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MODULE - 3 

 

TRANSIENT AND STEADY STATE RESPONSE ANALYSIS 
 
 

LESSON STRUCTURE: 

3.1. Introduction 

3.2. Time Response 

3.3. Steady State Response 

3.4. Routh’s-Hurwitz Criterion 

3.5.  Definition of root loci 

3.6. Analysis using root locus plots 

3.7. General rules for constructing root loci 

 
 

OBJECTIVES: 

 To analyse stability in complex domain and frequency domain systems. 

 To educate static and transient behavior of a system. 

 To demonstrate stability of the various control systems by applying Routh’s stability criterion. 

 To study stability by using Root locus plots. 

 

3.1. Introduction: 
 

Time is used as an independent variable in most of the control systems. It is important to 

analyse the response given by the system for the applied excitation, which is function of time. 

Analysis of response means to see the variation of output with respect to time. The output behavior 

with respect to time should be within these specified limits to have satisfactory performance of the 

systems. The stability analysis lies in the time response analysis that is when the system is stable 

output is finite 

The system stability, system accuracy and complete evaluation is based on the time response 

analysis on corresponding results. 

 

3.2. Time Response: 
The response given by the system which is function of the time, to the applied excitation is called 

time response of a control system. 

 Practically, output of the system takes some finite time to reach to its final value. This time varies 

from system to system and is dependent on different factors. The factors like friction mass or inertia of 

moving elements some nonlinearities present etc. Example: Measuring instruments like Voltmeter, 

Ammeter. 
 
Classification: 

The time response of a control system is divided into two parts. 
 

1 Transient response ct(t) 
2 Steady state response css(t) 
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 . . . c(t)=ct(t) +cSS(t) 
Where c(t)= Time Response  
Total Response=Zero State Response +Zero Input Response. 
 

3.3. Steady State Response: 
 

It is defined the part of the response which remains after complete transient response 

vanishes from the system output. 
.  i,e, Lim ct(t)=css(t) 

t   
 

The time domain analysis essentially involves the evaluation of the transient and 

Steady state response of the control system. 

For the analysis point of view, the signals, which are most commonly used as 

reference inputs, are defined as standard test inputs. 

 

The performance of a system can be evaluated with respect to these test signals. 

Based on the information obtained the design of control system is carried out. The 

commonly used test signals are  
1. Step Input signals.  
2. Ramp Input Signals.  
3. Parabolic Input Signals.  
4. Impulse input signal. 

 

 

1. Step input signal (position function)  
It is the sudden application of the input at a specified time as usual in the figure or instant any us 

change in the reference input 
Example :-  

a. If the input is an angular position of a mechanical shaft a step input represent the sudden 

rotation of a shaft. 
b. Switching on a constant voltage in an electrical circuit. 
c.  Sudden opening or closing a valve. 

 

 
 

The step is a signal who‘s value changes from 1 value (usually 0) to another level A in Zero 

time. 

In the Laplace Transform form R(s) = A / S 

Mathematically r(t) = u(t) 

= 1 for t > 0 
= 0 for t < 0 

2. Ramp Input Signal (Velocity Functions): 
 It is constant rate of change in input that is gradual application of input as shown in fig (2 b). 

r(t) 
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Ex:- Altitude Control of a Missile 

 
The ramp is a signal, which starts at a value of zero and increases linearly with time. 

Mathematically r (t) = At for t ≥ 0 

           = 0 for t≤ 0. 

In LT form R(S) = A 

        S2 

If A=1, it is called Unit Ramp Input 

 

Parabolic Input Signal (Acceleration function): 

 The input which is one degree faster than a ramp type of input as shown in fig (2 c) or it is an 

integral of a ramp. 

 Mathematically a parabolic signal of magnitude 

 
Impulse Input Signal : 

 

 It is the input applied instantaneously (for short duration of time ) of very high amplitude as 

shown in fig 2(d) 

Eg: Sudden shocks i e, HV due lightening or short circuit. 

     It is the pulse whose magnitude is infinite while its width tends to zero. 

