

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 1

2. SYSTEM MODELS, DESIGN AND

IMPLEMENTATION

SYSTEM MODELS

 System modeling is the process of developing abstract models of a system, with each

model presenting a different view or perspective of that system.

 System modeling has generally come to mean representing the system using some

kind of graphical notation, which is now almost always based on notations in the

Unified Modeling Language (UML).

 Models are used during the requirements engineering process to help derive the

requirements for a system, during the design process to describe the system to

engineers implementing the system and after implementation to document the

system’s structure and operation.

2.1 Context Models

 At an early stage in the specification of a system, it is necessary to decide on the

system boundaries.

 This involves working with system stakeholders to decide what functionality should

be included in the system and what is provided by the system’s environment.

 A decision might be taken about a automated support for some business processes

should be implemented but others should be manual processes or supported by

different systems.

 Possible overlaps must also be noted in functionality with existing systems and decide

where new functionality should be implemented.

 These decisions should be made early in the process to limit the system costs and the

time needed for understanding the system requirements and design.

 Fig 2.1 is a simple context model that shows the patient information system and the

other systems in its environment.

 From fig 2.1, it is seen that the MHC-PMS is connected to an appointments system

and a more general patient record system with which it shares data.

 The system is also connected to systems for management reporting and hospital bed

allocation and a statistics system that collects information for research.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 2

 Finally, it makes use of a prescription system to generate prescriptions for patients’

Medication.

Fig 2.1: The context of the MHC-PMS

 Fig 2.2 is a model of an important system process that shows the processes in which

the MHC-PMS is used.

 Fig 2.2 is a UML activity diagram.

 Activity diagrams are intended to show the activities that make up a system process

and the flow of control from one activity to another.

 The start of a process is indicated by a filled circle; the end by a filled circle inside

another circle.

 Rectangles with round corners represent activities, that is, the specific sub-processes

that must be carried out.

 Objects can be included in activity charts.

Fig 2.2: Process model of involuntary detention

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 3

 In fig 2.2, it can be seen that guards showing the flows for patients who are dangerous

and not dangerous to society.

 Patients who are dangerous to society must be detained in a secure facility. However,

patients who are suicidal and so are a danger to themselves may be detained in an

appropriate ward in a hospital.

2.2 Interaction Models

 All systems involve interaction of some kind.

 This can be user interaction, which involves user inputs and outputs, interaction

between the systems being developed and other systems or interaction between the

components of the system.

 Modeling system to system interaction highlights the communication problems that

may arise.

 There are 2 approaches to interaction modeling:

1. Use case modeling, which is mostly used to model interactions between a

system and external actors (users or other systems).

2. Sequence diagrams, which are used to model interactions between system

components, although external agents may also be included.

2.2.1 Use Case Modeling

 Each use case represents a discrete task that involves external interaction with a

system.

 In its simplest form, a use case is shown as an ellipse with the actors involved in the

use case represented as stick figures.

 Fig 2.3 shows a use case from the MHC-PMS that represents the task of uploading

data from the MHC-PMS to a more general patient record system.

Fig 2.3: Transfer data use case

 This more general system maintains summary data about a patient rather than the data

about each consultation, which is recorded in the MHC-PMS.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 4

 There are two actors in this use case: the operator who is transferring the data and the

patient record system.

 Use case diagrams give a fairly simple overview of an interaction so more details will

have to be added in order to understand what is involved.

 This detail can either be a simple textual description, a structured description in a

table, or a sequence diagram.

 Fig 2.4 shows a tabular description of the ‘Transfer data’ use case.

Fig 2.4: Tabular description of the transfer data use case

 Figure 2.5 shows all of the use cases in the MHC-PMS in which the actor ‘Medical

Receptionist’ is involved.

Fig 2.5: Use cases involving the role “medical receptionist”

2.2.2 Sequence Diagrams

 Sequence diagrams in the UML are primarily used to model the interactions between

the actors and the objects in a system and the interactions between the objects

themselves.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 5

 A sequence diagram shows the sequence of interactions that take place during a

particular use case or use case instance.

 Fig 2.6 is an example of a sequence diagram that illustrates the basics of the notation.

 This diagram models the interactions involved in the View patient information use

case, where a medical receptionist can see some patient information.

 Fig 2.6 can be read as follows:

1. The medical receptionist triggers the ViewInfo method in an instance P of the

PatientInfo object class, supplying the patient’s identifier, PID. P is a user

interface object, which is displayed as a form showing patient information.

2. The instance P calls the database to return the information required, supplying

the receptionist’s identifier to allow security checking.

3. The database checks with an authorization system that the user is authorized

for this action.

4. If authorized, the patient information is returned and a form on the user’s

screen is filled in. If authorization fails, then an error message is returned.

