MICROPROCESSORS AND MICROCONTROLLERS

MODULE -1
THE x86 MICROPROCESSOR & ALP
THE x86 MICROPROCESSOR
BRIEF HISTORY OF THE x86 FAMILY':

A study of history is not essential to understand the microprocessor, but it provides a historical

perspective of the fast-paced evolution of the computer.

Evolution from 8080/8085 to 8086:

In 1978, Intel Corporation introduced a 16-bit microprocessor called the 8086. This processor
was a major improvement over the previous generation 8080/8085 series Intel microprocessors in
several ways:

1. The 8080/8085 was an 8-bit system (meaning that, the microprocessor could work on only 8
bits of data at a time; data larger than 8 bits need to be broken into 8-bit pieces to be
processed by the CPU). In contrast, the 8086 is a 16-bit microprocessor.

2. The 8086's capacity of 1 mega-byte of memory exceeded the 8080/8085's capability of
handling a maximum of 64K bytes of memory.

3. The 8086 was a pipelined processor, as opposed to the non-pipelined 8080/8085 (In a
system with pipelining, the data and address buses are busy transferring data, while the
CPU is processing information; thereby increasing the effective processing power of the
micro-processor).

Table: Evolution of Intel microprocessors up to the 8088

Product 8008 | 8080 | 8085 | 8086 | 8088
Year introduced 1972 | 1974 1976 1978 1979
Technology PMOS | NMOS | NMOS | NMOS | NMOS
Number of pins 18 40 40 40 40

Number of transistors 3000 4500 6500 | 29,000 | 29,000
Number of instructions 66 111 113 133 133

Physical memory 16KB | 64KB | 64KB | 1MB 1MB
Virtual memory None | None | None | None | None
Internal data bus 8 8 8 16 16
External data bus 8 8 8 16 8
Address bus 8 16 16 20 20
Data types 8 8 8 8/16 8/16

Evolution from 8086 to 8088:
The 8086 is a microprocessor with a 16-bit data bus internally and externally, meaning that all

registers are 16 bits wide and there is a 16-bit data bus to transfer data in and out of the CPU.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

Although the introduction of the 8086 marked a great advancement over the previous generation of
microprocessors, there was still some resistance in using the 16-bit external data bus:

v Atthat time, all peripherals were designed around an 8-bit microprocessor

v"In addition, a printed circuit board with a 16-bit data bus was much more expensive.
Therefore, Intel came out with the 8088 version. It is identical tothe 8086 as far as programming is
concerned, but externally it has an 8-bit data bus instead of a 16-bit bus. It has the same memory
capacity, 1IMB.
Success of the 8086:
In 1981, Intel's fortunes changed forever when IBM picked up the 8088 as their microprocessor of
choice in designing the IBM PC. The 8088-based IBM PC was an enormous success, because 1BM and
Microsoft made it an open system (meaning that, all documentation and specifications of the
hardware and software of the PC were made public). This made it possible for many other vendors
to clone the hardware successfully and thus generated a major growth in both hardware and
software designs based on the IBM PC. This is in contrast with the Apple computer, which was a

closed system (blocking any attempt at cloning by other manufacturers, both domestically and overseas).

Other Microprocessors: the 80286, 80386, and 80486:
Intel introduced the 80286 in 1982. Its features included —

v"16-bit internal and external data buses.

v 24 address lines, which give 16 mega-bytes of memory (2% = 16M bytes).

v Virtual memory — a way or fooling the microprocessor into thinking that it has access to an
almost unlimited amount of memory by swapping data between disk storageand RAM.

v The 80286 can operate in one of two modes: real mode and protected mode. Real mode is
simply a faster 8088/8086 with the same maximum of 1M bytes of memory. Protected
mode allows for 16M bytes of memory but is also capable of protecting the operating system
and programs from accidental or deliberate destruction by a user, a feature that is absent in
the single-user 8088/8086. IBM picked up the 80286 for the design of the IBM PCAT.

With users demanding even more powerful systems, in 1985 Intel introduced the 80386 (sometimes
called 80386DX):

v Internally and externally a 32-bit microprocessor.

v/ 32-bit address bus; capable of hand ling physical memory of up to 4 giga-bytes (2* = 4G
bytes).

v Virtual memory was increased to64 terabytes(2® = 64T bytes).

o All microprocessors discussed so far were generalpurpose microprocessors and could not
handle mathematical calculations rapidly. For this reason, Intel introduced numeric data

processing chips, called math-coprocessors, such as the 8087, 80287, and 80387.
MAHESH PRASANNA K., VCET, PUTTUR



O

MICROPROCESSORS AND MICROCONTROLLERS

Later Intel introduced the 386SX, which is internally identical to the 80386 but has a 16-bit
external data bus and a 24-bit address bus, which gives a capacity of 16M bytes (2% = 16M bytes)
of memory. This makes the 386SX system much cheaper.

With the introduction of the 80486 in 1989, Intel put a greatly enhanced version of the
80386 and the math-coprocessor on a single chip plus additional features such as cache
memory. Cache memory is static RAM with a very fast access time. Note that, all programs
written for the 8088/86 will run on 286, 386, and 486 computers.

In 1992, Intel released the newest x86 microprocessor — the Intel Pentium:

v

<

By using submicron fabrication technology, Intel designers were able to utilize more than 3
million transistors on the Pentium chip.

The Pentium had speeds of 60 and 66 MHz (twice that of 80486 and over 300 times faster than
that of the original 8088).

Separate 8K cache memory for code and data.

64-bit external data bus with 32-bit register and 32-bit address bus capable of addressing 4GB of
memory.

Improved floating-point processor.

Pentium is packaged in a 273-pin PGA chip.

It uses BICMOS technology, which combines the speed of bipolar transistors with the power
efficiency of CMOS technology.

Table: Evolution of Intel’s Microprocessors (from the 8086 to the Pentium Pro)

Product 8086 | 80286 | 80386 80486 Pentium | Pentium Pro
Year introduced 1978 1982 1985 1989 1993 1995
Technology NMOS | NMOS | CMOS CMOS BICMOS BICMOS
Clock rate (MHz) 3-10 | 10-16 | 1633 25-33 60, 66 150
Number of pins 40 68 132 168 273 387
Number of transistors | 29,000 | 134,000 | 275,000 | 1.2 million | 3.1 million | 5.5 million
Physical memory 1IMB | 16MB 4GB 4GB 4GB 64GB
Virtual memory None 1GB 64TB 64TB 64TB 64TB
Internal data bus 16 16 32 32 32 32
External data bus 16 16 32 32 64 64
Address bus 20 24 32 32 32 36
Data types 8/16 8/16 8/16/32 8/16/32 8/16/32 8/16/32

In 1995, Intel introduced the Pentium Pro, the sixth generation of the x86 family.

v" Pentium Pro is an enhanced version of Pentium that uses 5.5 million transistors.

v It was designed to be used for 32-bit servers and workstations.

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

o In 1997, Intel introduced its Pentium Il processor. This 7.5-million-transistor processor ‘featured
MMX (Multi-Media extension) technology incorporated into the CPU. MMX allows for fast
graphics and audio processing.

o In 1998 the Pentium Il Xcon processor was released. Its primary market is for servers and
workstations.

o In 1999 the Celeron was released. Its lower cost and good performance make it ideal for PCs used
to meet educational and home business needs.

o In 1999, Intel released the Pentium Ill. This 9.5-million-transistor processor includes 70 new
instructions called SIMD that enhance video and audio performance in such areas as 3-D
imaging, and streaming audio that have become common features of on-line computing. In 1999,
Intel also introduced the Pentium 1l Xeon processor, designed more for servers and business
workstations with multiprocessor configurations.

Table: Evolution of Intel’s Microprocessors (from the Pentium II to Itanium)

Product Pentium Il | Pentium Il | Pentium 4 | Itanium Il
Year introduced 1997 1999 2000 2002
Technology BICMOS BICMOS BICMOS | BICMOS
Number of transistors | 7.5 million | 9.5 million | 42 million | 220 million
Cache size 512K 512K 512K 3MB
Physical memory 64GB 64GB 64GB 64GB
Virtual memory 64TB 64TB 64TB 64TB
Internal data bus 32 32 32 64
External data bus 64 64 64 64
Address bus 36 36 36 64
Data types 8/16/32 8/16/32 8/16/32 | 8/16/32/64

o The Pentium 4, which debuted late in 1999 had the speeds of 1.4 to 1.5 GHz. The Pentium 4
represents the first completely new architecture since the development of the Pentium Pro. The
new 32-bit architecture, called NetBurst, is designed for heavy multimedia processing such as
video, music, and graphic file manipulation on the Internet. The system bus operates at 400
MHz. In addition, new cache and pipelining technology and an expansion of the multimedia
instruction set are designed to make the P4 a high- end media processing microprocessor.

o Intel has selected Itanium as the new brand name for the first product in its 64-bit family of
processors, formerly called Merced. The evolution of microprocessors is increasingly

influenced by the evolution of the Internet. The Itanium architecture is designed to meet

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

Internet-driven needs for powerful servers and high-performance work-stations. The Itanium will
have the ability to execute many instructions simultaneously plus extremely large memory

capabilities.

INSIDE THE 8088/86:
The following Fig shows the internal block diagram of the 8088/86 CPU.

Execution Unil (EU) Bus Interface Unit (BIU)
AH AL CS
BH BL ES
cu | oo | sS I
CH CL DS
BP IP
DI A
S1
=
Sp
A A
: \
1 Y Muluplexed Address generaticn
A A I bus and bus control
Y )
Operands
A A Y
¥ \ Instruction
queue
ALU ]
| -
A
\
Flags

Fig: Internal Block Diagram of the 8088/86 CPU

Pipelining:
There are two ways to make the CPU process information faster:

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

1. Increase the working frequency — The designers can make the CPU work faster by increasing
the frequency under which it runs. But, it is technology dependent, meaning that the designer
must use whatever technology is available at the time, with consideration for cost. The
technology and materials used in making ICs (integrated circuits) determine the working
frequency, power consumption and the number of transistors packed into a single-chip
microprocessor.

2. Change the internal architecture of the CPU — The processing power of the CPU can be altered
by changing the internal working of the CPU. (In 8085, the CPU had to fetch an instruction

from memory, then execute it and then fetch again, execute it, and so on; i.e., 8085 CPU could

either fetch or execute at a given time).

The idea of pipelining is to allow the CPU to fetch and execute at the same time as shown in

following Fig.

Nonpipelined
(e.g., B08S)

Pipelined
(¢.g., 8086)

fetch 1 exec | feich 2 exec 2
fetch 1 exec |
—
fetch 2 cxec 2
fetch 3 exec 3

Intel implemented the concept of pipelining in the 808886 by splitting the internal structure of
the microprocessor into two sections:
o The execution unit (EU)
o The bus interface unit (BIU)
v" The BIU accesses memory and peripherals while the EU executes instructions
previously fetched.
v' Thisworks only if the BIU keeps ahead of the EU; thus the BIU of the 8088/86 has
a buffer, or queue. The buffer is 4 bytes long in the 8088 and 6 bytes in the
8086. If any instruction takes too long to execute, the queue is filled to its

— These two sections work simultaneously.

maximum capacity and the buses will sit idle.

v" The BIU fetches a new instruction whenever the queue has room for 2 bytes in
the 6-byte 8086 queue and for 1byte in the 4-byte 8088 queue. In some

Fig: Pipelined vs. Non-pipelined Execution

circumstances, the microprocessor must flush out the queue.
MAHESH PRASANNA K., VCET, PUTTUR




Registers:

MICROPROCESSORS AND MICROCONTROLLERS

For example, when a jump instruction is executed, the BIU starts to fetch
information from the new location in memory and information in the queue that
was fetched previously is discarded. In this situation the EU must wait until the
BIU fetches the new instruction. This is referred to in computer science
terminology as a branch penalty. In a pipelined CPU, this means that too
much jumping around reduces the efficiency ofa program.

Pipelining in the 808886 has two stages, fetch and execute, but in more powerful
computers, pipelining can have many stages. The concept of pipelining
combined with an increased number of data bus pins has, in recent years, led to

the design of very powerful microprocessors.

In the CPU, registers are used to store information temporarily. Information could ne one or two bytes of

data to be processed or the address of the data. The registers of 8088/86 fall into six categories; as given

in the following Table.

Table: Register of 8088/86/286 by Category

Category | Bits Register Names
General 16 AX, BX, CX, DX
8 AH, AL, BH, BL, VH, CL, DH, DL
Pointer 16 SP (Stack Pointer), BP (Base Pointer)
Index 16 S| (Source Index), DI (Destination Index)
Segment | 16 | CS (Code Segment), DS (Data Segment), SS (Stack Segment), ES (Extra Segment)
Instruction | 16 IP (Instruction Pointer)
Flag 16 FR (Flag Register)

The general-purpose registers in 8088/86 can be accessed as either 16-bit or 8-bit registers. All other

registers can be accessed only as the full 16 bits. In 8088/86, data types are either 8 or 16 bits. To access
12-bit data, a 16-bit register must be used with the highest 4 bits set to 0.

