimal numbers 93 and 84.

MOV AL, 93H ; (AL)= 93H
ADD AL, 84H

; (AL) = 17H, CF = 1 Incorrect answer!

DAA

 ; (AL) = 77H Just treat it as decimal with CF = 1 (carry generated?)

 17H In this case, DAA same as ADD AL, 60H
+60H When CF = 1, add 6 to MS hex digit of AL and treat
=77H Carry as 1 even though not generated in this addition

4: Add decimal numbers 65 and 57.

MOV AL, 65H ; (AL)= 65H
ADD AL, 57H ; (AL) = BCH
DAA

 ; (AL) = 22H Just treat it as decimal with CF = 1

 BCH In this case, DAA same as ADD AL, 66H
+66H
=22H CF = 1

5: Add decimal numbers 99 and 28.

MOV AL, 99H ; (AL)= 99H
ADD AL, 28H ; (AL) = C1H, AF = 1
DAA

 ; (AL) = 27H Just treat it as decimal with CF = 1

 C1H In this case, DAA same as ADD AL, 66H
+66H 6 added to LS hex digit of AL, as AF = 1
=27H CF = 1 6 added to MS hex digit of AL, as it is >9

6: Add decimal numbers 36 and 42.

MAHESH PRASANNA K., VCET, PUTTUR

24

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MOV AL, 36H ; (AL)= 36H
ADD AL, 42H ; (AL) = 78H
DAA

 ; (AL) = 78H Just treat it as decimal with CF = 0

 78H
+00H In this case, DAA same as ADD AL, 00H
=78H

The following Program demonstrates the use of DAA after addition of multibyte packed BCD numbers.

MAHESH PRASANNA K., VCET, PUTTUR

25

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 3-6

MAHESH PRASANNA K., VCET, PUTTUR

26

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
BCD Subtraction and Correction:

The problem associated with the addition of packed BCD numbers also shows up in subtraction. Again,

there is an instruction (DAS) specifically designed to solve the problem.

Therefore, when subtracting packed BCD (single-byte or multibyte) operands, the DAS instruction is put

after the SUB or SBB instruction. AL must be used as the destination register to make DAS work.

Summary of DAS Action:

1. If after a SUB or SBB instruction the lower nibble is greater than 9, or if AF = 1 , subtract 0110

from the lower 4 bits.

2. If the upper nibble is greater than 9, or CF = 1, subtract 0110 from the upper nibble.

Due to the widespread use of BCD numbers, a specific data directive, DT, has been created. DT can be

used to represent BCD numbers from 0 to 1020 – 1 (that is, twenty 9s).

Assume that the following operands represent the budget, the expenses, and the balance, which is the

budget minus the expenses.

Notice in the code section above that,

 no H (hex) indicator is needed for BCD numbers when using the DT directive, and

 the use of the based relative addressing mode (BX + displacement) allows access to all three

arrays with a single register BX.

Eg1: ; AL = 0011 0010 = 32 BCD

 ; CL = 0001 0111 = 17 BCD
SUB AL, CL ; AL = 0001 1011 = 1BH
DAS ; Subtract 06, since 1011 > 9.
 ; AL = 0001 0101 = 15 BCD

Eg2: ; AL = 0010 0011 = 23 BCD
 ; CL = 0101 1000 =58 BCD
SUB AL, CL ; AL = 1100 1011 = CBH
DAS ; Subtract 66, since 1100 >9 & 1011 > 9.
 ; AL = 0110 0101 = 65 BCD, CF = 1.

 ; Since CF = 1, answer is – 65.

MAHESH PRASANNA K., VCET, PUTTUR

27

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
More Examples:

1: Subtract decimal numbers 45 and 38.

MOV AL, 45H ; (AL)= 45H
SUB AL, 38H ; (AL) = 0DH Illegal, incorrect answer!
 DAS ; (AL) = 07H Just treat it as decimal with Cy = 0

 0DH In this case, DAS same as SUB AL, 06H
-06H When LS hex digit in AL is >9, subtract 6
=07H

2: Subtract decimal numbers 63 and 88.