Fig 2.6: Sequence diagram for View patient information

 Fig 2.7 is a second example of a sequence diagram from the same system that

illustrates two additional features.

 These are the direct communication between the actors in the system and the creation

of objects as part of a sequence of operations.

 Diagram below can be read as:

1. The receptionist logs on to the PRS.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 6

2. There are two options available. These allow the direct transfer of updated

patient information to the PRS and the transfer of summary health data from

the MHC-PMS to the PRS.

3. In each case, the receptionist’s permissions are checked using the

authorization system.

4. Personal information may be transferred directly from the user interface object

to the PRS. Alternatively, a summary record may be created from the database

and that record is then transferred.

5. On completion of the transfer, the PRS issues a status message and the user

logs off.

Fig 2.7: Sequence diagram for transfer data

2.3 Structural Models

 Structural models of software display the organization of a system in terms of the

 components that make up that system and their relationships.

 Structural models may be static models, which show the structure of the system

design or dynamic models, which show the organization of the system when it is

executing.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 7

2.3.1 Class Diagrams

 Class diagrams are used when developing an object-oriented system model to show

the classes in a system and the associations between these classes.

 An association is a link between classes that indicates that there is a relationship

between these classes.

 Class diagrams in the UML can be expressed at different levels of detail The simplest

way of writing these is to write the class name in a box.

 Note the existence of an association. by drawing a line between classes.

 For example, Figure 2.8 is a simple class diagram showing two classes: Patient and

Patient Record with an association between them.

 In Fig 2.8, each end of the association is annotated with a 1, meaning that there is a

1:1 relationship between objects of these classes.

 That is, each patient has exactly one record and each record maintains information

about exactly one patient

Fig 2.8: UML classes and association

 Fig 2.9 develops this type of class diagram to show that objects of class Patient are

also involved in relationships with a number of other classes.

Fig 2.9: classes and associations in the MHC-PMS

 At this level of detail, class diagrams look like semantic data models. Semantic data

models are used in database design.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 8

 They show the data entities, their associated attributes, and the relations between these

entities.

 When showing the associations between classes, it is convenient to represent these

classes in the simplest possible way.

 To define them in more detail, information can be added about their attributes (the

characteristics of an object) and operations .

 For example, a Patient object will have the attribute Address and you may include an

operation called ChangeAddress, which is called when a patient indicates that they

have moved from one address to another.

 In the UML, attributes and operations can be shown by extending the simple rectangle

that represents a class. This is illustrated in Figure 2.10 where:

1. The name of the object class is in the top section.

2. The class attributes are in the middle section. This must include the attribute

names and, optionally, their types.

3. The operations (called methods in Java and other OO programming languages)

associated with the object class are in the lower section of the rectangle

Fig 2.10: The consultation class

2.3.2 Generalization

 This allows us to infer that different members of these classes have some common

characteristics.

 In modeling systems, it is often useful to examine the classes in a system to see if

there is scope for generalization.

 This means that common information will be maintained in one place only.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 9

 In object-oriented languages, such as Java, generalization is implemented using the

class inheritance mechanisms built into the language.

 The UML has a specific type of association to denote generalization, as illustrated in

Fig 2.11.

Fig 2.11: A generalization hierarchy

 In a generalization, the attributes and operations associated with higher-level classes

are also associated with the lower-level classes.

 The generalization is shown as an arrowhead pointing up to the more general class.

 This shows that general practitioners and hospital doctors can be generalized as

doctors and that there are three types of Hospital Doctor— those that have just

graduated from medical school and have to be supervised (Trainee Doctor); those that

can work unsupervised as part of a consultant’s team (Registered Doctor); and

consultants, who are senior doctors with full decision making responsibilities.

 Fig 2.12, shows part of the generalization hierarchy extended with class attributes.

 The operations associated with the class Doctor are intended to register and de-

register that doctor with the MHC-PMS.

Fig 2.12: A generalization hierarchy with added detail

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 10

2.3.3 Aggregation

 The UML provides a special type of association between classes called aggregation

that means that one object (the whole) is composed of other objects (the parts).

 To show this, a diamond shape is used next to the class that represents the whole. This

is shown in Fig 2.13, which shows that a patient record is a composition of Patient

and an indefinite number of Consultations.

Fig 2.13: The aggregation association

2.4 Behavioral Models

 Behavioral models are models of the dynamic behavior of the system as it is

executing.

 They show what happens or what is supposed to happen when a system responds to a

stimulus from its environment.

 There are 2 types:

1. Data: Some data arrives that has to be processed by the system

2. Events: Some event happens that triggers system processing. Events may have

associated data but this is not always the case.

2.4.1 Data-driven modeling

 Data-driven models show the sequence of actions involved in processing input data

and generating an associated output.