- 8-bit register:
AX
16-bit register D7 De|Ds|D4]D3IJD2) DI DO
16-bit register:
AH AL
Ribitregister | 8-bit register pis|oi4jo13|Diz|pu|p| Dy J o8 | b7 D6 | D5 | D4 | D3| D2 DI | DD

Fig: Structure of General-Purpose Register & Numbering Bits of a Register

Different registers in the 808886 are used for different functions. Some instructions use only specific

registers to perform their tasks. The first letter of each general-purpose register indicates its use:

v AX is used for the accumulator

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

v' BX as a base addressing register
v' CX as acounter in loop operations

v DX to point to data in 1/0 operations.

INTRODUCTION TO ASSEMBLY PROGRAMMING:

e}

The CPU can work only in binary; it can do so at very high speeds. But, it is quite tedious
and slow for humans to deal with 0s and 1s in order to program the computer. A program
that consistsof 0sand 1s iscalled machine language.

Although the hexadecimal system was used as a more efficient way to represent binary
numbers, the process of working in machine code was still cumbersome for humans.
Eventually, Assembly languages were developed, which provided mnemonics for the machine
code instructions, plus other features that made programming faster and less prone to error.
The term mnemonic is typically used in computer science and engineering literature to refer to
codes and abbreviations that are relatively easy to remember.

Assembly language programs (ALPs) must be translated into machine code by a program
called an assembler.

Assembly language is referred to as a low-evel language because it deals directly with the
internal structure of the CPU. To program in Assembly language, the programmer must know the

number of registers and their size, as well as other details of the CPU.

Today, one can use many different programming languages, such as QC++, BASIC, C#,
and numerous others. These languages are called high-level languages; because the
programmer does not have to be concerned with the internal details of the CPU.

An assembler is used to translate an Assembly language program into machine code
(sometimes called object code); high-level languages are translated into machine code by a
program called a compiler. For instance, to write a program in C, one must usea C compiler to
translate the program into machine language.

There are numerous assemblers available for translating x86 Assembly language programs into

machine code. M ost commonly used assemblers, MASM / TASM.

Assembly Language Programming:

An Assembly language program consists of —

v Aseries of lines of Assembly language irstructions —

e An Assembly language instruction consists of a mnemonic

e Optionally followed by one or two operands.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

v The operands are the data items being manipulated, and the mnemonics are the commands to
the CPU, telling it what to do with those items.

E.g.
Opcode (Mnemonic) Source operand (register
Relative addressing)
AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.
Label—provides a \ Destination operand \ Comment
Means of branching (register addressing)

To this instruction

MOV Instruction:

The MOV instruction copies data from one location to another. The format is —

MOV destination,source ;copy scurce operand to destination

The Following Figure shows the operation of the MOV BX, CX instruction.

Register array
AX
MOV BXCKX
l BX 76 A F
Destination Source
ox 1 2 3 4 1 234
_.-—"'-_-—-"_'-._.-"-‘-q..-_

The MOV instruction does not affect the source operand. The following program first loads CL with
value 55H, then moves this value around to various registers inside the CPU.

MOV CL,55H ;move 55H into register CL

MOV  DL,CL :copy the contents of CL into DL (now DL=CL=55H)
MOV AH,OL ;copy the contents DL into AH (now AH=DL=55H)
MOV AL,BH ;copy the contents BH into AL (now AL=AH=355H)
Mo¥  BH,CL ;copy the contents CL intc BH {(now BH=CL=55H)
MoV CH,EBH jcopy the contents BH inte CH (now CH=BH=35H}

o0 00
M M

The use of 16-bit registers is demonstrated below:

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

MOV  CX,d468FH ;move 468FH into CX (now CH=46,CL=EF)

MOV AN, CX jcopy contents of CX to AX (now AX=CX=46EFH)
MOV DX, B¥ jcopy contents of AX to DX (now DE=AX=468FH)
MOV BX, DX rcopy contents of DX to BX (now BX=DX=468FH)
MOY¥ DI, BX ;now DI=BX=468FH

M2V S5I,DI jnow SI=DI=468FH

MoV DS, 81 ynow DS=5T=468FH

MOV BP,DI snow BP=DI=4&HFH

In 8086 CPU, data can be moved among all the registers (except the flag register) as long as the source
and destination registers match in size.

MOV AX,5HFCH imove 5HFCH into AX  (LEGAL)
MOV DX,6678H ;move 66TEH into DX  (LEGRL)
MOV  5I,924BH ;move 924B into SI (LEGAL)
MOV  BP,Z245%H ;move 2459H into BP {LEGAL}
MOV D3,2341H ;move 2341H into DS (ILLEGAL)
MOV CX,8876H ;move B8876H intc CX (LEGRL)
MOV C5,3F47H :move 3F47H into C5 {ILLEGAL)
MOV BH, 99H ;move 99H into BH |[LEGAL)
Note the following three points with regarding MOV instruction:
1. Values cannot be loaded directly into any segment register (CS, DS, SS, and ES). To load a value
into a segment register, first load it to a non-segment register and then move it to the segment

register, as shown below.

MOV AX,2345H ;load 2345H into AX
MOV DS, EX ;then load the value of AX into DS

MOY DI,1400H ;load 1400H into DI
MOV ES,DI ;then move it into ES, now ES=DI=1400

2. If a value less than FFH is moved into a 16-bit register, the rest of the bits are assumed to be all
zeros. E.g.: MOV BX, 5 ; result will be BX = 0005, i.e., BH = 00 and BL = 05.
3. Moving a value that is too large into a register will cause an error.

MOV  BL, 7FZH ;ILLEGAL: TF2H is larger than 8 bits
MOV  AX, ZFE456H ILLEGAL: the wvalue is larger than AX

ADD Instruction:
The ADD instruction has the following format —

ADD destination, socurce ADD the source operand to the destination

The ADD instruction tells the CPU to add the source and the destination operands and put the result in the
destination.

MOV AL, Z5H jmove 25 into AL MOV  DH, 25H rmove 25 inte DH
MOV BL,34H ;move 324 inte BL | MOV CL,34H ;move 34 into CL
ADD AL,BL ;AL = AL + BL ADD DH,CL ;jadd CL toe DH: OH = DH + CL

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

Executing above program results in AL (or DH) = 59H (25H + 34H = 59H) and BL (or CL) = 34H.
Notice that, the contents of the source operand do not change.

It is not necessary to move both data items into registers before adding them together.

MOV DH,25H ;load one operand into DH
ADD DH, 344 :add the second operand to DH

Hence, for MOV and ADD instructions, the source operand may be an immediate data — this is called an
immediate operand. Please note, the destination operand has always been a register.

The largest number that an 8-bit register can hold is FFH. To use numbers larger than FFH (255 decimal),
16-bit registers (such as AX, BX, CX, or DX) must be used.

MOV AX,34EH ;move 34EH into AX MOV CX,34EH ;load 34EH into CX
MOV DX, 6ASH :move 6ASH into DX ADD CX, 6A5H ;add 6ASH to CX (now CK«9F3H)
ADD DX, AX ;add AX to DX: DX = DX + AX

Running the above program(s) give DX (or CX) = 9F3H (34E + 6A5 = 9F3H) and AX = 34EH.

INTRODUCTION TO PROGRAM SEGMENTS:

A typical Assembly language program consists of at least three segments:

1. Code segment — contains the Assembly language instructions that perform the tasks that the
program was designed to accomplish.

2. Data segment — is used to store information (data) that needs to be processed by the instructions
in the code segment.

3. Stack segment — is used by the CPU to store i information temporarily.

Origin and Definition of the Segment:

A segment is an area of memory that includes up to 64K bytes and begins on an address evenly
divisible by 16 (such an address ends in OH). In 8085, there was only 64K byte (2'°® = 16KB) of
memory for all code, data, and stack information; in the 8088/86 there can be up to 64K bytes of
memory assigned to each category. Within an Assembly language program, these categories are called
the code segment, data segment, and stack segment. For this reason, the 8088/86 can only handle a
maximum of 64K bytes of code, 64K bytes of data, and 64K bytes of stack at anygiven time, all though it
has arange of 1M bytes (2% = 1M bytes) of memory.

Logical Address and Physical Address:
There are three types of addresses mentioned with the 8086:
1. The physical address — is the 20-bit address that is actually put on the address pins of the 8086

microprocessor and decoded by memory interfacing circuitry. This is an actual physical location

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

in RAM or ROM within the 1M byte memory range. This address can have a range of 00000H —
FFFFFH for the 8086, and real mode 286, 386, and 486 CPUs.

2. The offset address — is a location within a 64K byte segment range. Hence, an offset address can
range from 0000H — FFFFH.

3. The logical address — consists of a segment value and an offset address.

EFFFF| F Y
FFFFF 55 - 0dK Real mode memory
FFFFF
FO0oo
Stack Seornent
En000 EQ00o W
0000
9FFFF A
0000 . —
E0000 ES— 64K ]
20000 1FFFF
Fatra Seament s0000 \
Joon 1FO00 Offset = FODO
0000 FFFF
* BdK-byte
o sagment
60000 DE - o Segment register
50000 10000 < {Fooo]
Trata Seoment. 40000 4
40000
0000 P
- 00000
000 Cnde Seerment. s _ gaK
10000
aoona
20000

Fig: Hlustration of Physical Address, Offset, and Logical Address
Code Segment:
To execute a program, the 8086 fetches the instruction (opcode and operands) from the code
segment. The logical address of an instruction always consists of a CS (code segment) and an IP

(instruction pointer), shown in the following Fig.

s P

L ]
L
=
=
C =]
L
-
lad

The physical address for the location of the instruction isgenerated by
o Shifting the CS left by one hex digit and then adding it to the IP. IP contains the offset address.
The resulting 20-bit address is called the physical address.
o To clarify this concept; assume values in CS and IP as shown in the above diagram. The offset
address is contained in IP; in this case it is 95F3H. The logical address is CS: IP, or 2500: 95F3H.
Then the physical address will be 25000 +95F3 = 2E5F3H.

The physical address of an instruction can be calculated as follows:

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

1. Start with CS, 2 5 0 0
-~

2. Shift left CS. 2 5 0} 0 D

3. Add IP. + 9 5 F 3

4. Physical address. 2 E 5 F 3

Fig: Calculation of Physical Address
The microprocessor will retrieve the instruction from memory locations starting at 2E5F3. Since IP can
have a minimum value of 0000H and a maximum of FFFFH; the logical address range in this example
is 2500:0000 to 2500: FFFF. This means that the lowest memory location of the code segment will be
25000H (25000+0000) and the highest memory location will be 34FFFH (25000+FFFF).

If CS = 24F6H and IP = 634AH, show (a) the logical address, and (b) the offset address.
Calculate (c) the physical address, (d) the lower range, and (e) the upper range of the
code segment.

Solution:

(a) 24F6:634A (b) 634A (c) ZBZAA (24F60 + 634A)
(d) 24F60 (24F60 + 0000) (&) 34FSF (24F60 + FFEF)

Logical Address vs. Physical Address in the Code Segment:

In the code segment, CS and IP hold the logical address of the instructions to be executed. The
following Assembly language instructions have been assembled (translated into machine code) and
stored in memory. The three columns show the logical address of CS: IP, the machine code stored at

that address, and the corresponding Assembly language code.

LOGICAL ADDRESE MACHINE LANGUAGE ASSEMEBLY LANGUAGE
CS5:1P QFCODE AND OPERAND  MMEMONICS AND OFERAND
1132:0100 BO57 MOV AL, 57

1132:0102 B&Eh MOV DH, 86

1132:0104 B272 MOV DL, 72

1132:0106 B9D1 MOV CX, DX

The program above shows that the byte at address 1132:0100 contains BO, which is the opcode for
moving a value into register AL, and address 1132:01101I contains the operand (in this case 57) to be
moved to AL. Therefore, the instruction "MOVAL, 57” has a machine code of B0O57, where BO is the

opcode and 57 is the operand.
MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

The following are the physical addresses and contents of each location for the above program.

LOosICAL ADDRESS PHYSICAL ADDRESS MACHINE CODE CONTENTS

1132:0100 11420 B0

1132:0101 11421 57

1132:0102 11422 BE

1132:0103 11423 86

1132:0104 11424 B2

1132:0L105 11425 72
Data Segment:

Assume that a program is being written to add 5 bytes of data, such as 25H, 12H, 15H, IFH, and 2BH.
One way to add them is as follows:

MOV  AL,00H ;initialize AL
ADD  AL,2%5H ;add 25H to AL
ADD AL,1ZH ;add 1ZH to AL
ADD AL,15H ;add 15H to AL
ADD AL,1FH (add 1FH to AL
ADD AL,2BH ;add 2BH Lo AL

In the program above, the data and code are mixed together. The problem with writing the program
this way is that, if the data changes, the code must be searched for every place the data isincluded, and
the data retyped.

The idea to overcome the problem is to set aside an area of memory is strictly for data. In x86
microprocessors, the area of memory set aside for data is called the data segment. Just as the code
segment is associated with CS and IP as its segment register and offset, the data segment uses register
DS and an offset value.

The following demonstrates how data can be stored in the data segment and the program rewritten so
that it can be used for any set of data. Assume that the offset for the data ssgment beginsat 200H.

