Software Engineering [15CS42]

3. SOFTWARE TESTING & SOFTWARE EVOLUTION
SOFTWARE TESTING

— Testing is intended to show that a program does what it is intended to do and to
discover program defects before it is put into use.
— The testing process has two distinct goals:
1. To demonstrate to the developer and the customer that the software meets its
requirements. For custom software, this means that there should be at least one
test for every requirement in the requirements‘document. For generic software
products, it means that there should be tests for all of the system features, plus
combinations of these features, that will be incorporated in the product release.
2. To discover situations in which the behavior of the software is incorrect,
undesirable, or does not conform to its specification.. Defect testing is
concerned with rooting out undesirable system behavior such as system
crashes, unwanted .nteractions with other systems, incorrect computations,
and data corruption
— Fig 3.1 helps to explain the differences between validation testing and defect testing.
— The difference between verification and validation can'be mentioned as:

‘Validation: Are we building the right product?’

‘Verification: Are we building the product right?’

© InputTes Data , ——— inpuis Causing
’ - Anomalous
i I Behaeiar
Sy Ehem

e - ‘*-. .
[Output Test Resubs 0, ———— Oupuswhich Reweal

- the Presence of

— e D s

Fig 3.1: An input-output model of program testing
— The ultimate goal of verification and validation processes is to establish confidence

that the software system is ‘fit for purpose’.

— This means that the system must be good enough for its intended use.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 1

Software Engineering [15CS42]

— The level of required confidence depends on the system’s purpose, the expectations of
the system users, and the current marketing environment for the system:
= Software purpose: The more critical the software, the more important that it
is reliable. For example, the level of confidence required for software used to
control a safety-critical system is much higher than that required for a
prototype that has been developed to demonstrate new product ideas.
= User expectations: Because of their experiences with buggy, unreliable
software, many users have low expectations of seftware quality. They are not
surprised when their software fails. When a new system is installed, users may
tolerate failures because the benefits of use.outweigh the costs of failure
recovery.
Marketing environment: When a system is marketed, the sellers of the
system must take into account competing products, the price that customers
are willing to pay for a'system, and the required schedule for delivering that
system. If a software product is very cheap, users may be willing to tolerate a
lower level of reliability.
— Fig 3.2 shows that software inspections and testing support V & V at different stages

in the software process

& u
| s pecions. |

l | l |

Raguirements Softevars LIRAL Drosign [t sbase By

5 pedfication Architedure Wb el Schemas Cgram
Spstem e ~,
Prototype | Teeng

Fig 3.2: Inspections and testing

— There are three advantages of software inspection over testing:

1. During testing, errors can mask (hide) other errors. When an error leads to
unexpected outputs, it is not sure that whether the later output anomalies are
due to a new error or are side effects of the original error. A single inspection
session can discover many errors in a system

2. Incomplete versions of a system can be inspected without additional costs. If a

program is incomplete, then it is required to develop specialized test harnesses

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 2

Software Engineering [15CS42]

to test the parts that are available. This obviously adds to the system
development costs.

3. As well as searching for program defects, an inspection can also consider
broader quality attributes of a program, such as compliance with standards,
portability, and maintainability

— Fig 3.3 is an abstract model of the ‘traditional’ testing process, as used in plan driven
development. Test cases are specifications of the inputs to the test and the expected
output from the system (the test results), plus a statement-of what is being tested.

Test Tes Tiasd Tes4
Cagos Data Resulis Reports

—— - " p o —,
{ D Test) { Propans Test \ { Run Program [Compare Resuls

. s . Dista y S witth Te=t [usta y s 0 Tt s

Fig 3.3: A model.of the software testing process

— A commercial software system-as to go through three stages of testing:

1. Development testing, where the system is tested during development to
discover bugs and defects. System designers and programmers are likely to be
involved in‘the testing process.

2. Release testing, where a separate testing team tests a complete version of the
system before it'is released to users. The aim of release testing is to check that
the system meets the requirements of system stakeholders.

3. User testing, where users or potential users of a system test the system in their
own_environment. For software products, the ‘user’ may be an internal
marketing group who decide if the software can be marketed, released, and
sold. Acceptance testing is one type of user testing where the customer
formally tests a‘system to decide if it should be accepted from the system

supplier or if further development is required.

3.1 Development Testing

— Development testing includes all testing activities that are carried out by the team
developing the system.
— The tester of the software is usually the programmer who developed that software,

although this is not always the case.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 3

Software Engineering [15CS42]

— During development, testing may be carried out at three levels of granularity:

1. Unit testing, where individual program units or object classes are tested. Unit
testing should focus on testing the functionality of objects or methods.

