CCN Module 5: Transport layer

MODULE 5
1) What are the different services provided by the transport layer?

1. Process-to-Process Communication

The first duty of a transport-layer protocol is to provide process-to-process
communication. A process is an application-layer entity (running program) that
uses the services of the transport layer. The network layer is responsible for
communication at the computer level (host-to-host communication). A network-
layer protocol can deliver the message only to the destination computer.
However, this is an incomplete delivery. The message still needs to be handed
to the correct process. This is where a transport-layer protocol takes over. A
transport-layer protocol is responsible for delivery of the message to the
appropriate process. Figure shows the domains of a network layer and a

transport layer.

Processes Processes

r;;‘\‘ Client Server [
N, _ |J'l

e — ——

N ') 2 =3
|] Internet |
| 5 |
| \ U [
| K |
I I
I I
I |

nain of transport-layver protocol

[oi n network-laver protocs

Figure 1: Network layer versus transport layer

2. Encapsulation and Decapsulation

To send a message from one process to another, the transport-layer protocol
encapsulates and decapsulates messages (Figure 2). Encapsulation happens at
the sender site. When a process has a message to send, it passes the message
to the transport layer along with a pair of socket addresses and some other
pieces of information, which depend on the transport-layer protocol. The
transport layer receives the data and adds the transport-layer header. The
packets at the transport layer in the Internet are called user datagrams,

segments, or packets, depending on what transport-layer protocol we use. In

Dept. of ECE,RNSITPage 1

CCN Module 5: Transport layer

generaltransport-layer payloads are called as packers.

Decapsulation happens at the receiver site. When the message arrives at the
destination transport layer, the header is dropped and the transport layer
delivers the message to the process running at the application layer. The sender

socket address is passed to the process in case it needs to respond to the
message received.

Client Server

Application | Process D Process D Application

—*—
Transpor. | [~ | [T | Tonser
layer Packet Logical channel Packet layer
Header Header
a. Encapsulation b. Decapsulation

Figure 2: Encapsulation and decapsulation

3. Multiplexing and Demultiplexing
Whenever an entity accepts items from more than one source, this is
referred to as multiplexing (many to one); whenever an entity delivers items to
more than one source, this is referred to as demultiplexing (one to many). The
transport layer at the source performs multiplexing; the transport layer at the

destination performs demultiplexing
Figure 3 shows communication between a client and two servers.
Three client processes are running at the client site, P1, P2, and P3. The
processes P1 and P3 need to send requests to the corresponding server
process running in a server. The client process P2 needs to send a request to
the corresponding server process running at another server. The transport layer
at the client site accepts three messages from the three processes and creates
three packets. It acts as a multiplexer. The packets 1 and 3 use the same logical
channel to reach the transport layer of the first server. When they arrive at the
server, the transport layer does the job of a demultiplexer and distributes the
messages to two different processes. The transport layer at the second server
receives packet 2 and delivers it to the corresponding process. Note that we still

Dept. of ECE,RNSITPage 2

CCN Module 5: Transport layer

have demultiplexing although there is only one message.

.’ Server
Pl

Application
layer
4 4
C ..ml Messages [mT]
H ultiplexe:
I 1 P2 o = Transpor
\ppiu.mun Packet | CIT—1 layer
layer Packet 3 1T
\1L<“.1_L‘- I IT]I'[I | n{I
Transport | Packet 1 0T Server
layer Packet 2
Packet 3 O] [‘3 .
Application
layer
l.egend
~ ~ Message m,_
mi: Message
Pi: Process
\,
Transport

layer

Packet 2T

|

Figure 3: Multiplexing and demultiplexing

4. Flow Control

Whenever an entity produces items and another entity consumes them, there
should be a balance between production and consumption rates. If the items
are produced faster than they can be consumed, the consumer can be
overwhelmed and may need to discard some items. If the items are produced
more slowly than they can be consumed, the consumer must wait, and the
system becomes less efficient. Flow control is related to the first issue. We need
to prevent losing the data items at the consumer site.
Pushing or Pulling
Delivery of items from a producer to a consumer can occur in one of two ways:
pushing or pulling. If the sender delivers items whenever they are produced
without a prior request from the consumer the delivery is referred to as pus/hing.
If the producer delivers the items after the consumer has requested them, the
delivery is referred to as pu/ling. Figure 4 shows these two types of delivery.

Dept. of ECE,RNSITPage 3

CCN Module 5: Transport layer

¥ Flow control 1';""""E-:hué?;f"_"_"?
Producer o Consumer Producer B Consumer
Delivery Delivery
a. Pushing b. Pulling

Figure 4: Pushing or pulling
Flow Control at Transpont Layer

In communication at the transport layer, we are dealing with four entities:
sender process, sender transport layer, receiver transport layer, and receiver
process. The sending process at the application layer is only a producer. It
produces message chunks and pushes them to the transport layer.

The sending transport layer has a double role: It is both a consumer and a
producer. It consumes the messages pushed by the producer. It encapsulates the
messages in packets and pushes them to the receiving transport layer. The
receiving transport layer also has a double role: it is the consumer for the packets
received from the sender and the producer that decapsulates the messages and
delivers them to the application layer. The last delivery, however, is normally a
pulling delivery; the transport layer waits until the application-layer process asks for
messages.

Figure 5 shows that we need at least two cases of flow control: from the
sending transport layer to the sending application layer and from the receiving
transport layer to the sending transport layer.

Sender Receiv or
.x\ppljt;n?mn @l Application
layer layer
Messages Flow Reguests E Messages
arc pushed ontrol H are pulled
1 I ¥
Transport | | Consumer Producer Transport
layer TR ! Packets are pushed Consurmer layer
Flow control
Figure 5: Flow control at the transport layer
5. Error Control

In the Internet, since the underying network layer (IP) is unreliable, we need to

Dept. of ECE,RNSITPage 4

CCN Module 5: Transport layer

make the transport layer reliable if the application requires reliability. Reliability
can be achieved to add error control services to the transport layer. Exrror control
at the transport layeris responsible for

1. Detecting and dis carding corrupted packets.

2. Keeping track of lost and discarded packets and resending them.

3. Recognizing duplicate packets and discarding them.

4. Buffering out-of-order packets until the missing packets arrive.

Error control, unlike flow control, involves only the sending and receiving
transport layers. Assume that the message chunks exchanged between the
application and transport layers are error free. Figure 6 shows the error control
between the sending and receiving transport layers. As with the case of flow
control, the receiving transport layer manages error control, most of the time, by
informing the sending trans port layer about the problems.