MOV AL, 63H ; (AL)= 63H
SUB AL, 88H ; (AL) = DBH, Cy=1 Illegal & Incorrect!
DAS ; (AL) = 75H Just treat it as decimal with Cy = 1 (carry generated?)

 DBH In this case, DAS same as SUB AL, 66H
-66H When Cy = 1, it means result is negative
=75H Result is 75, which is 10’s complement of 25

Treat Cy as 1 as Cy was generated in the previous subtraction itself!

3: Subtract decimal numbers 45 and 52.

MOV AL, 45H ; (AL)= 45H
SUB AL, 52H ; (AL) = F3H, Cy = 1 Incorrect answer!
DAS ; (AL) = 93H Just treat it as decimal with Cy = 1 (carry generated?)

 F3H In this case, DAS same as SUB AL, 60H
-60H When Cy = 1, it means result is negative
=93H Result is 93, which is 10’s complement of 07

4: Subtract decimal numbers 50 and 19.

MOV AL, 50H ; (AL)= 50H
SUB AL, 19H ; (AL) = 37H, Ac = 1
DAS ; (AL) = 31H Just treat it as decimal with Cy =0

 37H In this case, DAS same as SUB AL, 06H
-06H 06H is subtracted from AL as Ac = 1
=31H

5: Subtract decimal numbers 99 and 88.

MOV AL, 99H ; (AL)= 99H
SUB AL, 88H ; (AL) = 11H
DAS ; (AL) = 11H Just treat it as decimal with Cy = 0

 11H In this case, DAS same as SUB AL, 00H
-00H
=11H

6: Subtract decimal numbers 14 and 92.

MOV AL, 14H ; (AL)= 14H
SUB AL, 92H ; (AL) = 82H, Cy = 1
DAS ; (AL) = 22H Just treat it as decimal with Cy = 1

 82H In this case, DAS same as SUB AL, 60H
-60H 60H is subtracted from AL as Cy = 1
=22H 22 is 10’s complement of 78

MAHESH PRASANNA K., VCET, PUTTUR

28

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
ROTATE INSTRUCTIONS:

In many applications there is a need to perform a bitwise rotation of an operand. The rotation instructions

ROR, ROL and RCR, RCL are designed specifically for that purpose. They allow a program to rotate an

operand right or left.

o In rotate instructions, the operand can be in a register or memory. If the number of times an

operand is to be rotated is more than 1, this is indicated by CL. This is similar to the shift

instructions.

o There are two types of rotations. One is a simple rotation of the bits of the operand, and the other

is a rotation through the carry.

ROR (rotate right)

In rotate right, as bits are shifted from left to right they exit from the right end (LSB) and enter the left

end (MSB). In addition, as each bit exits the LSB, a copy of it is given to the carry flag. In other words, in

ROR, the LSB is moved to the MSB and is also copied to CF, as shown in the diagram.

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, register CL is

used to hold the number of times it is to be rotated.

Eg:

ROR BH, 1 R/M Cy

Rotate right without Cy Before After

BH 0100 0010 0010 0001
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

29

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
ROL (rotate left)

In rotate left, as bits are shifted from right to left they exit the left end (MSB) and enter the right end

(LSB). In addition, every bit that leaves the MSB is copied to the carry flag. In other words, in ROL the

MSB is moved to the LSB and is also copied to CF, as shown in the diagram.

If the operand is to be rotated once, the 1 is coded. Otherwise, the number of times it is to be rotated is in

CL. Eg:

ROL BH, CL Cy R/M

Rotate left without Cy Before After

BH 0010 0010 1000 1000
CL 02H
Cy 1 0

The following Program shows an application of the rotation instruction. The maximum count in Program

will be 8 since the program is counting the number of 1s in a byte of data. If the operand is a 16-bit word,

the number of 1s can go as high as 16.

Program 3-7

MAHESH PRASANNA K., VCET, PUTTUR

30

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The Program is similar to the previous one, rewritten for a word-sized operand. It also provides the count

in BCD format instead of hex. Reminder: AL is used to make a BCD counter because the because, the

DAA instruction works only on AL.

