Software Engineering [15CS42]

2. SYSTEM MODELS, DESIGN AND

IMPLEMENTATION
SYSTEM MODELS

— System modeling is the process of developing abstract models of a system, with each
model presenting a different view or perspective of that system.

— System modeling has generally come to mean representing the system using some
kind of graphical notation, which is now almost always based on notations in the
Unified Modeling Language (UML).

— Models are used during the requirements engineering process to help derive the
requirements for a system, during the design process to. describe the system to
engineers implementing the system®and after implementation to document the

system’s structure and operation.
2.1 Context Models

— At an early stage in the specification of a system,.it is necessary to decide on the
system boundaries.

— This involves working with system stakeholders to decide what functionality should
be included in the system and what is provided by the system’s environment.

— A decision might be taken about a automated support for some business processes
should be implemented but others should be manual processes or supported by
different systems.

— Possible overlaps must also be noted in functionality with existing systems and decide
where new functionality should be implemented.

— These decisions should.be made early in the process to limit the system costs and the
time needed for understanding the system requirements and design.

— Fig 2.1 is a simple context model that shows the patient information system and the
other systems in its environment.

— From fig 2.1, it is seen that the MHC-PMS is connected to an appointments system
and a more general patient record system with which it shares data.

— The system is also connected to systems for management reporting and hospital bed

allocation and a statistics system that collects information for research.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 1

Software Engineering [15CS42]

— Finally, it makes use of a prescription system to generate prescriptions for patients’

Medication.
e
Patsent Reoond
Systam
-lg,'s'lﬁ'nl
M na gom and Ry Sen
Repading Addmissns
Stem System
agystem
BAH C-PaAS
aSysiBm SpEtar
HC Ststmtcs PresCfipsion
Symtam System
EpEtem
AppOintments
Systam

Fig 2.1: The context of the MHC-PMS
— Fig 2.2 is a model of an important system process that shows the processes in which

the MHC-PMS is used.

— Fig 2.2 is a UML activity diagram.

— Activity diagrams are intended to show the activities that make up a system process
and the flow of control from one activity to another.

— The start of a process is indicated by a filled circle; the end by a filled circle inside
another circle.

— Rectangles with round corners represent activities, that is, the specific sub-processes
that must be carried out.

— Qbjects can be included in activity charts.

T

-

/" Confim - -
| Detention Mot Awailable] (Transderio)
', Dedson) R “._Rpcicemmf_.
' J) / Find Secura | - Ty - -
| Place)/ pwsilable) [Inform G

] - “, _ Trandlerin \Jodd e/
7 Infoem % i Semure
| Patient of |—- | | -
i = it} ., H al / B! —
\ Right [Dangerows] 4, Hospital infom Next | -

o ofkan
-~ ™))
[D;E;E:gn |_- " admitto) 4 Up-date ™
| . | = y —
b D ¥0n A ot I'x_ Hoepital J \ Regiter Y,
1 [eang enous) . T B i
e e e
BAH C-PhiS '“"ds"“':’m’ B CPhiS
1Bm

Fig 2.2: Process model of involuntary detention

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 2

Software Engineering [15CS42]

— Infig 2.2, it can be seen that guards showing the flows for patients who are dangerous
and not dangerous to society.

— Patients who are dangerous to society must be detained in a secure facility. However,
patients who are suicidal and so are a danger to themselves may be detained in an

appropriate ward in a hospital.

2.2 Interaction Models

— All systems involve interaction of some kind.

— This can be user interaction, which involves user inputs and outputs, interaction
between the systems being developed and other systems or interaction between the
components of the system.

— Modeling system to system interaction highlights the communication problems that
may arise.

— There are 2 approaches to interaction modeling:

1. Use case modeling, which is mostly used.to model interactions between a
system and external actors (users or other systems).
2. Sequence diagrams, which are used to model interactions between system

components, although external agents may also be included.
2.2.1 Use Case Modeling

— Each use case represents a discrete task that involves external interaction with a
system.

— In'its simplest form, a use case is shown as an ellipse with the actors involved in the
use case represented as stick figures.

— Fig 2.3 shows a use case from the MHC-PMS that represents the task of uploading
data from the MHC-PMS to a more general patient record system.

- P~ ¥

Medical Receptiomsd Patient Recomd Stem

Fig 2.3: Transfer data use case

— This more general system maintains summary data about a patient rather than the data

about each consultation, which is recorded in the MHC-PMS.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 3

Software Engineering [15CS42]

— There are two actors in this use case: the operator who is transferring the data and the
patient record system.

— Use case diagrams give a fairly simple overview of an interaction so more details will
have to be added in order to understand what is involved.

— This detail can either be a simple textual description, a structured description in a
table, or a sequence diagram.

— Fig 2.4 shows a tabular description of the ‘Transfer data’ use case.

MHCPMS: Transfer data

Aniors Medicsl receptionist, patient records sypem (PRS)

D ripSion A receplionist may tansfer deta from the MHCPMS 10 & genersl patient reord database that
i mamtamed by & health authorty. The miormation Fansemed meay esher be updated
personal information (address, phone numbes, 8iC) or & summary of the patient’s disgnoses
and trestm ent.

Data Patient’s pesonal miDnmaton, trestment summary
Stirudus User command ssued by madics] recepsionist
Responaa Confirmation that PRES has been apdstad

Commests The receptionist must have appropriste seoudty parmissions 10 a0ess the patient infomrmation
and the PRES.

Fig 2.4: Tabular description of the transfer data use case

— Figure 2.5 shows all of the use cases in the MHC-PMS in which the actor ‘Medical

Receptionist” 1s involved.

< Register
A _Pasen s

f;"f | Unregister ™
N pusen

i) { ¢ View Pagient ™)
o Wb S

Medical
RecepSonis H‘H

"o Transter D.:'Ia:_f

™, M
T Contad

L . Patem :

Fig 2.5: Use cases involving the role “medical receptionist”
2.2.2 Sequence Diagrams
— Sequence diagrams in the UML are primarily used to model the interactions between

the actors and the objects in a system and the interactions between the objects
themselves.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 4

Software Engineering [15CS42]

— A sequence diagram shows the sequence of interactions that take place during a
particular use case or use case instance.

— Fig 2.6 is an example of a sequence diagram that illustrates the basics of the notation.

— This diagram models the interactions involved in the View patient information use
case, where a medical receptionist can see some patient information.

— Fig 2.6 can be read as follows:

1. The medical receptionist triggers the ViewInfo method in an instance P of the
PatientInfo object class, supplying the patient’s identifier, PID. P is a user
interface object, which is displayed as a form'showing patient information.

2. The instance P calls the database to return the information required, supplying
the receptionist’s identifier to allow.security checking.