 They are particularly useful during the analysis of requirements as they can be used to

show end-to-end processing in a system.

 Data-flow models are useful because tracking and documenting how the data

associated with a particular process moves through the system helps analysts and

designers understand what is going on.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 11

 Data-flow diagrams (DFD’s) are simple and intuitive and it is usually possible to

explain them to potential system users who can then participate in validating the

model.

 Fig 2.14 shows the chain of processing involved in the insulin pump software.

Fig 2.14: An activity model of the insulin pump’s operation

 Fig 2.15 illustrates the use of sequence model of the processing of an order and

sending it to a supplier.

 Sequence models highlight objects in a system, whereas data-flow diagrams highlight

the functions.

Fig 2.15: Order processing

2.4.2 Event driven modeling

 Event-driven modeling shows how a system responds to external and internal events.

 It is based on the assumption that a system has a finite number of states and that

events [stimuli] may cause a transition from one state to another.

 For example, a system controlling a valve may move from a state ‘Valve open’ to a

state ‘Valve closed’ when an operator command (the stimulus) is received.

 The UML supports event-based modeling using state diagrams, which were based on

Statecharts.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 12

 State diagrams show system states and events that cause transitions from one state to

another.

 They do not show the flow of data within the system but may include additional

information on the computations carried out in each state.

 The sequence of actions in using the microwave is:

 1. Select the power level (either half power or full power).

 2. Input the cooking time using a numeric keypad.

 3. Press Start and the food is cooked for the given time.

 From fig 2.16, it can be seen that the system starts in a waiting state and responds

initially to either the full-power or the half-power button.

Fig 2.16: State diagram of a microwave oven

 Users can change their mind after selecting one of these and press the other button.

 The time is set and, if the door is closed, the Start button is enabled. Pushing this

button starts the oven operation and cooking takes place for the specified time.

 This is the end of the cooking cycle and the system returns to the waiting state.

 Figure 2.17, shows a tabular description of each state and how the stimuli that force

state transitions are generated.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 13

Fig 2.17: States and stimuli for the microwave oven

 The fig 2.18 below shows the microwave oven operation.

Fig 2.18: Microwave oven operation

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 14

2.5 Model driven engineering

 Model-driven engineering (MDE) is an approach to software development where

models rather than programs are the principal outputs of the development process.

 The programs that execute on a hardware/software platform are then generated

automatically from the models.

 Model-driven engineering has its roots in model-driven architecture (MDA) which

was proposed by the Object Management Group (OMG) in 2001 as a new software

development paradigm.

 The main arguments for and against MDE are:

1. For MDE:

* Model-based engineering allows engineers to think about systems at a

high level of abstraction, without concern for the details of their

implementation.

* This reduces the likelihood of errors, speeds up the design and

implementation process, and allows for the creation of reusable,

platform-independent application models.

2. Against MDE:

* Models are a good way of facilitating discussions about a software

design.

* However, it does not always follow that the abstractions that are

supported by the model are the right abstractions for implementation.

* So, users may create informal design models but then go on to

implement the system using an off-the-shelf, configurable package.

* Furthermore, the arguments for platform independence are only valid

for large long-lifetime systems where the platforms become obsolete

during a system’s lifetime.

2.5.1 Model-driven architecture

 Model-driven architecture is a model-focused approach to software design and

implementation that uses a sub-set of UML models to describe a system.

 The MDA method recommends that three types of abstract system model should be

produced:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 15

 A computation independent model (CIM) that models the important domain

abstractions used in the system. CIMs are sometimes called domain models.

 A platform independent model (PIM) that models the operation of the system without

reference to its implementation. The PIM is usually described using UML models that

show the static system structure and how it responds to external and internal events.

 Platform specific models (PSM) which are transformations of the platform

independent model with a separate PSM for each application platform. In principle,

there may be layers of PSM, with each layer adding some platform specific detail.

 Fig 2.19 shows a final level of automatic transformation. A transformation is applied

to the PSM to generate executable code that runs on the designated software platform.

Fig 2.19: MDA Transformations

 The fig 2.20 below shows multiple platform specific models

Fig 2.20: Multiple platform-specific models

2.5.2 Executable UML

 UML was designed as a language for supporting and documenting software design,

not as a programming language.

 The designers of UML were not concerned with semantic details of the language but

with its expressiveness.

 They introduced useful notions such as use case diagrams that help with the design

but which are too informal to support execution.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 16

 To create an executable sub-set of UML, the number of model types has therefore

been dramatically reduced to three key model types:

1. Domain models identify the principal concerns in the system. These are

defined using UML class diagrams that include objects, attributes, and

associations.

2. Class models, in which classes are defined, along with their attributes and

operations.

3. State models, in which a state diagram is associated with each class and is

used to describe the lifecycle of the class.