2. Component testing, where several individual units are integrated to create
composite components. Component testing should focus on testing component
interfaces.

3. System testing, where some or all of the components in a system are
integrated and the system is tested as a whole. System testing should focus on

testing component interactions.
3.1.1 Unit Testing

— Unit testing is the process of testing program components, such as methods or object
classes.
— Individual functions or methods are the simplest type of component.
— Your tests should be calls to these routines with different input parameters.
— The interface of this object is'shown in fig 3.4. It has a single attribute, which is its
identifier.
— An automated test has three parts:
A setup part, where you initialize the system with the test case, namely the
inputs and expected outputs
+ A call'part, where you call the abject or method to be tested.
An assertion part where you compare the result of the call with the expected

result. If the assertion evaluates to true, the test has been successful; if false,

then it has failed.

identifier

reporfiVesther |)

reports tusy)
pOwerSas e (s truments)
rembtelontml {oommands)
reonfigure (Iommands)
restart (istrumenis)

shadd rem (InSruments)

Fig 3.4: The weather station object interface

3.1.2 Choosing unit test cases

— Testing is expensive and time consuming, so it is important that you choose effective

unit test cases. Effectiveness, in this case, means two things:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 4

Software Engineering [15CS42]

1. The test cases should show that, when used as expected, the component that is
being tested does what it is supposed to do.

2. If there are defects in the component, these should be revealed by test cases. 2
test cases includes:

i. Partition testing, where groups of inputs that have common
characteristics are identified and should be processed in the same way.
Tests must be chosen from within each of these groups.

ii. Guideline-based testing, where testing guidelines are used to choose
test cases. These guidelines reflect previous experience of the kinds of
errors that programmers often make when developing components

— In fig 3.5, the large shaded ellipse on the left represents the set of all possible inputs to
the program that is being tested.

— The smaller un-shaded ellipses represent equivalence partitions.

— A program being tested should process all of the members of an Iinput equivalence
partitions in the same way.

— Output equivalence partitions are partitions within which all of the outputs have
something in common.

— The shaded area in the left ellipse represents inputs that are invalid.

— The shaded area in the right ellipse represents exceptions that may occur

Input Bquivalence Fations Output Patitaons

— SEtem

J Correct — \
i Cutputs
~ .
Peable nputs Poesible Outputs

Fig 3.5: Equivalence partitioning

— Example of equivalence partitioning is as shown in fig 3.6.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 5

Software Engineering [15CS42]

Less than 4 Betwieen 4 and 10 Miave than 10

Mumiber of Input Values

9939 1 D000
}IDL‘W SI000 999‘99\

S

Less thian 10000 Betutdeean 10000 and 22395 Mare than 23999

Input values

Fig 3.6: Equivalence Partitions

— For example, say a program specification statesthat the program accepts 4 to 8 inputs
which are five-digit integers greater than 10,000.

— This information can then be used to<identify. the input partitions and possible test
input values. These are shown in the figure above.

— Equivalence partitioning is an effective approach to testing because it helps account
for errors that programmers often make when processing inputs at the edges of
partitions.

— Guidelines that could help reveal defects include:

1. Test «software with.sequences that have only a single value. Programmers
naturally think of sequences.as made up of several values and sometimes they
embed:this assumption in their programs. Consequently, if presented with a
single value sequence, a program may not work properly.

2.-Use different sequences of different sizes in different tests. This decreases the
chances that a program with defects will accidentally produce a correct output
because of some accidental characteristics of the input.

3. Derive tests-so that the first, middle, and last elements of the sequence are
accessed. This approach reveals problems at partition boundaries.

3.1.3 Component testing

— Software components are often composite components that are made up of several

interacting objects.

— For example, in the weather station system, the reconfiguration component includes

objects that deal with each aspect of the reconfiguration.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 6

Software Engineering [15CS42]

— Testing composite components should therefore focus on showing that the component
interface behaves according to its specification.

— Fig 3.7 illustrates the idea of component interface testing. Assume that components A,
B, and C have been integrated to create a larger component or subsystem.

— The test cases are not applied to the individual components but rather to the interface
of the composite component created by combining these components.

— Interface errors in the composite component may not be detectable by testing the
individual objects because these errors result from interactions between the objects in
the component.