3. The database checks with an authorization system that.the user is authorized
for this action.

4. 1If authorized, the patient information is returned and a form on the user’s

screen is filled in. ¥ authorization fails, then an error message is returned.

Medical Racapsionis

j:j | P: Pasientinio | ||:u:M|||:ws-|:|u | |n.s: nuhc-un-:m|
Viewindo PID) _ | gepart (info, PID, | I
uID) | I
puthorize (nfo, |
LIy |
AuthDaz stedn u
o ST
Alt I
[Autharization OK] Patient Info :
- _Fatient info_ |
44 I I — 4 _|. —]
Puth Deization Fail] Error (Mo ACcos) |
; B |
1 1
T |
| 1

|
Fig 2.6: Sequence diagram for View patient information
— Fig 2.7 is a second example of a sequence diagram from the same system that
illustrates two additional features.
— These are the direct communication between the actors in the system and the creation
of objects as part of a sequence of operations.
— Diagram below can be read as:

1. The receptionist logs on to the PRS.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 5

Software Engineering [15CS42]

2. There are two options available. These allow the direct transfer of updated
patient information to the PRS and the transfer of summary health data from
the MHC-PMS to the PRS.

3. In each case, the receptionist’s permissions are checked using the
authorization system.

4. Personal information may be transferred directly from the user interface object
to the PRS. Alternatively, a summary record may be created from the database
and that record is then transferred.

5. On completion of the transfer, the PRS issues a status message and the user

logs off.
Madical Receptionist F:__"S
| P: PaSientinio | ||:|:M||m.15-m | |.|'I.S:.l'l.u‘ﬂ1l:lud'|-:|1 ‘;%
" [[0
I I I Lagin |)
[[[
ISR = S E S o]
& f f f
— | | |
Eendinta] I I I
Updsteinfo(} | |
Wipdste PRS (UID)
|, Memage (OK) |
Gendummert || |
Uiped st e arg| :I

Eummanze {(UID }

eS ==
! !

Fig 2.7: Sequence diagram for transfer data

2.3 Structural Models

— Structural models of software display the organization of a system in terms of the

— components that make up that system and their relationships.

— Structural models may be static models, which show the structure of the system
design or dynamic models, which show the organization of the system when it is

executing.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 6

Software Engineering [15CS42]

2.3.1 Class Diagrams

— Class diagrams are used when developing an object-oriented system model to show

%

%

%

—

—

—>

the classes in a system and the associations between these classes.

An association is a link between classes that indicates that there is a relationship

between these classes.

Class diagrams in the UML can be expressed at different levels of detail The simplest

way of writing these is to write the class name in a box.

Note the existence of an association. by drawing a line between classes.

For example, Figure 2.8 is a simple class diagram‘showing two classes: Patient and

Patient Record with an association between them.

In Fig 2.8, each end of the association is annotated with a 1, meaning that there is a

1:1 relationship between objects of these classes.

That is, each patient has exactly-<one record and each record maintains-information

about exactly one patient

Patient

Paticnt

Rerowd

Fig 2.8: UML classes and association

Fig 2.9 develops this type of class diagram to show that objects of class Patient are

also involved in relationships with a number of other classes.

Condition

CorSultant
1
Reterrad4n
I_F
1.° 1.* 1.* 1 Danaral
Pasiemn
Dia grice ed- Relermadby | Pracbtiones
witth 1_®
Attends
I_F
Consultston IF:"E"""'“'?" Mexdication
— - -
Funs | Progoibes
i_4 x Treatmend
Hioepital
O

Fig 2.9: classes and associations in the MHC-PMS
— At this level of detail, class diagrams look like semantic data models. Semantic data

models are used in database design.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru

Page 7

Software Engineering [15CS42]

— They show the data entities, their associated attributes, and the relations between these
entities.

— When showing the associations between classes, it is convenient to represent these
classes in the simplest possible way.

— To define them in more detail, information can be added about their attributes (the
characteristics of an object) and operations .

— For example, a Patient object will have the attribute Address and you may include an
operation called ChangeAddress, which is called when‘@a patient indicates that they
have moved from one address to another.

— Inthe UML, attributes and operations can be shown by extending the simple rectangle
that represents a class. This is illustrated inFigure 2.10 where:

1. The name of the object class is.in the top section.

2. The class attributes are in_the middle section. This must include the attribute
names and, optionally,their types.

3. The operations (called methods in Java and other OO programming languages)

associated with the object class are in the lower section of the rectangle

Diootors

Date

Time

Cheric

Resson

M i Cation Pres.Cofbeed
Trastment PresCab-ed
WioeDa N ot
Transopd

MWew ()
Presnbe |)
RemrdMivtas |)
Teansaabe {)

Fig 2.10: The consultation class
2.3.2 Generalization
— This allows us to infer that different members of these classes have some common
characteristics.
— In modeling systems, it is often useful to examine the classes in a system to see if
there is scope for generalization.

— This means that common information will be maintained in one place only.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 8

Software Engineering [15CS42]

— In object-oriented languages, such as Java, generalization is implemented using the
class inheritance mechanisms built into the language.

— The UML has a specific type of association to denote generalization, as illustrated in

Fig 2.11.
[
Hios sl Genaml
DioCior Pradssner
Consultant Team Dodar
Trames Dualdied
DioCior Doctionr

Fig 2.11: A generalization hierarchy

— In a generalization, the attributes and operations associated with higher-level classes
are also associated with the lower-level classes.

— The generalization is shown as an arrowhead pointing up to the more general class.

— This shows that general practitioners and hospital doctors can be generalized as
doctors and“that there are.three types of Hospital Doctor— those that have just
graduated from medical school and have to be supervised (Trainee Doctor); those that
can work unsupervised as part of a consultant’s team (Registered Doctor); and
consultants, who are senior doctors with full decision making responsibilities.

— Fig 2.12, shows part of the generalization hierarchy extended with class attributes.

— The operations associated with the class Doctor are intended to register and de-
register that doctor with the MHC-PMS.

Hame
Phone #
E-mail

Register ()
De-Register [)

Siafd # Pracsce
Pager # el dresss

Fig 2.12: A generalization hierarchy with added detail

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 9

Software Engineering [15CS42]

2.3.3 Aggregation
— The UML provides a special type of association between classes called aggregation
that means that one object (the whole) is composed of other objects (the parts).
— To show this, a diamond shape is used next to the class that represents the whole. This
is shown in Fig 2.13, which shows that a patient record is a composition of Patient

and an indefinite number of Consultations.