DESIGN AND IMPLEMENTATION

2.6 Introduction to RUP (Rational Unified Process)

 The RUP recognizes that conventional process models present a single view of the

process.

 In contrast, the RUP is normally described from three perspectives:

1. A dynamic perspective, which shows the phases of the model over time.

2. A static perspective, which shows the process activities that are enacted.

3. A practice perspective, which suggests good practices to be used during the

process.

 Fig 2.21 shows the phases in the RUP. These are:

1. Inception:

* Goal: To establish a business case for the system.

* It is necessary to identify all external entities (people and systems) that

will interact with the system and define these interactions.

* This information can then be used to assess the contribution that the

system makes to the business.

2. Elaboration:

* Goal: To develop an understanding of the problem domain, establish

an architectural framework for the system, develop the project plan,

and identify key project risks.

3. Construction:

* Involves system design, programming, and testing.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 17

* Parts of the system are developed in parallel and integrated during this

phase.

* On completion of this phase, you should have a working software

system and associated documentation that is ready for delivery to

users.

4. Transition:

* It is concerned with moving the system from development community

to the user community and making it work in a real environment.

* On completion of this phase, you should have a documented software

system that is working correctly in its operational environment.

Fig 2.21: Phases in Rational Unified process

 The core engineering and support workflows are described in Figure 2.22

Fig 2.22: Static workflows in the rational unified process

 The practice perspective on the RUP describes good software engineering practices

that are recommended for use in systems development.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 18

 Six fundamental best practices are recommended:

1. Develop Software Iteratively: Plan increments of the system based on

customer priorities and develop the highest-priority system features early in

the development process.

2. Manage Requirements: Explicitly document the customer’s requirements

and keep track of changes to these requirements. Analyze the impact of

changes on the system before accepting them.

3. Use Component-based Architectures: Structure the system architecture into

components.

4. Visually Model Software: Use graphical UML models to present static and

dynamic views of the software.

5. Verify Software Quality: Ensure that the software meets the organizational

quality standards.

6. Control Changes to Software: Manage changes to the software using a

change management system and configuration management procedures and

tools.

2.7 Design Principles

 The design of a system is correct if a system built precisely according to the design

satisfies the requirements of that system.

 Clearly, the goal during the design phase is to produce correct designs.

 The goal of the design process is not simply to produce a design for the system.

Instead, the goal is to find the best possible design within the limitations imposed by

the requirements and the physical and social environment in which the system will

operate.

 A design should clearly be verifiable, complete (implements all the specifications),

and traceable (all design elements can be traced to some requirements).

 Two most important properties that concern designers: efficiency and simplicity.

 Efficiency of any system is concerned with the proper use of scarce resources by the

system.

 The design of a system is one of the most important factors affecting the

maintainability of a system.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 19

 During maintenance, the first step a maintainer has to undertake is to understand the

system to be maintained.

 Only after a maintainer has a thorough understanding of the different modules of the

system, how they are interconnected, and how modifying one will affect the others

should the modification be undertaken.

2.7.1 Problem Partitioning and Hierarchy

 For software design, therefore, the goal is to divide the problem into manageably

small pieces that can be solved separately.

 It is this restriction of being able to solve each part separately that makes dividing into

pieces a complex task and that many methodologies for system design aim to address.

 The different pieces cannot be entirely independent of each other, as they together

form the system.

 The different pieces have to cooperate and communicate to solve the larger problem.

 This communication adds complexity, which arises due to partitioning and may not

have existed in the original problem.

 As the number of components increases, the cost of partitioning, together with the

cost of this added complexity, may become more than the savings achieved by

partitioning.

 It is at this point that no further partitioning needs to be done. The designer has to

make the judgment about when to stop partitioning.

 Problem partitioning, which is essential for solving a complex problem, leads to

hierarchies in the design. That is, the design produced by using problem partitioning

can be represented as a hierarchy of components.

 The relationship between the elements in this hierarchy can vary depending on the

method used.

2.7.2 Abstraction

 It is a tool that permits a designer to consider a component at an abstract level without

worrying about the details of the implementation of the component.

 Any component or system provides some services to its environment. An abstraction

of a component describes the external behaviour of that component without bothering

with the internal details that produce the behavior.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 20

 Abstraction is an indispensable part of the design process and is essential for problem

partitioning.

 Partitioning essentially is the exercise in determining the components of a system.

 However, these components are not isolated from each other; they interact with each

other, and the designer has to specify how a component interacts with other

components.

 Abstraction is used for existing components as well as components that are being

designed.

 Abstraction of existing components plays an important role in the maintenance phase.

 To modify a system, the first step is understanding what the system does and how.

 The process of comprehending an existing system involves identifying the

abstractions of subsystems and components from the details of their implementations.

