
MODULE 2 

SOURCE CODING 

Structure: 

1. Introduction- Encoding of the source output 
2. Shannon‟s encoding algorithm 
3. Kraft McMillan Inequality property – KMI  

4. Source coding theorem  
5. Outcome 

 

Objective: 

1. To study the different encoding algorithms 

2. To understand the concept of channels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.1 Kraft McMillan Inequality Property 

Encoding‟ or „Enciphering‟ is a procedure for asso ciating words constructed from a finite alphabet 

of a language with given words of another language in a one-to- one manner. 
Let the source be characterized by the set of symbols 

 

sequences of symbols of S into sequences of symbol of X. In other words “ coding  means representing 

each and every symbol of S by a sequence of symbols of X such that there shall be a one- to-one 

relationship” Any finite sequence of symbols from an alphabet will be called a “ Word”. Thus any 

sequence from the alphabet „ X‟ forms a “ code word”. The total number of symbols contained in the „ 

word‟ will be called “ word length”. For example the sequences { x1 ; x1x3x4 ; x3x5x7x9 ; x1x1x2x2x2} 
form    code    words.    Their    word    lengths    are    respectively1;    3;    4;    and    5.The    sequences 

{100001001100011000} and {1100111100001111000111000} are binary code words with word lengths 

18 and 25 respectively. 

 

Basic properties of codes: 

 

The definition of codes given above is very broad and includes many undesirable properties. 

In order that the definition is useful in code synthesis, we require the codes to satisfy certain 
properties. We shall intentionally take trivial examples in order to get a better understanding of the 

desired properties. 
 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      S= 

{s1,s2..sq} 

We shall call „ S‟ as the “ Source alphabet”. Consider another set, X, comprising of „ r‟ symbols. 

X={x1,x2…xr} 

We shall call „ X‟ as the “ code alphabet”. We define “ coding” as the mapping of all possible 



 
 

  

 

 

 

 

1. Block codes: 

 

A block code is one in which a particular message of the source is always encoded into the 

same “fixed sequence” of the code symbol. Although, in general, block m eans „ a group having 

identical property‟ we shall use the word here to mean a „ fixed sequence‟ only. Accordingly, the code can 

be a „fixed length code‟ or a “ variable length code” and we shall be concentrating on the latter type in 

this chapter. To be more specific as to what we mean by a block code, consider a communication system 

with one transmitter and one receiver. Information is transmitted using certain set of code words. If the 

transmitter wants to change the code set, first thing to be done is to inform the receiver. Otherwise the 

receiver will never be able to understand what is being transmitted. Thus, until and unless the receiver is 

informed about the changes made you are not permitted to change the code set. In this sense the code 

words we are seeking shall be always finite sequences of the code alphabet-they are fixed sequence 

codes. 

 

Example 2.1: Source alphabet is S = {s1, s2, s3, s4}, Code alphabet is X = {0, 1} and The Code words 

are: C = {0, 11, 10, 11} 

 

2. Non – singular codes: 
 

A block code is said to be nonsingular if all the words of the code set X1, are “distinct”. The 

Codes given in Example 6.1 do not satisfy this property as the codes for s2 and s4 are not different. 
We cannot distinguish the code words. If the codes are not distinguishable on a simple inspection we 
say the code set is “ singular in the small”. We modify the code as below. 

 

Example 2.2: S = {s1, s2, s3, s4}, X = {0, 1}; Codes, C = {0, 11, 10, 01} 

 
However, the codes given in Example 6.2 although appear to be non-singular, upon transmission 
would pose problems in decoding. For, if the transmitted sequence is 0011, it might be interpreted as 

s1 s1 s4 or s2 s4. Thus there is an ambiguity about the code. No doubt, the code is non-singular in the 
small, but becomes “Singular in the large”. 

 

3. Uniquely decodable codes: 

 
A non-singular code is uniquely decipherable, if every word immersed in a sequence of 

words can be uniquely identified. The n
th 

extension of a code, that maps each message into the code 
words C, is defined as a code which maps the sequence of messages into a sequence of code words. 
This is also a block code, as illustrated in the following example. 