Patient
Record

%
i

Paficn CionzulaBion

Fig 2.13: The aggregation association

2.4 Behavioral Models

— Behavioral models are models of the dynamic behavior of the system as it is
executing.
— They show what‘happens or what is supposed to happen when a system responds to a
stimulus from its environment.
— There are 2 types:
1. Data: Some data arrives that has to be processed by the system
2. Events: Some event happens that triggers system processing. Events may have
associated data but this is not always the case.
2.4.1 Data-driven modeling
— Data-driven models show the sequence of actions involved in processing input data
and generating an associated output.
— They are particularly useful during the analysis of requirements as they can be used to
show end-to-end processing in a system.
— Data-flow models are useful because tracking and documenting how the data
associated with a particular process moves through the system helps analysts and

designers understand what is going on.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 10

Software Engineering [15CS42]

— Data-flow diagrams (DFD’s) are simple and intuitive and it is usually possible to
explain them to potential system users who can then participate in validating the
model.

— Fig 2.14 shows the chain of processing involved in the insulin pump software.

Purchass Ofices Supplier

ji prorme e s %
I
I
|
I
I
I
I
I

Fillin () -
| P (), Validste {)

[Valicdation OK)
Update (Amount) D

| = save () i| send () |

Fig 2.14: An activity model of the insulin pump’s operation

— Fig 2.15 illustrates the use‘of sequence model of the processing of an order and
sending it to a supplier.
— Sequence models highlight objects in a system, whereas data-flow diagrams highlight

the functions.

. y ; .
Blood Sug ar { GetSensor Sensor ! Compate Blood Sugar
Sensor “| vae [Deta "l sugarievd | Level
¢ Calculste
insulin
) Deslireary y
(- (" comrd) Pump Contral [':"Ih'::‘nl;"e s
Pump: . Pusrmip: J Commands 'x.':I: ™y Requirement

Fig 2.15: Order processing
2.4.2 Event driven madeling

— Event-driven modeling shows how a system responds to external and internal events.

— It is based on the assumption that a system has a finite number of states and that
events [stimuli] may cause a transition from one state to another.

— For example, a system controlling a valve may move from a state ‘Valve open’ to a
state ‘Valve closed’ when an operator command (the stimulus) is received.

— The UML supports event-based modeling using state diagrams, which were based on

Statecharts.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 11

Software Engineering [15CS42]

— State diagrams show system states and events that cause transitions from one state to

another.

— They do not show the flow of data within the system but may include additional

information on the computations carried out in each state.

The sequence of actions in using the microwave is:

2. Input the cooking time using a numeric keypad.

3. Press Start and the food is cooked for the given time.

Lyl Ll

initially to either the full-power or the half-power button.

Fudl # Full Powwer ™,
= Di: 58 Powes
Y) =i/ .___-'
i,
“, Thmer
.
;7 Waming .,
| 5 T Numbay
® - Do:Desgtlay | Full 7 e Time
Time ./ H —_—
- Preever Do Gt Murmbas
Y, Exat St Teame
Hal e
Hal PO E RDIIH _
PO Tirmer Olosed o
i Start
s Do , -
1 s Cpren A P
< Halt Power /" Ensbled ™
= Do: 5et Power Dt Diesplary
h,o=300 '- "Ready” /

s

4 __.’T:mm Chos el
" Disabed ™
Do Displiry |-|

\ Wartng' |
- -

Fig2.16: State diagram of a microwave oven

1. Select the power level (either half power or full power).

From fig 2.16, it can be seen that the system starts in a waiting state and responds

— Users can change their mind after selecting one of these and press the other button.

— The time is set'and, if the door is closed, the Start button is enabled. Pushing this

button starts the oven operation and cooking takes place for the specified time.

— This is the end of the cooking cycle and the system returns to the waiting state.

— Figure 2.17, shows a tabular description of each state and how the stimuli that force

state transitions are generated.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru

Page 12

Waiting The owen is wasiting for input. The display shows the curment Sme.
Hall powar The owen powes i s24 10 300 watts. The diplay hows Hal power.
Full poarer The owen power i 21 10 G600 watts. The display shiees ‘Full power”
Set gme The cooking time & 524 10 the user's npul walue. The dspley shows
the conking time sdeced and s updated & the Bme s sot
D bl iOwien Op Ecstion e dissbled for safety. Intenor owen light & on.
IDks plary shoows MOt resdy”.
Enabled iOwin Op Essti0n e enablad. Intenor owen ight & off. Deplay shows
‘Ready to onok'.
Operation Owen in DpemSon. intesor owen light i on. Desplay shows the smer

ooundowmn. On complegon of cooking, the buzzes & sounded hor
w2 seconds. Owen light s on. Desplay shiwes ‘Codking Completa’

wihile buzzer is s0unding.
| Ofaels Swole |
Hall pwer The uses has pressed the hal-power button.
[Fulll pdweer The uses has pressed the hullpower bution.
Tamer The user has pressed one of the timer bufions.
Mumber The uses has pressed a numesic key.
Door Opsn The owen door saitch s not dosed.

Do dosed The Dwen d00r switch & oOosed.
Stant The uses has pressed the Stat buton.

Cancal The uses has pressed the Cancel buiton.

Fig 2.17: States and stimuli for the microwave oven

— The fig'2.18 below shows the microwave oven operation.

" Opesation ™
Timge
Cheding ™ 1
! i # Cioik i
OE |
Do Thede ———————=| Do fun
Sams | b, henemimn
oy - -
Tumtabla Emutter Tarred
Fauh Faul
¢ Mam 7 Done
|:||:| Display D Buzzes On
Event _/ .. for 5Secs

Fig 2.18: Microwave oven operation

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru

Page 13

Software Engineering [15CS42]

2.5 Model driven engineering

— Model-driven engineering (MDE) is an approach to software development where
models rather than programs are the principal outputs of the development process.

— The programs that execute on a hardware/software platform are then generated
automatically from the models.

— Model-driven engineering has its roots in model-driven architecture (MDA) which
was proposed by the Object Management Group (OMG) in 2001 as a new software
development paradigm.

— The main arguments for and against MDE are:

1. For MDE:
Model-based engineering allows engineers to.think about systems at a
high level of abstraction, without concern for.the details of their
implementation.
This reduces<the likelihood of errors, speeds up the design and
implementation process, and allows for the creation of reusable,
platform-independent application models.

2. AgainstMDE:
Models are-a good way of facilitating discussions about a software
design.
However, it does not always follow that the abstractions that are
supported by the model are the right abstractions for implementation.
So, users may create informal design models but then go on to
implement the system using an off-the-shelf, configurable package.
Furthermore, the arguments for platform independence are only valid
for large long-lifetime systems where the platforms become obsolete
during a system’s lifetime.