 
Area of impulse = Its magnitude  

If area is unity, it is called Unit Impulse Input denoted as (t) 

Mathematically it can be expressed as 

r(t) = A for t = 0 
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= 0 for t ≠ 0 

In LT form R(S) = 1 if A = 1 

 

3.4. Routh’s-Hurwitz Criterion 
 E.J. Routh (1877) developed a method for determining whether or not an equation has roots 

with + ve real parts without actually solving for the roots. 

 A necessary condition for the system to be STABLE is that the real parts of the roots of the 

characteristic equation have - ve real parts. This insures that the impulse response will decay 

exponentially with time. 

 If the system has some roots with real parts equal to zero, but none with +ve real parts the 

system is said to be MARGINALLY STABLE. 

 It determines the poles of a characteristic equation with respect to the left and the right half 

of the S-plane without solving the equation. 

 The roots of this characteristic equation represent the closed loop poles. The stability of the 

system depends on these poles. The necessary, but not sufficient conditions for the system having no 

roots in the right half S-Plane are listed below. 

i. All the co-efficients of the polynomial must have the same sign. 

ii. All powers of S, must present in descending order. 

iii. The above conditions are not sufficient. 

In a vast majority of practical systems. The following statements on stability are quite useful.  

 

i. If all  the  roots  of the  characteristic  equation  have  –ve  real parts  the  system  is 

STABLE. 

ii. If any root of the characteristic equation has a +ve real part or if there is a repeated root on 

the j -axis, the system is unstable. 

iii. If condition (i) is satisfied except for the presence of one or more non repeated roots on the j -

axis the system is limitedly STABLE 

 

 In this instance the impulse response does not decay to zero although it is bounded. 

Additionally certain inputs will produce outputs. Therefore marginally stable systems are 

UNSTABLE. 

 The Routh Stability criterion is a method for determining system stability that can be applied 

to an nth order characteristic equation of the form  

s
n
 + an-1 s

n-1
 + an-2 s

n-2
 + an-3 s

n-3
 +…………. a1 s

1
 + a0 = 0 

The criterion is applied through the use of a Routh Array (Routh table) Defined as follows: 
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The ROUTH STABILITY CRITERION is stated as follows, 

 All the terms in the first column of Routh’s Array should have same sign, and there should  

not be any change of sign. 

This is a necessary and sufficient condition for the system to be stable. On the other hand any change 

of sign in the first column of Routh’s Array indicates, 

 

i. The System is Unstable, and 

ii. The Number of changes of sign gives the number of roots lying in the right half of S-Plane 

 

 

Example : find the stability of the system using Routh’s criteria. For the equation   

 3S4+10S3+5S2+5S+2=0 

 
 Here two roots are +ve (2 changes of sign) and hence the system is unstable. 
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3.5.  Definition of root loci 

 The root locus of a feedback system is the graphical representation in the complex s-

plane of the possible locations of its closed-loop poles for varying values of a certain system 

parameter. The points that are part of the root locus satisfy the angle condition. The value of 

the parameter for a certain point of the root locus can be obtained using the magnitude 

condition. 

 In root locus technique in control system we will evaluate the position of the roots, 

their locus of movement and associated information. These information will be used to 

comment upon the system performance. 
 

3.6. Analysis using root locus plots. 

 
A designer can determine whether his design for a control system meets the specifications if 

he knows the desired time response of the controlled variable. By deriving the differential 

equations for the control system and solving them, an accurate solution of the system's 

performance can be obtained, but this approach is not feasible for other than simple systems. 

It is not easy to determine from this solution just what parameters in the system should be 

changed to improve the response. A designer wishes to be able to predict the performance by 

an analysis that does not require the actual solution of the differential equations.  

 

The first thing that a designer wants to know about a given system is whether or not it is 

stable. This can be determined by examining the roots obtained from the characteristic 

equation 

 

(3.1) 
 
 

 

of the closed loop. The work involved in determining the roots of this equation can be 

avoided by applying the Hurwitz or Routh criterion. Determining in this way whether the 

system is stable or unstable does not satisfy the designer, because it does not indicate the 

degree of stability of the system, i.e., the amount of overshoot and the settling time of the 

controlled variable for a step input. Not only must the system be stable, but the overshoot 

must be maintained within prescribed bounds and transients must die out in a sufficiently 

short time. 