= 2 ; MOV AL,QD jclear AL

-’ﬁf”?ﬁ"-’ = f’” ADD AL,[ 0200] ;add the contents of DS:200 te AL
D::UED} - ‘E ADD AL,[ 02011 ;add the contents of DS:201 to AL
55:90202 = 15 | apy  aL,[ 0202) ;add the contents of DS:202 to AL
ﬁgfg; % ADD AL,[0203] ;add the contents of DS:203 to AL

+B ADD AL.[ D204)] ;add the contents of DS5:204 to AL

NOTE:
1. The offset address is enclosed in brackets. The brackets indicate that the operand represents the
address of the data and not the data itself. If the brackets were not included, as in '‘MOV AL,
0200", the CPU would attempt to move 200 into AL instead of the contents of offset address
200.
2. DEBUG assumes that all numbers are in hex (no "H" suffix is required), whereas
MASM/T ASM assumes that they are in decimal and the "H"must be included for hex data.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

This-program will run with any set of data. Changing the data has no effect on the code. Although
this program is an improvement over the preceding one, it can be improved even further.

If the data had to be stored at a different offset address (say 450H), the program would have to
be rewritten. One way to solve this problem would be to use a register to hold the offset address, and
before each ADD, to increment the register to access the next byte.

The 808886 allows only the use of registers BX, Sl, and DI as offset registers for the data
segment In other words, while CS uses only the IP register as an offset, DS uses only BX, DI, and SI
to hold the offset address of the data.

Table: Default Segments and Offset Register Pairs

Segment Offset Special Purpose
CS IP Instruction address
DS SI, DI, BX, an 8- or 16-bit number Data address
SS SP or BP Stack address
ES SlI, DI, BX for string instructions | String destination address

The term pointer is often used for a register holding an offset address. Inthe following example, BX is
used as a pointer.

MOV AL,D ;initialize AL

MOV  BX,0200H iBX points to ofifset addr of first byte
aADD AL,[ BX] ;add the first byte to AL

INC BX ;increment BX to point to the next byte
ADD AL,[ BX] ;add the next byte to AL

INC BX ;increment the peointer

ADD AL,[ B¥] sadd the next byte to AL

INC BX ;increment the pointer

ADD AaL,[ BX] ;add the last byte to AL

The INC instruction adds 1 to (increments) its operand. "INC BX" achieves the same result as
"ADD BX, 1"

Logical Address and Physical Address in the Data Segment:
The physical address for data is calculated using the same rules as for the code segment. That is, the
physical address of data is calculated by shifting DS left one hex digit and adding the offset value, as

shown in following Examples.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

Assume that DS is 5000 and the offset is 1950. Calculate the physical address.
Solution: DS 2 offset

5 0 0 0 : 1 9 5 0

The physical address will be 50000 + 1950 = 51950.

1. Start with DS. 5 0 0 0

2. Shift DS lefi.

3. Add the offset. s 1 9 5 0

4. Physical address. 5 Loy sgto

If DS = 7FA2H and the offsct is 438EH, calculate (a) the physical address, (b) the lower
range, and (c) the upper range of the data segment. Show (d) the logical address.

Solution:
(a) 83DAE' (TFA20 + 438E) (b) 7EA20 (TFA20 + 0000)
(c) 8FAILF (7FA20 + FFFF) (d) 7FA2:438E

Assume that the DS register is 578C. To access a given byte of data at physical
memory location 67F66, does the data segment cover the range where the data resides?
If not, what changes need 1o be made?

Solution:

No, since the range is 578C0 to 678BF, location 67F66 is not included in this range. To
access that byte, DS must be changed so that its range will include that byte.

Little Endian Conversion:
Previous examples used 8bit or 1-byte (16-bits) data. In this case the bytes are stored one after

another in memory. The 16-bit data can be used as follows:

MOV AX, 35F3H ;load 35F3H into AX
MOV [ 1500] ,AX ;copy the contents of AX to offset 1500

In this case, the low byte goes to the low memory location and the high byte goes to the high memory
location. In the above example, memory location DS: 1500 contains F3H and memory location DS: 1501

contains 35H (DS: 1500 = F3 and DS: 1501 = 35). This is called little endian conversion.

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

E: In the big endian method, the high byte goes to the low address, where as in the little endian
method, the high byte goes to the high address and the low byte goes to the low address. All Intel

microprocessors use the little endian conversion.

Assume memory locations with the following contents: DS:6826 = 48 and DS:6827 =
22. Show the contents of register BX in the instruction “MOV BX,[6826]".

Solution:

According to the little endian convention used in all x86 microprocessors, register BL
should contain the value from the low offset address 6826 and register BH the value
from the offset address 6827, giving BL = 48H and BH = 22H.

DS:6826 = 48 BH BL
3 27 =192
DS:6827 = 22 )
Extra Segment (ES):

ES is a segment register used as an extra data segment. Its use is essential for string operations.

Memory map of IBM PC:

The 20-bit address of 8088/86 allows a total T
of 1M bytes (1024K bytes) of memory RAM
space with the address range 00000H — -
FFFFFH. Memory map is the process of
allocating the 1M bytes of memory space to
various sections of the PC.
Out of 1IMB — 9FFFFH
v" 640KB from the address 00000H — Video Display ke
9FFFFH were set aside for RAM,; AL BFFEFH
v' the 128KB from A0000H — BFFFFH ROM CO000H
were allocated for video memory; 256K FFFFFH
v" the remaining 256KB from CO000H
— FFFFFH were set aside for ROM. Fig: Memory Allocation in the PC
More about RAM:

In the early 1980s most PCs came with only 64K to 256K bytes of RAM memory, which was
considered more than adequate at the time. Users had to buy memory expansion boards to expand

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

memory up to 640K, if they needed additional memory. The need for expansion depends on the
Windows version being used and the memory needs of the application software being run.

The Windows operating system first allocates the available RAM on the PC for its own use
and then lets the rest be used for applications such as word processors. The complicated task of
managing RAM memory is left to Windows, since the amount of memory used by Windows varies
among its various versions and the memory needs of the application packages vary. For this reason we
do not assign any values for the CS, DS, and SS registers; since such an assignment means
specifying an exact physical address in the range 00000-9FFFFH , and this is beyond the knowledge
of the user.

Another reason is that assigning a physical address might work on a given PC but it might not
work on a PC with a different OS version and RAM size. Inother words, the program would not be
portable toanother PC.

Therefore, memory management is one of the most important functions of the operating system
andshould be lefttoWindows.

Video RAM:
From AOOOOH to BFFFFH is set aside for video. The amount used and the location vary depending on the
video board installed on the PC.

More about ROM:

From CO000H to FFFFFH is set aside for ROM. Not all the memory space in this range is used by the
PC's ROM. Of this, 256K bytes, only the 64K bytes from location FOOOOH — FFFFFH are used by
BIOS (basic input/output system) ROM.

Some of the remaining space is used by various adapter cards (such as the network card), and
the rest is free. In recent years, newer versions of Windows have gained some very powerful
memory management capabilities and can put to good use all the unused memory space beyond 640.

The 640KB memory space from 00000 to 9FFFFH is referred to as conventional memory,
while the 384K bytes from AQO00H to FFFFFH are called the UMB (upper memory block) in

Microsoft literature.

Functions of BIOS ROM:
Since the CPU can only execute programs that are stored in memory, there must be some permanent
(nonvolatile) memory to hold the programs, telling the CPU what to do when the power is turned on.

This collection of programs held by ROM is referred to as BIOS in the PC literature.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

BIOS, which stands for basic input-output system, contains programs to test RAM and other

components connected to the CPU. It also contains programs that allow Windows to communicate with

peripheral devicessuchasthekeyboard, video, printer, and disk.

It is the function of BIOS to test all the devices connected to the PC when the computer is turned

on and to report any errors. For example, if the keyboard is disconnected from the PC before the

computer is turned on,BIOS will report an error on the screen, indicating that condition.

After testing and setting up the peripherals; BIOS will load Windows from disk into RAM and

hand overcontrol of the PC toWindows. Windows always controlsthe PC onceit isloaded.

THE STACK:
What is Stack, and Why is it Needed?

@)

There must be some place for the CPU to store information safely and temporary. The stack is a
section of read/write memory (RAM) used by the CPU to store information temporarily.

The CPU needs this storage area since there are only a limited number of registers.

The disadvantage of the stack is its access time — since the stack is in RAM, it takes much longer
to access compared to the access time of registers. Note that, the registers are inside the CPU and
RAM is outside.

How the Stack are Accessed?

O

O

If the stack isasection of RAM,there must be registers inside the CPU to point to it.

The two main registers used to access the stack are the SS (stack segment) register and the SP (stack
pointer) register.

These registers must be loaded before any instructions accessing the stack are used.

Every register inside the x86 (except segment registers and SP) can be stored in the stack and
brought back intothe CPU from the stack memory.

The storing of a CPU register in the stack is called a push, and loading the contents of the stack into
the CPU register is called a pop. In other words, a register is pushed onto the stack to store its
contents and popped off the stack to retrieve it.

The job of the SP is very critical when push and pop are performed. In the x86, the stack pointer
register (SP) points at the current memory location used for the top of the stack and as data is
pushed onto the stack it is decremented. It is incremented as data is popped off the stack into the
CPU.

When an instruction pushes or pops a general-purpose register, it must be the entire 16-bit register.
In other words, one must code "PUSH AX *; there are no instructions such as "PUSH AL" or
"PUSH AH".

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

o The reason that the SP is decremented after the push is to make sure that the stack is growing
downward from upper addresses to lower addresses. This is the opposite of the IP (instruction
pointer). As was seen in the preceding section, the IP points to the next instruction to be executed

and isincremented as each instruction isexecuted.

Pushing onto the Stack:
As each PUSH is executed, the contents of the registers are saved on the stack and SP is decremented by

2. For every byte of data saved on stack, SP is decremented.

Assuming that SP = 1236, AX = 24B6, DI = 85C2, and DX = 5F93, show the contents of the
stack as each of the following instructions is executed.
PUSH AX
PUSH DI
PUSH DX
Solution:
$S:1230 : 93
SS:1231 SF
SS:1232 C2 C2
$8:1233 85 85
SS:1234 B6 B6 B6
SS:1235 ’ 24 24 24
—g
$8:1236
Start: After After After
SP=123  PUSHAX  PUSH DI PUSH DX
SP=1234 SP=1232  SP=1230

Notice, how the data is stored on the stack. In the x86, the lower byte is always stored in the memory

location with the lower address.

Popping the Stack:
With every POP, the top 2 bytes of the stack are copied to the register specified by the instruction and the
stack pointer in incremented twice. Although the data actually remains in memory, it is not accessible

since the stack pointer is beyond that point.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

Assuming that the stack is as shown below, and SP ~ 18FA, show the contents of the stack and
registers as each of the following instructions is executed:
POP CX
POP DX ——
POP BX SS:18FA 23
Solution: SRISER 14 l
SS:I8FC 6B 6B
SS:18FD 2C 2C
SS:18FE 91 9_l» 91
SS:18FF F6 F6 F6
§S:1900
Start: After After After
SP = 18FA POP CX POPDX POP BX
SP=I8FC  SP=18FE SP = 1900
CX = 1423 DX =2C6B BX = F691

Logical

o

Address vs. Physical Address for the Stack:

The exact physical location of the stack depends on the value of the SS (stack segment) register
and SP (stack pointer). To compute the physical address for stack, shift left SS and then add
offset SP register.

Memory management is the responsibility of the operating system. Hence, the Windows
operating system will assign the values for the SP and SS.

The top of the stack is the last stack location occupied. BP is another register that can be used as
an offset into the stack.

Table: Default Segments and Offset Register Pairs

Segment Offset Special Purpose
CS IP Instruction address
DS SI, DI, BX, an 8- or 16-bit number Data address
SS SP or BP Stack address
ES S, DI, BX for string instructions | String destination address

If SS = 3500H and the SP is FFFEH,

(a) Calculate the physical address of the stack. (b) Calculate the lower range.
(c) Calculate the upper range of the stack segment. (d) Show the stack’s logical address.
Solution:

(a) 44FFE (35000 + FFFE) (b) 35000 (35000 + 0000)
(c) 44FFF (35000 + FFFF) (d) 3500:FFFE

NOTE:

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

1. A single physical address may belong to many different logical addresses. This shows the
dynamic behavior of the segment and offset concept in the 8086 CPU.

L : ] .i “:E”l Eb:!i]:i] _ddxess [hi“]
1C00:5020 15020
1500:0020 15020
1502:00090 15020
1400:1029 15020
1302:2000 15020

2. When adding the offset to the shifted segment register; if an address beyond the maximum
allowed range (FFFFFH) is resulted, then wrap-around will occur.

What is the range of physical addresses if CS = FF59? 00000

Solution: OF58F

The low range is FF590 (FF590 + 0000).
The range goes to FFFFF and wraps around, FES90

from 00000 to OF58F (FF390 + FFFF = OF38F),
as shown in the illustration. FFFFF

3. In calculating the physical address, it is possible that two segments can overlap, as illustrated in
the following Fig.