2.5.1 Model-driven architecture

— Model-driven architecture is a model-focused approach to software design and
implementation that uses a sub-set of UML models to describe a system.
— The MDA method recommends that three types of abstract system model should be

produced:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 14

Software Engineering [15CS42]

— A computation independent model (CIM) that models the important domain
abstractions used in the system. CIMs are sometimes called domain models.

— A platform independent model (PIM) that models the operation of the system without
reference to its implementation. The PIM is usually described using UML models that
show the static system structure and how it responds to external and internal events.

— Platform specific models (PSM) which are transformations of the platform
independent model with a separate PSM for each application platform. In principle,
there may be layers of PSM, with each layer adding some platform specific detail.

— Fig 2.19 shows a final level of automatic transformation. A transformation is applied
to the PSM to generate executable code that runs on the designated software platform.

Computation Platiomm Plstdonm
Ind epand nt Ind BgpEndent —s S pedtic Elel;:;h:le
Mods Mndal Bdndad
Tran=dator Teanslstor Tt ars Lt On
Daormain Spacl Matiorm Language
GCusdelines - Spedlic Pattarms Spedfic
and Fules Pt

Fig 2.19: MDA Transformations

— The fig 2.20-below shows multiple platform specific models

I2EE Spacihc laes Cinda
I2EE Translator ndd Pey—— Jawa Priogram

Plattonm
nd epend ent
Moda
MET 5 padic C# Coda)
Net Trans stor sodd Gy Br st C# Program

Fig 2.20: Multiple platform-specific models
2.5.2 Executable UML
— UML was designed as a language for supporting and documenting software design,
not as a programming language.
— The designers of UML were not concerned with semantic details of the language but
with its expressiveness.
— They introduced useful notions such as use case diagrams that help with the design

but which are too informal to support execution.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 15

Software Engineering [15CS42]

— To create an executable sub-set of UML, the number of model types has therefore
been dramatically reduced to three key model types:

1. Domain models identify the principal concerns in the system. These are
defined using UML class diagrams that include objects, attributes, and
associations.

2. Class models, in which classes are defined, along with their attributes and
operations.

3. State models, in which a state diagram is associated with each class and is

used to describe the lifecycle of the class.

DESIGN AND IMPLEMENTATION
2.6 Introduction to RUP (Rational Unified Process)

— The RUP recognizes that conventional process models present a single” view of the
process.
— In contrast, the RUP is normally described from three perspectives:
1. A dynamic perspective, which shows the phases of the model over time.
2. A staticperspective, which shows the process activities that are enacted.
3. A practice perspective; which suggests good practices to be used during the
process.
— Fig 2.21 shows the phases in the RUP. These are:
1. Inception:
Goal: To establish a business case for the system.
It is necessary to identify all external entities (people and systems) that
will interact with the system and define these interactions.
This information can then be used to assess the contribution that the
system makes to the business.
2. Elaboration:
Goal: To develop an understanding of the problem domain, establish
an architectural framework for the system, develop the project plan,
and identify key project risks.
3. Construction:

Involves system design, programming, and testing.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 16

Software Engineering [15CS42]

= Parts of the system are developed in parallel and integrated during this
phase.

» On completion of this phase, you should have a working software
system and associated documentation that is ready for delivery to
users.

4. Transition:

= It is concerned with moving the system from development community
to the user community and making it work:in a real environment.

= On completion of this phase, you should have'a documented software
system that is working correctly in its operational environment.

Phase Beration

— e B - T, - T oy,
o — e c‘:————_—r CH-.__‘-._____.'_‘-“\

InCepion Blab-Detion Conaru 080N Transtion

Fig 2.21: Phases in Rational Unified process

— The core engineering and support workflows are described in Figure 2.22

Busines modalhng The busmes processes aremoddled veng buSness use Cases.

Requiraments Adiors whi intemd with the sytem amre idensfied and use
Carios, are dessalpped 0 modd e spatem requinements.

Analyss and design A desgn model B orested and dooumented usng architedusl
middels, companent models, objed modals, and sequence
mind els.

I plerment.afion The omp-onents in the setem am implemeanted and

structured into im plementsSion sub-sysems. Automa C oode
gonersdion from desgn models help accalemie this procsss.

Testing Tesfing i an itemive proces thatis carmed Dutin Conjuncion
wih implementation. System testing ol ows the complstion o
the implementation

Dieplopment A product relesse s oresied, distributed 0 uses, and installed
in thair workplace.

Cionfiguration and chang e management Thiss supporting wiorkfices manages changes 10 the sytem (see
Chapter 25).

Py 2 managament This supporting winkfiow mansges the system dewiopment
{see Chapiers 22 and 23).

E rwitniinam & Thies winkfioes i concemed with making a ppropriste softears

o0l available 10 the software dessinpment team.

Fig 2.22: Static workflows in the rational unified process

— The practice perspective on the RUP describes good software engineering practices

that are recommended for use in systems development.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 17

Software Engineering [15CS42]

— Six fundamental best practices are recommended:

1. Develop Software Iteratively: Plan increments of the system based on
customer priorities and develop the highest-priority system features early in
the development process.

2. Manage Requirements: Explicitly document the customer’s requirements
and keep track of changes to these requirements. Analyze the impact of
changes on the system before accepting them.

3. Use Component-based Architectures: Structure the system architecture into
components.

4. Visually Model Software: Use graphical UML models to present static and
dynamic views of the software.

5. Verify Software Quality: Ensure that the software meets the organizational
quality standards.

6. Control Changes to Software: Manage changes to the software using a
change management system and configuration management procedures and

tools.

2.7 Design Principles

— The design of a system is correct if.a system built precisely according to the design
satisfies the requirements of that system.

— Clearly, the goal during the design phase is to produce correct designs.

— The goal of the design process is not simply to produce a design for the system.
Instead, the goal is to find the best possible design within the limitations imposed by
the requirements and the physical and social environment in which the system will
operate.

— A design should clearly be verifiable, complete (implements all the specifications),
and traceable (all design elements can be traced to some requirements).

— Two most important properties that concern designers: efficiency and simplicity.

— Efficiency of any system is concerned with the proper use of scarce resources by the
system.

— The design of a system is one of the most important factors affecting the

maintainability of a system.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 18

Software Engineering [15CS42]

— During maintenance, the first step a maintainer has to undertake is to understand the
system to be maintained.

— Only after a maintainer has a thorough understanding of the different modules of the
system, how they are interconnected, and how modifying one will affect the others
should the modification be undertaken.

2.7.1 Problem Partitioning and Hierarchy

— For software design, therefore, the goal is to divide the problem into manageably
small pieces that can be solved separately.

— Itis this restriction of being able to solve each part separately that makes dividing into
pieces a complex task and that many methodologies for system design aim to address.