 

Example 2.3: Second extension of the code set given in Example 6.2. 

S
2
={s1s1,s1s2,s1s3,s1s4; s2s1,s2s2,s2s3,s2s4,s3s1,s3s2,s3s3,s3s4,s4s1,s4s2,s4s3,s4s4} 

 

Source Codes Source Codes Source Codes Source Codes 
Symbols Symbols Symbols Symbols 

s1s1 0 0 s2s1 1 1 0 s3s1 1 0 0 s4s1 0 1 0 
s1s2 0 1 1 s2s2 1 1 1 1 s3s2 1 0 1 1 s4s2 0 1 1 1 
s1s3 0 1 0 s2s3 1 1 1 0 s3s3 1 0 1 0 s4s3 0 1 1 0 

s1s4 0 0 1 s2s4 1 1 0 1 s3s4 1 0 0 1 s4s4 0 1 0 1 

Notice that, in the above example, the codes for the source sequences, s1s3 and s4s1 are not distinct and hence 

the code is “Singular in the Large”. Since such singularity properties introduce ambiguity in the decoding 

stage, we therefore require, in general, for unique decidability of our codes that “ The nth 

extension of the code be non-singular for every finite n.” 

 

 

 

 

 

 

 



 

 

4. Instantaneous Codes: 

 
A uniquely decodable code is said to be “ instantaneous” if the end of any code word is 

recognizable with out the need of inspection of succeeding code symbols. That is there is no time lag 

in the process of decoding. To understand the concept, consider the following codes: 

 

Example 2.4:    

Source symbols Code A Code B Code C 
s 1 0 0 0 0 

s 2 0 1 1 0 0 1 
s 3 1 0 1 1 0 0 1 1 

s 4 1 1 1 1 1 0 0 1 1 1 

 

 

Code A undoubtedly is the simplest possible uniquely decipherable code. It is non- singular and all 

the code words have same length. The decoding can be done as soon as we receive two code symbols 

without any need to receive succeeding code symbols. 

 

Code B is also uniquely decodable with a special feature that the 0`s indicate the termination of a 

code word. It is called the “comma code”. When scanning a sequence of code symbols, we may use 

the comma to determine the end of a code word and the beginning of the other. Accordingly, notice 

that the codes can be decoded as and when they are received and there is, once again, no time lag in 

the decoding process. 

 

Whereas, although Code C is a non- singular and uniquely decodable code it cannot be decoded word 

by word as it is received. For example, if we receive „01‟, we cannot decode it as „ s2‟ until we 

receive the next code symbol. If the next code symbol is „0‟, indeed the previous word corresponds to 

s2, while if it is a „1‟ it may be the symbol s3; which can be concluded so if only if we receive a „0‟in 

the fourth place. Thus, there is a definite „time lag‟ before a word can be decoded. Such a „time 
waste‟ is not there if we use either Code A or Code B. Further, what we are envisaging is the 
property by which a sequence of code words is uniquely and instantaneously decodable even if there 
is no spacing between successive words. The common English words do not posses this property. For 
example the words “ FOUND”, “ AT” and “ ION” when transmitted without spacing yield, at the 
receiver, an altogether new word” FOUNDATION”! A sufficient condition for such property is that 

“No encoded word can be obtained from each other by the addition of more letters “This property 

is called “ prefix property”. 

Let Xk = xk1xk2….x km, be a code word of some source symbol sk. Then the sequences of 

code symbols, (xk1xk2….x k j),  j ≤ m, are called “prefixes” of the code word. Notice that a code 

word of length „ m‟ will have „ m‟ prefixes. For example, the code word 0111 has four prefixes, viz; 
0, 01, 011 and 0111.The complete code word is also regarded as a prefix. 