Sender Receiver

Transport Packets | Transport
layer - layer

f Error control

Figure 6: Error control at the transport layer

Sequence Numbers

Error control requires that the sending transport layer knows which packet is
to be resent and the receiving transport layer knows which packet is a duplicate, or
which packet has armrived out of order. This can be done if the packets are
numbered. We can add a field to the transport-layer packet to hold the sequence
number of the packet. When a packet is corrupted or lost, the receiving transport
layer can somehow inform the sending transport layer to resend that packet using
the sequence number. The receiving transport layer can also detect duplicate
packets if two received packets have the same sequence number. The out-of-order
packets can be recognized by observing gaps in the sequence numbers. Packets
are numbered sequentially. However, because we need to include the sequence
number of each packet in the header, we need to set a limit. If the header of the
packet allows mbits for the sequence number, the sequence numbers range from 0
to 27-1.

Dept. of ECE,RNSITPage 5

CCN Module 5: Transport layer

For example, if m is 4, the only sequence numbers are 0 through 15, inclusive.
However, we

can wrap around the sequence. So the sequence numbers in this case are

0.1,2,3,4,5.6,7,8,9, 10, 11, 12.| 13,14,15,0,1,2,3,4.5,6,7,8,9, 10, 11, ...

In other words, the sequence numbers are modulo 2.,
Acknowledgment
The receiver side can send an acknowledgment (ACK) for each of a
collection of packets that have arrived safe and sound. The receiver can simply
discard the corrupted packets. The sender can detect lost packets if it uses a timer.
When a packet is sent, the sender starts a timer. If an ACK does not arrive before
the timer expires, the sender resends the packet. Duplicate packets can be silently
discarded by the receiver. Out-of-order packets can be either discarded (to be
treated as lost packets by the sender), or stored until the missing one arrives.
6. Congestion Control
Congestion in a network may occur if the load on the network—the number of
packets sent to the network is greater than the capacity of the network, the number
of packets a network can handle. Congestion control refers to the mechanisms and
techniques that control the congestion and keep the load below the capacity.
Congestion happens in any system that involves waiting. For example,
congestion happens on a freeway because any abnormality in the flow, such as an
accident during rush hour, creates blockage. Congestion in a network or
internetwork occurs because routers and switches have queues—buffers that hold
the packets before and after processing. A router, for example, has an input queue
and an output queue for each interface. If a router cannot process the packets at
the same rate at which they arrive, the queues become overloaded and congestion
occurs. Congestion at the transport layer is actually the result of congestion at the
network layer, which manifests itself at the transport layer.

2) Explain the concept of sliding window with a neat diagram.
Sliding Window
Since the sequence numbers use modulo 2™ a circle can represent the
sequence numbers from 0 to 2 - 1 (Figure 7). The buffer is represented as a
set of slices, called the slkding window; that occupies part of the circle at any

Dept. of ECE,RNSITPage 6

CCN Module 5: Transport layer

time. At the sender site, when a packet is sent, the corresponding slice is
marked. When all the slices are marked, it means that the buffer is full and no
further messages can be accepted from the application layer.

When an acknowledgment arrives, the corresponding slice is unmarked. If
some consecutive slices from the beginning of the window are unmarked, the
window slides over the range of the corresponding sequence numbers to allow
more free slices at the end of the window. Figure 7 shows the sliding window at
the sender. The sequence numbers are in modulo 16 (z22= 4) and the size of the
window is 7. The sliding window is just an abstraction: the actual situation uses
computer variables to hold the sequence numbers of the next packet to be sent

and the last packet sent.

gL, .
8 7
a. Four packets have been sent.

c. Seven packets have been sent: d. Packet 0 has been acknowledged;
window is full. window slides.
Figure 7: Sliding window in circular format
Most protocols show the sliding window using linear representation. The idea is
the same, but it normally takes less space on paper. Figure 8 shows this

representation.

Dept. of ECE,RNSITPage 7

CCN Module 5: Transport layer

S o Bt

¢. Seven packets have been sent: d. Packet O has been acknowledged:
window is full. window slides.

Figure 8: Sliding window in linear format

3. Wiite outline and explain send window and receive window for Go back N
protocol/ selective repeat protocol

Go-Back N protocol

To improve the efficiency of transmission (to fill the pipe), multiple packets
must be in transition while the sender is waiting for acknowledgment. In other
words, we need to let more than one packet be outstanding to keep the channel
busy while the sender is waiting for acknowledgment. One of the protocol is
called Go-Back-N (GBN). The key to Go-back-&Vis that we can send several
packets before receiving acknowledgments, but the receiver can only buffer
one packet. We keep a copy of the sent packets until the acknowledgments
arrive. Figure 9 shows the outline of the protocol.

Sender Packet ACK Receiver
Application Application
ppicati = ackNo checksum ackNo nuhc:.ksum — ppIcatic
*——» [— [e T ¥ s —
Transport Transport
Logical channels
ScFirst 5, Next T [, Next .
l'oulslandmg to send @T'm‘“' l to receive
KR I B O Y LTS R
Send window Receive window

Dept. of ECE,RNSITPage 8

CCN Module 5: Transport layer

Figure 9: Go-Back-N protocol

Send Window

The send window is an imaginary box covering the sequence numbers of the
data packets that can be in transit or can be sent. In each window position, some of
the sequence numbers define the packets that have been sent; others define those
that can be sent. The maximum size of the window is 2™ - 1, we let the size be fixed
and set to the maximum value, Figure 10 shows a sliding window of size 7 (m = 3)
for the Go-Back-N protocol.

_ First ; MNext
5 2 N
© outstanding + to send
~ee i 6 TN 4 | 5[6] 7 | 0 ;e
Sent, Outstanding Can be sent Cannot be
acknowledged. (sent. but not when accepted accepted
and purged acknowledged) from process from process
S.ize = Send window size

Figure 10: Send window for Go-Back-N

The send window at any time divides the possible sequence numbers into
four regions. The first region, left of the window, defines the sequence numbers
belonging to packets that are already acknowledged. The sender does not worry
about these packets and keeps no copies of them. The second region, colored,
defines the range of sequence numbers belonging to the packets that have been
sent, but have an unknown status. The sender needs to wait to find out if these
packets have been received or were lost. These are called as outstanding packets.
The third range, white in the figure, defines the range of sequence numbers for
packets that can be sent; however, the cormresponding data have not yet been
received from the application layer. Finally, the fourth region, right of the window,
defines sequence numbers that cannot be used until the window slides.