— The different pieces cannot be entirely independent of each other, as they together
form the system.

— The different pieces have to cooperate and communicate to solve the larger problem.

— This communication adds complexity, which arises due to partitioning and may not
have existed in the original problem.

— As the number of components increases, the cost of partitioning, together with the
cost of this added complexity, may become more than the savings achieved by
partitioning.

— It is at this point that no further partitioning needs to be done. The designer has to
make the judgment about when to stop partitioning.

— Problem partitioning, which is essential for solving a complex problem, leads to
hierarchies in the design. That is, the design produced by using problem partitioning
can be represented as a hierarchy of components.

— The relationship between the elements in this hierarchy can vary depending on the
method used.

2.7.2 Abstraction

— It is a tool that permits a designer to consider a component at an abstract level without
worrying about the details of the implementation of the component.

— Any component or system provides some services to its environment. An abstraction
of a component describes the external behaviour of that component without bothering

with the internal details that produce the behavior.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 19

Software Engineering [15CS42]

— Abstraction is an indispensable part of the design process and is essential for problem
partitioning.

— Partitioning essentially is the exercise in determining the components of a system.

— However, these components are not isolated from each other; they interact with each
other, and the designer has to specify how a component interacts with other
components.

— Abstraction is used for existing components as well as components that are being
designed.

— Abstraction of existing components plays an important role in the maintenance phase.

— To modify a system, the first step is understanding what the system does and how.

— The process of comprehending an existing system involves identifying the
abstractions of subsystems and components from the details of their implementations.

— Using these abstractions, the behavior of the entire system can be understood. This
also helps determine how modifying a component affects the system.

— There are two common abstraction mechanisms. for software systems: functional
abstraction and data abstraction.

— In functional abstraction, a module is specified by the function it performs. For
example, a module to compute the log of a value can be abstractly represented by the
function log.

— The second unit for abstraction is data abstraction. Any entity in the real world
provides some services to the environment to which it belongs. Often the entities
provide some fixed predefined services. The case of data entities is similar.

— Certain operations are required from a data object, depending on the object and the
environment in which it is used. Data abstraction supports this view.

— Data is not treated simply as objects, but is treated as objects with some predefined
operations on them.

2.7.3 Modularity

— Modularity is a clearly a desirable property in a system.

— Modularity helps in system debugging—isolating the system problem to a component
is easier if the system is modular; in system repair—changing a part of the system is
easy as it affects few other parts; and in system building—a modular system can be

easily built by "putting its modules together."

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 20

Software Engineering [15CS42]

— A software system cannot be made modular by simply chopping it into a set of
modules.
— For modularity, each module needs to support a well defined abstraction and have a
clear interface through which it can interact with other modules.
— Modularity is where abstraction and partitioning come together.
2.7.4 Top-Down and Bottom-Up Strategies

— A system consists of components, which have components of their own; indeed a
system is a hierarchy of components.

— The highest-level component corresponds to the total system. To design such a
hierarchy there is two possible approaches: top<down and bottom-up.

— A top-down design approach starts by identifying the major components of the
system, decomposing them into their-lower-level components and iterating until the
desired level of detail is achieved.

— Top-down design methods often result in'some form of stepwise refinement Starting
from an abstract design, in each step the design is refined to a more concrete level,
until we reach a level where no more refinement is needed and the design can be
implemented directly.

— A bottom-up design approach starts with designing the most basic or primitive
components and proceeds to higher-level components that use these lower-level
components.

— Bottom-up methods work with layers of abstraction. Starting from the very bottom,
operations that provide a layer of abstraction are implemented.

— The operations of this layer are then used to implement more powerful operations and
a still higher layer of abstraction, until the stage is reached where the operations
supported by the layer are those desired by the system.

— A common approach to combine the two approaches is to provide a layer of
abstraction for the application domain of interest through libraries of functions, which
contains the functions of interest to the application domain.

— Then use a top-down approach to determine the modules in the system, assuming that
the abstract machine available for implementing the system provides the operations

supported by the abstraction layer.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 21

Software Engineering [15CS42]

2.8 Object-oriented design using the UML

— An object-oriented system is made up of interacting objects that maintain their own
local state and provide operations on that state.
— Object-oriented systems are easier to change than systems developed using functional
approaches.
— Objects include both data and operations to manipulate that data.
— They may therefore be understood and modified as stand-alone entities.
— Changing the implementation of an object or adding services should not affect other
system objects.
— To develop a system design from concept to detailed, object-oriented design, there are
several things that you need to do:
Understand and define the context and the externmal interactions with the
system.
Design the system architecture.
Identify the principal objects in the system.
Develop design models.
Specify interfaces.

2.8.1 System Context and Interactions

— The first stage in any software design process is to develop an understanding of the
relationships between the software that is being designed and its external
environment.

— This is essential for deciding how to provide the required system functionality and
how to structure the system to communicate with its environment.

— Understanding of the context also lets you establish the boundaries of the system.

— Setting the system boundaries helps you decide what features are implemented in the
system being designed and what features are in other associated systems.

— System context models and interaction models present complementary views of the
relationships between a system and its environment:

A system context model is a structural model that demonstrates the other
systems in the environment of the system being developed.
An interaction model is a dynamic model that shows how the system interacts

with its environment as it is used.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 22

Software Engineering [15CS42]

— The context model of a system may be represented using associations.

— Associations simply show that there are some relationships between the entities
involved in the association.

— The environment of the system can be represented using a simple block diagram
showing the entities in the system and their associations.

— This is illustrated in fig 2.23, which shows that the systems in the environment of
each weather station are a weather information system, an onboard satellite system,

and a control system.

i Ciperit rod |
A7 Symem |
.-"- M"-

1. 1
Wie-athes 1 I_ni Weather

information :
—— Station
1™ 1

o sawlie |5

Fig 2.23: System context for the weather station

— The cardinality information on the link shows that there«is one control system but
several weather stations, one satellite, and one general weather information system.

— The use case model for the weather station is shown in fig 2.24.

— This_shows that the weather station interacts with the weather information system to

report weather data and the status of the weather station hardware

.""H-.epclh""xl

8 = Weather
A T Repon

'I'i"Eﬂhgr R - _.I
inform ation —

Sy2em

A Resan)
Y ——

o -~

. A shindown)

-._.-' . e

& [Reconfigur)

A H‘-\.-..-'.. g — --._.
Control ,\ e

Syaem 0 powerse)

., '__._ B

Ly “Remoe ~

“._Control -

Fig 2.24: Weather station use cases

— The use case description is shown in fig 2.25.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 23

Software Engineering [15CS42]

System Westher station

Use case RepDnt wiasthar

Adrs ¥ esther miormatson system, Westh er stafion

Dat The waathier #aisin sends & summany 0f the waather dats that hes been mlleaed fiom

the maruments m the olledion penid 10 the weather mhirmation sysiem_ The data send
ard the maximum, mmarem, and avesge ground and ar tempersures; e manammm,
mEnamum, And avesg 8 air pressures; the maamm, mmsmum, and & esg e wind speeds;
the total randall; and the wind diretiion & sampled st fweminute intans s,

Stimulus Thawaather inform sion system establishes & satele Oomm uniCation knk with tha
westher afion and réquests tensmesion of the data

R esp0n 52 The summanzed dats aré sent 10 the weather nfonmatson sy=ham.