 

The root-locus method described in this section not only indicates whether a system is stable 

or unstable but, for a stable system, also shows the degree of stability. The root locus is a plot 

of the roots of the characteristic equation of the closed loop as a function of the gain. This 

graphical approach yields a clear indication of the effect of gain adjustment with relatively 

small effort. 

 

With this method one determines the closed-loop poles in the plane - these are the roots of 

Eq.(5.1) - by using the known distribution of the poles and zeros of the open-loop transfer 
 

function . If for instance a parameter is varied, the roots of the characteristic equation 

will move on certain curves in the plane as shown by the example in Figure 3.1. On these 

curves lie all 
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Figure 3.1: Plot of all roots of the characteristic equation for . 
 

Values of are red and underlined. 
 

possible roots of the characteristic equation for all values of the varied parameter from zero to 

infinity. These curves are defined as the root-locus plot of the closed loop. Once this plot is 

obtained, the roots that best fit the system performance specifications can be selected. 

Corresponding to the selected roots there is a required value of the parameter which can be 

determined from the plot. When the roots have been selected, the time response can be 

obtained. Since the process of finding the root locus by calculating the roots for various 

values of a parameter becomes tedious, a simpler method of obtaining the root locus is 

desired. The graphical method for determining the root-locus plot is shown in the following. 

 

An open-loop transfer function with poles at the origin of the plane is often described by 
 

 

(3.2) 
 
 
 

 

where is the gain of the open loop. In order to represent this transfer function in terms of 

the open-loop poles and zeros it is rewritten as 
 
 

 

(3.3) 

or 
 
 
 
 

(3.4) 
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with and . The relationship between the factor and the open-loop gain 

is 

 
 
 
 

(3.5) 
 
 
 
 
 
 

 

The characteristic equation of the closed loop using Eq. (5.3) is 
 

(3.6) 

or 
 

(3.7) 
 
 
 

 

All complex numbers , which fulfil this condition for , represent the 

root locus. 

 

From the above it can be concluded that the magnitude of must always be unity and its 

phase angle must be an odd multiple of . Consequently, the following two conditions are 

formalised for the root locus for all positive values of from zero to infinity: 

 

a) 
 

Magnitude condition: 
 

(3.8) 
 

b) 
 

Angle condition 

 

(3.9) 
for 

 
 

 

In a similar manner, the conditions for negative values of ( ) can be 

determined. The magnitude conditions is the same, but the angle must satisfy the 

c)  
Angle condition 

 

(3.10) 
for 
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Apparently the angle condition is independent of . All points of the plane that fulfil the 

angle condition are the loci of the poles of the closed loop by varying . The calibration of 
 

the curves by the values of is obtained by the magnitude condition according to Eq. 8(3.8). 

Based upon this interpretation of the conditions the root locus can constructed in a 

graphical/numerical way. 

 

Once the open-loop transfer function has been determined and put into the proper form, 

the poles and zeros of this function are plotted in the plane. 

 

 The plot of the locus of the closed loop poles as a function of the open loop gain K, 

when K is varied from 0 to +00.


 When system gain K is varied from 0 to +oo, the locus is called direct root locus.


 When system gain K is varied from -oo to 0, the locus is called as inverse root locus.
 The root locus is always symmetrical about the real axis i.e. x-axis.


 The number of separate branches of the root locus equals either the number of open 

loop poles are number of open-loop zeros whichever is greater.


 A section of root locus lies on the real axis if the total number of open-loop poles and 

zeros to the right of the section is odd.


 If the root locus intersects the imaginary axis then the point of intersection are 

conjugate. From the open loop complex pole the root locus departs making an angle 

with the horizontal line.


 The root locus starts from open-loop poles.


 The root locus terminates either on open loop zero or infinity. 