Program 3-8

RCR (rotate right through carry)

In RCR, as bits are shifted from left to right, they exit the right end (LSB) to the carry flag, and the carry

flag enters the left end (MSB). In other words, in RCR the LSB is moved to CF and CF is moved to the

MSB. In reality, CF acts as if it is part of the operand. This is shown in the diagram.

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, the register CL

holds the number of times.

Eg:
RCR BH, 1 R/M Cy

Rotate right with Cy Before After

BH 0100 0010 1010 0001
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

31

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

RCL (rotate left through carry)

In RCL, as bits are shifted from right to left, they exit the left end (MSB) and enter the carry flag, and the

carry flag enters the right end (LSB). In other words, in RCL the MSB is moved to CF and CF is moved

to the LSB. In reality, CF acts as if it is part of the operand. This is shown in the following diagram.

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, register CL

holds the number of times.
Eg:
RCL BH, CL Cy R/M

Rotate left with Cy Before After

BH 0010 0010 1000 1010
CL 02H
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

32

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

INTERRUPTS IN x86 PC
8088/86 INTERRUPTS

o An interrupt is an external event that informs the CPU that a device needs its service. In 8088/86,

there are 256 interrupts: INT 00, INT 01, . . . , INT FF (sometimes called TYPEs).

o When an interrupt is executed, the microprocessor automatically saves the flag register (FR), the

instruction pointer (IP), and the code segment register (CS) on the stack; and goes to a fixed

memory location.

o In x86 PCs, the memory locations to which an interrupt goes is always four times the value of the

interrupt number. For example, INT 03 will go to address 0000CH (4 * 3 = 12 = 0CH). The

following Table is a partial list of the interrupt vector table.

Table: Interrupt Vector

Interrupt Service Routine (ISR):

 For every interrupt there must be a program associated with it.

 When an interrupt is invoked, it is asked to run a program to perform a certain service. This

program is commonly referred to as an interrupt service routine (ISR). The interrupt service

routine is also called the interrupt handler.

 When an interrupt is invoked, the CPU runs the interrupt service routine. As shown in the above

Table, for every interrupt there are allocated four bytes of memory in the interrupt vector table.

Two bytes are for the IP and the other two are for the CS of the ISR.

 These four memory locations provide the addresses of the interrupt service routine for which the

interrupt was invoked. Thus the lowest 1024 bytes (256 x 4 = 1024) of memory space are set

aside for the interrupt vector table and must not be used for any other function.

INT

Number

Physical

Address

Logical

Address

INT 00 00000 0000 – 0000

INT 01 00004 0000 – 0004

INT 02 00008 0000 – 0008

INT 03 0000C 0000 – 000C

INT 04 00010 0000 – 0010

INT 05 00014 0000 – 0014

.

INT FF 003FC 0000 – 03FC

MAHESH PRASANNA K., VCET, PUTTUR

33

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Difference between INT and CALL Instructions:

The INT instruction saves the CS: IP of the following instruction and jumps indirectly to the subroutine

associated with the interrupt. A CALL FAR instruction also saves the CS: IP and jumps to the desired

subroutine (procedure).

The differences can be summarized as follows:

CALL Instruction INT instruction

1. A CALL FAR instruction can jump to any

location within the 1M byte address range

of the 8088/86 CPU.

1. INT nn goes to a fixed memory location in

the interrupt vector table to get the address

of the interrupt service routine.

2. A CALL FAR instruction is used by the

programmer in the sequence of

instructions in the program.

2. An externally activated hardware interrupt

can come-in at any time, requesting the

attention of the CPU.

3. A CALL FAR instruction cannot be

masked (disabled).

3. INT nn belonging to externally activated

hardware interrupts can be masked.

4. A CALL FAR instruction automatically

saves only CS: IP of the next instruction

on the stack.

4. INT nn saves FR (flag register) in addition

to CS: IP of the next instruction.

5. At the end of the subroutine that has been

called by the CALL FAR instruction, the

RETF (return FAR) is the last instruction.