£ Drmm enits Weather ststions are usually sked to reéport ono2 per howr but this regquendy may differ

from one siaon ©0 another and may be modied m the fubune.

Fig 2.25: Use case description — Report weather
2.8.2 Architectural Design

— Once the interactions between the software system and the system’s environment
have been defined, this information is. used as a basis for designing the system
architecture.

— The high-level architectural design for the weather station software is shown in fig
2.26.

— The weather station is composed of independent subsystems that communicate by
broadcasting amessages.on a common infrastructure, shown as the Communication
link in fig 2.26.

— Each'subsystem listens for messages on that infrastructure and picks up the messages

that are intended for them.

1] 1]
o Sy Gy St T a5UbSyRems a5UbaySem
Fauk Managsr Configuration banager PO BAanager

Communication Link

1] 1 1
o Sl Gy St T a5UbSyRems w5Ubay Seme
Comm inications Data Codlection In SirimEnts

Fig 2.26: High level architecture of the weather station

— Fig 2.27 shows the architecture of the data collection subsystem, which is included in
fig 2.26.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 24

Software Engineering [15CS42]

Data Colledion |

Transmiter Pl s a1

¥

WeatheDaa

Fig 2.27: Architecture of data collection system

— The Transmitter and Receiver objects are concerned with managing communications
and the WeatherData object encapsulates the information that is collected from the
instruments and transmitted to the weather information system.

— This arrangement follows the producer-consumer pattern

— There have been various proposals made about how to identify object classes in object
oriented systems:

Use a grammatical analysis of a natural language description of the system to
be constructed. Objects and attributes are nouns; operations or services are
verbs.
Use tangible entities (things) in the application.domain such as aircraft, roles
such as_.manager or doctor, events such as' requests, interactions such as
meetings, locations. such as offices, organizational units such as companies,
and so on.

+ Use a.scenario-based analysis where various scenarios of system use are
identified and analyzed in turn.

— Thereare five object classes in fig 2.28.

— The Ground thermometer, Anemometer, and Barometer objects are application
domain objects, and the WeatherStation and WeatherData objects have been
identified from the system description and the scenario (use case) description:

The WeatherStation object class provides the basic interface of the weather
station with its environment.

The WeatherData object class is responsible for processing the report weather
command. It sends the summarized data from the weather station instruments
to the weather information system.

The Ground thermometer, Anemometer, and Barometer object classes are

directly related to instruments in the system. They reflect tangible hardware

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 25

Software Engineering [15CS42]

entities in the system and the operations are concerned with controlling that
hardware. These objects operate autonomously to collect data at the specified
frequency and store the collected data locally. This data is delivered to the

WeatherData object on request.

identifier -s'rTElT;&'Iu:B
Eround | Srmp-Braturnss

repodStaha () wind Direaion

peOrwerS s (instnuam ents) p——

e e Con ol { 0om mands) rainiall

reConiigure (CDmimands)

restast (instruments) Coflect()

shutdown (instruments) surmimanze |)

an_ldent bar_ldant
gt_kent wiindS pagd presure
temp-Erature wan<dCarecion hesght
24 g2 () gat()
et) e |) test|)

Fig 2.28: Weather station objects
2.8.3 Design models
— Design or system models, show the objects or object classes in a system. They also
show the associations and relationships between these entities.
— These models are the bridge between the system requirements and the implementation
of a system.
— Andmportant'step in the design process, therefore, is to decide on the design models
needed and the level of detail required in these models.
— This depends on the type of system that is being developed.
— When UML is used to develop a design, there are two kinds of design models to be
developed.

1. Structural-models, which describe the static structure of the system using
object classes and their relationships. Important relationships that may be
documented at this stage are generalization (inheritance) relationships,
uses/used-by relationships, and composition relationships.

2. Dynamic models, which describe the dynamic structure of the system and
show the interactions between the system objects. Interactions that may be
documented include the sequence of service requests made by objects and the

state changes that are triggered by these object interactions.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 26

Software Engineering [15CS42]

— In the early stages of the design process, there are three models that are particularly
useful for adding detail to use case and architectural models:

1. Subsystem models, which that show logical groupings of objects into coherent
subsystems. These are represented using a form of class diagram with each
subsystem shown as a package with enclosed objects. Subsystem models are
static (structural) model

2. Sequence models, which show the sequence of object interactions. These are
represented using a UML sequence or a collaboration diagram. Sequence
models are dynamic models.

3. State machine model, which show how individual objects change their state in
response to events. These are represented in the UML using state diagrams.
State machine models are dynamic models.

— Fig 2.29 is an example of a sequence model, shown as a UML sequence diagram.

— This diagram shows the sequence of Interactions that take place when an external
system requests the summarized data from the weather station. Sequence diagrams are
read from top to bottom:

1. The SatComms object receives a request from the weather information system
to collect a weather report from a weather station. It acknowledges receipt of
this request. The stick -arrowhead on the sent message indicates that the
external system does not wait for a reply but can carry on with other
processing.

2. SatComms sends.a message to WeatherStation, via a satellite link, to create a
summary of the collected weather data. Again, the stick arrowhead indicates
that SatComms does not suspend itself waiting for a reply.

3. WeatherStation-sends a message to a Commslink object to summarize the
weather data. In this case, the squared-off style of arrowhead indicates that the
instance of the WeatherStation object class waits for a reply.

4. Commslink calls the summarize method in the object WeatherData and waits
for a reply.

5. The weather data summary is computed and returned to WeatherStation via

the Commslink object.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 27

Software Engineering [15CS42]

6. WeatherStation then calls the SatComms object to transmit the summarized
data to the weather information system, through the satellite communications

system.
W ather
Information Syskm
I | Salomms | |:'-'|'-eah:r9|a1i|:m | | :Comimslink | | WeatherDaa |
I I
L mguestimpory | I I
I I
| _acknowledge I I
reponiVeather|) | |
| Adnowdedge summares |)
send {repon I :
ackon ool dige
reply(epoty | |—-----—--=- = : :
acknaw ladge I I
T T || I I
I 1

| 1 1
Fig 2.29: Sequence diagram describing data collection
— Fig 2.30 is a state diagram<for the weather station system that shows how it responds
to requests for various services.
— This diagram can.be read as follows:

1. If the’systemstate is Shutdown then it .can respond to a restart(), a
reconfigure(), or a powerSave() message. The unlabeled arrow with the black
blob indicates that the Shutdown state is the initial state. A restart() message
causes a transition to norma operation. Both the powerSave() and
reconfigure() messages cause a transition to a state in which the system
reconfigures itself. The state diagram shows that reconfiguration is only
allowed if the system has been shut down.