Nonoverlapping Overlapping
Segments - Segments
25000
CS = 2500
30000
J4FFF
CS = 3000
— 3FFFF
40500
St DS = 4050
B 50000
DS =6321 - S04FF
1320F R
5FFFF
82100
$S =8210
920FF

Fig: Non-overlapping vs. Overlapping Segments
THE FLAG REGISTER:

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

o The flag register is a 16-bit register sometimes referred to as the status register. Although the
register is 16 bits wide, only some of the bits are used. The rest are either undefined or reserved
by Intel.

o Six of the flags are called conditional flags, meaning that they indicate some condition that
resulted after an instruction was executed. These six are CF, PF, AF, ZF, SF, and OF.

o The three remaining flags are sometimes called control flags, since they are used to control the

operation of instructions before they are executed.

I3 <3 1% 3215 10 9 8 7 6: -5 4 23 L F O
[R[RIR]R]OF[DFIIFIFlSF]ZFllflAF[U]PF'U[(‘F]

R = reserved SF = sign flag

U = undefined ZF = zero flag

OF = overflow flag AF = auxiliary carry flag .
DF = direction flag PF = parity flag

IF = interrupt flag CF = carry flag

TF = trap flag

BT 15 14 13 12 11 10 9 &8 7 6 5 4 3 2 1 0
OF | DF | IF | TF | SF | zF AF PF CF

Fig: Flag Register
Key to remember: in One Day International Tendulkar Scored Zero, All People Cried.

Bitsof the Hag Register:

CF, the Carry Flag — This flag is set whenever there is a carry out, either from d7 after an 8bit
operation or from d15after a 16-bitdata operation.

PF, the Parity Flag — After certain operations, the parity of the result's low-order byte is checked.
If the byte has an even number of 1s, the parity flagis setto 1; otherwise, it iscleared.

AF, Auxiliary Carry Flag — If there is a carry from d3 to d4 of an operation, this bit is set; otherwise,
it is cleared (set equal to zero). This flag is used by the instructions that perform BCD (binary
coded decimal) arithmetic.

ZF, the Zero Flag — Trezero flag is set to 1 if the result of arithmetic or logical operation is zero;
otherwise, itiscleared.

SF, the Sign Flag — Binary representation of signed numbers uses the most significant bit as the sign
bit. After arithmetic or logic operations, the status of this sign bit is copied into the SF, thereby
indicating thesign of the result.

TF, the Trap Flag — When this flag is set, it allows the program to single-step, meaning to execute one

instruction at a time. Single-stepping is used for debugging purposes.
MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

IE, Interrupt Enable Flag — This bit is set or cleared to enable or disable only the external
maskable interrupt requests.

DF, the Direction Flag — This bit is used to control the direction of string operations. If D = 1, the
registers are automatically decremented; if D = 0, the registers are automatically incremented. The state of
the D flag bit is controlled by STD (set D flag) and CLD (clear D flag) instructions.

OF, the Overflow Flag — This flag is set whenever the result of a signed number operation is too
large, causing the high-order bit to overflow into the sign bit. In general, the carry flag is used to
detect errors in unsigned arithmetic operations. The overflow flag is only used to detect errors in signed

arithmetic operations.

Show how the flag register is affected by the addition of 38H and 2FH.
Solution:
MOV BH.38H :BH= 38H
-ADD BH.2FH ;add 2F to BH, now BH=6TH
38 0011 1000
+ 2F olo 1111
67 0110 0111
CF = 0 since there is no carry beyond d7 ZF = 0 since the result is not zero
AF = | since there is a carry from d3 1o d4 SF = 0 since d7 of the result is zero
PF = 0 since there is an odd number of 15 in the result

Flag Register and ADD Instruction:
The flag bits affected by the ADD instruction are CF, PF, AF, ZF, SF, and OF. The following

examples are given to understand how each of these flag bits is affected. Please note that, MOV

instructions have no effect on the flag.

Show how the flag register is affected by

MOV AL, 9CH sAL=9CH

MOV DH, 64H ; DH-64H

ATCD AL, DH snow AL=0
Solution: :

oC 1001 1100
+ 64 0110 0100

00 0000 0000
CF = | since there is a carry beyond d7 ZF = | since the result is zero
AF = | since there is a carry from d2 to d4 SF = 0 since d7 of the result is zero
PF = 1 since there is an even number of |s in the result

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

Show how the flag register is affected by

MOV A¥,34F5H ;A¥X= 34F5H
ADD  AX, 95EBH inow AX= CAE(H
Solution;
34F5 0011 0100 1111 0101
+ 95EB 1001 0101 1110 1011
CAEOQ 1100 1010 1110 0000
CF = 0 since there is no carry beyvond d13 ZF = 0 since the result is not zero
AF = | since there is a carry from d3 to d4 5F = | since dI5 of the result is one

PF = ( since there is an odd number of 1s in the lower byte

Show how the flag register is affected by
MOV BX,AAAAH  ;BX= AARARH
ADD  BX,5556H ;now BX= 0000H

Solution:
AAAA 1010 1010 1010 1010
+ 5556 0101 0101 0101 0110
0000 0000 0000 0000 0000
CF = | since there is a carry beyond d153 ZF = | since the result is zero
AF = | since there is a carry from d3 to d4 SF =0 since d| 5 of the result is zero

PF = 1 since there is an even number of 1s in the lower byte

Show how the flag register is affected by
MOV  RAX, 94C2H ;AX=94C2H
MOV  BX,323EH ; BX=323EH

ADD AX,BX ;now AX=CT00H
MOV DX, AX :now DX=C700H
MOV CX,DX ;now CX=C700H
Solution:
94C2 1001 D100 1100 0010
% 323E 0011 0016 0011 1110
C700 1100 0111 Q000 0000
After the ADD operation, the following are the flag bits:
CF = 0 since there is no carry beyond d15 ZF = 0 since the result is not zero
AF = | since there is a carry from d3 to d4 SF = 1 since d15 of the result is 1

PF = 1 since there is an even number of 1s in the lower byte

Use of Zero Flag for Looping:

v One of the most widely used applications of the flag register is the use of the zero flag to
implement program loops.

v' The term loop refers to a set of instructions that is repeated a number of times. For
example, to add 5 bytes of data, a counter can be used to keep track of how many times the
loop needs to be repeated. Each time the addition is performed the counter is decremented
and the zero flag is checked. When the counter becomes zero, the zero flag is set (ZF =

1) and the loop is stopped.

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

v~ The following example shows the implementation of the looping concept in the program,

which adds 5 bytes of data. Register CX is used to hold the counter and BX is the offset

pointer (Sl or DI could have been used instead). AL is initialized before the start of the loop.

v In each iteration; ZF is checked by the JNZ instruction. JNZ stands for "Jump Not Zero"

meaning that, if ZF =0, jump to a new address. If ZF = 1, the jump is not performed and the

instruction below the jump will be executed.

v" Notice that the JNZ instruction must come immediately after the instruction that decrements
CX since JNZ needs to check the effect of "DEC CX" on ZF. If any other instruction(s) were

placed between them, that instruction(s) might affect the zero flag.

MOV CX,05 :CX holds the lgop count
MOV BX,0200H ;BX hclds the offset data address
MOV  AL,00 rinitialize AL
ADD 1P: ADD AL,{ BX] ;add the next byte to AL
INC BX iincrement the data pointer
DEC CX ;decrement the loop counter
JNZ ADD _LP ;jump to next iteration 1if counter not zero

x86 ADDRESSING MODES:

The CPU can access operands (data) in various ways, called addressing modes. The number of

addressing modes is determined when the microprocessor is designed and cannot be changed. The

x86 provides a total of seven distinct addressing modes:

[1] Register [2] Immediate

[5] Based Relative [6] Indexed Relative

[3] Direct
[7] Based Indexed Relative

[4] Register Indirect

Table: Summary of the x86 Addressing Modes

Addressing Mode Operand Default Segment
Register reg none
Immediate data none
Direct |ofiset] DS
Register indirect [BX] DS
[SI] DS
[DI] DS
Based relative [BX]+disp DS
[BP]+disp SS
Indexed relative [DI]+disp DS
[SI]+disp §S) DS
Based indexed relative [BX][SI]+disp DS
[BX][DI]+disp DS
[BP][SI}+disp SS
[BP][DI]+disp SS

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

1. Register AddressingMode
The register addressing mode involves the use of registers to hold the data to be manipulated.
Memory is not accessed when this addressing mode is executed;therefore, it isrelatively fast.

MOV BM,DX ;ecopy the contentas of DX into BY
MOV ES,A¥ ;cepy the contents of AX into ES

ADD AL,BH ;add the contents of BH to contents of AL

2. Immediate Addressing Mode
In immediate addressing mode (as the name implies), when the instruction is assembled, the operand
comes immediately after the opcode. For this reason, this addressing mode executes quickly. In this
addressing mode, the source operand is a constant. Immediate addressing mode can be used to load
information into any of the registers except the segment registers and flag registers.

MOV  AX,2550H smove 2550H into AX
MOV CX,625 ;load the decimal value €25 into CX
MOV BL, 40H ;load 40H inte BL

3. Direct Addressing Mode
In the direct addressing mode, the data is in some memory location(s) and the address of the data in
memory comes immediately after the instruction. Note that, in immediate addressing mode, the operand
itself is provided with the instruction; whereas in direct addressing mode, the address of the operand is
provided with the instruction. This address is the offset address and one can calculate the physical address
by shifting left the DS register and adding it to the offset as follows:

PA = { DS } : { DirectAddress}
M3 DL,[ 2400] smove contents of DS:2400H into DL

Notice the bracket around the address. In the absence of this bracket, executing the command will give an

error since it is interpreted to move the value 2400 (16-bit data) into register DL, an 8-bit register.

Find the physical address of the memory location and its contents after the execution of the fol-
lowing, assuming that DS = 1512H.

MOV AL, 99H

MOV [ 3518] ,AL

Solution:

First AL is initialized to 99H, then in line two, the contents of AL are moved to logical address
DS:3518, which is 1512:3518, Shifting DS left and adding it to the offset gives the physical
address of 128638H (15120H + 3518H = 18638H). That means after the execution of the second
instruction, the memory location with address 18638H will contain the value 99H.

Before After

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

Eg: MOV BX, [5634] BX | ABCDH | | 8645H |
DS:5634H 45H LS byte
DS:5635H 86H MS byte
Before After
Eg: MOV CL, [5634] CL | F2H | [ 45H
DS:5634H 45H
DS:5635H 86H

4. Register Indirect Addressing Mode
In the register indirect addressing mode, the address of the memory location where the operand resides is

held by a register. The registers used for this purpose are Sl, DI, and BX. If these three registers are used
as pointers, that is, if they hold the offset of the memory location, they must be combined with DS in
order to generate the 20-bit physical address.

BX

PA:{ DS } : < Sl
Dl

MOV AL,[ BX] ;moves into AL the contents of the memory
jlocation pointed to by DS5:BX.
Notice that BX is in brackets. In the absence of brackets, the code is interpreted as an instruction moving
the contents of register BX to AL (which gives an error because source and destination do not match);
instead of the contents of the memory location whose offset address is in BX. The physical address is
calculated by shifting DS left one hex position and adding BX to it. The same rules apply when using

register Sl or DI.

MOV CL,[ 51] smove contents of D5:51 into CL
MOV [ DI] . AH rmove contents of AH into DS:DI

Assume that DS = 1120, 81 = 2498, and AX = 17FE. Show the contents of memory locations
after the execution of "Mov [ 51] ,AX"

Solution: .

The contents of AX are moved into memory locations with logical address DS:SI and DS:SI +
1; therefore, the physical address starts at DS (shifted left) + SI = 13698. According to the little
endian convention, low address 13698H contains FE, the low byte, and high address 13699H
will contain 17, the high byte.

5. Based Relative Addressing Mode
In the based relative addressing mode, base registers BX and BP, as well as a displacement value are used
to calculate (what is called) the effective address. The default segments used for the calculation of the
physical address (PA) are DS for BX and SS for BP.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

PA=| DS BX
or : or + 8 or 16 bit displacement
SS BP
MOV CX,[BX] +10 smove DS:BX+10 and DS:BX+410+41 into CX
;PA = DS (shifted left) + BX + 10
Alternative codings are “MOV CX, [BX+10]” or “MOV CX, 10/BX] . In the case of BP register —
MOV  AL,[ BE] +5 ;PA = SS (shifted left) + BP + 5

Alternative codings are “MOV AL, [BP+5]” or “MOV AL, 5[/BP] .
o In “MOV AL, [BP+5]”, BP+5 is called the effective address; since the 5 byte from the
beginning of the offset BP is moved to register AL. Similarly, in “MOV CX, [BX+10]”, BX+10
is called the effective address.

6. Indexed Relative Addressing Mode
The indexed relative addressing mode works the same as the based relative addressing mode, except that

registers DI and Sl hold the offset address.

PA=| DS Sl
or : or + 8 or 16 bit displacement
SS DI
MOV DX,[ SI]+5 ;PR = DS (shifted left) + SI + 5

MoV CL,[ DI]+20 ;BPA = DS (shifted left) + DI + 20

Assume that DS = 4500, 88 = 2000, BX = 2100, SI = 1486, DI = 8500, BP = 7814, and AX =
2512. All values are in hex. Show the exact physical memory location where AX is stored in
cach of the following. All values are in hex.