RETF pops CS and IP off the stack.

5. The last instruction in the interrupt service

routine (ISR) for INT nn is the instruction

IRET (interrupt return). IRET pops off the

FR (flag register) in addition to CS and IP.

Processing Interrupts:

When the 8088/86 processes any interrupt (software or hardware), it goes through the following steps:

1. The flag register (FR) is pushed onto the stack and SP is decremented by 2, since FR is a 2-byte

register.
MAHESH PRASANNA K., VCET, PUTTUR

34

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

2. IF (interrupt enable flag) and TF (trap flag) are both cleared (IF = 0 and TF = 0). This masks

(causes the system to ignore) interrupt requests from the INTR pin and disables single stepping

while the CPU is executing the interrupt service routine.

3. The current CS is pushed onto the stack and SP is decremented by 2.

4. The current IP is pushed onto the stack and SP is decremented by 2.

5. The INT number (type) is multiplied by 4 to get the physical address of the location within the

vector table to fetch the CS and IP of the interrupt service routine.

6. From the new CS: IP, the CPU starts to fetch and execute instructions belonging to the ISR

program.

7. The last instruction of the interrupt service routine must be IRET, to get IP, CS, and FR back

from the stack and make the CPU run the code where it left off.

The following Figure summarizes these steps in diagram form.

Categories of Interrupts:

INT nn is a 2-byte instruction where the first byte is for the opcode and the second byte is the interrupt

number. We can have a maximum of 256 (INT 00 INT FFH) interrupts. Of these 256 interrupts, some are

used for software interrupts and some are for hardware interrupts.

1. Hardware Interrupts:

o There are three pins in the x86 that are associated with hardware interrupts. They are INTR

(interrupt request), NMI (non-maskable interrupt), and INTA (interrupt acknowledge).

o INTR is an input signal into the CPU, which can be masked (ignored) and unmasked through the

use of instructions CLI (clear interrupt flag) and STI (set interrupt flag).

MAHESH PRASANNA K., VCET, PUTTUR

35

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o If IF = 0 (in flag register), all hardware interrupt requests through INTR are ignored. This has no

effect on interrupts coming from the NMI pin. The instruction CLI (clear interrupt flag) will make

IF = 0.

o To allow interrupt request through the INTR pin, this flag must be set to one (IF = 1). The STI

(set interrupt flag) instruction can be used to set IF to 1.

o NMI, which is also an input signal into the CPU, cannot be masked and unmasked using

instructions CLI and STI; and for this reason it is called a non-maskable interrupt.

o INTR and NMI are activated externally by putting 5V on the pins of NMI and INTR of the x86

microprocessor.

o When either of these interrupts is activated, the x86 finishes the instruction that it is executing,

pushes FR and the CS: IP of the next instruction onto the stack, then jumps to a fixed location in

the interrupt vector table and fetches the CS: IP for the interrupt service routine (ISR) associated

with that interrupt.

o At the end of the ISR, the IRET instruction causes the CPU to get (pop) back its original FR and

CS: IP from the stack, thereby forcing the CPU to continue at the instruction where it left off

when the interrupt came in.

• Intel has embedded "INT 02" into the x86 microprocessor to be used only for NMI.

• Whenever the NMI pin is activated, the CPU will go to memory location 00008 to get the address

(CS: IP) of the interrupt service routine (ISR) associated with NMI.

• Memory locations 00008, 00009, 0000A, and 0000B contain the 4 bytes of CS: IP of the ISR

belonging to NMI.

• The 8259 programmable interrupt controller (PIC) chip can be connected to INTR to expand the

number of hardware interrupts to 64.