 

Prefix property: “A necessary and sufficient condition for a code to be „instantaneous‟ is 

that no complete code word be a prefix of some other code word”. 

The sufficiency condition follows immediately from the definition of the word “Instantaneous”. If 
no word is a prefix of some other word, we can decode any received sequence of code symbols 
comprising of code words in a direct manner. We scan the received sequence until we come to 
subsequence which corresponds to a complete code word. Since by assumption it is not a prefix of 
any other code word, the decoding is unique and there will be no time wasted in the process of 
decoding. The “necessary” condition can be verified by assuming the contrary and deriving its 

“contradiction”. That is, assume that there exists some word of our code, say xi, which is a prefix of 

some other code word xj. If we scan a received sequence and arrive at a subsequence that corresponds 

to xi, this subsequences may be a complete code word or it may just be the first part of code word xj. 
We cannot possibly tell which of these alternatives is true until we examine some more code symbols 
of the sequence. Accordingly, there is definite time wasted before a decision can be made and hence 
the code is not instantaneous. 



 

 

 

5. Optimal codes: 

 
An instantaneous code is said to be optimal if it has “minimum average word length”, for a source 

with a given probability assignment for the source symbols. In such codes, source symbols with 
higher probabilities of occurrence are made to correspond to shorter code words. Suppose that a 

Source symbol si has a probability of occurrence Pi and has a code word of length li assigned to it, 

while a source symbol sj with probability Pj has a code word of length lj. If Pi >Pj then let li<l j. For 

the two code words considered, it then follows, that the average length L1 is given by 

 
L1 = Pili + Pjlj  

Now, suppose we interchange the code words so that the code word of length lj corresponds to si and 

that of length li corresponds to sj. Then, the average length becomes 

L2 = Pilj + Pjli It then follows, 

 L2 – L 1 =Pi(lj – l i) + Pj (li – l j) 

= (Pi – P j) (lj – li)  

Since by assumption Pi>Pj and li<lj, it is clear that (L2 –L 1) is positive. That is assignment of 

source symbols and code word length corresponding to the average length L1 is shorter, which is the 

requirement for optimal codes. 

 

A code that satisfies all the five properties is called an “irreducible code”. 

All the above properties can be arranged as shown in Fig 2.1 which serves as a quick reference of the 

basic requirements of a code. Fig 2.2 gives the requirements in the form of a „Tree‟ diagram. Notice 
that both sketches illustrate one and the same concept.  

 
2.1 Codes Sub grouping 

 

2.2 Code Tree diagram



 

 

2.2 Construction of Instantaneous Codes: 

Consider encoding of a 5 symbol source into Binary instantaneous codes i.e. 

S = {s1, s2, s3, s4, s5}; X = {0, 1} 

We may start by assigning „0‟ to s1 

i.e. s1 0 

If this is the case, to have prefix property, all other source symbols must correspond to code words 

beginning with 1. If we let s2 correspond to „ 1‟, we would be left with no code symbol for encoding 
the remaining three source symbols. We might have 

s2  10 

This in turn would require the remaining code words to start with 11. If 

s3  110; 

Then the only 3 bit prefix unused is 111 and we might set 

s4  1110 

s5  1111 

 

In the above code, notice that the starting of the code by letting s1 correspond „0‟ has cut down the 

number of possible code words. Once we have taken this step, we are restricted to code words starting 

with „1‟. Hence, we might expect to have more freedom if we select a 2-binit code word for 

s1. We now have four prefixes possible 00, 01, 10 and 11; the first three can be directly a s s i g n e d  to s1, s2 

and s3. With the last one we construct code words of length 3. Thus the possible instantaneous code is 

s1  00 

s2  01 

s3  10 

s4  110 

s5  111 

Thus, observe that shorter we make the first few code words, the longer we will have to make the 
later code words. 

 
One may wish to construct an instantaneous code by pre-specifying the word lengths. The 

necessary and sufficient conditions for the existence of such a code are provided by the „Kraft 

Inequality‟. 