{a) MOV[ BX] +20, AX (b) MOV SI] +10,AX

(c) MOV[ DI] +4,AX (d) MOV EF] +12,AX

Solution:

In each case PA = segment register (shifted left) + offset register + displacement.
(a) DS:BX+20 location 47120 = (12) and 47121 = (25)

(b) DS:S[+10 location 46496 = (12) and 46497 = (25)

(c) DS:DI+4  location 4D504 = (12) and 4D505 =(25)

(d) SS:BP+12 location 27826 = (12) and 27827 = (25)

7. Based Indexed Addressing Mode
By combining based and indexed addressing modes, a new addressing mode is derived called the based

indexed addressing mode. In this mode, one base register and one index register are used.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

PA=| DS BX Si
or . < or + or + 8 or 16bit displacement
SS BP Dl
MOV CL,[BX][ DI]+8 ;PA = DS {shifted left) + BX + DI + 8
MOV CH,[BXI[ 511+20 :PA = D5 (shifted left) + BX + SI + 20
MOV AH,[ BP][ DI) +12 ;PA = S5 (shifted left) + BP + DI + 12
MOV  AH,[ BPI[ S1]+2% ;PA = S5 (shifted left) + BP + SI + 29

The coding of the instructions above can vary. The last example can also be written as —

MOV AH,[ BP+SI+29]
MOV AH,[ SI+BP+29] ;the register order deoes not matter
Mote that "Mov A¥,[ STI[ DI] +displacement” is illegal
Segment Overrides:
The following Table summarizes the offset registers that can be used with the four segment registers.

Table: Default Segments and Offset Register Pairs

Segment Offset Special Purpose
CS IP Instruction address
DS SlI, DI, BX, an 8- or 16-bit number Data address
SS SP or BP Stack address
ES SI, DI, BX for string instructions | String destination address

The x86 CPU allows the program to override the default segment and use any segment register. To do
that, one needs to specify the segment in the code.

For example, in "MOV AL, [BX]", the physical address of the operand to be moved into AL is
DS: BX. To override that default, specify the desired segment in the instruction as "MOV AL, ES: [BX]
"". Now the address of the operand being moved to AL is ES: BX instead of DS: BX.
The following Table shows more examples of segment overrides shown next to the default address in the

absence of the override.
Table: Sample Segment Overrides

Instruction Serment Used Default Segmenl
MOV AX, CS:[BP] CS:BP S5:BP

MOV DX, S5:[SI] 58:51 D&:S1

MOV AX, DS [BFP] D5:BP 55.BP

MOV CX ES:[BX]+12 ES:BX+12 DS:BX+12
MOV S5 [BX][DI]+32,AX S5:.BX+DI+-32 DS:BX+DI+32

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

ASSEMBLY LANGUAGE PROGRAMMING
DIRECTIVES AND A SIMPLE PROGRAM:
A given Assembly language program (ALP) is a series of statements. There are two types of statements in
x86 ALP:

1. Assembly language instructions — instructions that are given to the microprocessor to do
the specific task. The Assembly language instruction can be translated into object code or
machine language. (E.g.: MOV, ADD, etc.)

2. Pseudo instructions/Directives — instructions that give directions to the assembler about
how it should translate the Assembly language instructions into machine code. These
instructions are not translated into machine code. They are used by the assembler to
organize the program as well as other output files. (E.g.: DB, DW, ASSUME, etc.)

An Assembly language instruction consists of four fields:

[label:] mnemonic [operands] [;comment]

Brackets indicate that the field is optional; do not type the brackets.

E.g.
Opcode (Mnemonic) Source operand (register
Relative addressing)
AGAIN: ADD AX, COUNT [BX] ; ADD ELEMENT OF COUNT TO AX.
Label—provides a Destination operand Comment
Means of branching (register addressing)

To this instruction

1. The label field allows the program to refer to a line of code by name. The label field cannot exceed 31
characters. Labels for directives do not need to end with a colon. A label must end with a colon when it
refers to an opcode generating instruction; the colon indicates to the assembler that this refers to code
within this code segment.

2, 3. The Assembly language mnemonic (instruction) and operand(s) fields together perform the real work
of the program and accomplish the tasks for which the program was written. In Assembly language
statements such as ADD AL, BL or MOV AX, 6764; ADD and MOV are mnemonic opcode, and “AL, BL”
and “AX, 6764 are the operands.

4. The comment filed begins with a ;. The assembler ignores comments. The comments are optional,

but are highly recommended for someone to read and understand the program.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

Model Definition:
The first statement in an Assembly language program is the MODEL directive. This directive selects the
size of the memory model. Among the options for the memory model are SMALL, MEDIUM,
COMPACT, and LARGE.

*MODEL SMALL ; this directive defines the model as small
SMALL is one of the most widely used memory models for Assembly language programs This model
uses a maximum of 64K bytes of memory for code and another 64KB for data. The other models are

defined as follows:

.MODEL MEDIUM sthe data must fit into 64K bytes

;but the code can exceed 64K bytes of memory
.MODEL COMPACT ;the data can exceed 64K bytes

;but the code cannot exceed 64K bytes

.MODEL LARGE ;both data and code can exceed 64K

;but no single set of data should exceed 64K
.MODEL HUGE ;both code and data can exceed 64K

:data items (such as arrays) can exceed 64K
.MODEL TINY sused with COM files in which data and code

smust fit into €4K bytes
Segment Definition:
The x86 CPU has four segment registers: CS (code segment), DS (data segment), SS (stack segment), and
ES (extra segment). Every line of an Assembly language program must correspond to one of these
segments. The simplified segment definition format uses three simple directives: ".CODE", ".DATA",
and ".STACK", which correspond to the CS, DS, and SS registers, respectively.

Segments of a Program:
Although one can write an Assembly language program that uses only one segment, normally a program

consists of at least three segments: the stack segment, the data segment, and the code segment.

. 3TACK imarks the beginning cf the stack segment
.DATA ;jmarks the beginning cof the data segment
. CODE ;jmarks the beginning cof the code segment

Assembly language statements are grouped into segments in order to be recognized by the assembler and
consequently by the CPU.

v The stack segment defines storage for the stack

v’ The data segment defines the data that the program will use

v The code segment contains the Assembly language instructions.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

;THE FORM OF AN ASSEMBLY LANGUAGE PROGRAM
;NOTE: USING SIMPLIFIED SEGMENT DEIFINITION
.MODEL SMALL
.STACE 64
.DATA
DATAl DB 52H
DATAZ DB 29H
SUM DB ?
.CODE
MAIN PROC FAR ithis is the program entry pcint
MOV AX,RDATA ;load the data segment address
MOV D5,AX ;assign value to DS
MOV AL,DATA] ,get the first operand
MOV BL,DATA2 ;get the second operand
ADD AL,BL radd the cperands
MOV SUM, AL ;store the result in location SUM
MOV AH,4CH iget up tec return to OS
INT 21H H
MAIN ENDP
END MAIN ;this is the program exit point

Fig: Simple Assembly Language Program

*MODEL SMALL - directive defines a model that uses a maximum of 64KB of memory for code and

another 64KB of memory for data.

*STACK 64 — directive reserves 64 bytes of memory for the stack.

*DATA — directive marks the beginning of the data segment.

v

The data segment defines three data items: DATAL, DATAZ2, and SUM. Each is defined as DB
(define byte). The DB directive is used by the assembler to allocate memory in byte-sized chunks.
Memory can be allocated in different sizes; such a 2 bytes, which has the directive DW (define
word).

The data items defined in the data segment can be accessed in the code segment by their labels.
DATAL and DATAZ are given initial vales in the data section; and SUM in not given an initial

value, but storage is set aside for it.

*CODE - directive marks the beginning of the code segment.

v
v

v
v
v

MAIN - is the name (label) of procedure.

PROC - directive defines a procedure. A procedure is a group of instructions designed to
accomplish a specific function.

A PROC directive may have the option FAR or NEAR, which are the program entry point(s).
ENDP — directive defines the end of the procedure.

PROC and ENDP statements must have the same label (here it is MAIN).

It is the job of the OS (operating system) to assign exact values for the segment registers. When program

begins executing, the OS allocates some of RAM available to the segment registers. This is done as

follows:

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

MOV AX,@DATA ;DATA refers to the start of the data segment
MOV DS, AX

No segment register can be loaded directly. Hence, two lines are required, as shown above.
END - directive ends the entire program by indicating to OS that the entry point MAIN has ended. The
label for the entry point (MAIN, here) and the END must match.

+THE FORM OF AN ASSEMBLY LANGUAGE PROGRAM
; USING SIMPLIFIED SEGMENT DEFINITION
.MODEL SMALL
.STACK 64
.DATA
;place data definitions here

.
’

.CODE

MAIN PROC FAR ;this is the program entry point
MOV AX,@DATA ;load the data segment address
MOV DS, AX ;assiga value to DS

‘
;place code here

’

MOV AH,4CH iset up to
INT 214 ;return to OS
MAIN ENDP
END  MAIN ;this is the program exit point

ASSEMBLE, LINK AND RUN A PROGRAM:
Once the Assembly language program has been written; there are three steps to create an executable

Assembly language program:

Step Input Program Output
1. Edit the program Keyboard Editor myfile.asm
2. Assemble the program myfile.asm | MASM or TASM | myfile.obj
3. Link the program myfile.obj | LINK or TLINK | myfile.exe

o Text editors are used to create and/or edit the program. These editors must be able to produce an
ASCII file.

o The source file must end in “.asm” for these assemblers. This “.asm” file will be assembled by an
assembler (such MASM/TASM).

+ The MASM and LINK programs are the assembler and linker programs for Microsoft’s
MASM assembler. In Borland’s TASM assembler, TASM and TLINK programs are the
assembler and linker programs.

o The assembler will produce an object file (.obj) and a list file (.Ist), along with other files that
may be useful to the programmer. All syntax errors produced by the assembler must be corrected
in the object file.

* The assembler creates the opcodes, operands, and offset addresses under the “.obj” file.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

The list file (.Ist) lists all the opcodes and the offset addresses, as well as errors that the
assembler detected. This file can be displayed on the monitor by the command: C>type
myfile.lst | more.

The cross-reference file (.crf) provides an alphabetical list of all symbols and tables used

in the program as well as program line numbers in which they are referenced.

o The object file (.obj) is the input for the LINK program, which produces the executable program

(.exe). The LINK program sets up the file, so that, it can be loaded by the OS and executed.

o We use DEBUG to execute the program and analyze the results.

When the program is working successfully, it can be run at the OS level by typing the
command: C>myfile. When the program name is typed in at the OS level, the OS loads
the program in memory. This is referred as mapping; which means that the program is
mapped into the physical memory of the PC.

When there are many segments for code or data, there is a need to see where each is
located and how many bytes are used by each. The “.map” file gives the name of each

segment, where it starts, where it stops, and its size in bytes.

C>MASM C:MYFILE.ASM <enter>

Microsoft (R) Macro Assembler Version 50
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [ C:MYFILE.OBJ]: C: <enter>

EDITOR Source listing [ HUL.L3T] :C:MYFILE.ILST <enter>
PROGRAM

Cross-reference | NUL.CRF] : <enter>

47962 + 413345 Bytes symbol space free
myfile.asm

0 Warning Errors
0 Severe Errors

ASSEMBLER
PROGRAM

C>LINK C:MYFILE.OBJ <enter>

myfilelst q—J

LF"‘}'f"[‘-'-"f Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. ALl rights reserved.

myfile.ob) 'S other ob). Mes Run File [ C:MYFILE.EXE] :C:<enter>
List File [NUL.MAP] : <enter>
LINKER Libraries [ .LIB] :<enter>
PROGRAM LINK : warning L4021l: no stack segment
C>DEBUG C:MYFILE.EXE <enter>
l s myfiemap U CS:0 1 <enter>
myfile.exe 1064:0000 BBEALD MOV AX, 1066

-D 1066:0 F <enter>

1066:0000 52 2% 00 00 00 DO 0O OD-0d QO OO 0O 00 00 00 00 R)
-G <enter>

Frogram terminated normally

-D 1066:0 F <enter>

1066:0000 52 23 7B 00 00 00 0D O0-00 OO0 OO0 00 00 00 00 00 Ry ...........-.
-Q <enter>

[ne-3

Fig: Steps to Create a Program & Creating and Running the .exe File

PAGE and TITLE Directives:
The PAGE and the TITLE are two directives used make the “.Ist” file more readable.

FAGE [ lines] ,[ columns]

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

PAGE directive tells the printer how the list should be printed. In the default mode, the output will

have 66 lines per page and with a maximum of 80 characters per line. The default settings can be altered

to 60 and 132 as follows:
BRGE 60,132

When the list is printed in more than one page, the assembler can be instructed to print the title of the
program on the top of each page by using the TITLE directive. The text after the TITLE pseudo-

instruction cannot be more than 60 ASCII characters.