Dept. of ECE,RNSITPage 9

CCN Module 5: Transport layer

First : . Next
outstanding { to send
012 3alsTel 7ol 1 [2]3 415 6.

___________________ U T R

a. Window before sliding

First Next
outstanding " 1o send

0111213 i4arvs[e[T7JOo[1[2]3]a]5 16

(Y S Y PNl PNt (R

b. Window after sliding (an ACK with ackNo = 6 has arrived)

Figure 11: Sliding the send window
Figure 11 shows how a send window can slide one or more slots to the right
when an acknowledgment arrives from the other end. In the figure, an
acknowledgment with ack
No = 6 has amrived. This means that the receiver is waiting for packets with

sequence no 6.

Receive Window

The receive window makes sure that the correct data packets are received
and that the correct acknowledgments are sent. In Go-Back-N, the size of the
receive window is always 1. The receiver is always looking for the arrival of a
specific packet. Any packet arriving out of order is discarded and needs to be
resent. Figure 12 shows the receive window. It needs only one variable, Rn (receive
window, next packet expected), to define this abstraction. The sequence numbers
to the left of the window belong to the packets already received and acknowledged;
the sequence numbers to the right of this window define the packets that cannot be
received. Any received packet with a sequence number in these two regions is
discarded. Only a packet with a sequence number matching the value of Rn is
accepted and acknowledged. The receive window also slides, but only one slot at a

time. When a correct packet is received, the window slides, Rn = (Rn + 1) modulo 2™

Dept. of ECE,RNSITPage 10

CCN Module 5: Transport layer

J Next
J' expected
cee SO TN AT ST 6 TN O T2 eee

received

Already received Cannot be
and acknowledged

n
F

Figure 12: Receive window for Go-Back-N

FSMs

Figure 13 shows the FSMs for the GBN protocol.

Sender

The sender starts in the ready state, but thereafterit can be in one of the two states:
ready or blocking. The two variables are normally initialized to 0 (Sf = Sn = 0).

> Ready state. Four events may occur when the senderis in ready state.

a. If a request comes from the application layer, the sender creates a packet with
the sequence numberset to Sn. A copy of the packet is stored, and the packet
is sent. The sender also starts the only timer if it is not running. The value of Sn
is now incremented, (Sn = Sn + 1) modulo 2™ If the window is full, Sn = (Sf +
Ssize) modulo 2™, the sender goes to the blocking state.

b. If an error-free ACK arrives with ackNo related to one of the outstanding
packets,the sender slides the window (set Sf = ackNo), and if all outstanding
packets are acknowledged (ackNo = Sn), then the timer is stopped. If all
outstanding packets are not acknowledged, the timeris restarted.

c. If a corrupted ACK or an error-free ACK with ack number not related to the
outstanding packet arrives, it is discarded.

d. If a time-out occurs, the sender resends all outstanding packets and restarts the

timer.

> Blocking state. Three events may occurin this case:

a. If an error-free ACK arrives with ackNo related to one of the outstanding packets,
the sender slides the window (set Sf = ackNo) and if all outstanding packets are
acknowledged (ackNo = Sn), then the timeris stopped. If all outstanding packets

Dept. of ECE,RNSITPage 11

CCN Module 5: Transport layer

are not acknowledged, the timeris restarted. The sender then moves to the ready
state.

b. If a corrupted ACK or an error-free ACK with the ackNo not related to the
outstanding packets arrives, the ACKis discarded.

c. If a time-out occurs, the sender sends all outstanding packets and restarts the

timer.

Sender
/\ ote: \
All arithmetic equations Request from process came
are in modulo 2™ Make a packet (seqNo = S,). Time-out
Store a copy and send the packet. Resend all outstanding
Start the timer if it is not running. Window full packets.
Time-out. Sn="5Sp+ 1.) S =5¢ +5size)? | Restart the timer.
Resend all outstanding - Ttrue]
packets. [false]
Restart the timer. _— ' [
Start == Ready | Blocking
H
: N
A corrupted ACK or an i l._!'!"l"_ || \:.]\ "_'l_]_ ""_'Ik__\._' '\ i "1 A corrupted ACK or an
errof '.!-".\{-'|'\ I"'I-l.. ackNo :i"' Or equal (0 oy and iess Uan o, amved. error-free ACK with ackNo
outside window arrived Slide window (Sf = ackNo). l-.l\[.‘.-|[-;-|['.::.l :. -I I[\I \I-:|..f\-- e
Discard it. If ackNo equals S,. stop the timer. o, St
If ackNo < 5. restart the timer. Discard it.
L J
Receiver
//:\'utc: Error-free packet with)
All arithmetic equations seqNo = R, arrived.
. m ;
are in modulo 2. Deliver message.
Slide window (R, =R, + 1).
Send ACK (ackNo = Ry)).
S
— Error-free packet
Corrupted packet arrived. Stant 5 Reacy with seqNo # R, arrived.
Discard packet. | A Discard packet.
Send an ACK (ackNo = R;)).

A,

Figure 13 FSMs for the Go-Back-N protocol

Receiver
The receiver is always in the ready state. The only variable, Rn, is initialized to O.
Three events may occur:
a. If an error-free packet with seq No = Rn arrives, the message in the packet is
delivered

Dept. of ECE,RNSITPage 12

CCN Module 5: Transport layer

to the application layer. The window then slides, Rn = (Rn + 1) modulo 2m.
Finally an ACKis sent with ack No = Rn.
b. If an error-free packet with seqNo outside the window arrives, the packet is
discarded,
but an ACK with ackNo = Rnis sent.

c. If a corrupted packet arrives, it is discarded.