2. In thenRunning state, the system expects further messages. If a shutdown()
message iS received, the object returns to the shutdown state.

3. If a reportWeather() message is received, the system moves to the
Summarizing state. When the summary is complete, the system moves to a
Transmitting state where the information is transmitted to the remote system.
It then returns to the Running state.

4. If a reportStatus() message is received, the system moves to the Testing state,

then the Transmitting state, before returning to the Running state.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 28

Software Engineering [15CS42]

5. If asignal from the clock is received, the system moves to the Collecting state,
where it collects data from the instruments. Each instrument is instructed in
turn to collect its data from the associated sensors.

6. If a remoteControl() message is received, the system moves to a controlled
statein which it responds to a different set of messages from the remote control

room. These are not shown on this diagram.

" controlled

Operafion
T shudowm () resm e Comtral {)
- —, -~ - o ™,
[shumdown 2200 | Ruming | pemRaEl) . | Tesing |
1' transmission donse test complete
r*':':'“ﬁﬂsure::: i configuration dons
dock | | collection ; !
digne | Transmitting |
. -) - e et
r, Y # ™y
| Configuri | " Colledin] repoiniiea her
: "E_.f' 3_;‘ E 0 waaather
summary
o pilete
| Summarizing |

-

Fig 2.30: Weather station state diagram

2.8.4 Interface Specification
— Interface design is concerned with specifying the detail of the interface to an object or
to a group of objects.

— This means defining the signatures and semantics of the services that are provided by

the object or by a group of objects.
—> Interfaces can be specified in the UML using the same notation as a class diagram

— Details of the data representation should not be included in an interface design, as

attributes are not defined in an interface specification.
— However, operations can be included to access and update data.

— As the data representation is hidden, it can be easily changed without affecting the

objects that use that data. This leads to a design that is inherently more maintainable.
— Fig 2.31 shows two interfaces that may be defined for the weather station.

— The left-hand interface is a reporting interface that defines the operation names that

are used to generate weather and status reports.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 29

Software Engineering [15CS42]

— These maps directly to operations in the WeatherStation object. The remote control
interface provides four operations, which map onto a single method in the
WeatherStation object.

startinstrument [nsrument): Status

it er Rep 0t (WS-ident): Wrepan stopimstrument (nsrument): Status

stabieRepart (WS-klerk): Srepart COlletData finstrument): iStatus

privedeliats (nstrment): shhng

Fig 2.31: Weather station interfaces

2.9 Design Patterns

— The pattern is a description of the problemand the essence of its solution, so that the
solution may be reused in different settings.

— The pattern is not a detailed specification.

— Patterns and Pattern Languages are ways to describe best practices, good
designs, and capture experience in a way that it is possible for others to reuse this
experience.

— Design patterns‘are usually associated with object-oriented design.

— The general principle of encapsulating experience in a pattern is one that is equally
applicable to any kind of software design

— The four essential elements of design patterns were defined by the ‘Gang of Four’ in
their patterns book:

+ A name that is a meaningful reference to the pattern.

A description of the problem area that explains when the pattern may be
applied.

A solution description of the parts of the design solution, their relationships,
and their responsibilities. This is not a concrete design description. It is a
template for a design solution that can be instantiated in different ways. This is
often expressed graphically and shows the relationships between the objects
and object classes in the solution.

A statement of the consequences—the results and trade-offs—of applying the
pattern. This can help designers understand whether or not a pattern can be

used in a particular situation.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 30

Software Engineering [15CS42]

— Observer pattern is as shown in fig 2.32. This pattern can be used in situations where

different presentations of an object’s state are required.

Pattern name: Olsoner
Desoniplion: Sepastes the displsy of the gste of an Dbjent from the objed nsel and allows shemative deplays
10 be provided. When the obpent stste changes, sll displays sre suiDmatically notified and updsted to reflec

the changs.

Problem d esoription: in many stussions, you hewe 10 provide muliiple displeys of state infom sion,
such & & graphical display and & tabular displey. Mot all of these may be known when the informason is
specified. All shemative presentstions should support intes dion and, when the stste s changed, all displays
must be updated.

This pafiern may be used in all siustions whene more than one display format for state nfoom sion =
required and whese it & not necsssany for the objan that mainisins the sta 12 nfoem s8on 10 know sbout the
spedfic dipley formsts used.

Sodution d esor plion: This invobes b0 abstma objeos, Subject and Olserver, and a0 conorede olyeas,
Condretesubjed and Conoretedbyjea, which inhedt the sthibutes of the relsted shatran objecs. The alsteso
objers inCude general op emstion that are applicable in all siustons. The stste to be dsplayed s
maintained in ConcredeSulbyea, which inhenits opersions fiom Subjant sliwéng it 10 add and remowes
Ohsenves (each Disanver Cormesponds 0 & dsplay) and 10 Bsue & notificssion when the gate hes changed_
The Conorededbs erver maintsins & copy of the dste of ConoreteSubject and implements the Updata()
intertace of Obsenver that allows these copes 10 be bapt in tep. The Conoretedisenver sutomascally
displays the stste and refleds changes whenewer the gste B updated.

The LML model of the pattem s shown in Figure 7.12.

Consequen ces: The sulject only knows the shama Obsener and does nod know details of the conomete dess.

Thesglore there i minimal ougling between hess objaos. Beoawe of this ladk of knowladge,

oplamization
that enhance dspley pardormanoe ame impracical. Changes (0 the subjed mey csuse & sed of linkad updates
10 Dlmenvars t0 be ganersted, some of which may not be neCesary.

Fig 2.32: The Observer pattern
— It separates the object that‘must be displayed from the different forms of presentation

which is shown in fig 2.33.
— Fig 2.34 is the representation in UML of the Observer pattern.

O aredr 1

Ohspdepr 2

BobE

=Nl

Fig 2.33: Multiple displays

Detach (Obs erver) ‘Imr Al 0 in clservers |

Moty (- -1 0 <> Updata)

Obsenerste = |
GEEHIE'[]———-—~| mmmhiecﬁh'rej tpdate() - - - -1 "|=u1iau-:-cr;i1e{n
mbjeSaie ohsanves e

Fig 2.34: A UML model of the observer pattern

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 31

Software Engineering [15CS42]

2.10 Implementation Issues

— Implementation may involve developing programs in high- or low-level programming
languages or tailoring and adapting generic, off-the-shelf systems to meet the specific
requirements of an organization.