MORE SAMPLE PROGRAMS:
The following Fig shows the program and the list file generated when the program was assembled. After
the program was assembled and linked, DEBUG was used to dump the code segment to see what value is

assigned to the OS register. Remember that the value you get could be different for "MOV AX, Xxxx" as

well as for CS in the program examples.

Write, run, and analyze a program that adds 5 bytes of data and saves the result. The data should be
the following hex numbers: 25, 12, 15, 1F, and 2B.

PAGE 60,132

TITLE PROG2-1  |EXE) PURPOSE: ADDS 5 BYTES OF DATA
.MODEL SMALL
.STACK 64
.DATA

DATA IN DB 25H,12H, 158, 1F4, 2EH

S DB ?

’
.QODE

MAIN PROC FAR
MOV AX,QDATA
MOV DS,AX
MOV CcX,05 ;set up loop ccunter CX=5
MOV BX,0FFSET DATA IN ;set up data pcinter BX

¥ MOV AL,0Q ;initialize AL

AGAIN: ADD AL,[ BX] ;add next data item to AL
INC BX ;make BX point to next data item
DEC CX ;decrement loop counter
JNZ  AGAIN ;jump Lf loop COUNter not zero
MOV SUM, AL ;locad result into sum
MOV AH,4CH ;set up return
INT 21H ;return to OS

MAIN ENDP
END MAIN

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

After the program was assembled and linked, it was run using DEBUG:
Crdebug progZ-l.exe

-u es:0 19

1067:0000 B366LO MOV a¥, 10640

1067:0002 BEDH MOV DS, AX

1067:0005 B%0500 MOV C¥,0005

1067:0008 BBOOQ0OD MOV B, 0000

1067:0000 0207 ADD AL,[ BX]

1067 ::000F 43 INC BX

1067:0010 49 DEC Cx

10670013 A20500 MOV | 0005] ,AL

1067:0016 B44C MOV AH,4C

1067:0018 C0Z21 INT 21

~d 1066:0 £

1066:0000 25 12 15 1F 2B 00 00 OO-00 00 OO0 00 00 00 00 00 %...4.....000uu.
=g

Program terminated normally

-d 1086:0 £

10660000 25 12 15 1F 2B 96 00 QO0=040 OO0 OO0 OO0 OO0 0O 00 OO0 %. .. 4. .. ...coo..
-

faed

Fig: Program 2-1
= INC destination — adds 1 to the specified destination. The destination may be a register or
memory location.
Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected.
Egl: INC AL : Add one to the contents of AL.
Eg2: INC BX : Add one to the contents of BX.

= DEC destination — subtract 1 from the specified destination. The destination may be a register or
a memory location.
Flags affected: AF, OF, PF, SF, and ZF. The CF is not affected.

Eg: DEC AL : Subtract 1 from the contents of AL.

= JNZ label — jump if not zero; if ZF = 0, jumps to the label specified. Checks for zero flag.

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

[ Microsoft (R) Macro Assembler Version 5.10 213/7

25 Source Lines
25 Total Lines
25 Symbols

PROG 1 (EXE) PURPOSE: ADDS 5 BYTES OF DATA Page I-1
1 PAGE 60,132
2 TITLE PROG2-1 (EXE) PURPOSE: ADDS 5 BYTES OF DATA
3 MODEL SMALL
4 STACK 64
5 2
6 DATA
70000 2512 151F 2B DATA_IN DB 25H,12H,15H,1FH,2BH
8 0005 00 SUM DB ?
9 ;
10 LCODE
11 0000 MAIN PROC FAR
120000 B8 -—-R MOV  AX,@DATA
130003 8E D8 MOV  DS,AX
14 0005 B9 0005 MOV CX,05 :set up loop counter CX=5
150008 BB 0000 R MOV  BX.OFFSET DATA_IN :set up data pointer BX
16 000B B0 00 MOV  AL,0 .initialize AL
17000D 0207 AGAIN: ADDAL,[BX] :add next data item to AL
18 000F 43 INC BX :make BX point to next data item
190010 49 DEC (X :decrement loop counter
200011 75 FA INZ AGAIN Jjump if loop counter not zero
210013 A20005 R MOV  SUMAL ;load result into sum
220016 B44C MOV  AH.4CH :set up return
230018 CD 21 INT 2IH ;refurn to OS
24 001A MAIN ENDP
25 END  MAIN
Microsoft (R} Macro Assembler Version 5 10 20137
PROG2-1 (EXE) PURPOSE: ADDS 5 BYTES OF DATA Symbols-1
Segments and Groups:
Naome Length Align  Combine Class
DGROUP.........ccnt GROUP
DATA 0006  WORD PUBLIC'DATA
g i e 0040 PARA STACK 'STACK'
TEXT . . 001A  WORD PUBLIC'CODE'
Symbols
Name Type Valee  Attr
AGAIN . ... L NEAROOOD  TEXT
DATA IN ...... LBYTEMOOD  DATA
PRI oo omnmarrmsns F PROCODO0  TEXT Length = 001A
BUM -ooumsnme L BYTEODDS — DATA
ACODE i 0w TEXT _TEXT
ODESIZE ........... TEXT 0
B} o O B TR R e LA TEXT 0101h
ATASIZE ........... TEXT 0
@FILENAME ...........  TEXT prog2 1
@VERSION ............ TEXT 510

45756 + 410160 Bytes symbol space free 0 Warning Errors 0§ Severe Erors

Fig: MASM List for Program 2-1

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

SET: It is an operator which tells the assembler to determine the offset or displacement of a named
data item (variable) from the start of the segment.
Eg: MOV AX, OFFSET MES1 ; Loads the offset of variable MES1 in AX register.

Write and run a program that adds four words of data and saves the result. The values will be 234DH,
IDE6H, 3BC7H, and 566AH. Use DEBUG to verify the sum is D364.

TITLE PROG2-2 (EXE) PURPOSE: ADDS 4 WORDS OF DATA
PAGE 60,132
.MODEL SMALL

.STACK &4
.DATA :

DATA_IN DW 234DH, 1DE€H, 3BCT7H, 566AK
ORG 10H

SUM DW ?
.CODE

MAIN PROC FAR
MOV AX,@DATA
MOV DS, AX
MOV C¥,04 jsct up loop counter CX=4
MOV DI,OFFSET DATA IN ;set up data pointer DI
MOV BX,00 ;initiallize BX

ADD LP: ADD BX,[ DI] ;add contents pointed at by [ DI] to BX
INC DI ;increment DI twice
INC DI ;to point to next word
DEC CcX ;decrement loop counter
JNZ ADD LP ;jump if loop counter not zerc
MOV  SI,OFFSET SUM ;load pointer for sum
MOV [ SI],BX ;store in data segment
MOV AH,4CH ;set up return
INT 21H ;return to 08

MRIN ENDP
END MATN

After the program was assembled and linked, it was run using DEBUG:
C>debug c:progl-2.exe

1068:0000 B86810 MOV AX,1066

-0 1066:0 1F .
1066:0000 4D 23 E6 1D C7 3B 6A 56-00 00 00 00 00 00 OC Q0 M#£f.G;iV.evewrus
1066:0010 00 00 00 DO GO 00 00 00-00 00 00 00 00 00 0C 00 ..vevvievuannnne
.S

Program terminated normally

-0 1066:0 1F

1066:0000 4D 23 E6 1D C7 3B 6A 56-00 00 00 00 00 00 00 00 M#f.G/iVieeos.n.
1066:0010 64 D3 00 00 OC 00D 00 00-00 00 00 00 OC 00 OO0 Q0 dS.vevivnnnenrns
-Q

>

Fig: Program 2-2

The ORG directive can be used to set the offset addresses for data items. In the above program, the ORG
directive causes SUM to be stored at DS: 0010.

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

[Write and run a program that transfers 6 bytes of data from memory locations with offset of 0010H
to memory locations with offset of 0028H.

TITLE PROGZ-32 (EXE) FURFOSE: TRANSFERS & BYTES OF DATA
FAGE ©0,132
.MODEL SMALL

.S3TACK 64
.DATA
ORC 10H
DATA IN DB 25H, 4FH, 85H, 1FH, 2BH, 0C4H
- ORG ZRH
COPY DB & DUOE(?)
.CODE
MAIN PROC FAR
= MOV AX,BDATA
MoV 05, AX

MOV S1,0FFSET DATA IN ;51 points to data to be copled
MOV DI,QFFSET COPY ;DI points to copy of data

MOV CX,06H iloop counkter = 6

MOV LOOE: MOV AL,[ 5I] imove the next byte from DATA arsa to AL

= MOV [ DI ,AL imove the next byte to COPY area

INC 51 ;increment DATA polinter
INC DI rinerement COPY pointer
DEC CX ;decrement LOOP counter
JNE MOV LOOF jjump if loop counter not zero
MoV AH,ICH ;set up te return
INT 21H yreturn to 05

MAIN ENDP
END MAIN

After the program was assembled and linked, it was run using DEBUG:
Crdebug prog2-3.exe -

-u caz:b 1

1069:0000 BRE68LO MoV R, 1066

-d 1066:0 Zf

1066:0000 00 00 00 OO0 00 OO0 00 O00-00 OO0 DO 0O Q0 Q0 00 00 ...c.ivecrnnannnnna
1066:0010 25 4F 83 1F 2B C4 00 00-00 Q0 DO 00 00 00 00 OO0 %0..4D....veun..
1066:0020 00 00 00 0OC OO0 OO0 OO 0O0-00 OD DO 00 OO0 00 0D 00 ..vvvverencanens
=q

Program terminated normally

-d 1lde6:0 2t

1066:0000 00 00 00 00 OO0 OO OO0 OO0-00 OO0 DO 00 00 00 0D 00 &.iceveeunnnnnnnn
1066:0010 25 4F BS5 1F 2B C4 00 00-00 OO0 DO 00 00 OO0 0D OO0 R0..4D..ecasesss
1066:0020 00 00 OO0 OO QO Q0 00 QO0-25 4F B5 1F 2B C4 0D 00 0. .#D..weenans
T

[0

Fig: Program 2-3

CONTROL TRANSFER INSTRUCTIONS:

In an ALP, instructions are executed sequentially. Sometimes, it is often necessary to transfer program

control to a different location. Since the CS: IP registers always point to the address of the next
instruction to be executed; they must be updated when a control transfer instruction is executed. There are

many instructions in the x86 to achieve this.

FAR and NEAR:
o If control is transferred to a memory location within the current code segment, it is NEAR. This is

sometimes called intra-segment (within segment) jump.

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

* Ina NEAR jump, the IP is updated and CS remains the same, since control is still inside

the current code segment.
o If control is transferred to a memory location outside the current code segment, it is a FAR or
intersegment (between segments) jump.
* InaFAR jump, because control is passing outside the current code segment, both CS and
IP have to be updated to the new values.

Conditional Jumps:

In the conditional jump, control is transferred to a new location if a certain condition is met. The flag
register is the one that indicates the current condition. For example, with "JNZ label", the processor looks
at the zero flag to see if it is raised. If not, the CPU starts to fetch and execute instructions from the
address of the label. If ZF = I, it will not jump but will execute the next instruction below the JNZ.

Table: 8086 Conditional Jump Instructions

Mnemonic | Condition Tested “Jump IF ...”

JA/INBE (CF = 0) and (ZF = 0) above/not below nor zero
JAE/JNB CF=0 above or equal/not below
JB/INAE CF=1 below/not above nor equal
JBE/INA (CF or ZF) =1 below or equalnot above
IC CF=1 carry

JENZ - | ZF =1 equal/zero

JG/INLE ({SF xor OF) or ZF) = 0 greater/not less nor equal
JGE/INL (SF xor OF) =0 greater or equal/not less
JL/INGE (SF xor OR) =1 less/not greater nor equal
JLE/ING ({SF xor OF) or ZF) = 1 less or equal/not greater
INC CF=0 not carry

INE/INZ ZF =0 not equal/not zero

INO OF=0 not overflow

INP/JPO PF =0 not parity/parity odd

INS SF =0 not sign

JO OF =1 overflow

JP/JPE PF =1 parity/parity equal

IS SF =1 sign

Note:
“Above” and “below™ refer to the relationship of two unsigned values; “greater”™ and “less” refer
to the relationship of two signed values.

Short Jumps:
o All conditional jumps are short jumps. In a short jump, the address of the target must be within —
128 to +127 bytes of the IP.
o The conditional jump (short jump) is a two byte instruction: One byte is the opcode of the J

condition and the second byte is a value between 00 and FF.

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

An offset range of 00 to FF gives 256 possible addresses; these are split between backward jumps
(to —128) and forward jumps (to +127).
o In a jump backward, the second byte is the 2's complement of the displacement value. To

calculate the target address, the second byte is added to the IP of the instruction after the jump.