Send Window Size

The size of the send window must be less than 2™ is because for example, choose
m = 2, which means the size of the window can be 2™ - 1, or 3. Figure 14 compares
a window size of 3 against a window size of 4. If the size of the window is 3 (less
than 2™) and all three acknowledgments are lost, the only timer expires and all three
packets are resent. The receiver is now expecting packet 3, not packet 0, so the
duplicate packet is correctly discarded. On the other hand, if the size of the window
is 4 (equal to 22) and all acknowledgments are lost, the sender will send a duplicate
of packet 0. However, this time the window of the receiver expects to receive packet
0 (in the next cycle), so it accepts packet 0, not as a duplicate, but as the first
packet in the next cycle. This is an error. This shows that the size of the send

window must be less than 2™,

Sender Receiver Sender Receiver
] L] 1 1
Start 5"’. S E E R Start S’- S E E R
ol -4 Packero i _ . o b LJ'-? -+ Packetp 1 _ ”_ o
@ [QlR3 it @ LRl "1 EMTU:
P Caok P CROKD |
=2 Packet | — v Packer)
2031 — S Em 2 -
-_Ji _;:"E?OJ] 3 II 0: E“————“_»i :():13:0.
' ACKZ,y 7777 - ' ACK2 w 777 -
- : P-'ICJ\("I;’ :r_'_I =T i Pi-]g‘ke[_‘j ' ==
[EE E—__‘_—'*E:E_:_]_r_j 0[1]2]3 0; i —=0023] o
' m: ' (‘E’G: L
; Packe P —— -- Packe
@ Q231 i—eo | [Corredh OTIT213] 0 3, & oo
Ti . { Resent 47| discarded 230 : |0-1|2-3
ime-out; V . ¥ i ' CACKD |-
restart . H o '
. * . -, ' Packetp " rEI— -
Time Time @ 0]1[2[3] 0 . gl ns
) . - Y Resent Y .Iu.-_:_a.n.. |'II_'[
.) o Time-out; . delivered as
a. Send window of size < 2™ restart Time + Time new data
b. Send window of size = 2™
Figure 14 Send window size for Go-Back-N
Example 1

Dept. of ECE,RNSITPage 13

CCN Module 5: Transport layer

Figure 15 shows an example of Go-Back-A. This is an example of a case where the
forward channel is reliable, but the reverse is not. No data packets are lost, but
some ACKs are delayed and one is lost. The example also shows how cumulative
acknowledgments can help if acknowledgments are delayed orlost.

Sender Receiver
Transport Transport
layer layer R

" Initial

0}112{314]51617,0,1,2]
Start R,
e RPN
Stop
limer
Start v _R_c_q R,
timer > - .
--=»10! 1ET1,4 151617101112
_R.c_qh . Rﬂ
===+101112]314/51617101112,

Req T

—-——

R

n

'l‘lﬂll:":lEﬂl(’ _'"lf)l : :

9 S” > - aik
Restart ID 'II} | " | :L“‘“': - Events:
- 1

Req: Request from process
Stop O pArr: Packet arrival
timer Y

-

aArr: ACK arrival

Figure15: Flow diagram for Example 1
After initialization, there are some sender events. Request events are
triggered by message chunks from the application layer; arrival events are triggered
by ACKSs received from the network layer. There is no time-out event here because
all outstanding packets are acknowledged before the timer expires. Although ACK 2
is lost, ACK 3 is cumulative and serves as both ACK 2 and ACK 3. There are four

events at the receiversite.

Example 2

Figure 16 shows what happens when a packet is lost. Packets 0, 1, 2, and 3 are sent.
However, packet 1 is lost. The receiver receives packets 2 and 3, but they are
discarded because they are received out of order (packet 1 is expected). When the
receiver receives packets 2 and 3, it sends ACK1 to show that it expects to receive
packet 1. However, these ACKs are not useful for the sender because the ackNo is
equal to S7, not greater than SZ So the sender discards them. When the time-out

Dept. of ECE,RNSITPage 14

CCN Module 5: Transport layer

occurs, the senderresends packets 1, 2, and 3, which are acknowledged.

Go-Back-N versus Stop-and-Wait

The Stop-and-Wait protocol is actually a Go-Back-N protocol in which there are only
two sequence numbers and the send window size is 1. In other words, m = 1 and 2™
- 1 = 1. In Go-Back-N, we said that the arithmetic is modulo 2™; in Stop-and-Wait it
is modulo 2, which is the same as 2™ whenm = 1.

Sender Receiver
Transpon Transport
layer layer
i i R rnidal
' s 23450670
; : Po=
Req : ' R
tmes e (1 EIE 1 e Sl T
-------- 1 ‘HRHU) - T
- L e
S MNBENEGARIE A :
Stop ,n 10112} - ¢ '
T ———— 7 1 []
. s P 5 ;
S acket |
Sart () ———-10[1]2[3 — :
1 |]
. _‘a",- S, i Lost E
L o 1 Packey 2 "
- IRREBITOTE e P ke discarded
1 . L] .
P B : ol
eq - H N
—m=ae 12 AT
- u.l. i H T———-» Packet discarded
) 1 1
ACK discarded ! H
] []
1 n
1 []
ACK discarded E E
i 1 R
i] .}
Time-out C ! : pArr ___ [
R T PRI
H L A B
' R,
RpATT e ___
: R R

! s el -J_ .4

l i '\-q Packet 3

->{T]I2[3]4[S 6] T]0TT i sl
s

Y .
Restart (b
Events
Restarnt (b Req: Request from process
pArr: Packet arnval
aArr: ACK armval
Stop T Time-out: Timer expiration
amer (Y 03152, : piranc

Dept. of ECE,RNSITPage 15

CCN Module 5: Transport layer

Figure 16: Flow diagram for Example 2

Selective-Repeat Protocol

The Go-Back-V protocol simplifies the process at the receiver. The receiver
keeps track of only one variable, and there is no need to buffer out-of-order packets;
they are simply discarded. However, this protocol is inefficient if the underying
network protocol loses a lot of packets. Each time a single packet is lost or
corrupted, the sender resends all outstanding packets, even though some of these
packets may have been received safe and sound but out of order. If the network
layer is losing many packets because of congestion in the network, the resending
of all of these outstanding packets makes the congestion worse, and eventually
more packets are lost. This has an avalanche effect that may result in the total
collapse of the network.

Another protocol, called the Selective-Repeat (SR) protocol, has been
devised, which, as the name implies, resends only selective packets, those that are
actually lost.

The outline of this protocol is shown in Figure 17.

