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Module 4 

TORSION OF SHAFTS 

Objectives: 

Explain the structural behavior of members subjected to torque, Calculate twist and stress induced 

in shafts subjected to bending and torsion. & Understand the concept of stability and derive  

crippling loads for columns  

 

Learning Structure 

• 4.1 Bending Moment 

• 4.2 ASSUMPTIONS IN TORSION THEORY 

• 4.3 Problems 

• 4.4 Columns and Struts: 

• 4.5 SLENDERNESS RATIO 

• 4.6 EFFECTIVE LENGTH OF COLUMN 

• .7 Euler’s Theorem 

• Outcomes  

• Further Reading 
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4.1 Bending Moment 

 
The moment applied in a vertical plane containing the longitudinal axis is resisted by 

longitudinal tensile and compressive stresses of varying intensities across the depth of bea m 

and are called as bending stresses. The moment applied is called Bending Moment. 

 

4.1.1 Torsional Moment 

 
The moment applied in a vertical plane perpendicular to the longitudinal axis i.e., in the plane of 

the cross section of the member, it causes twisting of layers which will be resisted by the shear 

stresses. The moment applied is called Torsion Moment or Torsional Moment. Torsion is useful 

form of transmitting power and its application is seen in screws and shafts. 

 

4.2 ASSUMPTIONS IN TORSION THEORY 

 
1. Material is homogenous and isotropic 

2. Plane section remain plane before and after twisting i.e., no warpage of planes. 

3. Twist along the shaft is uniform. 

4. Radii which are straight before twisting remain straight after twisting. 

5. Stresses are within the proportional limit. 

 

4.2.1 DERIVATION OF TORSIONAL EQUATION: 

 
Torsional Rigidity 

 

 
As product (CIP ) is increased deformation q reduces. This product gives the strength of the 

section to resist torque and is called Torsional rigidity. 
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Polar Modulus : (ZP) 
 
 

 
POWER TRANSMITTED BY SHAFT 

Power transmitted = Torsional moment x Angle through which the torsional moment rotates / 

unit tank 

 

If the shaft rotates with ‘N' rpm 

 

 
Note: 

N is in rpm and T is in N-m 
 

4.3 Problems: 

 
1. Find the maximum shear stress induced in a solid circular shaft of diameter 200 

mm when the shaft transmits 190 kW power at 200 rpm 

 

Given data: Power transmitted, P = 190 kW, Ip = 1.57 X 108 mm4 
   

speed N = 200 rpm and diameter of shaft = 200 mm. 
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Substituting all the values fs = 5.78N/mm2. 

2. A solid shaft of mild steel 200 mm in diameter is to be replaced by hollow shaft of 

allowable shear stress is 22% greater. If the  power to be transmitted is to be increased 

by 20% and the speed of rotation increased by 6%, determine the maximum internal 

diameter of the hollow shaft. The external diameter of the hollow shaft is to be 200 mm. 

Solution: Given that: 

Diameter of solid shaft d = 200 mm 

For hollow shaft diameter,  d0 = 200 mm 

Shear stress; tH = 1.22 ts 

Power transmitted; PH = 1.20 Ps 

Speed NH = 1.06 Ns 

As the power transmitted by hollow shaft 

PH = 1.20 Ps 

(2π.NH.TH)/60 = (2π.Ns.Ts)/60 × 1.20 

 
NH.TH = 1.20 Ns.Ts 

1.06 Ns.TH = 1.20 NsTs 

1.06/1.20 TH = Ts 

1.06/1.20 × π/16 tH [(d0)
4 – (di)

4/d0] = π/16 ts.[d]3 

1.06/1.20 × 1.22 ts [(200)4 – (di)
4/200] = ts × [200]3 

di = 104 mm 

 
3. A solid shaft is subjected to a maximum torque of 1.5 MN.cm Estimate the diameter for 

the shaft, if the allowable shearing stress and the twist are limited to 1 kN/cm2 and 1o 

respectively for 200 cm length of shaft. Take G = 80 × 105 N/cm2 

Solution: Since we have 

T/Ip = fs/r = C.θ/L 

fs = T.Ip r = 1.5 × 106 / θ/32.d4 . d/2 

1 × 103 * 2π /1.5 × 106 * 32 = 1/d3 

d = 19.69 cm 

θ = T.L / C.Ip 

1.5 × 106 * 2π / 1.5 × 106 * 32 = 1 / d3 

d = 19.69 cm 

θ = T.L / C.Ip 

1.5 × 106 * 200 d/80 * 105 * π/32 d4 = π/180 
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0 

0 

0 i 0 

0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 

d3 = 1.5 × 106 * 180 * 200 * 32 / (80 * 105 * π * π) 

d = 27.97 cm 

4. A hollow circular shaft of 20 mm thickness transmits 300 kW power at 200 r.p.m. 

Determine the external diameter of the shaft if the shear strain due to torsion is not 

to exceed 0.00086. Take modulus of rigidity = 0.8 × 105 N/mm2. 