— Different types of interface error that can occur:

Parameter interfaces: These arecinterfaces in which data or sometimes
function references are passed from one component to another. Methods in an
object have a parameter interface.
Shared memory interfaces: These are interfaces in which a block of memory
is shared between components. Data is placed in the” memory by one
subsystem and retrieved from there by other sub-systems.
Procedural interfaces: These are interfaces in which one component
encapsulates a set of procedures that can be called by other components.
Objects and reusable components have this form of interface.

«= "Message passing interfaces: These are interfaces in which one component
requests a service from another component by passing a message to it. A

return-message includes the results of executing the service.

25—
L1 O L O
]

C

Fig 3.7: Interface testing
— Interface errors falls into 3 categories:

Interface misuse: A calling component calls some other component and

makes an error in the use of its interface. This type of error is common with

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 7

Software Engineering [15CS42]

parameter interfaces, where parameters may be of the wrong type or be passed
in the wrong order, or the wrong number of parameters may be passed.
= Interface misunderstanding: A calling component misunderstands the
specification of the interface of the called component and makes assumptions
about its behavior. The called component does not behave as expected which
then causes unexpected behavior in the calling component.
= Timing errors: These occur in real-time systems that use a shared memory or
a message-passing interface. The producer of data and the consumer of data
may operate at different speeds.
— Some general guidelines for interface testing are:
Examine the code to be tested and explicitly list each call to an external
component. Design a set of tests in which the values of the parameters to the
external components are at<the extreme ends of their ranges. These extreme
values are most likely to'reveal interface inconsistencies.
Where pointers are‘passed across an interface, always test'the interface with
null pointer parameters.
Where a camponent is called through a procedural interface, design tests that
deliberately cause the component to fail. Differing failure assumptions are one
of the most common specification misunderstandings.
Use stress testing in message passing systems. This means that tests should be
designed that generate many more messages than are likely to occur in
practice-This'is.an effective way of revealing timing problems.
= Where several components interact through shared memory, design tests that
vary the order in which these components are activated. These tests may
reveakimplicit assumptions made by the programmer about the order in which
the shared data is produced and consumed.
3.1.4 System Testing
— System testing during development involves integrating components to create a
version of the system and then testing the integrated system.
— System testing checks that components are compatible, interact correctly and transfer

the right data at the right time across their interfaces. There are 2 differences:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 8

Software Engineering [15CS42]

1. During system testing, reusable components that have been separately
developed and off-the-shelf systems may be integrated with newly developed
components. The complete system is then tested.

2. Components developed by different team members or groups may be
integrated at this stage. System testing is a collective rather than an individual
process. In some companies, system testing may involve a separate testing
team with no involvement from designers and programmers.

— Fig 3.8 shows the sequence of operations in the weather.station when it responds to a
request to collect data for the mapping system.

Weath B
Information SEtem

I |5d1l:l:|1'|rrn | |'|'||'Ea1!1eﬁh'i|:m| |l:l:rn'rn'n!h'ri.| | Westher Data |

|
1 requist {repo) _I

I
I I I
I I I
I I I
repofiVesther () | | |

..,_"_df E_'*'!EI_CE_E_ J et (= n'rmﬂfl

adomdwiledge

________ ——

reply (repart) | === ——-- +
I
I
|

Fig 3.8: Collect weather data sequence chart

3.2 Test Driven Development

— Test-driven development/(TDD) is an approach to program development in which
testing and code.development are interleaved.
— Test-driven development was introduced as part of agile methods such as Extreme
Programming.
— The fundamental TDD process is shown in fig 3.9. The steps in the process are as
follows:
1. Start by identifying the increment of functionality that is required. This should

normally be small and implementable in a few lines of code.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 9

Software Engineering [15CS42]

2. Write a test for this functionality and implement this as an automated test. This
means that the test can be executed and will report whether or not it has passed
or failed.

3. Run the test, along with all other tests that have been implemented. Initially,
the functionality is not implemented, so the new test will fail. This is
deliberate as it shows that the test adds something to the test set.

4. You then implement the functionality and re-run the test. This may involve
refactoring existing code to improve it and add-hew code to what’s already
there.

5. Once all tests run successfully, then moyve on to implementing the next chunk
of functionality.

¢ Identity New P
i, Fundionality

; | ; P
p " {

; " & T, Fail Im plement
| WiteTes J—e| RnTes J— j»—| Funditnality and

R a0t

Fig 3.9: Test-driven development

— Benefits of test=driven development are:

1. Code coverage: In principle, every code segment that you write should have
at least one associated test. Therefore, you can be confident that all of the code
in the system has actually been executed. Code is tested as it is written so
defects are.discovered early in the development process.