 Using these abstractions, the behavior of the entire system can be understood. This

also helps determine how modifying a component affects the system.

 There are two common abstraction mechanisms for software systems: functional

abstraction and data abstraction.

 In functional abstraction, a module is specified by the function it performs. For

example, a module to compute the log of a value can be abstractly represented by the

function log.

 The second unit for abstraction is data abstraction. Any entity in the real world

provides some services to the environment to which it belongs. Often the entities

provide some fixed predefined services. The case of data entities is similar.

 Certain operations are required from a data object, depending on the object and the

environment in which it is used. Data abstraction supports this view.

 Data is not treated simply as objects, but is treated as objects with some predefined

operations on them.

2.7.3 Modularity

 Modularity is a clearly a desirable property in a system.

 Modularity helps in system debugging—isolating the system problem to a component

is easier if the system is modular; in system repair—changing a part of the system is

easy as it affects few other parts; and in system building—a modular system can be

easily built by "putting its modules together."

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 21

 A software system cannot be made modular by simply chopping it into a set of

modules.

 For modularity, each module needs to support a well defined abstraction and have a

clear interface through which it can interact with other modules.

 Modularity is where abstraction and partitioning come together.

2.7.4 Top-Down and Bottom-Up Strategies

 A system consists of components, which have components of their own; indeed a

system is a hierarchy of components.

 The highest-level component corresponds to the total system. To design such a

hierarchy there is two possible approaches: top-down and bottom-up.

 A top-down design approach starts by identifying the major components of the

system, decomposing them into their lower-level components and iterating until the

desired level of detail is achieved.

 Top-down design methods often result in some form of stepwise refinement Starting

from an abstract design, in each step the design is refined to a more concrete level,

until we reach a level where no more refinement is needed and the design can be

implemented directly.

 A bottom-up design approach starts with designing the most basic or primitive

components and proceeds to higher-level components that use these lower-level

components.

 Bottom-up methods work with layers of abstraction. Starting from the very bottom,

operations that provide a layer of abstraction are implemented.

 The operations of this layer are then used to implement more powerful operations and

a still higher layer of abstraction, until the stage is reached where the operations

supported by the layer are those desired by the system.

 A common approach to combine the two approaches is to provide a layer of

abstraction for the application domain of interest through libraries of functions, which

contains the functions of interest to the application domain.

 Then use a top-down approach to determine the modules in the system, assuming that

the abstract machine available for implementing the system provides the operations

supported by the abstraction layer.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 22

2.8 Object-oriented design using the UML

 An object-oriented system is made up of interacting objects that maintain their own

local state and provide operations on that state.

 Object-oriented systems are easier to change than systems developed using functional

approaches.

 Objects include both data and operations to manipulate that data.

 They may therefore be understood and modified as stand-alone entities.

 Changing the implementation of an object or adding services should not affect other

system objects.

 To develop a system design from concept to detailed, object-oriented design, there are

several things that you need to do:

* Understand and define the context and the external interactions with the

system.

* Design the system architecture.

* Identify the principal objects in the system.

* Develop design models.

* Specify interfaces.

2.8.1 System Context and Interactions

 The first stage in any software design process is to develop an understanding of the

relationships between the software that is being designed and its external

environment.

 This is essential for deciding how to provide the required system functionality and

how to structure the system to communicate with its environment.

 Understanding of the context also lets you establish the boundaries of the system.

 Setting the system boundaries helps you decide what features are implemented in the

system being designed and what features are in other associated systems.

 System context models and interaction models present complementary views of the

relationships between a system and its environment:

* A system context model is a structural model that demonstrates the other

systems in the environment of the system being developed.

* An interaction model is a dynamic model that shows how the system interacts

with its environment as it is used.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 23

 The context model of a system may be represented using associations.

 Associations simply show that there are some relationships between the entities

involved in the association.

 The environment of the system can be represented using a simple block diagram

showing the entities in the system and their associations.

 This is illustrated in fig 2.23, which shows that the systems in the environment of

each weather station are a weather information system, an onboard satellite system,

and a control system.

Fig 2.23: System context for the weather station

 The cardinality information on the link shows that there is one control system but

several weather stations, one satellite, and one general weather information system.

 The use case model for the weather station is shown in fig 2.24.

 This shows that the weather station interacts with the weather information system to

report weather data and the status of the weather station hardware

Fig 2.24: Weather station use cases

 The use case description is shown in fig 2.25.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 24

Fig 2.25: Use case description – Report weather

2.8.2 Architectural Design

 Once the interactions between the software system and the system’s environment

have been defined, this information is used as a basis for designing the system

architecture.

 The high-level architectural design for the weather station software is shown in fig

2.26.