 The number of branches of roots locus are:

 

         N if P>Z 

and M if P<Z 
 

where N —> No. of poles ‗P‘ 

M —> No. of zeros ‗Z‘ 

 
 
 

 Centroid is the centre of asymptotes. It is given by (an)









 Angle of asymptotes is denoted by ‗p
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 Angle of departure is. tangent to root locus at complex pole
 
 
 
 
 
 
 
 
 
 
 

 

Based on the pole and zero distributions of an open-loop system the stability of the closed-

loop system can be discussed as a function of one scalar parameter. The root-locus method 

shown in this module is a technique that can be used as a tool to design control systems. The 

basic ideas and its relevancy to control system design are introduced and illustrated. Ten 

general rules for constructing root loci for positive and negative gain are shortly presented 

such that they can be easily applied. This is demonstrated by some discussed examples, by a 

table with sixteen examples and by a comprehensive design of a closed-loop system of higher 

order.
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Example Problems: 

 

Q.1. Consider the example 
 
 
 
 
 
 
 

with , and . The poles of the closed-loop transfer function 
 
 
 
 
 
 
 

are the roots and of the characteristic equation 
 
 
 
 
 
 

and are given by 
 
 
 
 
 

 

As and it can be seen that for the poles of the closed loop 

transfer function are identical with those of the open-loop transfer function . For other 
 

values the following two cases are considered: 

a) 
 

: Both roots and  are  real  and lie on the real axis in the range of 
 

and ; 
 
b)  

: The roots and are conjugate complex with the real part , 
 

which does not depend on , and the imaginary part Im . 

The curve has two branches as shown in Figure 6.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.2: Root locus of a simple second-order system 
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At is the breakaway point of the two branches. Checking the angle 

condition the condition 

 
 
 
 
 

 

must  be  valid.  The  complex  numbers  and  have  the  angles  and  and  the 
 

magnitudes and . The triangle ( ) in Figure 6.2 yields the angle 

condition. Evaluating the magnitude condition according to Eq. (6.8) 

 
 
 
 

 

one obtains the value on the root locus. E.g. for the gain of the open loop is 
 
 
 

 

The value of at the breakaway point is 
 

 

Table 5.1 shows further examples of some 1st- and 2nd-order systems. 
 

Table 5.1: Root loci of 1st- and 2nd-order systems 
 

    

 root locus  root locus 
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3.7.  General rules for constructing root loci 

 

To facilitate the application of the root-locus method for systems of higher order than 2nd, 

rules can be established. These rules are based upon the interpretation of the angle condition 

and the analysis of the characteristic equation. The rules presented aid in obtaining the root 

locus by expediting the manual plotting of the locus. But for automatic plotting using a 

computer these rules provide checkpoints to ensure that the solution is correct. 

 

Though the angle and magnitude conditions can also be applied to systems having dead time, 

in the following we restrict to the case of the open-loop rational transfer functions according 

to Eq. (3.3) 
 

 

(3.11) 
 
 
 

 

or 

 

(3.12) 
 

 

As this transfer function can be written in terms of poles and zeros and ( ; 

) can be represented by their magnitudes and angles 

 
 
 
 
 
 

 

or 
 
 
 

(3.13) 
 
 
 
 
 

 

From Eq. (3.8) the magnitude condition 
 

 

(3.14) 
 
 
 
 

 

and from Eq. (3.9) the angle condition 

 

(3.15)  
for 
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follows. Here and denote the angles of the complex values and , 

respectively. All angles are considered positive, measured in the counterclockwise sense. If 

for each point the sum of these angles in the plane is calculated, just those particular points 

that fulfil the condition in Eq. (3.15) are points on the root locus. This principle of 

constructing a root-locus curve - as shown in Figure 3.3 - is mostly used for automatic root-

locus plotting. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3: Pole-zero diagram for construction of the root locus 

 

In the following the most important rules for the construction of root loci for are listed: 

 

Rule 1 Symmetry  
As all roots are either real or complex conjugate pairs so that the root locus is 

symmetrical to the real axis. 
 