 

Kraft Inequality: 
 

Given a source S = {s1, s2…s q}.Let the word lengths of the codes corresponding to these symbols be 
l1, l2 …….l q and let the code alphabet be X = {x1, x2 …x r}. Then, an instantaneous code for the 

source exists iffy is called Kraft Inequality. 

 q 

∑ r 
lk 
 1 

  

  
k 1 



 

 

 

Example 2.5: 

 
A six symbol source is encoded into Binary codes shown below. Which of these codes are 
instantaneous? 

 

Source Code A Code B Code C Code D Code E 

symbol          

s1  0 0 0  0 0  0   

s2  0 1 1 0 0 0 1 0 1 0 0 0 1 0  

s3  1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 
s4  1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 
s5  1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 

s6  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 
6   

 13 
  

7 
  

   1 
 

∑2 l k 1 < 1 1 < 1 1 > 1 
16 

  

k 1     8   32  

 

As a first test we apply the Kraft Inequality and the result is accordingly tabulated. Code E does 
not satisfy Kraft Inequality and it is not an instantaneous code. 

 

  2.3 Source coding theorem: 

   Compact code: Huffman‟s Minimum Redundancy code: 

 

The Huffman code was created by American, D. A. Huffman, in 1952. Huffman`s procedure 

is applicable for both Binary and Non- Binary encoding. It is clear that a code with minimum average 

length, L, would be more efficient and hence would have minimum redundancy associated with it. A 
compact code is one which achieves this objective. Thus for an optimum coding we require: 

 

       (1) Longer code word should correspond to message lowest probability. 

       (2) lk  lk 1  k  1,2 ,......qr 1
 

       (3) lp-r = lq-r-1 = l q-r-2 = …..= lq 

 

 (4)The codes must satisfy the prefix property. 

 

Huffman has suggested a simple method that guarantees an optimal code even is not satisfied. 

The procedure consists of step- by- step reduction of the original source followed by a code 

construction, starting with the final reduced source and working backwards to the original source. 

The procedure requires  steps, where 

q = r + (r-1)  

Notice that  is an integer and if Eq.(6.24) is not satisfied one has to add few dummy 

symbols with zero probability of occurrence and proceed with the procedure or the first step is 

performed by setting r1 = q-(r-1) while the remaining steps involve clubbing of the last r messages of 

the respective stages. The procedure is as follows: 

 List the source symbols in the decreasing order of probabilities 

 Check if q = r + (r-1) is satisfied and find the integer ‘ ’ . Otherwise add suitable number of 
dummy symbols of zero probability of occurrence to satisfy the equation. This step is not required if 
we are to determine binary codes. 

 

 



 

 

 

1. Repeat steps 1 and 3 respectively on the resulting set of symbols until in the final step exactly 
r- symbols are left. 

2. Assign codes freely to the last r-composite symbols and work backwards to the original 

source to arrive at the optimum code 
3. Alternatively, following the steps carefully a tree diagram can be constructed starting 

from the final step and codes read off directly. 

4. Discard the codes of the dummy symbols. 

Before we present an example, it is in order to discuss the steps involved. In the first step, after 
arranging the symbols in the decreasing order of probabilities; we club the last r-symbols into a 

composite symbol, say 1 whose probability equals the sum of the last r-probabilities. Now we 

are left with q-r+1 symbols .In the second step, we again club the last r-symbols and the second 
reduced source will now have (q-r+1)-r+1= q-2r+2 symbols .Continuing in this way we find the 

k-th reduced source will have q- kr + k = q – k(r - 1) symbols. Accordingly, if  -steps are 

required and the final reduced source should have exactly r-symbols, then we must have r = q -  

(r - 1) last r1=q-( r  1 ) symbols while the second and subsequent reductions involve last r-

symbols only. However, if the reader has any confusion, he can add the dummy messages as 
indicated and continue with the procedure and the final result is no different at all. 