 The weather station is composed of independent subsystems that communicate by

broadcasting messages on a common infrastructure, shown as the Communication

link in fig 2.26.

 Each subsystem listens for messages on that infrastructure and picks up the messages

that are intended for them.

Fig 2.26: High level architecture of the weather station

 Fig 2.27 shows the architecture of the data collection subsystem, which is included in

fig 2.26.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 25

Fig 2.27: Architecture of data collection system

 The Transmitter and Receiver objects are concerned with managing communications

and the WeatherData object encapsulates the information that is collected from the

instruments and transmitted to the weather information system.

 This arrangement follows the producer-consumer pattern

 There have been various proposals made about how to identify object classes in object

oriented systems:

* Use a grammatical analysis of a natural language description of the system to

be constructed. Objects and attributes are nouns; operations or services are

verbs.

* Use tangible entities (things) in the application domain such as aircraft, roles

such as manager or doctor, events such as requests, interactions such as

meetings, locations such as offices, organizational units such as companies,

and so on.

* Use a scenario-based analysis where various scenarios of system use are

identified and analyzed in turn.

 There are five object classes in fig 2.28.

 The Ground thermometer, Anemometer, and Barometer objects are application

domain objects, and the WeatherStation and WeatherData objects have been

identified from the system description and the scenario (use case) description:

* The WeatherStation object class provides the basic interface of the weather

station with its environment.

* The WeatherData object class is responsible for processing the report weather

command. It sends the summarized data from the weather station instruments

to the weather information system.

* The Ground thermometer, Anemometer, and Barometer object classes are

directly related to instruments in the system. They reflect tangible hardware

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 26

entities in the system and the operations are concerned with controlling that

hardware. These objects operate autonomously to collect data at the specified

frequency and store the collected data locally. This data is delivered to the

WeatherData object on request.

Fig 2.28: Weather station objects

2.8.3 Design models

 Design or system models, show the objects or object classes in a system. They also

show the associations and relationships between these entities.

 These models are the bridge between the system requirements and the implementation

of a system.

 An important step in the design process, therefore, is to decide on the design models

needed and the level of detail required in these models.

 This depends on the type of system that is being developed.

 When UML is used to develop a design, there are two kinds of design models to be

developed.

1. Structural models, which describe the static structure of the system using

object classes and their relationships. Important relationships that may be

documented at this stage are generalization (inheritance) relationships,

uses/used-by relationships, and composition relationships.

2. Dynamic models, which describe the dynamic structure of the system and

show the interactions between the system objects. Interactions that may be

documented include the sequence of service requests made by objects and the

state changes that are triggered by these object interactions.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 27

 In the early stages of the design process, there are three models that are particularly

useful for adding detail to use case and architectural models:

1. Subsystem models, which that show logical groupings of objects into coherent

subsystems. These are represented using a form of class diagram with each

subsystem shown as a package with enclosed objects. Subsystem models are

static (structural) model

2. Sequence models, which show the sequence of object interactions. These are

represented using a UML sequence or a collaboration diagram. Sequence

models are dynamic models.

3. State machine model, which show how individual objects change their state in

response to events. These are represented in the UML using state diagrams.

State machine models are dynamic models.

 Fig 2.29 is an example of a sequence model, shown as a UML sequence diagram.

 This diagram shows the sequence of interactions that take place when an external

system requests the summarized data from the weather station. Sequence diagrams are

read from top to bottom:

1. The SatComms object receives a request from the weather information system

to collect a weather report from a weather station. It acknowledges receipt of

this request. The stick arrowhead on the sent message indicates that the

external system does not wait for a reply but can carry on with other

processing.

2. SatComms sends a message to WeatherStation, via a satellite link, to create a

summary of the collected weather data. Again, the stick arrowhead indicates

that SatComms does not suspend itself waiting for a reply.

3. WeatherStation sends a message to a Commslink object to summarize the

weather data. In this case, the squared-off style of arrowhead indicates that the

instance of the WeatherStation object class waits for a reply.

4. Commslink calls the summarize method in the object WeatherData and waits

for a reply.

5. The weather data summary is computed and returned to WeatherStation via

the Commslink object.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 28

6. WeatherStation then calls the SatComms object to transmit the summarized

data to the weather information system, through the satellite communications

system.

Fig 2.29: Sequence diagram describing data collection

 Fig 2.30 is a state diagram for the weather station system that shows how it responds

to requests for various services.

 This diagram can be read as follows:

1. If the system state is Shutdown then it can respond to a restart(), a

reconfigure(), or a powerSave() message. The unlabeled arrow with the black

blob indicates that the Shutdown state is the initial state. A restart() message

causes a transition to norma operation. Both the powerSave() and

reconfigure() messages cause a transition to a state in which the system

reconfigures itself. The state diagram shows that reconfiguration is only

allowed if the system has been shut down.