Rule 2 Number of branches 
 

The number of branches of the root locus is equal to the number of poles of the 

open-loop transfer function. 
 
Rule 3 Locus start and end points  

The locus starting points ( ) are at the open-loop poles and the locus ending 
 

points ( ) are at the open-loop zeros. branches end at infinity. The 

number of starting branches from a pole and ending branches at a zero is equal to the 

multiplicity of the poles and zeros, respectively. A point at infinity is considered as an 
 

equivalent zero of multiplicity equal to .  

Rule 4 Real axis locus 
 

If the total number of poles and zeros to the right of a point on the real axis is odd, 

this point lies on the locus. 
 
Rule 5 Asymptotes  

There are asymptotes of the root locus with a slope of 

 

(3.16) 
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For  and  4  one  obtains  the  asymptote  configurations  as  shown  in 
 

Figure 3.4. 
 
 
 
 
 
 
 
 

 

Figure 5.4: Asymptote configurations of the root locus 
 
 

 

Rule 6 Real axis intercept of the asymptotes  

The real axis crossing of the asymptotes is at 

 

(3.17) 
 
 
 

 

Rule 7 Breakaway and break-in points on the real axis  

At least one breakaway or break-in point exists if a branch of the root 

locus is on the real axis between two poles or zeros, respectively. Conditions to find 

such real points are based on the fact that they represent multiple real roots. In 

addition to the characteristic equation  for multiple roots the condition 
 

(3.18) 
 
 
 

 

must be fulfilled, which is equivalent to 

 

(3.19) 
 
 
 

 

for . If there are no poles or zeros, the corresponding sum is zero. 
 

Rule 8 Complex pole/zero angle of departure/entry  

The angle of departure of pairs of poles with multiplicity is 
 

 

(3.20) 
 
 
 
 

 

and the angle of entry of the pairs of zeros with multiplicity  
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(3.21) 
 
 
 
 

 

Rule 9 Root-locus calibration  

The labels of the values of can be determined by using 
 

 

(3.22) 
 
 
 
 

 

For the denominator is equal to one. 
 

Rule 10 Asymptotic stability  

The closed loop system is asymptotically stable for all values of for which the 

locus lies in the left-half plane. From the imaginary-axis crossing points the critical 

values can be determined. 

 

The rules shown above are for positive values of . According to the angle condition of 
 

Eq. (5.10) for negative values of some rules have to be modified. In the following these 

rules are numbered as above but labelled by a *. 

 

Rule 3* Locus start and end points  

The locus starting points ( ) are at the open-loop poles and the locus ending 
 

points ( ) are at the open-loop zeros. branches end at infinity. The 

number of starting branches from a pole and ending branches at a zero is equal to the 

multiplicity of the poles and zeros, respectively. A point at infinity is considered as an 
 

equivalent zero of multiplicity equal to .  

Rule 4* Real axis locus 
 

If the total number of poles and zeros to the right of a point on the real axis is even 

including zero, this point lies on the locus. 
 
Rule 5* Asymptotes  

There are asymptotes of the root locus with a slope of 

 

(3.23) 
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Rule 8* Complex pole/zero angle of departure/entry  

The angle of departure of pairs of poles with multiplicity is 
 

 

(3.24) 
 
 
 
 

 

and the angle of entry of the pairs of zeros with multiplicity  
 

 

(3.25) 
 
 
 
 
 
 

 

The root-locus method can also be applied for other cases than varying . This is possible as  

long as can be rewritten such that the angle condition according to Eq. (3.15) and the 

rules given above can be applied. This will be demonstrated in the following two examples. 

 

Q.2. Given the closed-loop characteristic equation 
 
 
 
 
 
 

the root locus for varying the parameter is required. The characteristic equation is therefore 

rewritten as 

 
 
 

 

This form then correspondents to the standard form 
 
 
 
 
 
 

 

to which the rules can be applied.  

 

Q.3.Given the closed-loop characteristic equation 
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it is required to find the effect of the parameter on the position of the closed-loop poles. The 

equation is rewritten into the desired form 

 
 
 
 

 

Using the rules 1 to 10 one can easily predict the geometrical form of the root locus based on 

the distribution of the open-loop poles and zeros. Table 3.2 shows some typical distributions 

of open-loop poles and zeros and their root loci. 