MAHESH PRASANNA K., VCET, PUTTUR

36

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

2. Software Interrupts:

o If an ISR is called upon as a result of the execution of an x86 instruction such as "INT nn", it is

referred to as software interrupt, since it was invoked from software, not from external hardware.

o Examples of such interrupts are DOS "INT 21H" function calls and video interrupts "INT 10H".

o These interrupts can be invoked in the sequence of code just like any other x86 instruction.

o Many of the interrupts in this category are used by the MS DOS operating system and IBM BIOS

to perform essential tasks that every computer must provide to the system and the user.

o Within this group of interrupts there are also some predefined functions associated with some of

the interrupts. They are "INT 00" (divide error), "INT 01" (single step), "INT 03" (breakpoint),

and "INT 04" (signed number overflow). Each is described below.

o The rest of the interrupts from "INT 05" to "INT FF" can be used to implement either software or

hardware interrupts.

Functions associated with INT 00 to INT 04:

Interrupts INT 00 to INT 04 have predefined tasks (functions) and cannot be used in any other way.

INT 00 (divide error)

 This interrupt belongs to the category of interrupts referred to as conditional or exception

interrupts. Internally, they are invoked by the microprocessor whenever there are conditions

(exceptions) that the CPU is unable to handle.

 One such situation is an attempt to divide a number by zero. Since the result of dividing a number

by zero is undefined, and the CPU has no way of handling such a result, it automatically invokes

the divide error exception interrupt.

 In the 8088/86 microprocessor, out of 256 interrupts, Intel has set aside only INT 0 for the

exception interrupt.

 INT 00 is invoked by the microprocessor whenever there is an attempt to divide a number by

zero.

 In the x86 PC, the service subroutine for this interrupt is responsible for displaying the message

"DIVIDE ERROR" on the screen if a program such as the following is executed:

 INT 0 is also invoked if the quotient is too large to fit into the assigned register when executing a

DIV instruction. Look at the following case:

MAHESH PRASANNA K., VCET, PUTTUR

37

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

INT 01 (single step)

 In executing a sequence of instructions, there is a need to examine the contents of the CPU's

registers and system memory. This is often done by executing the program one instruction at a

time and then inspecting registers and memory. This is commonly referred to as single-stepping,

or performing a trace.

 Intel has designated INT 01 specifically for implementation of single-stepping. To single-step, the

trap flag (TF) (D8 of the flag register), must be set to 1. Then after execution of each instruction,

the 8088/86 automatically jumps to physical location 00004 to fetch the 4 bytes for CS: IP of the

interrupt service routine, which will dump the registers onto the screen.

 Intel has not provided any specific instruction for to set or reset (unlike IF, which uses STI and

CLI instructions to set or reset), the TF; one can write a simple program to do that. The following

shows how to make TF = 0:

 Recall that, TF is D8 of the flag register.

 To make TF = 1, one simply uses the OR instruction in place of the AND instruction above.

INT 02 (non-maskable interrupt)

 All Intel x86 microprocessors have a pin designated NMI. It is an active-high input. Intel has set

aside INT 2 for the NMI interrupt. Whenever the NMI pin of the x86 is activated by a high (5 V)

signal, the CPU jumps to physical memory location 00008 to fetch the CS: IP of the interrupt

service routine associated with NMI.

 The NMI input is often used for major system faults, such as power failures. The NMI interrupt

will be caused whenever AC power drops out. In response to this interrupt, the microprocessor

stores all of the internal registers in a battery-backed-up memory or an EEPROM.

INT 03 (breakpoint)

 To allow implementation of breakpoints in software engineering, Intel has set aside INT 03.

MAHESH PRASANNA K., VCET, PUTTUR

38

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 In single-step mode, one can inspect the CPU and system memory after the execution of each

instruction, a breakpoint is used to examine the CPU and memory after the execution of a group

of instructions.

 INT 3 is a 1-byte instruction; where as all other “INT nn” instructions are 2-byte instructions.

INT 04 (signed number overflow)

 This interrupt is invoked by a signed number overflow condition. There is an instruction

associated with this, INTO (interrupt on overflow).

 The CPU will activate INT 04 if OF = 1. In cases, where OF = 0, the INTO instruction is not

executed; but is bypassed and acts as a NOP (no operation) instruction.

 To understand this, look at the following example: Suppose in the following program; DATA1=

+64 = 0100 0000 and DATA2 = +64 = 0100 0000. The INTO instruction will be executed and the

8088/86 will jump to physical location 00010H, the memory location associated with INT 04.