2. In the Running state, the system expects further messages. If a shutdown()

message is received, the object returns to the shutdown state.

3. If a reportWeather() message is received, the system moves to the

Summarizing state. When the summary is complete, the system moves to a

Transmitting state where the information is transmitted to the remote system.

It then returns to the Running state.

4. If a reportStatus() message is received, the system moves to the Testing state,

then the Transmitting state, before returning to the Running state.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 29

5. If a signal from the clock is received, the system moves to the Collecting state,

where it collects data from the instruments. Each instrument is instructed in

turn to collect its data from the associated sensors.

6. If a remoteControl() message is received, the system moves to a controlled

statein which it responds to a different set of messages from the remote control

room. These are not shown on this diagram.

Fig 2.30: Weather station state diagram

2.8.4 Interface Specification

 Interface design is concerned with specifying the detail of the interface to an object or

to a group of objects.

 This means defining the signatures and semantics of the services that are provided by

the object or by a group of objects.

 Interfaces can be specified in the UML using the same notation as a class diagram

 Details of the data representation should not be included in an interface design, as

attributes are not defined in an interface specification.

 However, operations can be included to access and update data.

 As the data representation is hidden, it can be easily changed without affecting the

objects that use that data. This leads to a design that is inherently more maintainable.

 Fig 2.31 shows two interfaces that may be defined for the weather station.

 The left-hand interface is a reporting interface that defines the operation names that

are used to generate weather and status reports.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 30

 These maps directly to operations in the WeatherStation object. The remote control

interface provides four operations, which map onto a single method in the

WeatherStation object.

Fig 2.31: Weather station interfaces

2.9 Design Patterns

 The pattern is a description of the problem and the essence of its solution, so that the

solution may be reused in different settings.

 The pattern is not a detailed specification.

 Patterns and Pattern Languages are ways to describe best practices, good

designs, and capture experience in a way that it is possible for others to reuse this

experience.

 Design patterns are usually associated with object-oriented design.

 The general principle of encapsulating experience in a pattern is one that is equally

applicable to any kind of software design

 The four essential elements of design patterns were defined by the ‘Gang of Four’ in

their patterns book:

* A name that is a meaningful reference to the pattern.

* A description of the problem area that explains when the pattern may be

applied.

* A solution description of the parts of the design solution, their relationships,

and their responsibilities. This is not a concrete design description. It is a

template for a design solution that can be instantiated in different ways. This is

often expressed graphically and shows the relationships between the objects

and object classes in the solution.

* A statement of the consequences—the results and trade-offs—of applying the

pattern. This can help designers understand whether or not a pattern can be

used in a particular situation.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 31

 Observer pattern is as shown in fig 2.32. This pattern can be used in situations where

different presentations of an object’s state are required.

Fig 2.32: The Observer pattern

 It separates the object that must be displayed from the different forms of presentation

which is shown in fig 2.33.

 Fig 2.34 is the representation in UML of the Observer pattern.

Fig 2.33: Multiple displays

Fig 2.34: A UML model of the observer pattern

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 32

2.10 Implementation Issues

 Implementation may involve developing programs in high- or low-level programming

languages or tailoring and adapting generic, off-the-shelf systems to meet the specific

requirements of an organization.

 Few aspects of implementation that are particularly important to software engineering

that are often not covered in programming texts. These are:

1. Reuse: Most modern software is constructed by reusing existing components

or systems. When the software is being developed, the existing code must be

used as much as possible.

2. Configuration management: During the development process, many

different versions of each software component are created. If records of these

versions are not maintained in a configuration management system, there is

probability of including wrong versions of these components in the system.

3. Host-target development: Production software does not usually execute on

the same computer as the software development environment. The host and

target systems are sometimes of the same type but, often they are completely

different.

2.10.1 Reuse

 Software reuse is possible at a number of different levels:

1. The abstraction level: At this level, software is not reused directly but

ratheruse knowledge of successful abstractions in the design of your software.

Design patterns and architectural patterns are ways of representing abstract

knowledge for reuse.

2. The object level: At this level, objects are directly reused from a library rather

than writing the code yourself. To implement this type of reuse, you have to

find appropriate libraries and discover if the objects and methods offer the

functionality that you need.

3. The component level: Components are collections of objects and object

classes that operate together to provide related functions and services. It is

required to adapt and extend the component by adding some code. An

example of component-level reuse is where you build your user interface

using a framework.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 33

4. The system level: At this level, the entire application systems are reused. This

usually involves some kind of configuration of these systems. This may be

done by adding and modifying code (if you are reusing a software product

line) or by using the system’s own configuration interface. Most commercial

systems are now built in this way where generic COTS (commercial off-the-

shelf) systems are adapted and reused.