.MODEL SMALL
.STACK 64
.DATA
DATA IN DB  25H,12H,15H, 1FH,2BH
SUM DB 2
.CODE
Ml fgf;c iﬁf‘@mm 1067:0000 E86610 MOV  AX,1066
MOV DS, AX 1067:0003 ZEDSB MOV DS, AX
MOV CX,05 1067:0005 B90500 MOV  CX,0005
MOV  BX,OFFSET DATA IN | 1067:0008 BROOOO MOV  BX,0000
3 MOV AL,O 1067:000D 0207 ADD  AL,[ BX]
AGAIN: ADD AL, BX] 1067:000F 43 INC BX
INC  BX 1067:0010 49 DEC CX
DEC  CX 1067:0011 75FA JNZ  00CD
JNZ  AGAIN 1067:0013 220500 MOV | 0005] ,AL
NM& i}f“aﬁ 1067:0016 B44C MOV  AH,4C
e Sih 1067:0018 CD21 INT 21
MAIN ENDP
END  MAIN

o The instruction "JNZ AGAIN" was assembled as "JNZ 000D", and 000D is the address of the
instruction with the label AGAIN. The instruction "JNZ 000D" has the opcode 75 and the target
address FA, which is located at offset addresses 0011 and 0012.

Opcode

75 Disp Short

o This is followed by "MOV SUM, AL", which is located beginning at offset address 0013. The IP
value of this MOV (0013), is added to FA to calculate the address of label AGAIN (0013+ FA=
000D) and the carry is dropped.

o Inreality, FA is the 2's complement of -6, meaning that the address of the target is -6 bytes from
the IP of the next instruction.

o Similarly, the target address for a forward jump is calculated by adding the IP of the following

instruction to the operand. In that case the displacement value is positive, as shown next.

0ods 8a 47 02 AGAIN: MOW AL,[ B¥] +2
ooos ac el CMP EL,6lH
0oda 72 06 JB HEXT
aooc ac Ja CMP AL,7AH
QO0E T1 02 Ja HEXT
0010 29 DF AND MAL,ODFH
oo1z B2 04 NEXT: MGV [ 5I) ,AL

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

o In the program above, "JB NEXT" has the opcode 72 and the target address 06 and is located at
IP = 000A and 000B.

o The jump will be 6 bytes from the next instruction, which is IP = 000C. Adding gives us 000CH
+ 0006H = 0012H, which is the exact address of the NEXT label.

o Look also at "JA NEXT", which has 77 and 02 for the opcode and displacement, respectively.
The IP of the following instruction, 0010, is added to 02 to get 0012, the address of the target
location.

Note that, regardless of whether the jump is forward or backward, for conditional jumps, the address of
the target address can never be more than —128 to +127 bytes away from the IP associated with the
instruction following the jump If any attempt is made to violate this rule, the assembler will generate a
"relative jump out of range" message. These conditional jumps are sometimes referred to as SHORT

jumps.

Unconditional Jumps:
"JMP label" is an unconditional jump in which control is transferred unconditionally to the target
location label. The unconditional jump can take the following forms:

1. SHORT JUMP — which is specified by the format "JMP SHORT label". This is a jump in which
the address of the target location is within —128 to +127 bytes of memory relative to the address
of the current IP.

v In this case, the opcode is EB and the operand is 1 byte in the range 00 to FF. The
operand byte is added to the current IP to calculate the target address. If the jump is
backward, the operand is in 2's complement. This is exactly like the J condition case.

v Coding the directive "short" makes the jump more efficient; i.e., it will be assembled into

a 2-byte instruction instead of a 3-byte instruction.

Opeode

EB Disp Short

2. NEAR JUMP, which is the default, has the format "JNP label". This is a near jump (within the
current code segment) and has the opcode E9. The target address can be any of the addressing
modes of direct, register, register indirect, or memory indirect:

v (a) Direct JUMP: is exactly like the short jump explained earlier, except that the target
address can be anywhere in the segment within the range +32767 to —32768 of the
current IP.

v (b) Register indirect JUMP: the target address is in a register. For example, in "JMP
BX", IP takes the value BX.

MAHESH PRASANNA K., VCET, PUTTUR



3.

MICROPROCESSORS AND MICROCONTROLLERS

v (c) Memory indirect JMP: the target address is the contents of two memory locations
pointed at by the register. Example: "JMP [DI]" will replace the IP with the contents of
memory locations pointed at by DI and DI + 1.

Opcode

Disp
Low

Disp Near
E9 High

FAR JUMP, which has the format "JMP FAR PTR label". This is a jump out of the current code

segment, meaning that not only the IP but also the CS is replaced with new values.

Opcode

P IP cs Cs

Low High Lew High Far

EA

CALL Statement:

@)

Another control transfer instruction is the CALL instruction, which is used to call a procedure.
CALLSs to procedures are used to perform tasks that need to be performed frequently. This makes
a program more structured.

The target address could be in the current segment, in which case it will be a NEAR call or
outside the current CS segment, which is a FAR call.

To make sure that after execution of the called subroutine the microprocessor knows where to
come back, the microprocessor automatically saves the address of the instruction following the
call on the stack. It must be noted that in the NEAR call only the IP is saved on the stack, and in a
FAR call both CS and IP are saved.

When a subroutine is called, control is transferred to that subroutine and the processor saves the
IP (and CS in the case of a FAR call) and begins to fetch instructions from the new location.

After finishing execution of the subroutine, for control to be transferred back to the caller, the last
instruction in the called subroutine must be RET (return). The RET instruction in the case of
NEAR and FAR is different. For NEAR calls, the IP is restored; for FAR calls, both CS and IP
are restored.

This will ensure that control is given back to the caller. As an example, assume that SP = FFFEH

and the following code is a portion of the program unassembled in DEBUG:

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

12EB0:0200 EB1295 MOV BX,S8512
1980:0203 ESFAO0 CALL 0300
12B0:0206 BEZF14d MOV AX, 14ZF
|2
=
a5 ;
12B0:0300 53 PUSH BX N rvamm e
19B0030L  an FFFC 06
=
...... ;.. ;.. e e =i FFFD {]2
12B0:0308 5B POP BX .
12E0:0308 C3 RET FFFE

Fig: IP in the Stack

Since the CALL instruction is a NEAR call, (different IP, same CS), only IP is saved on the stack. In this
case, the IP address of the instruction after the call is saved on the stack as shown in above Fig. This IP
will be 0206, which belongs to the "MOV AX, 142F" instruction.

The last instruction of the called subroutine must be a RET instruction that directs the CPU to
POP the top 2 bytes of the stack into the IP and resume executing at offset address 0206. For this reason,
the number of PUSH and POP instructions (which alter the SP) must match. In other words, for every
PUSH there must be a POP.

Assembly Language Subroutines:

In Assembly language programming it is common to have one main program and many subroutines to be
called from the main program. This allows you to make each subroutine into a separate module. Each
module can be tested separately and then brought together.

The main program is the entry point from the OS and is FAR, as explained earlier, but the
subroutines called within the main program can be FAR or NEAR. Remember that NEAR routines are in
the same code segment, while FAR routines are outside the current code segment. If there is no specific
mention of FAR after the directive PROC, by default, it will be NEAR, as shown in the following Fig.

Rules for Names in Assembly Language:
v By choosing label names that are meaningful, a programmer can make a program much easier to
read and maintain. There are several rules that names must follow.
v’ Each label name must be unique.
v The names used for labels in Assembly language programming consist of alphabetic letters in
both upper- and lowercase, the digits 0 through 9, and the special characters question mark(?),
period(.), at(@), under line(_), and dollar sign ($).

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

v" The first character of the name must be an alphabetic character or special character. It cannot be a
digit.

v/ Names may be up to 31 characters long.

LCODE
MATH PROC FAR ;THIS IS THE ENTRY POINT FOR OF

MOV BX, BDATA

MO 05, aX

CALL EUBER1

CALL SUBR2

CALL SUBR3

MOV AH, 4CH

INT Z1H
MAIN ENDP

!
SUER1 FROC

RET '
SUER1 ENDE

SUER2 PROC

RET
SUEBRZ ENDP

SUER3 PROC

RET
SUER3 ENDP

END MATIN ;THIS IS THE EXIT POINT

Fig: Shell of Assembly Language Subroutines

DATA TYPES AND DATA DEFINITIONS:

o The assembler supports all the various data types of the x86 microprocessor by providing data

directives that define the data types and set aside memory for them.

o The 8088/86 microprocessor supports many data types, but none are longer than 16 bits wide
since the size of the registers is 16 bits. It is the job of the programmer to break down data larger
than 16 bits (0000 to FFFFH, or 0 to 65535 in decimal) to be processed by the CPU.

o The data types used by the 8088/86 can be 8-bit or 16-bit, positive or negative. If a number is less
than 8 bits wide, it still must be coded as an 8-bit register with the higher digits as zero. Similarly,
if the number is less than 16 bits wide it must use all 16 bits, with the rest being 0Os.

o For example, the number 5 is only 3 bits wide (101) in binary, but the 8088/86 will accept it as 05
or "0000 0101" in binary. The number 514 is "10 0000 0010" in binary, but the 8088/86 will
accept it as "0000 0010 0000 0010™ in binary.

Assembler Data Directive:
MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

The following are some of the data directives used by the x86 microprocessor and supported by all

software vendors.

= ORG (origin) — is used to indicate the beginning of the offset address. The number that comes

after ORG can be either in hex or in decimal. If the number is not followed by H, it is decimal

and the assembler will convert it to hex.

= DB (define byte) — directive allows allocation of memory in byte-sized chunks. This is indeed the

smallest allocation unit permitted. DB can be used to define humbers in decimal, binary, hex, and

ASCII. For decimal, the D after the decimal number is optional, but using B (binary) and H

(hexa- decimal) for the others is required. Regardless of which one is used, the assembler will

convert numbers into hex. To indicate ASCII, simply place the string in single quotation marks

(‘'like this"). Either single or double quotes can be used around ASCII strings.

DATAI
DATA2
DATA3
DATA4
DATAS

DATAG

DB - 25

DB 10001001B

DB 12H
ORG (010H
DB ‘2591
ORG 0018H
DB 7
ORG 0020H

DB ‘My name is Jog*

;DECIMAL
:BINARY
:HEX

(ASCIINUMBERS

.SET ASIDE A BYTE

ASCI CHARACTERS

= DUP (duplicate) — is used to duplicate a given number of characters. This can avoid a lot of

typing. For example, contrast the following two methods of filling six memory locations with

FFH:
0030 ORG  0030H
0030 FF FF FF FF FF FF DATA7 DB OFFH,0FFH,0FFH,0FFH,0FFH,0FFH ; 6 FF
0038 ORG 38H
0038 0005 DATAS DB 6 DUP(OFFH)  ;FILL 6 BYTES WITH FF
0040 ) ORG  40H
0040 0020 [ DATA9 DB 32DUP(?)  ;SET ASIDE 32 BYTES
N ]
0060 ORG  60H
0060 0005( DATA10 DB 5 DUP (2 DUP (99)) JFILL 10 BYTES WITH 99
0002
63
] ]

= DW (define word) — is used to allocate memory 2 bytes (one word) at a time. The following are

some examples of DW:

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

0070 ORG 70H

0070 03BA DATAIl DW 954 ;DECIMAL

0072 0954 DATA1Z2 DW 1001010101008 ;BINARY

0074 253F DATA13 DW  253FH ;HEX

0078 ORG 78H

(078 0009 0002 0007 000C DATA14 DW  9,2,7,0CH,00100000B,5,"HI’ :MISC. DATA
0020 0005 4849

0086 0008[ . ] DATA1S DW 8 DUP(?) SET ASIDE 8 WORDS

= EQU (equate) — is used to define a constant without occupying a memory location. EQU does not

set aside storage for a data item but associates a constant value with a data label so that when the

label appears in the program; its constant value will be substituted for the label.
(@]

Using EQU for the counter constant in the immediate addressing mode:

COUNT EQU 25 COUNT DB 25
When executing the "MOV CX,
COUNT™", the register CX will be loaded with the

value 25.

instructions

What is the real advantage of EQU? First, note that EQU can also be used in the data segment:
COUNT EQU 25

COUNTER1 DB COUNT

COUNTER2 DB COUNT

EQU can also be used outside the data segment, even in the middle of a code segment.

When executing the same instruction "MOV CX,
COUNT" it will be in the direct addressing mode.

Assume that there is a constant (a fixed value) used in many different places in the data and code

segments. By the use of EQU, one can change it once and the assembler will change all of them, rather

than making the programmer tries to find every location and correct it.

= DD (define double word) — directive is used to allocate memory locations that are 4 bytes (two
words) in size. Again, the data can be in decimal, binary, or hex. In any case the data is converted
to hex and placed in memory locations according to the rule of low byte to low address and high

byte to high address. DD examples are:

00AD ORG DDADH
00AQ 0O0O03FF DATAlL6 DD 1023 DECIMAL
00A4 00089650 DATALT DO 1000100101 10010111008 BINARY
00AR 3C2AS57F1 DATAIY DD 5C2ASTFIH HEX
00AC 00000023 00024784 DATA1D DD 23H,34789H,65533

O000OFFFD

= DQ (define quad word) — is used to allocate memory 8 bytes (four words) in size. This can be

used to represent any variable up to 64 bits wide:

a0Co ORG 00COH

O0CO  CIZ3450000000000 DATAZD Dy 4523CZH HEX

O0CE 4948000000000000 DATAZL DQ  CHI ASCH CHARACTERS
0000 0O0OOOOOOOOOOMCD DATAZZ DO 7 MNOTHING

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

= DT (define ten bytes) — is used for memory allocation of packed BCD numbers. The application
of DT will be seen in the multibyte addition of BCD numbers. For now, observe how they are
located in memory. Notice that the "H" after the data is not needed. This directive allocates 10

bytes, but a maximum of 18 digits can be entered.