 

Table 3.2: Typical distributions of open-loop poles and zeros and the root loci 
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For the qualitative assessment of the root locus one can use a physical analogy. If all open-

loop poles are substituted by a negative electrical charge and all zeros by a commensurate 

positive one and if a massless negative charged particle is put onto a point of the root locus, a 

movement is observed. The path that the particle takes because of the interplay between the 

repulsion of the poles and the attraction of the zeros lies just on the root locus. Comparing the 

root locus examples 3 and 9 of Table 3.2 the 'repulsive' effect of the additional pole can be 

clearly seen. 

 

The systematic application of the rules from section 3.2 for the construction of a root locus is 

shown in the following non-trivial example for the open-loop transfer function 
 

 

(3.26) 
 
 
 

 

The degree of the numerator polynomial is . This means that the transfer function has 

one zero ( ). The degree of the denominator polynomial is and we have the 
 

four poles ( , , , 2). First the poles (x) and the 

zeros (o) of the open loop are drawn on the plane as shown in Figure 3.5. According to rule 

3 these poles are just 
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Figure  3.5:  Root  locus  of .  Values  of are  in  red and 

underlined.    

those  points  of  the  root  locus  where and  the  zeros  where .  We have  

branches that go to infinity and the asymptotes of these three branches are lines 

which intercept the real axis according to rule 6. From Eq. (3.17) the crossing is at 

 

(3.27) 
 
 
 

 

and the slopes of the asymptotes are according to Eq. (3.16) 

 

(3.28) 

 

i.e.  
 
 

 

The asymptotes are shown in Figure 3.5 as blue lines. Using Rule 4 it can be checked which 

points on the real axis are points on the root locus. The points with and 
 

belong to the root locus, because to the right of them the number of poles and zeros is 

odd. According to rule 7 breakaway and break-in points can only occur pairwise on the real 

axis to the left of -2. These points are real solutions of the Eq. (3.19). Here we have 
 

(3.29) 
 
 
 

 

or 
 
 
 
 
 
 

This equation has the solutions , and . The real 

roots and are the positions of the breakaway and the break-in point. 

The angle of departure of the root locus from the complex pole at can be 

determined from Figure 3.6 according to Eq. (3.20): 
 

(3.30) 
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Figure 5.6: Calculating the angle of departure of the complex pole  
 

With this specifications the root locus can be sketched. Using rule 9 the value of can be 

determined for some selected points. The value at the intersection with the imaginary axis is 

 
 
 
 
 

 

 

OUTCOMES: 

At the end of the module, the students are able to:  

 Obtain the time response and steady-state error of the system. 

 Knowledge about improvement of static and transient behaviour of a system. 

 Determine stability of the various control systems by applying Routh’s stability 

criterion. 

 Construct root loci from open loop transfer functions of control systems and Analyze 

the behaviour of roots with system gain. 

 Assess the stability of closed loop systems by means of the root location in s-plane and 

their effects on system performance. 

 

 

SELF-TEST QUESTIONS: 

1. Obtain an expression for time response of the first order system subject to step input. 

2. Define 

1) Time response. 

2) Transient response. 

3) Steady state response. 

4) Steady state error. 

3. Determine the stability of the system whose characteristic equation is given by  

S4+6S3+23S2+40S+50=0,  Using Routh's criterion. 

4. Sketch the root locus for G(S)H(S)=            K  show all details on it.                                                   

     S(S+2)(S+4) 

5. Sketch the root locus for G(S)H(S)=            10K  show all details on it.                                                   

     S(S+2)(S+6) 
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6. Sketch the root locus for G(S)H(S)=            K(S+1)  show all details on it.                                                   

     S(S+2)(S+4) 

 

FURTHER READING: 
1. Control engineering, Swarnakiran S, Sunstar publisher, 2018. 

2. Feedback Control System, Schaum’s series. 2001. 

 
 
 