Sender Packet ACK Receiver
Application = segNo checksum ackNo ﬂ checksum F Application
v -
e — > [0 Dm—— L [oe—]
Transport Transport
o ~—f—— [] “aew . ~——— =

Logical channels

|:] Sent, but not acknowledged
@ Timer

|:| Acknowledged out of order D Packet received out of order

First Next R, Next
outstanding ¢ to send * ¢ Lo receive
e :____m___: e e r__m___:-‘-
. ! [-
Send window Receive window

Figure 17: Outline of Selective-Repeat
Windows
The Selective-Repeat protocol also uses two windows: a send window and a
receive window. However, there are differences between the windows in this

Dept. of ECE,RNSITPage 16

CCN Module 5: Transport layer

protocol and the ones in Go-Back-N. First, the maximum size of the send window is
much smaller; it is 2™1. The reason for this will be discussed later. Second, the
receive window is the same size as the send window.

The send window maximum size can be 2™-1. For example, if m = 4, the
sequence numbers go from 0 to 15, but the maximum size of the window is just 8
(it is 15 in the Go-Back-N Protocol). The Selective-Repeat send window in Figure
18.1 to emphasize the size.

The receive window in Selective-Repeat is totally different from the one in Go
-Back-N. The size of the receive window is the same as the size of the send window
(max 2™-1). The Selective-Repeat protocol allows as many packets as the size of
the receive window to arrive out of order and be kept until there is a set of
consecutive packets to be delivered to the application layer. Because the sizes of
the send window and receive window are the same, all the packets in the send
packet can armrive out of order and be stored until they can be delivered. To
emphasize that in a reliable protocol the receiver never delivers packets out of
order to the application layer.

Figure 18.2 shows the receive window in Selective-Repeat. Those slots inside the
window that are shaded define packets that have arrived out of order and are

waiting for the earlier trans mitted packet to arrive before delivery to the application

layer.
First outstanding Next to send
==p=== e e el T SR —
9 & 7 S 0 | 12 .
- n“ - 3_.: __}_ i_]_‘ ';.J ,_l_]_ Lol (lul_-\l;mdlng p;lc.‘kcl.
I:I not acknowledged
Packets already | Outstanding packets, Packets that can Packets that I:I Packet acknowledged
out of order

|
— =l

acknowledged | some acknowledged be sent cannot be sent

Figure 18.1: Send window for Selective-Repeat protocol

Dept. of ECE,RNSITPage 17

CCN Module 5: Transport layer

Receive window,
l next packet expected

o ii2[aals el 7 8 Lolio] iy i 1415

1 Doy » i \- »,
Packets that can be received I:' Packet received
and stored for later delivery: Packets that out of order

shaded boxes, already received cannot be received

_ am-1 ‘

Packets already
received

Figure 18.2: Receive window for Selective-Repeat protocol

Example 3
Assume a sender sends 6 packets: packets 0, 1, 2, 3, 4, and 5. The sender receives
an ACK with ackNo = 3. What is the interpretation if the system is using GBN or SR?

Solution

If the system is using GBN, it means that packets 0, 1, and 2 have been received

uncorrupted and the receiver is expecting packet 3. If the system is using SR, it

means that packet 3 has been received uncorrupted; the ACK does not say anything
about other packets.

FSMs

Figure 19 shows the FSMs for the Selective-Repeat protocol It is similar to the

ones forthe GBN, but there are some differences.

Sender

The sender starts in the ready state, but later it can be in one of the two states:

ready or blocking. The following shows the events and the corresponding actions in

each state.

> Ready state. Four events may occur in this case:

a. If a request comes from the application layer, the sender creates a packet with
the sequence numberset to Sz A copy of the packet is stored, and the packet is
sent. If the timer is not running, the sender starts the timer. The value of Snis
now incremented, $77= (Sn+ 1) modulo 27 If the window is full, Sz2= (S/+ Ssize)
modulo 2, the sender goes to the blocking state.

b. If an error-free ACK arrives with ackNo related to one of the outstanding packets,

Dept. of ECE,RNSITPage 18

CCN Module 5: Transport layer

that packet is marked as acknowledged. If the ackNo = S the window slides to
the right until the S/ points to the first unacknowledged packet (all consecutive
acknowledged packets are now outside the window). If there are outstanding
packets, the timeris restarted; otherwise, the timeris stopped.

c. If a corrupted ACK or an error-free ACK with ackNo not related to an outstanding
packet arrives, it is discarded.

d. If a time-out occurs, the sender resends all unacknowledged packets in the
window and restarts the timer.

> Blocking state. Three events may occurin this case:

a. If an error-free ACK arrives with ackNo related to one of the outstanding packets,
that packet is marked as acknowledged. In addition, if the ackNo = 7 the
window is slid to the right until the S/ points to the first unacknowledged packet
(all consecutive acknowledged packets are now outside the window). If the
window
has slid, the sender moves to the ready state.

b. If a corrupted ACK or an error-free ACK with the ackNo not related to outstanding
packets arrives, the ACKis discarded.

c. If a time-out occurs, the sender resends all unacknowledged packets in the

window and restarts the timer.

Dept. of ECE,RNSITPage 19

CCN Module 5: Transport layer

Sender
4 ™\
N Request came from process.
Time-out.
Make a packet (seqNo = §).
Regend all Stor and send the packet
outstanding packets L i P Window full
in window. Start the timer for this packet. I el o
. SetS,=8,+ 1. (Sp =S+ Ssize)” Time-out
Reset the timer. n . i,
a N Resend all
. [true] outstanding packets
[false] i in window.
| N L Reset the timer.
Start —h-l Ready) [true] (Blocking
- ,-"’[fal.w] - A corrupted ACK or
: e i an ACK about a non-
| | Window slides? N outstanding packet
A ted ACK . .:. arrived
T e 2 : ! Discard it
an AC h about a non- b= Anerror-free ACK arrived that
outstanding packet acknowledges one of the outstanding
arrived, packets. : :
Discardit Mark the corresponding packet.
If ackNo = Sg; slide the window over Note:
all consecutive acknowledged packets. All arithmetic equations
If there are outstanding packets, are in modulo 2™
restart the timer. Otherwise, stop the
timer.
& J
Receiver
/ Error-free packet with seqNo Note:)
inside window arrived All arithmetic equations
If duplicate, discard; otherwise, are in modulo 2™,
store the packet.
Send an ACK with ackNo = seqNo.
If seqNo = R,,. deliver the packet and
all consecutive previously arrived
and stored packets to application,
and slide window.
—
Ready
Corrupted packet arrived. Error-free packet with segNo
Discard the packet. | T T outside window boundaries arrived
Start Discard the packet.
Send an ACK with ackNo = R,

N\

Receiver

The receiveris always in the ready state. Three events may occur:

a. If an error-free packet with seqNo in the window arrives, the packet is stored and
an ACK with ackNo = seqNo is sent. In addition, if the seqNo = Az then the
packet and all previously arrived consecutive packets are delivered to the
application layer and the window slides so that the Rz points to the first empty

slot.