 

Let us understand the meaning of “ working backwards”. Suppose k is the composite symbol 

obtained in the kth step by clubbing the last r-Symbols of the (k-1) th reduced source. Then 

whatever code is assigned to k will form the starting code sequence for the code words of its 

constituents in the (k-1) th reduction. 

Example 2.5: (Binary Encoding) 

S = {s1, s2, s3, s4, 

s5, s6}, X = {0, 1}; 

1 1 1   1 1 1 

P = , , , , , 

3   4 8   8 12 12 

 
.Notice that the tree diagram can be easily constructed from the final step of the source reduction 
and decomposing the composite symbols towards the original symbols. Further, observe that the 

codes are originating from the same source and diverge out into different tree branches thus 
ensuring prefix property to the resultant code. Finally, notice that there is no restriction in the 

allocation of codes in each step and accordingly, the order of the assignment can be changed in 

any or all steps. Thus for the problem illustrated there can be as many as 2. (2.2+2.2) = 16 

possible instantaneous code patterns. For example we can take the compliments of First column, 

Second column, or Third column and combinations there off as illustrated below. 
 

  Code  I  II III 

s1 ……… 0 0 
 

1 0 1 1 
 

1 1 
s2 …….. 1 0 0 0 0 1 0 1 

s3 ……. 0 1 0 1 1 0 1 0 0 1 0 1 

s4 ……. 0 1 1 1 1 1 1 0 1 1 0 0 

s5 …… 1 1 0 0 1 0 0 0 0 0 0 1 

s6 ……. 1 1 1 0 1 1 0 0 1 0 0 0 



 

 

 

 

 

 
 

Code I is obtained by taking complement of the first column of the original code. Code II is obtained by 
taking complements of second column of Code I. Code III is obtained by taking complements of third 

column of Code II. However, notice that, lk, the word length of the code word for sk is a constant for all 
possible codes. 

 

For the binary code generated, we have: 
 

6 

L  ∑ pk lk  1  2  1  2 1 
 3  1  3  1  3  1  3 = 29 binits/sym=2.4167 binits/sym 

k 1 3 4 8 8 12 12 12 

 

H(S) = 1 log 3  1 log 4  2  1 log 8  2  1 log 12 

3 4 8 12 

=
 1 

( 6 log 3  19 ) bits/sym = 2.3758 bits/ sym 

12 

 c = 
6 log 3  19 

 98.31% ; Ec = 1.69% 

29 

Example 2.6(Trinary Coding) 

 

We shall consider the source of Example 6.12. For Trinary codes r = 3, [X = (0, 1, 2)] 

Since q = 6, we have from 

q = r + α(r-1) 

α = q  r 6  3   3  1.5 
 r  1  2  2  

Thus α is not an integer and hence we require one dummy message which makes α = 2. 



 

 

 

 

 

 

 

 

 
 

For this code, we have 

L  1  1  1  1  2  1  2  1  3  1  3  1  19 Trinits / sym . 

3 4 8 8 12 12 12 

And    6 log 3  19  94.672% , Ec=5.328% 

c 19 

Example 2.7: 
 

We conclude this section with an example illustrating Shannon‟s noiseless coding theorem. 

Consider a source S = {s1, s, s3} with P = {1/2, 1/3, 1/6} 

 

A compact code for this source is: s1  0, s2 10, s3 11 

 

Hence we have 

L  1 2 2  1.5   

 2  3  6      

H (S )    1 log 2 1 log 3 1 log 6 
 2  3  6  

= 1.459147917 bits/sym 

 c = 97.28% 

The second extension of this source will have 3
2 

= 9 symbols and the corresponding probabilities are 
computed by multiplying the constituent probabilities as shown below 

 
 1   1  1 

s1 s1 4 s2 s1  6 s3 s1 12 

 1   1  1 

s1 s2 6 s2 s2  9 s3 s2 18 

 1   1  1 

s1 s3 12 s2 s3  18 s3 s3 36 

 

These messages are now labeled „ mk’ and are arranged in the decreasing order of probability. 