2. Regression testing: A test suite is developed incrementally as a program is
developed. Regression tests can be run to check that changes to the program
have fot introduced new bugs.

3. Simplified debugging: When a test fails, it should be obvious where the
problem lies. The newly written code needs to be checked and modified.
Debugging tools need not be used to locate the problem. Reports of the use of
test-driven development suggest that it is hardly ever necessary to use an
automated debugger in test-driven development

4. System documentation: The tests themselves act as a form of documentation
that describe what the code should be doing. Reading the tests can make it

easier to understand the code.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 10

Software Engineering [15CS42]

3.3 Release Testing

— Release testing is the process of testing a particular release of a system that is
intended for use outside of the development team.

— There are two important distinctions between release testing and system testing during
the development process:

1. A separate team that has not been involved in the system development should
be responsible for release testing.

2. System testing by the development team should focus on discovering bugs in
the system (defect testing). The objective of release testing is to check that the
system meets its requirements and is good enough for external use (validation
testing).

— Release testing is usually a black-box-testing process where tests are derived from the
system specification.

— The system is treated as a_black box whose. behavior can only be determined by
studying its inputs and the related outputs.

3.3.1 Requirements based testing

— A general prineiple.of good requirements engineering practice is that requirements
should be testable; that is, the requirement should be written so that a test can be
designed for that requirement.

— Consider MHC-PMS system (mental health care patient management system)

— If a patient is known.to be allergic to any particular medication, then prescription of
that medication shall result.in a warning message being issued to the system user.

— If a prescriber chooses to ignore an allergy warning, they shall provide a reason why
this has been.ignored.

— To check if these requirements have been satisfied, it might be necessary to develop
several related tests:

1. Set up a patient record with no known allergies. Prescribe medication for
allergies that are known to exist. Check that a warning message is not issued
by the system.

2. Set up a patient record with a known allergy. Prescribe the medication to that

the patient is allergic to, and check that the warning is issued by the system.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 11

Software Engineering [15CS42]

3. Set up a patient record in which allergies to two or more drugs are recorded.
Prescribe both of these drugs separately and check that the correct warning for
each drug is issued.

4. Prescribe two drugs that the patient is allergic to. Check that two warnings are
correctly issued.

5. Prescribe a drug that issues a warning and overrule that warning. Check that
the system requires the user to provide information explaining why the
warning was overruled.

3.3.2 Scenario testing

— Scenario testing is an approach to release testing where typical scenarios are devised
and are used to develop test cases for the system.

— A scenario is a story that describes oneway in'which the system.might be used.

— Scenarios should be realistic and real system users should be able to relate.to them.

— When scenario-based approach is used, normally several requirements within the
same scenario are tested.

— Therefore, as well as checking individual requirements; checking that combinations of
requirements do.not cause problems.

3.3.3 Performance testing

— Once a-System has been completely-integrated, it is possible to test for emergent

properties, such as performance and reliability.

— Performance tests have to be designed to ensure that the system can process its

intended load.

— This usually involves running a series of tests where the load is increased, until the

system performance becomes unacceptable.

— To test whether performance requirements are being achieved, an operational profile

may be constructed.

— An operational profile is a set of tests that reflect the actual mix of work that will be

handled by the system.

— This type of testing has two functions:
1. It tests the failure behavior of the system. Circumstances may arise through an
unexpected combination of events where the load placed on the system

exceeds the maximum anticipated load. In these circumstances, it is important

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 12

Software Engineering [15CS42]

that system failure should not cause data corruption or unexpected loss of user
services.

2. It stresses the system and may cause defects to come to light that would not
normally be discovered. Although it can be argued that these defects are
unlikely to cause system failures in normal usage, there may be unusual

combinations of normal circumstances that the stress testing replicates.

3.4 User Testing

— User or customer testing is a stage in the testing process in which users or customers
provide input and advice on system testing.

— This may involve formally testing a system that has been commissioned from an
external supplier, or could be an informal process where users experiment with a new
software product to see if they like'it and that it does what they need.

— In practice, there are three different types of user testing:

1. Alpha testing, where users of the software work with the development team
to test the software at the developer’s site.

2. Beta testing, where a release of the software Is made available to users to
allow them to experiment and to raise problems that they discover with the
system developers.

3. Acceptance testing, where customers test a system to decide whether or not it
is ready to be accepted from the system developers and deployed in the
customer environment.

— There are six stages in the acceptance testing process, as shown in fig 3.10.