Solution:  Let   di = inner diameter of circular shaft 

d0 = outer diameter of circular shaft 

Then  d0 = di + 2t where t = thickness 

d0 = di + 2 * 20 

d0 = di + 40 
 

di = d0 – 40 

Since we have 

Power transmitted = 2π NT/60 

300,000 = 2π * 200 * T / 60 

→ T = 14323900 N mm 

Also, we have C = fs/y 

→ 0.8 * 105 = fs /0.00086 

→ fs = 68.8 N/mm2 

Now T = π/16. fs.(d 4 – d 4 / d ) 

14323900 = fs /16 * 68.8 (d0
4 – (d0 – 40)4 / d0) 

1060334.6 d0 = d 4 – (d0 – 40)4 

= (d 2 – d 2 + 80d – 1600)*(d 2 + d 2 – 80d + 1600) 

= (80d0 – 1600) (2d 2 – 80d0 + 1600) 

= 80 (d0 – 20) * 2 * (d0
2 – 40 d0 + 800) 

= 160 (d 3 – 40d 2 + 800 d – 20 d 2 + 800 d 

 
– 16000) 

→ 1060334.6 d0 / 160 = d0
3 – 60d0

2 + 1600d0 – 16000 
→ 6627 d0 = d 3 – 60d 2 + 1600 d – 1600 

0 0 0 
→ d 3 – 60d 2 + 1600d – 6627 d – 16000 = 0 

0 0 0 0 

→ d 3 – 60d 2 – 5027 d – 16000 = 0 

Using trial and error method to solve the above equation for d0, we get d0 = 107.5 mm.
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Elastic Stability of Columns 

 
4.4 Columns and Struts: 

 

Columns and struts are structural members subjected to compressive forces. Theses members 

are often subjected to axial forces, although they may be loaded eccentrically. The lengths of 

these members are large compared to their lateral dimensions. In general vertical compressive 

members called columns and inclined compressive members are called struts. 

 
4.4.1 CLASSIFICATION OF COLUMNS: 

 

Columns are generally classified in to three general types. The distinction between types of 

columns is not well, but a generally  accepted  measure  is  based  on  the  slenderness  ratio (le/r 

min). 

 
4.4.1 .1 Short Column : 

 
A short column essentially fails by crushing and not by buckling. A column is said to be short, 

if le /b  15  or le /rmin   50, where le = effective length, b = least lateral dimension and r min= 

minimum radius of gyration. 

 
4.4.1 .2 Long Column : 

 

 
A long column essentially fails by buckling and not by crushing. In long columns, the stress at 

failure is less than the yield stress. A column is said to be long le/b > 15 or le /rmin> 50. 

 
4.4.1 .3 Intermediate Column : 

 

 
An intermediate column is one which fails by a combination of crushing and buckling. 

 
4.4.1.4 Elastic Stability of Column 

 

Consider a long column subjected to an axial load P as shown in figure. The column deflects 

laterally when a small test load F is applied in lateral direction. If the axial load is small, the 

column regains its stable position when the test load is removed. At a certain value of the  axial 

load, the column fails to regain its stable position even after the removal of the test load. The 

column is then said to have failed by buckling and the corresponding axial load is called Critical 

Load or failure Load or Crippling Load 
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4.5 SLENDERNESS RATIO 
 

Slenderness ratio is defined as the ratio of effective length (le ) of the column to the minimum 

radius of gyration (r min ) of the cross section. 

 

 
Since an axially loaded column tends to buckle about the axis of minimum moment of inertia 

(I min), the minimum radius of gyration is used to calculate slenderness ratio. 

 
 

Further,         
      

, where A is the cross sectional area of column. 
  