The carry from D6 to D7 causes the overflow flag to become l.

 Now, the INTO causes the CPU to perform "INT 4" and jump to physical location 00010H of the

vector table to get the CS: IP of the service routine.

 Suppose that the data in the above program was DATA1 = +64 and DATA2 = +17. In that case,

OF would become 0; the INTO is not executed and acts simply as a NOP (no operation)

instruction.

x86 PC AND INTERRUPT ASSIGNMENT:

o Of the 256 possible interrupts in the x86;

 some are used by the PC peripheral hardware (BIOS)

 some are used by the Microsoft operating system

 the rest are available for programmers of software applications.

MAHESH PRASANNA K., VCET, PUTTUR

39

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

INT 21H & INT 10H PROGRAMMING
The INT instruction has the following format:

Interrupts are numbered 00 to FF; this gives a total of 256 interrupts in x86 microprocessors. Of these 256

interrupts, two of them are the most widely used: INT 10H and INT 21H.

BIOS INT 10H PROGRAMMING:

o INT 10H subroutines are burned into the ROM BIOS of the x86-based IBM PC and compatibles

and are used to communicate with the computer's screen video. The manipulation of screen text

or graphics can be done through INT 10H.

o There are many functions associated with INT 10H. Among them are changing the color of

characters or the background color, clearing the screen, and changing the location of the cursor.

o These options are chosen by putting a specific value in register AH.

Monitor Screen in Text Mode:

 The monitor screen in the x86 PC is divided into 80 columns and 25 rows in normal text mode

(see the following Fig). In other words, the text screen is 80 characters wide by 25 characters

long.

Fig: Cursor Locations (row, column)

 Since both a row and a column number are associated with each location on the screen, one can

move the cursor to any location on the screen simply by changing the row and column values.

 The 80 columns are numbered from 0 to 79 and the 25 rows are numbered 0 to 24. The top left

comer has been assigned 00, 00 (row = 00, column = 00). Therefore, the top right comer will be

00, 79 (row = 00, column = 79).

 Similarly, the bottom left comer is 24, 00 (row = 24, column = 00) and the bottom right corner of

the monitor is 24, 79 (row = 24, column = 79).

MAHESH PRASANNA K., VCET, PUTTUR

40

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
INT 10H Function 06H: Clearing the Screen

To clear the screen before displaying data; the following registers must contain certain values before INT

10H is called: AH = 06, AL = 00, BH = 07, CX = 0000, DH = 24, and DL= 79. The code will look like

this:

 Remember that DEBUG assumes immediate operands to be in hex; therefore, DX would be

entered as 184F. However, MASM assumes immediate operands to be in decimal. In that case

DH = 24 and DL = 79.

 In the program above, one of many options of INT 10H was chosen by putting 06 into AH.

Option AH = 06, called the scroll function, will cause the screen to scroll upward.

 The CH and CL registers hold the starting row and column, respectively, and DH and DL hold

the ending row and column.

 To clear the entire screen, one must use the top left cursor position of 00, 00 for the start point

and the bottom right position of 24, 79 for the end point.

 Option AH = 06 of INT 10H is in reality the "scroll window up" function; therefore, one could

use that to make a window of any size by choosing appropriate values for the start and end rows

and columns.

 To clear the screen, the top left and bottom right values are used for start and stop points in order

to scroll up the entire screen. It is more efficient coding to clear the screen by combining some of

the lines above as follows:

INT 10H Function 02: Setting the Cursor to a Specific Location

 INT 10H function AH = 02 will change the position of the cursor to any location.

 The desired position of the cursor is identified by the row and column values in DX, where DH =

row and DL = column.

 Video RAM can have multiple pages of text, but only one of them can be viewed at a time. When

AH = 02, to set the cursor position, page zero is chosen by making BH = 00.

MAHESH PRASANNA K., VCET, PUTTUR

41

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

INT 10H Function 03: Get Current Cursor Position

In text mode, it is possible to determine where the cursor is located at any time by executing the

following:

 After execution of the program above, registers DH and DL will have the current row and column

positions, and CX provides information about the shape of the cursor.