Dept. of ECE,RNSITPage 20

CCN Module 5: Transport layer

b. If an errorfree packet with seqNo outside the window arrives, the packet is
discarded, but an ACK with ackNo = Rnis returned to the sender. This is needed
to let the sender slide its window if some ACKs related to packets with seqNo <
Rnwere lost.

c. If a corrupted packet arrives, the packet is discarded.

Example 4

This example is similar to Example 2 (Figure 16) in which packet 1 is lost. Selective-

Repeat behaviouris shown in this case. Figure 19 shows the situation.

Events:
""]-l-cq: REquu.xL from process
pArr: Packet arrival

™

aArr: ACK amival Sender Receiver
_T-Out: Time-out Transport Transport
layer layer
Initial i R, Initial
i i
IIlI:IIl i | ODEEEE
Start (B) oo mn Rla5670) e Pakero : ;
I B ol 1 AraEl
J 3 | acko
i i
. P - ——— aArr / Data delivered
Stop \fj : |1 3 |(1| Ti0j=— i to application
\ R\‘q |]
Start Ikl-f/ ------ > 'II n..l h' 'I‘J : —_ Packer I__

RL‘L; i E P -.‘. R“
______ >0 ST i Packer 2 \
—_— A Ol pBEeT

H
=
=
- :
J
:E
.
2|

{
= i e -
______ " ﬁ'h' '|: — \ -
gunens | — N R

\' 1
T-Out

i
R
i Packe n u
Restant () —s 0 Rlinon SETI0) jtecket] resem) o
' - ---||J|]|:|_'i
s, S, ; ACKE |_._
A oo o e — aArr | Data delivered
Stop | E 0515233 n U_: - I > o application
¥ _—

4
Time Time

‘\/’

Figure 19: Flow diagram for Example 4
At the sender, packet 0 is transmitted and acknowledged. Packet 1 is lost.
Packets 2 and 3 arrive out of order and are acknowledged. When the timer times
out, packet 1 (the only unacknowledged packet) is resent and is acknowledged. The
send window then slides.
At the receiver site we need to distinguish between the acceptance of a

packet and its delivery to the application layer. At the second arrival, packet 2

Dept. of ECE,RNSITPage 21

CCN Module 5: Transport layer

arrives and is stored and marked (shaded slot), but it cannot be delivered because
packet 1 is missing. At the next arrival, packet 3 arrives and is marked and stored,
but still none of the packets can be delivered. Only at the last arrival, when finally a
copy of packet 1 arrives, can packets 1, 2, and 3 be delivered to the application
layer. There are two conditions for the delivery of packets to the application layer:
First, a set of consecutive packets must have arrived. Second, the set starts from
the beginning of the window. After the first arrival, there was only one packet and it
started from the beginning of the window. After the last arrival, there are three
packets and the first one starts from the beginning of the window. The key is that a
reliable transport layer promises to deliver packets in order.
Window Sizes

We can now show why the size of the sender and receiver windows can be
at most one-half of 2”. For an example, we choose /m= 2, which means the size of
the window is 2”2 or 2“7 = 2. Figure 23.36 compares a window size of 2 with a
window size of 3. If the size of the window is 2 and all acknowledgments are lost,
the timer for packet 0 expires and packet 0 is resent. However, the window of the
receiver is now expecting packet 2, not packet 0, so this duplicate packet is
correctly discarded (the sequence number 0 is not in the window). When the size of
the window is 3 and all acknowledgments are lost, the sender sends a duplicate of
packet 0. However, this time, the window of the receiver expects to receive packet 0
(0 is part of the window), so it accepts packet 0, not as a duplicate, but as a packet

in the next cycle. This is clearly an error.

4. What are the services provided by UDP? Mention any four typical applications of
UDP.

Process-to-Process Communication

UDP provides process-to-process communication using socket addresses, a

combination of IP addresses and port numbers.

Connectionless Services

UDP provides a connectionless service. This means that each user datagram sent

by UDP is an independent datagram. There is no relationship between the different

user datagrams even if they are coming from the same source process and going

to the same destination program. The user datagrams are not numbered. Also,

Dept. of ECE,RNSITPage 22

CCN Module 5: Transport layer

unlike TCP, there is no connection establishment and no connection termination.
This means that each user datagram can travel on a different path. One of the
ramifications of being connectionless is that the process that uses UDP cannot
send a stream of data to UDP and expect UDP to chop them into different, related
user datagrams. Instead each request must be small enough to fit into one user
datagram. Only those processes sending short messages, messages less than
65,507 bytes (65,535 minus 8 bytes for the UDP header and minus 20 bytes for the
IP header), can use UDP.

Flow Control

UDP is a very simple protocol. There is no flow control, and hence no window
mechanism. The receiver may overflow with incoming messages. The lack of flow
control means that the process using UDP should provide for this service, if needed.
Error Control

There is no error control mechanism in UDP except for the checksum. This means
that the sender does not know if a message has been lost or duplicated. When the
receiver detects an error through the checksum, the user datagram is silently
discarded. The lack of error control means that the process using UDP should
provide for this service, if needed.

Checksum

UDP checksum calculation includes three sections: a pseudoheader, the UDP
header, and the data coming from the application layer. The pseudoheader is the
part of the header of the IP packet in which the user datagram is to be encapsulated
with some fields filled with Os (see Figure 20).