 

4.6 EFFECTIVE LENGTH OF COLUMN (le) 

 

Effective length is the length of an imaginary column with both ends hinged and whose 

critical load is the same as the column with given end conditions. It should be noted that the 

material and geometric properties should be the same in the above columns. The effective 

length of a column depends on its end condition. Following are the effective lengths for some 

standard cases. 
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Both ends are 

hinged 

Both ends are fixed One end fixed and 

other end hinged 

One end fixed and 

other end is free 

 
 

 

 
 

 

 
 

 

 

 

 

 

Effective Length Le = 

L 

Effective Length 

L = 
 
 

e 
 
 

Effective Length 

L =  
 
 

e 
   

Effective Length Le = 

2L 

 
 

4.7 Euler’s Theorem 

 
Theoretical analysis of the critical load for long columns was made by the great Swiss 

mathematician Leonard Euler (pronounced as Oiler). The assumptions made in the analysis 

are as follows: 

 

• The column is long and fails by buckling. 

• The column is axially loaded. 

• The column is perfectly straight and the cross sections are uniform (prismatic). 

• The column is initially free from stress. 

• The column is perfectly elastic, homogeneous and isotropic. 

 
4.7.1 Eulers Critical Load for Long Columns 

 
Case (1) Both ends hinged 

 
Consider a long column with both ends hinged subjected to critical load P as shown. 
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P 
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P 

 

 
 

Consider a section at a distance x from the origin. Let y be the deflection of the column at this 

section. Bending moment in terms of load P and deflection y is given by 

 

 
We can also write that for beams/columns the bending moment is proportional to the 

curvature of the beam, which, for small deflection can be expressed as 
 

or            
       

…………….(2) 
    

 

where E is the Young's modulus and I is the moment of Inertia. 

Substituting eq.(1) in eq.(2) 

 

y 

L 
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This is a second order differential equation, which has a general solution form of 

 

 
where C1 and C2 are constants. The values of constants can be obtained by applying the 

boundary conditions: 

 

(i) y = 0 at x = 0. That is, the deflection of the column must be zero at each end since it is 

pinned at each end. Applying these conditions (putting these values into the eq. (3)) gives us 

the following results: For y to be zero at x =0, the value of C2 must be zero (since cos (0) = 1). 

 

(i) Substituting y = 0 at x = L in eq. (3) lead to the following. 
 
 

 
While for y to be zero at x = L, then either C1 must be zero (which leaves us with no equation 

at all, if C1 and C2 are both zero), or 

 

 
which results in the fact that 

 

 
 

 
Taking least significant value of n, i.e. n = 1 
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where le =L. 
 

Case (2) Both ends fixed 

 
Consider a long column with both ends fixed subjected to critical load P as shown. 

 

 
Consider a section at a distance x from the origin. Let y be the deflection of the column at this 

section. Bending moment in terms of load P, fixed end moment M 0 and deflection y is given 

by 

 

 
We can also write that for beams/columns the bending moment is proportional to the 

curvature of the beam, which, for small deflection can be expressed as 
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where E is the Young's modulus and I is the moment of Inertia. 

Substituting eq.(1) in eq.(2) 

 
This is a second order differential equation, which has a general solution form of 

 

 
where C1 and C2 are constants. The values of constants can be obtained by applying the 

boundary conditions: 

 

(i) y = 0 at x = 0. That is, the deflection of the column must be zero at near end since it is 

fixed. Applying this condition (putting these values into the eq. (3)) gives us the following 

result: 

 
 

 

ii) At X = 0
 
=0, that is, the slope of the column must be zero, since it is fixed. 

   
 

 

Substituting the boundary condition in eq. (4) 

 

 
Substituting the constants C1 and C2 in eq. (3) leads to the following 
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The variation of limiting stress ‘f' versus slenderness ratio       
 

     

 

in the above equation is 

shown below. 
 

f 
 

 

 

 

 

 

 

 

 

 
 

       

     
 

The above plot shows that the limiting stress ‘f' decreases as increases. In fact, when very 

small, limiting stress is is close to infinity, which is not rational. Limiting stress cannot be 

greater than the yield stress of the material. 

 

1. Eulers formula determines the critical load, not the working load. Suitable factor of safety 

(which is about 1.7 to 2.5) should be considered to obtain the allowable load. 

 
4.7.2 Rankine's critical Load 

 
 

 
Rankine Gordon Load is given by the following empirical formula, 

 
This relationship is assumed to be valid for short, medium and long columns. This relation can 

be used to find the load carrying capacity of a column subjected to crushing and/or buckling. 

 

From eq. (1)   
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Substituting PC and PE in the above relation 
 

 

 

 

 

 

 

 

Outcomes:  

 
 Determine the dimensions of shafts based on torsional strength, rigidity and flexibility and also 

elastic stability of columns using Rankin’s and Euler’s theory 

PO1, Ap 

Total H Further Reading 
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