 The reason that page 00 was chosen is that the video memory could contain more than one page

of data, depending on the video board installed on the PC.

 In text mode, page 00 is chosen for the currently viewed page.

Attribute Byte in Monochrome Monitors:

 There is an attribute associated with each character on the screen.

MAHESH PRASANNA K., VCET, PUTTUR

42

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 The attribute provides information to the video circuitry, such as color and intensity of the

character (foreground) and the background.

 The attribute byte for each character on the monochrome monitor is limited. The following Fig

shows bit definitions of the monochrome attribute byte.

Fig: Attribute Byte for Monochrome Monitors

The following are some possible variations of the attributes shown in the above Fig.

MAHESH PRASANNA K., VCET, PUTTUR

43

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Attribute Byte in CGA Text Mode:

The bit definition of the attribute byte in CGA text mode is shown in the following Fig.

From the bit definition, it can be seen that, the background can take eight different colors by combining

the prime colors red, blue, and green. The foreground can be any of 16 different colors by combining red,

blue, green, and intensity.

MAHESH PRASANNA K., VCET, PUTTUR

44

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

The following Program shows the use of the attribute byte in CGA mode.

Graphics: Pixel Resolution and Color:

o In the text mode, the screen is viewed as a matrix of rows and columns of characters.

o In graphics mode, the screen is viewed as a matrix of horizontal and vertical pixels.

o The number of pixels varies among monitors and depends on monitor resolution and the video

board.

o There are two facts associated with every pixel on the screen:

 The location of the pixel

 Its attributes, color, and intensity

o These two facts must be stored in the video RAM.

o Higher the number of pixels and colors, the larger the amount of memory is needed to store.

o The CGA mode can have a maximum of 16K bytes of video memory.

o This 16K bytes of memory can be used in three different ways:

 Text mode of 80 x 25 characters: Use AL = 03 for mode selection in INT 10H option AH

= 00. In this mode, 16 colors are supported.

 Graphics mode of resolution 320 x 200 (medium resolution): Use AL = 04. In this mode,

4 colors are supported.

 Graphics mode of resolution 640 x 200 (high resolution): Use AL = 06. In this mode,

only 1 color (black and white) is supported.

MAHESH PRASANNA K., VCET, PUTTUR

45

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Hence, with a fixed amount of video RAM, the number of supported colors decreases as the

resolution increases.

Table: The 16 Possible Colors

I R G B Color

I R G B Color

0 0 0 0 Black 1 0 0 0 Gray

0 0 0 1 Blue 1 0 0 1 Light Blue

0 0 1 0 Green 1 0 1 0 Light Green

0 0 1 1 Cyan 1 0 1 1 Light Cyan

0 1 0 0 Red 1 1 0 0 Light Red

0 1 0 1 Magenta 1 1 0 1 Light Magenta

0 1 1 0 Brown 1 1 1 0 Yellow

0 1 1 1 White 1 1 1 1 High Intensity White

INT 10H and Pixel Programming:

To draw a horizontal line, choose values for the row and column to point to the beginning of the line and

then continue to increment the column until it reaches the end of the line, as shown in Example below:

DOS INTERRUPT 21H:

o INT21H is provided by DOS, which is BIOS-ROM based.

o When the OS is loaded into the computer, INT 21H can be invoked to perform some extremely

useful functions. These functions are commonly referred to as DOS INT 21H function calls.

MAHESH PRASANNA K., VCET, PUTTUR

46

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
INT 21H Option 09: Outputting a String of Data to the Monitor

 INT 21H can be used to send a set of ASCII data to the monitor. To do that, the following

registers must be set: AH = 09 and DX = the offset address of the ASCII data to be displayed.

 The address in the DX register is an offset address and DS is assumed to be the data segment.

INT 21H option 09 will display the ASCII data string pointed at by DX until it encounters the

dollar sign "$".

 In the absence of encountering a dollar sign, DOS function call 09 will continue to display any

garbage that it can find in subsequent memory locations until it finds "$".