00ED ORG O00EOH

QOEQ 29985643 728000000:0 DATA23 DT BOTH4IFO9829 BCD
00

OOEA  0OOOOOOCO0OO0O0OMOMN0 DATAZ4d DT 7 MNOTHING
00

It is essential to understand the way operands are stored in memory. The following Fig shows the memory

dump of the data section, including all the examples discussed here.

-D 1065:0
1066:0000
1066:0010
10660020
10&£:0030
1066:0040
10e6: 0080
1066:0070
1066:0080
1066: 0090
1066: 00AR0
10660080
1066:00C0
1066: G000
1066:00ED

104
19

32

4D

FF

00
63
BA
20
00
FF
83
c2
00
29

oo
HY
€D

Co=-00
00-00
20-69
00-FF
on-00
63-63
D0-08
oo-00
00-00
oo-rF2 57
00-00
O0-48
00-00
o0-00

(HY
€3
25
48
oo
%6
FF
oo
oo
86

oo
Y
oo
i
0o
oo

00 .
00 .

0o

0o
0o

................

I e R

Looking at the memory dump shows that, all of the data directives use the little endian format for storing

data (the least significant byte is located in the memory location of the lower address and the most

significant byte resides in the memory location of the higher address).

For example, look at the case of "DATA20 DQ 4523C2", residing in memory starting at offset
00COH. C2, the least significant byte, is in location 00CO, with 23 in 00C1, and 45, the most significant
byte, in 00C2. It must also be noted that for ASCII data, only the DB directive can be used to define data

of any length, and the use of DO, DQ, or DT directive for ASCII strings of more than 2 bytes gives an

assembly error. When DB is used for ASCII numbers, notice how it places them backwards in memory.
For example, see “DATA4 DB ‘2591  at origin 10H: 32, ASCII for 2, is in memory location 10H; 35,

ASCII for 5, is in 11H; and so on.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

L SEGMENT DEFINITION:

The way that segments have been defined in the programs above is a newer definition referred to as
simple segment definition. It is supported by Microsoft's MASM 5.0 and higher and/or Borland's TASM

version 1 and higher. The older, more traditional definition is called the full segment definition.

Segment Definition:

4

In the full segment definition, the ".MODEL" directive is not used. Further, the directives "
STACK"".DATA", and" .CODE" are replaced by SEGMENT and ENDS directives that
surround each segment.

The SEGMENT and the ENDS directives indicate to the assembler the beginning and ending of a

segment and have the following format:

label SEGMENT [ options]
iplace the statements belonging to this segment here
label ENDS

The label, or name, must follow naming conventions and must be unique.

The [options] field gives important information to the assembler for organizing the segment, but
is not required.

The ENDS label must be the same label as in the SEGMENT directive.

The following Fig shows the full segment definition and simplified format, side by side.

;FULL SEGMENT DEFINITION :SIMPLIFIED FORMAT
;—— stack segment —- .MODEL SMALL
namel SEGMENT «STACK 64

DB 64 DUP (?) H )
namel ENDS H
;—= data segment —- a
name? SEGMENT DATA

name3

;place data definitions here :place data definitions here
name? ENDS ;

i~ code segment - H -—

SEGMENT .CODE

MAIN PROC FAR MAIN PROC FAR
ASSUME MOV  AX, @DATA
MOV AX, nane2 MOV DS, AX
MOW DS, AX o's

MAIN ENDP MAIN ENDP

name3 ENDS END MAIN
ERD MAIN ’

MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

ck Segment Definition:
The stack segment shown below contains the line: "DB 64 DUP (?)" to reserve 64 bytes of memory for
the stack. The following three lines in full segment definition are comparable to ".STACK 64" in simple

definition:
STSEG SE®ENT ;the "SEQMENT" directive begins the segment
DB 64 DUP (?) ;this segment contains only one line
STSEG EZNDS ;the "ENDS" seament ends the segment

Data Segment Definition:
In full segment definition, the SEGMENT directive names the data segment and must appear before the
data. The ENDS segment marks the end of the data segment:

DTSEG SEGMENT ;i the SEGMENT directive begins the secment
;define your data here
DTSEG ENDS ;the ENDS segment ends the segment
Code Segment Definition:

The code segment also begins and ends with SEGMENT and ENDS directives:

CDSSEG SEGMENT ;the SEGMENT directive begins the segment
;vour code is here
CDSEG ENDS ithe ENDS segment ends the segment
Example:
TITLE PURPCSE: ADDS 4 WORDS OF DATA
FAGE 60,132
STSEG SEGMENT TITLE PROG2-2 (EXE) PURPOSE: ADDS 4 WORDS OF DATA
Db A 1 SIS e MODEL SMALL
STSEG ENDS STACK 64
DTSEG SEGMENT L
DATA_IN DWW 234DH, 1DE6H, 3BCTH, 5662H |’ DATA
ORG 104 DATA_IN DW 234DH, 1DE€H, 3BC7H, S66AK
SUM bW ? ORG 10H
DTSEG ENDS SUM DW ?
CDSEG SEGMENT .CODE
MAIN PROC FAR MAIN PROC FAR
ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG MOV AX,EDATA
MOV AX, DTSEG MoV DS, AX
MOV DS, AX MOV CX,04 jsct up loop counter CX=4
MOV CX' 04 MOV ~ DI,OFFSET DATA_ IN ;set up data pointer DI
bR A MoV BX,00 sinitialize BX
MOV DI,OFFSET DATA_IN ADD_LP: ADD BX,[ DI] ;add contents pointed at by [ DI} to BX
MoV BX, 00 INC DI ;increment DI twice
ADD_LP: ADD  BX,[ DI] INC DI ;to point to next word
INC DI DEC CX ;decrement loop counter
ING DI JINZ ADD LP ;jump if loop counter not zer
DEC cX . MOV SI,CFFSET SUM ;load pointer for sum
JNZ ADD_LP 383 [Aﬁllqéﬁx ;store in data segment
OFFSET ‘ ;set up return
Wy oL UEEEER. S INT 21H ;return to 0S
MOV [ s1] ,B8X
; MRIN ENDP
MOV AH, 4CH END MAIN
INT 21H )
MAIN ENDP
CDSEG ENDS
END  MAIN

Fig: Program 2-2, Rewritten with Full Segment Definition
v"In full segment definition, immediately after the PROC directive is the ASSUME directive, which
associates segment registers with specific segments by assuming that the segment register is equal
to the segment labels used in the program.
MAHESH PRASANNA K., VCET, PUTTUR




MICROPROCESSORS AND MICROCONTROLLERS

v If an extra segment had been used, ES would also be included in the ASSUME statement.

v' The ASSUME statement is needed because a given Assembly language program can have several
code segments; one or two or three or more data segments and more than one stack segment. But
only one of each can be addressed by the CPU at a given time; since, only one of each of the
segment registers available inside the CPU.

v' ASSUME tells the assembler which of the segments defined by the SEGMENT directives should

be used.

Using the emu8086 Assembler:
There is a simple and popular assembler called emu8086; that one can use for assembling the 8086

Assembly language programs. It is available from the www.emu8086.com website. Examine the

following Fig for screenshots using emu8086.

i edit: £:\emu8DB6\MySource\mycode.asm RS T =10] xj
fie e& bookmads assembler emulator math asciicodes  help

0 vt ol .| & ’ = x s 3]
new open  examples save compie  emulae | calculator convertor ophons heip about
¥l ; multi-segment executabhle file template. —!

-

;5 flat assembler syntax

format MZ
entry code_seg:start ; set entry point
stack 256

segment data_ seg
5 add your data here?

DATA1 DB
DATA2 DB 29H
SUN DB ?

pkey db “press anv key...$"

segment code_segyg

start:

3 set segment r»registers:
mov ax, data_seg
mov ds, ax o
nov es, ax

3 add your code here
MOU AL, [DATAL]l ;get the first operand
MOU BL., IDATA2] sget the second operand

ADD AL, BL ;add the operands
MOU [SUMI.AL sstore the result in location SUM
mov dx, pke
mov ah, g <
int 21h 5 output string at ds:dx
; wait for any key....
mov ah, 1
int 21h
mov ax, 4c®Bh ; exit to operating systen.
int 21h
Fig: emu8086

NOTE: emu8086 requires putting brackets around variables, unlike MASM/TASM.
MAHESH PRASANNA K., VCET, PUTTUR



http://www.emu8086.com/

MICROPROCESSORS AND MICROCONTROLLERS

EXE vs COM Files:
All program examples so far were designed to be assembled and linked into EXE

files. The COM file,

similar to the EXE file, contains the executable machine code and can be run at the OS level.

Why COM Files?
v" The EXE file can be of any size. Due to limited amount of memory, on

compact code in the form of COM file.

e needs to have very

v' COM files are used because of their compactness, since they cannot be greater than 64K bytes.

The reason for the 64K-byte limit is that the COM file must fit into a single

segment, and since in

the x86 the size of a segment is 64K bytes, the COM file cannot be larger than 64K.

v" To limit the size of the file to 64K bytes requires defining the data inside the code segment and

also using an area (the end area) of the code segment for the stack.
Table: EXE vs. COM File Format

EXE File COM File
o ] 1. Maximum size 64K
1. Unlimited size
bytes
) ] 2. No stack segment
2. Stack segment is defined o
definition
3. Data segment is
3. Data segment is defined defined in  code
segment
) 4. Smaller file (takes
4. Larger file (takes more memory)
less memory)
5. Header block (contains information such as size, address location in
) ] 5. Does not have a
memory, and stack address of the EXE module), which occupies 512 ]
] header file
bytes of memory precedes every EXE file

FLOWCHARTS AND PSEUDOCODE:

Structured programming is a term used to denote programming techniques that can make a program easier

to code, debug, and maintain over time. There are certain principles that every structured program should

follow. Some of these are as follows:

1. The program should be designed before it is coded. By using techniques of flowcharting or

pseudocode, the design of the program is clear to the person coding it, as

will maintain the program later.

MAHESH PRASANNA K., VCET, PUTTUR

well as to those who




MICROPROCESSORS AND MICROCONTROLLERS

2. Using comments within the program and documentation accompanying the program also will
help someone else to know what the program does. It may even help the programmer who wrote
the program remember how it worked years later!

3. The main routine should consist of calls to subroutines that perform the work of the program.
This is sometimes called top-down programming. Use subroutines to accomplish tasks that are
repeated. This saves time in coding and also makes the program easier to read.

4. Data control is very important. It can be very frustrating and time consuming to track through a
long program to find where a variable was changed. First of all, the programmer should document
the purpose of each variable, and which subroutines might alter its value. Further, each subroutine
should document its input and output variables, and which input variables might be altered within
it.

Flow Charts & Pseudocode:
Flowcharts use graphic symbols to represent different types of program operations. These symbols are

connected together into a flowchart to show the flow of execution of the program.

Process

Decision

?

Subroutine

Input/
Qutput

Connector

O

Fig: Commonly used Flowchart Symbols
The limitations of flowchart are —
v" We can’t write much in the little boxes
v" We can’t get the clear picture of the program without getting bogged down in the details.
An alternative to using flowchart is pseudocode, which involves writing brief descriptions of the flow of

the code.

MAHESH PRASANNA K., VCET, PUTTUR



MICROPROCESSORS AND MICROCONTROLLERS

trol Structures:
Structured programming used three basic types of program control structures —

1. Sequence
Statement |
Statement 1
Statement 2 ;
. Statement 2
Fig: SEQUENCE Pseudocode vs Flowchart
2. Control
IF (condition) THEN
Statement |
ELSSElmemz | Statement 1 ’ . | Statement 2 |
’T“
Fig: IF-THEN-ELSE Pseudocode vs Flowchart
Condition
IF (condition) THEN ’
Statement |
Fig: IF-THEN Pseudocode vs Flowchart
3. lteration

Statement 1

Condition
9

l Yes

Fig: REPEAT-UNTIL Pseudocode vs Flowchart
MAHESH PRASANNA K., VCET, PUTTUR

REPEAT
Statement 1
UNTIL (condition)




MICROPROCESSORS AND MICROCONTROLLERS

Condition
T
Yes

Fig: WHILE-DO Pseudocode vs Flowchart

The purpose of flowchart or pseudocode is to show the flow of the program and what the program does;

WHILE {condition) DO
Statement 1

not the specific Assembly language instructions.

Start :
Count = 5
Repeat
Add next byte
—— | Add one byte : Increment pointer
H Decrement count
Until Count =0
Increment
pointer Store SUM
Decrement
counter
no ycs
Store
SUM

Fig: Flowchart vs Pseudocode for Program 2-1

By: MAHESH PRASANNA K.,
DEPT. OF CSE, VCET.

*khkkkkkkik

*hkkkkhkkiikkk

MAHESH PRASANNA K., VCET, PUTTUR