M = {m1, m2, m3, m4, m5, m6, m7, m8, m9} 



 

 

c 

 

 

 

 

 

1 1 1 1 1 1 1 1 1 

P =  ,       ,      ,      ,  ,  ,  ,  ,   

4 6   6 9   12 12 18  18 36 

 
The Reduction diagram and tree diagram for code construction of the second extended source is 
shown in Fig 5.9. 

 
 

For the codes of second extension, we have the following: 

H (S2) = 2 H(S) 

L = 2   1 + 2  1 + 3   1  + 3   1   + 4   1 + 4   1 + 4   1 + 5   1 +  5   1 

4 6 6 9 12 12 18 18 36 

= 107   binits/symbol = 2.97222222
 binits/sy
m 36 

  = 
H ( S 2 

) 

L log 2 


 2 x 1.459147917 

2.97222222 

= 98.186 % Ec = 1.814 % 

 

An increase in efficiency of 0.909 % (absolute) is achieved. 

This problem illustrates how encoding of extensions increase the efficiency of coding in 

accordance with Shannon‟s noiseless coding theorem. 

 
One non- uniqueness in Huffman coding arises in making decisions as to where to move a 

composite symbol when you come across identical probabilities. In Shannon- Fano binary encoding 

you came across a situation where you are required to make a logical reasoning in deciding the 
partitioning. To illustrate this point, consider the following example.



 

 

 

 

Example 2.8: 
Consider a zero memory source with 

S= {s1, s2, s3, s4, s5}; P= {0.55, 0.15, 0.15, 0.10, 0.05}; X= {0, 1} 

Construct two different Huffman binary codes as directed below: 

(a) Move the composite symbol as ‘high’ as possible. 
(b) Move the composite symbol as ‘low’ as possible 

(c) In each case compute the variance of the word lengths and comment on the results. 

 

(a)We shall place the composite symbol as „ high‟ as possible. The source reduction and the 

corresponding tree diagram are shown in Fig 6.10 
 

Symbols s1 s2 s3 s4 s5 

Codes 0 100 101 110 111 

lk 1 3 3 3 3 

 

We compute the average word length and variance of the word lengths as below: 

 

L=0.55+3(0.15+0.15+0.10+0.05) =1.90 binits/symbol 

 2 
l = 0.55(1-1.90)2 + 0.45 (3-19)2 = 0.99 is the variance of the word length. 

(a) We shall move the composite symbol as „ low‟ as possible. The source reduction and the 

corresponding tree diagram are shown in Fig 5.11.We get yet another code, completely 
different in structure to the previous one. 

 

Symbols     s1     s2     s3     s4  s5 

Codes 0 11 100 10

10 

10

11 

lk 1 2 3 4 4 



 

 

2 

 

 
 

For this case we have: L = 0.55 + 0.30 + 0.45 + 0.20= 1.90 binits/symbol 

 

Notice that the average length of the codes is same. 

 

 

2 = 0.55 (1 -1.9)2 + 0.15 (2 -1.9)2 + 0.15(3 – 1.9) 2 + 0.10(4 -1.9)2 + 0.05(4 -1.9)2
 

= 1.29 is the variance of the word lengths. 

 
Thus, if the composite symbol is moved as high as possible, the variance of the average code 

word length over the ensemble of source symbols would become smaller, which, indeed, is desirable. 
Larger variance implies larger buffer requirement for storage purposes. Further, if the variance is 

large, there is always a possibility of data overflow and the time required to transmit information 
would be larger. We must avoid such a situation. Hence we always look for codes that have minimum 

possible variance of the word lengths. Intuitively “ avoid reducing a reduced symbol in the immediate 
next step as far as possible moving the composite symbol as high as possible” 

 

 Outcome: 

  Able to understand the concept of Kraft McMillan Inequality property. 

  Able to understand and apply Shannon‟s encoding algorithm steps and procedure. 

 Able to solve problem related to binary coding. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 