— Few aspects of implementation that are particularly important to software engineering
that are often not covered in programming texts. These are:

1. Reuse: Most modern software is constructed by reusing existing components
or systems. When the software is being developed, the existing code must be
used as much as possible.

2. Configuration management: During the development process, many
different versions of each software‘component are created. If records of these
versions are not maintained in a configuration management system, there is
probability of including wrong versions of these components in the system.

3. Host-target development: Production. software does not usually execute on
the same computer as the software development environment. The host and
target systems are sometimes of the same type but, often they are completely
different.

2.10.1 Reuse

— Software reuse is possible at a number.of different levels:

1. The abstraction level: At this level, software is not reused directly but
ratheruse knowledge of successful abstractions in the design of your software.
Design patterns and architectural patterns are ways of representing abstract
knowledge for reuse.

2. The object level:/At this level, objects are directly reused from a library rather
than writing the code yourself. To implement this type of reuse, you have to
find appropriate libraries and discover if the objects and methods offer the
functionality that you need.

3. The component level: Components are collections of objects and object
classes that operate together to provide related functions and services. It is
required to adapt and extend the component by adding some code. An
example of component-level reuse is where you build your user interface

using a framework.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 32

Software Engineering [15CS42]

4. The system level: At this level, the entire application systems are reused. This
usually involves some kind of configuration of these systems. This may be
done by adding and modifying code (if you are reusing a software product
line) or by using the system’s own configuration interface. Most commercial
systems are now built in this way where generic COTS (commercial off-the-
shelf) systems are adapted and reused.

— There are costs associated with reuse:

» The costs of the time spent in looking for software to reuse and assessing
whether or not it meets your needs. The software will have to be tested to
make sure that it will work in own environment, especially if this is different
from its development environment.

» Where applicable, the costs of buying the reusable software. For large off-the
shelf systems, these costs can be very high.

» The costs of adapting and configuring the reusable software components or
systems to reflect the requirements of the system that you are developing.

» The costs of integrating reusable software elements with each other (if you are
using software from different sources) and with the new code that has been

developed.
2.10.2 Configuration Management

— Configuration. management is the name given to the general process of managing a
changing software system.

— The aim.of configuration. management is to support the system integration process so
that all developers can access the project code and documents in a controlled way,
find out what changes have been made, and compile and link components to create a
system.

— There are, therefore, three fundamental configuration management activities:

= Version management, where support is provided to keep track of the different
versions of software components. Version management systems include
facilities to coordinate development by several programmers. They stop one
developer overwriting code that has been submitted to the system by someone
else.

» System integration, where support is provided to help developers define what

versions of components are used to create each version of a system. This

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 33

Software Engineering [15CS42]

description is then used to build a system automatically by compiling and
linking the required components.

» Problem tracking, where support is provided to allow users to report bugs and
other problems, and to allow all developers to see who is working on these
problems and when they are fixed.

2.10.3 Host-target development

%

%

%

A platform is more than just hardware.
It includes the installed operating system plus other supporting software such as a
database management system or, for development platforms, an interactive
development environment. Simulators are often used. when developing embedded
systems.
Hardware devices can be simulated, such.as sensors, and the events in the
environment in which the system will be deployed.
If the target system has installed middleware or other software that can be used, then
it is necessary to test the system using that software.
It may be impractical to install that software on the development machine, even if it is
the same as the target platform, because of license restrictions.
A software development platform should provide a range of tools to support software
engineering processes. These may include:
* An integrated compiler and syntax-directed editing system that allows users to
create, edit, and compile code.
* Aclanguage debugging system.
Graphical editing tools, such as tools to edit UML models.
Testing tools, such as JUnit that can automatically run a set of tests on a new
version of a-program.
Project support tools that help you organize the code for different development
projects.
Software development tools are often grouped to create an integrated development
environment (IDE).
An IDE is a set of software tools that supports different aspects of software

development, within some common framework and user interface

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 34

Software Engineering [15CS42]

— A general-purpose IDE is a framework for hosting software tools that provides data
management facilities for the software being developed, and integration mechanisms,
that allow tools to work together.

— For distributed systems, it is essential to decide on the specific platforms where the
components will be deployed.

— Issues that should be considered in making this decision are:

= The hardware and software requirements of a component: If a component
is designed for a specific hardware architecture, or relies on some other
software system, it must obviously be deployed on a platform that provides the
required hardware and software support.
The availability requirements of the system: High-availability systems may
require components to be deployed on more than one platform. This means
that, in the event of platferm failure, an alternative implementation of the
component is available
Component communications: If there is a high level of communications
traffic between components, it usually makes sense to deploy them on the
same platform or on platforms that are physically close to one other. This
reduces communications latency, the delay between the time a message is sent

by one component and received by another.

2.11 Open Source Development

— Open source development is an approach to software development in which the
source code of a software system is published and volunteers are invited to participate
in the development process.

— Open source software extended this idea by using the Internet to recruit a much larger
population of volunteer developers.

— For a company involved in software development, there are two open source issues
that have to be considered:

Should the product that is being developed make use of open source
components?

Should an open source approach be used for the software’s development?

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 35

Software Engineering [15CS42]

— The answers to these questions depend on the type of software that is being developed

and the background and experience of the development team.

2.11.1 Open source licensing

— Most open source licenses are derived from one of three general models:
1. The GNU General Public License (GPL). This is a so-called ‘reciprocal’

license that, simplistically, means that if you use open source software that is
licensed under the GPL license, then you must make that software open
source.

The GNU Lesser General Public License (LGPL). This is a variant of the
GPL license where it is possible to write compenents that link to open source
code without having to publish the‘source of these.components. However, if
the licensed component is changed, then it must be published as open source.
The Berkley Standard Distribution (BSD) License. This is a non-reciprocal
license, which means® you are ‘not obliged to republish any changes or
modifications made to open source code. The code can be included in

proprietary systems that are sold.

— Companies managing projects that use open source should:

*

Establish a system.for maintaining information about open source components
that are downloaded and used.

Be aware of the different types of licenses and understand how a component is
licensed before it is used.

Be aware of evolution pathways for components.

Educate people about open source. It’s not enough to have procedures in place
to ensure compliance with license conditions.

Have auditing-systems in place. Developers, under tight deadlines, might be
tempted to break the terms of a license.

Participate in the open source community. If you rely on open source products,

you should participate in the community and help support their development

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 36