INT 21H Option 02: Outputting a Single Character to the Monitor

 To output a single character to the monitor, 02 is put in AH, DL is loaded with the character to be

displayed, and then INT 21H is invoked. The following displays the letter "J'.

INT 21H Option 01: Inputting a Single Character, with Echo

This function waits until a character is input from the keyboard, and then echoes it to the monitor. After

the interrupt, the input character (ASCII value) will be in AL.

The Program 4-1 does the following:

1. clears the screen

2. sets the cursor to the center of the screen, and

3. starting at that point of the screen, displays the message "This is a test of the display routine".

MAHESH PRASANNA K., VCET, PUTTUR

47

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 4-1

INT 21H Option 0AH: Inputting a String of Data from the Keyboard

 Option 0AH of INT 21H provides a means by which one can get data from the keyboard and

store it in a predefined area of memory in the data segment.

 To do this; the register options are: AH = 0AH and DX = offset address at which the string of

data is stored.

 This is commonly referred to as a buffer area.
MAHESH PRASANNA K., VCET, PUTTUR

48

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 DOS requires that a buffer area be defined in the data segment and the first byte specifies the size

of the buffer. DOS will put the number of characters that came in through the keyboard in the

second byte and the keyed-in data is placed in the buffer starting at the third byte.

 For example, the following program will accept up to six characters from the keyboard, including

the return (carriage return) key. Six locations were reserved for the buffer and filled with FFH.

 The following shows portions of the data segment and code segment:

 The following shows the memory contents of offset 0010H:

 When this program is executed, the computer waits for the information to come in from the

keyboard.

 When the data comes in, the IBM PC will not exit the INT 21H routine until it encounters the

return key.

 Assuming the data that was entered through the keyboard was "USA" <RETURN>, the contents

of memory locations starting at offset 0010H would look like this:

 The step-by-step analysis is given below:

 The 0AH option of INT 21H accepts the string of data from the keyboard and echoes (displays) it

on the screen as it is keyed in.

Use of Carriage Return and Line Feed:

o In the Program 4-2, the EQU statement is used to equate CR (carriage return) with its ASCII

value of 0DH, and LF (line feed) with its ASCII value of 0AH.

o This makes the program much more readable. Since the result of the conversion was to be

displayed in the next line, the string was preceded by CR and LF.
MAHESH PRASANNA K., VCET, PUTTUR

49

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o In the absence of CR the string would be displayed wherever the cursor happened to be.

o In the case of CR and no LF, the string would be displayed on the same line after it had been

returned to the beginning of the line.

MAHESH PRASANNA K., VCET, PUTTUR

50

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 4-2

o The Program 4-3 prompts the user to type in a name. The name can have a maximum of eight

letters.

o After the name is typed in, the program gets the length of the name and prints it to the screen.

MAHESH PRASANNA K., VCET, PUTTUR

51

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 4-3

MAHESH PRASANNA K., VCET, PUTTUR

52

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Program 4-4 demonstrates many of the functions described:

MAHESH PRASANNA K., VCET, PUTTUR

53

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 4-4

INT 21H Option 07: Keyboard Input without Echo

 Option 07 of INT 21H requires the user to enter a single character but that character is not

displayed (or echoed) on the screen.

 After execution of the interrupt, the PC waits until a single character is entered and provides the

character in AL.

Using the LABEL Directive to Define a String Buffer:

o A more systematic way of defining the buffer area for the string input is to use the LABEL

directive.

o The LABEL directive can be used in the data segment to assign multiple names to data. When

used in the data segment it looks like this:

o The attribute can be BYTE, WORD, DWORD, FWORD, QWORD, or TBYTE.

By: Mahesh Prasanna K.,

DePt. of Cse, VCet.

____________*********____________

MAHESH PRASANNA K., VCET, PUTTUR

54

	MODULE – 2
	A AND L INSTRUCTIONS & INT 21H AND INT 10H PROGRAMMING
	Before
	 After
	 BH

	 After
	BH

	 Before
	After
	BH

	 Before
	 After
	BH

	 Before