 There are costs associated with reuse:

* The costs of the time spent in looking for software to reuse and assessing

whether or not it meets your needs. The software will have to be tested to

make sure that it will work in own environment, especially if this is different

from its development environment.

* Where applicable, the costs of buying the reusable software. For large off-the

shelf systems, these costs can be very high.

* The costs of adapting and configuring the reusable software components or

systems to reflect the requirements of the system that you are developing.

* The costs of integrating reusable software elements with each other (if you are

using software from different sources) and with the new code that has been

developed.

2.10.2 Configuration Management

 Configuration management is the name given to the general process of managing a

changing software system.

 The aim of configuration management is to support the system integration process so

that all developers can access the project code and documents in a controlled way,

find out what changes have been made, and compile and link components to create a

system.

 There are, therefore, three fundamental configuration management activities:

* Version management, where support is provided to keep track of the different

versions of software components. Version management systems include

facilities to coordinate development by several programmers. They stop one

developer overwriting code that has been submitted to the system by someone

else.

* System integration, where support is provided to help developers define what

versions of components are used to create each version of a system. This

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 34

description is then used to build a system automatically by compiling and

linking the required components.

* Problem tracking, where support is provided to allow users to report bugs and

other problems, and to allow all developers to see who is working on these

problems and when they are fixed.

2.10.3 Host-target development

 A platform is more than just hardware.

 It includes the installed operating system plus other supporting software such as a

database management system or, for development platforms, an interactive

development environment. Simulators are often used when developing embedded

systems.

 Hardware devices can be simulated, such as sensors, and the events in the

environment in which the system will be deployed.

 If the target system has installed middleware or other software that can be used, then

it is necessary to test the system using that software.

 It may be impractical to install that software on the development machine, even if it is

the same as the target platform, because of license restrictions.

 A software development platform should provide a range of tools to support software

engineering processes. These may include:

* An integrated compiler and syntax-directed editing system that allows users to

create, edit, and compile code.

* A language debugging system.

* Graphical editing tools, such as tools to edit UML models.

* Testing tools, such as JUnit that can automatically run a set of tests on a new

version of a program.

* Project support tools that help you organize the code for different development

projects.

 Software development tools are often grouped to create an integrated development

environment (IDE).

 An IDE is a set of software tools that supports different aspects of software

development, within some common framework and user interface

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 35

 A general-purpose IDE is a framework for hosting software tools that provides data

management facilities for the software being developed, and integration mechanisms,

that allow tools to work together.

 For distributed systems, it is essential to decide on the specific platforms where the

components will be deployed.

 Issues that should be considered in making this decision are:

* The hardware and software requirements of a component: If a component

is designed for a specific hardware architecture, or relies on some other

software system, it must obviously be deployed on a platform that provides the

required hardware and software support.

* The availability requirements of the system: High-availability systems may

require components to be deployed on more than one platform. This means

that, in the event of platform failure, an alternative implementation of the

component is available.

* Component communications: If there is a high level of communications

traffic between components, it usually makes sense to deploy them on the

same platform or on platforms that are physically close to one other. This

reduces communications latency, the delay between the time a message is sent

by one component and received by another.

2.11 Open Source Development

 Open source development is an approach to software development in which the

source code of a software system is published and volunteers are invited to participate

in the development process.

 Open source software extended this idea by using the Internet to recruit a much larger

population of volunteer developers.

 For a company involved in software development, there are two open source issues

that have to be considered:

* Should the product that is being developed make use of open source

components?

* Should an open source approach be used for the software’s development?

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 36

 The answers to these questions depend on the type of software that is being developed

and the background and experience of the development team.

2.11.1 Open source licensing

 Most open source licenses are derived from one of three general models:

1. The GNU General Public License (GPL). This is a so-called ‘reciprocal’

license that, simplistically, means that if you use open source software that is

licensed under the GPL license, then you must make that software open

source.

2. The GNU Lesser General Public License (LGPL). This is a variant of the

GPL license where it is possible to write components that link to open source

code without having to publish the source of these components. However, if

the licensed component is changed, then it must be published as open source.

3. The Berkley Standard Distribution (BSD) License. This is a non-reciprocal

license, which means you are not obliged to republish any changes or

modifications made to open source code. The code can be included in

proprietary systems that are sold.

 Companies managing projects that use open source should:

* Establish a system for maintaining information about open source components

that are downloaded and used.

* Be aware of the different types of licenses and understand how a component is

licensed before it is used.

* Be aware of evolution pathways for components.

* Educate people about open source. It’s not enough to have procedures in place

to ensure compliance with license conditions.

* Have auditing systems in place. Developers, under tight deadlines, might be

tempted to break the terms of a license.

* Participate in the open source community. If you rely on open source products,

you should participate in the community and help support their development