32-bit source IP address
32-bit destination IP address

8-bit protocol 16-bit UDP total length

Pseundoheader

Source port address Destination port address
16 bits 16 bits

UDP total length Checksum
16 bits 16 bits

Header

Data

(Padding must be added to make
the data a multiple of 16 bits)

Figure 20: Pseudoheader for checksum calculation

Dept. of ECE,RNSITPage 23

CCN Module 5: Transport layer

If the checksum does not include the pseudoheader, a user datagram may
arrive safe and sound. However, if the IP headeris corrupted, it may be delivered to
the wrong host. The protocol field is added to ensure that the packet belongs to
UDP, and not to TCP. We will see later that if a process can use either UDP or TCP,
the destination port number can be the same. The value of the protocol field for
UDP is 17. If this value is changed during transmission, the checksum calculation
at the receiver will detect it and UDP drops the packet. It is not delivered to the
wrong protocol.

Congestion Control

Since UDP is a connectionless protocol, it does not provide congestion control
UDP assumes that the packets sent are small and sporadic and cannot create
congestion in the network. This assumption may or may not be true today, when
UDP is used forinteractive real-time transfer of audio and video.

Encapsulation and Decapsulation

To send a message from one process to another, the UDP protocol encapsulates
and decapsulates messages.

Queuing

In UDP, queues are associated with ports. At the client site, when a process starts,
it requests a port number from the operating system. Some implementations
create both an incoming and an outgoing queue. associated with each process.
Other implementations create only an incoming queue associated with each
process.

Multiplexing and Demultiplexing

In a host running a TCP/IP protocol suite, there is only one UDP but possibly
several processes that may want to use the services of UDP. To handle this
situation, UDP multiplexes and demultiplexes.

Typical Applications

The following shows some typical applications that can benefit more from the
services of UDP than from those of TCP.

UDP is suitable for a process that requires simple request-response
communication with little concern for flow and error control. It is not usually
used fora process such as FTP that needs to send bulk data.

UDP is suitable for a process with internal flow- and error-control mechanisms.
For example, the Trivial File Transfer Protocol (TFTP) process includes flow and

Dept. of ECE,RNSITPage 24

CCN Module 5: Transport layer

error control. It can easily use UDP.

UDP is a suitable transport protocol for multicasting. Multicasting capability is
embedded in the UDP software but not in the TCP software.

UDP is used for management processes such as SNMP.

UDP is used for some route updating protocols such as Routing Information
Protocol (RIP).

UDP is normally used for interactive real-time applications that cannot tolerate

uneven delay between sections of a received message.

5. What are the different TCP services and features ? Explain them

> Process-to-Process Communication

TCP provides process-to-process communication using port numbers.

> Stream Delivery Service

TCP, unlike UDP, is a stream-oriented protocol. In UDP, a process sends messages
with predefined boundaries to UDP for delivery. UDP adds its own header to each of
these messages and delivers it to IP for transmission. Each message from the
process is called a user datagram, and becomes, eventually, one IP datagram.
Neither IP nor UDP recognizes any relations hip between the datagrams.

TCP, on the other hand, allows the sending process to deliver data as a
stream of bytes and allows the receiving process to obtain data as a stream of
bytes. TCP creates an environment in which the two processes seem to be
connected by an imaginary “tube” that carries their bytes across the Internet. This
imaginary environment is depicted in Figure 21. The sending process produces

(writes to) the stream and the receiving process consumes (reads from) it.

Sending Receiving
process Process
I Stream of bytes [4
TCP E YIES)J TCP
L (]
| |

Figure 21: Stream delivery
> Sending and Receiving Buffers

One way to implement a buffer is to use a circular array of 1-byte locations

Dept. of ECE,RNSITPage 25

CCN Module 5: Transport layer

as shown in Figure 22. For simplicity, it is shown as two buffers of 20 bytes each;
normally the buffers are hundreds or thousands of bytes, depending on the
implementation. We also show the buffers as the same size, which is not always
the case. The figure shows the movement of the data in one direction. At the sender,
the buffer has three types of chambers. The white section contains empty
chambers that can be filled by the sending process (producer). The colored area
holds bytes that have been sent but not yet acknowledged. The TCP sender keeps
these bytes in the buffer until it receives an acknowledgment. The shaded area
contains bytes to be sent by the sending TCP. However, as we will see later in this
chapter, TCP may be able to send only part of this shaded section. This could be
due to the slowness of the receiving process or to congestion in the network. Also
note that, after the bytes in the colored chambers are acknowledged, the chambers
are recycled and available for use by the sending process.

The operation of the buffer at the receiver is simpler. The circular buffer is
divided into two areas (shown as white and colored). The white area contains
empty chambers to be filled by bytes received from the network. The colored
sections contain received bytes that can be read by the receiving process. When a
byte is read by the receiving process, the chamberis recycled and added to the pool
of empty chambers.

Sending Receiving
process process
ot L7 9!

Next Next
byte to byte to
write read

Received, but &

- Written, but not read
Sent not sent

Stream of bytes

Next byte
to receive

Next byte]

Figure 22: Sending and receiving buffers
> Segments
Although buffering handles the disparity between the speed of the producing and
consuming processes, we need one more step before we can send data. The
network layer, as a service provider for TCP, needs to send data in packets, not as a
stream of bytes. At the transport layer, TCP groups a number of bytes together into
a packet called a segment.

TCP adds a header to each segment (for control purposes) and delivers the

Dept. of ECE,RNSITPage 26

CCN Module 5: Transport layer

segment to the network layer for transmission. The segments are encapsulated in
an [P datagram and transmitted. This entire operation is transparent to the
receiving process. Segments may be received out of order, lost or corrupted, and
resent. All of these are handled by the TCP receiver with the receiving application
process unaware of TCP’s activities. Figure 23 shows how segments are created
from the bytes in the buffers.

Segments are not necessarily all the same size. In the figure, for simplicity, it
is shown one segment carrying 3 bytes and the other carrying 5 bytes. In reality,
segments carry hundreds, if not thousands, of bytes.

Sending | Receiving |
process | process |[I8
TCP TCP
: Next byte Next byte gl
- to write to read '_'Q i
I Buffer |
Received, i
Written, but but not read —
Sent not sent Sezment N Segment | =
Next byte Next byte
to send HDDDDD " Hm to receive

Figure 23: TCP segments
> Full-Duplex Communication
TCP offers full-duplex service, where data can flow in both directions at the same
time. Each TCP endpoint then has its own sending and receiving buffer, and
segments move in both directions.
> Multiplexing and Demultiplexing
Like UDP, TCP performs multiplexing at the sender and demultiplexing at the
receiver. However, since TCP is a connection-oriented protocol, a connection needs
to be established for each pair of processes.
» Connection-Oriented Service
TCP, unlike UDP, is a connection-oriented protocol. When a process at site A wants
to send to and receive data from another process at site B, the following three
phases occur:
1. The two TCP’s establish a logical connection between them.
2. Data are exchanged in both directions.

3. The connection is terminated.

Dept. of ECE,RNSITPage 27

CCN Module 5: Transport layer

This is a logical connection, not a physical connection. The TCP segment is
encapsulated in an IP datagram and can be sent out of order,; or lost or corrupted,
and then resent. Each may be routed over a different path to reach the destination.
There is no physical connection. TCP creates a stream-oriented environment in
which it accepts the responsibility of delivering the bytes in order to the othersite.

> Reliable Service

TCP is a reliable transport protocol. It uses an acknowledgment mechanism to
check the safe and sound arrival of data.

TCP Features
Numbering System
Although the TCP software keeps track of the segments being transmitted or

received, there is no field for a segment number value in the segment header.

Instead, there are two fields, called the sequence number and the acknowledgment

number. These two fields referto a byte number and not a segment number.

Byte Number

TCP numbers all data bytes (octets) that are transmitted in a connection.

Numbering is independent in each direction. When TCP receives bytes of data from

a process, TCP stores them in the sending buffer and numbers them. The

numbering does not necessarily start from 0. Instead, TCP chooses an arbitrary

number between 0 and 2°* - 1 for the number of the first byte. For example, if the

number happens to be 1057 and the total data to be sent is 6000 bytes, the bytes

are numbered from 1057 to 7056. We will see that byte numbering is used for flow

and error control.

Sequence Number

After the bytes have been numbered, TCP assigns a sequence number to each

segment that is being sent. The sequence number, in each direction, is defined as

follows:

1. The sequence number of the first segment is the ISN (initial sequence number),
which is a random number.

2. The sequence number of any other segment is the sequence number of the
previous segment plus the number of bytes (real or imaginary) carried by the

Dept. of ECE,RNSITPage 28

CCN Module 5: Transport layer

previous segment.

Acknowledgment Number

Communication in TCP is full duplex; when a connection is established, both parties
can send and receive data at the same time. Each party numbers the bytes, usually
with a different starting byte number. The sequence number in each direction
shows the number of the first byte carried by the segment. Each party also uses an
acknowledgment number to confirm the bytes it has received. However, the
acknowledgment number defines the number of the next byte that the party
expects to receive. In addition, the acknowledgment number is cumulative, which
means that the party takes the number of the last byte that it has received, safe and
sound, adds 1 to it, and announces this sum as the acknowledgment number. The
term cumnulative here means that if a party uses 5643 as an acknowledgment
number, it has received all bytes from the beginning up to 5642. Note that this does
not mean that the party has received 5642 bytes, because the first byte number

does not have to be 0.

6. With a neat diagram explain TCP segment format

Segment

A packet in TCP is called a segment.

Format

The format of a segment is shown in Figure 23.1. The segment consists of a
header of 20 to 60 bytes, followed by data from the application program. The

headeris 20 bytes if there are no options and up to 60 bytes if it contains options.

Dept. of ECE,RNSITPage 29

CCN Module 5: Transport layer

| 20 to 60 bytes |

e Header Data
a. Segment
1 16 31
Source port address Destination port address
16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
Reserved H é SP 1§ % lI: Window size
6 bits G KIH|IT|NIN 16 bits
Checksum Urgent pointer
16 bits 16 bits

Options and padding
(up to 40 bytes)

b. Header

Figure 23.1: TCP segment format
Source port address. This is a 16-bit field that defines the port number of the
application program in the host that is sending the segment.
Destination port address. This is a 16-bit field that defines the port number of the
application program in the host that is receiving the segment.
Sequence number. This 32-bit field defines the number assigned to the first byte
of data contained in this segment. As we said before, TCP is a stream transport
protocol. To ensure connectivity, each byte to be transmitted is numbered. The
sequence number tells the destination which byte in this sequence is the first
byte in the segment. During connection establishment, each party uses a random
number generator to create an initial sequence number (ISN), which is usually
different in each direction.
Acknowledgment number. This 32-bit field defines the byte number that the
receiver of the segment is expecting to receive from the other party. If the
receiver of the segment has successfully received byte number x from the other
party, it returns x + 1 as the acknowledgment number. Acknowledgment and data
can be piggybacked together.
Header length. This 4-bit field indicates the number of 4-byte words in the TCP
header. The length of the header can be between 20 and 60 bytes. Therefore, the
value of this field is always between 5 (5 x 4 = 20) and 15 (15 x 4 = 60).
Control. This field defines 6 different control bits or flags, as shown in Figure
24.8. One or more of these bits can be set at a time. These bits enable flow

Dept. of ECE,RNSITPage 30

CCN Module 5: Transport layer

control, connection establishment and termination, connection abortion, and the
mode of data transfer in TCP. A brief description of each bit is shown in the

figure. 24
Figure 24 Control field

I URG: Urgent pointer is valid
URG ﬁ PSH | RST ACK: Acknowledgment is valid
PSH : Request for push

6 bits | RST : Reset the connection
) “1 SYN: Synchronize sequence numbers
FIN : Terminate the connection

Window size. This field defines the window size of the sending TCP in bytes.
Note that the length of this field is 16 bits, which means that the maximum size
of the window is 65,535 bytes. This value is normally referred to as the receiving
window (rwnd) and is determined by the receiver. The sender must obey the
dictation of the receiverin this case.

Checksum. This 16-bit field contains the checksum. The calculation of the
checksum for TCP follows the same procedure as the one described for UDP.
However, the use of the checksum in the UDP datagram is optional, whereas the
use of the checksum for TCP is mandatory.

Urgent pointer. This 16-bit field, which is valid only if the urgent flag is set, is
used when the segment contains urgent data. It defines a value that must be
added to the sequence number to obtain the number of the last urgent byte in the
data section of the segment.

Options. There can be up to 40 bytes of optional information in the TCP header.

Encapsulation
A TCP segment encapsulates the data received from the application layer. The TCP
segment is encapsulated in an IP datagram, which in turn is encapsulated in a

frame at the data-link layer.

Dept. of ECE,RNSITPage 31