— They are:

1. Define acceptance criteria: This stage should, ideally, take place early in the
process before the contract for the system is signed. The acceptance criteria
should be part of the system contract and be agreed between the customer and
the developer. Detailed requirements may not be available and there may be
significant requirements change during the development process.

2. Plan acceptance testing: This involves deciding on the resources, time, and
budget for acceptance testing and establishing a testing schedule. The

acceptance test plan should also discuss the required coverage of the

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 13

Software Engineering [15CS42]

requirements and the order in which system features are tested. It should
define risks to the testing process, such as system crashes and inadequate
performance, and discuss how these risks can be mitigated.

3. Derive acceptance tests: Once acceptance criteria have been established, tests
have to be designed to check whether or not a system is acceptable.
Acceptance tests should aim to test both the functional and non-functional
characteristics (e.g., performance) of the system.

4. Run acceptance tests: The agreed acceptance:tests are executed on the
system. ldeally, this should take place in the actual environment where the
system will be used, but this may be disruptive and impractical. Therefore, a
user testing environment may have to be set up to run these tests. It is difficult
to automate this process as part of the acceptance tests may involve testing the
interactions between end-users and the system.

5. Negotiate test results:<It is very unlikely that all of the defined acceptance
tests will pass and that there will be no problems with the system. If this is the
case, then acceptance testing is complete and.the system can be handed over.
More commonly, some problems will be ‘discovered. In such cases, the
developer and-the customer have to negotiate/to decide if the system is good
enough to be put into use. They must also agree on the developer’s response to
identified problems.

6. Reject/accept system: This stage involves a meeting between the developers
and the customer to decide on whether or not the system should be accepted. If
the system is not good enough for use, then further development is required to

fix the identified problems. Once complete, the acceptance testing phase is

repeated.
Tos Test _—— Tast Testing
‘ Critesa ‘ Flan ‘ ‘ Resulis ‘ Repaor
““Define Ny 7 Plan N Dewe v 7 Rum L TN T AeEptor
| Acceptance f—-| ACCEptance f—e| ACCEpanCE f—=| ACCEptanie T-I;Es:auh:. —= Reea
, Coiteria _,-*'. W Tesding & \ Tess & N\ Tess & 4N System g

Fig 3.10: The acceptance testing process

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 14

Software Engineering [15CS42]

3.5 Test Automation

— Test automation is essential for test-first development.
— Test-first development is an approach to development where tests are written before
the code to be tested
— Tests are written as executable components before the task is implemented.
— These testing components should be standalone, should simulate the submission of
input to be tested, and should check that the result meets the output specification.
— An automated test framework is a system that makes it easy.to write executable tests
and submit a set of tests for execution.
— Test automation tools such as JUnit that can re-run component tests when new
versions of the component are created, can commonly be used
— JUnit is a set of java classes that the user extends to create an automated testing
environment.
— As testing is automated, there is always a set of tests that can be quickly and easily
executed.
— Whenever any functionality is added to the system, the tests can be run and problems
that the new code has introduced can be caught immediately
— Test-first development and automated testing usually results in a large number of tests
being written and executed.
— This approach does not necessarily lead to thorough program testing. There are three
reasons for this:
1. Programmers prefer programming to testing and sometimes they take
shortcuts when writing tests.
2. Some tests can be very difficult to write incrementally
3. It becomes difficult to judge the completeness of a set of tests.
— An automated test has three parts:
1. A setup part, where you initialize the system with the test case, namely the
inputs and expected outputs.
2. A call part, where you call the object or method to be tested.
3. An assertion part where you compare the result of the call with the expected
result. If the assertion evaluates to true, the test has been successful; if false,
then it has failed.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 15

Software Engineering [15CS42]

Exverutable
Tests

t

S0urte Conlwgusation
Code Files - Files
Automatsd
Dustas Files Build System
- f
Compialess
Libearies and Toals

Fig 3.11: System building
— System building involves assembling a large amount of information about the

software and its operating environment.

Exverutable
Targ®t SyEiem

Test Rosuls

— Therefore, for anything apart from very small‘systems,.it always makes sense to use

an automated build tool to create a system build as shown infig 3.11.

SOFTWARE EVOLUTION

— Software evolution may be triggered by changing business requirements, by reports of

software defects, or by changes to other systems in a software system’s environment.

software engineering as a spiral process with requirements, design, implementation,

and testing going on throughout the lifetime of the system (Figure 3.12).

— This process can be started by creating release 1 of the system.

— Once.delivered, changes are proposed and the development of release 2 starts almost

immediately.

— This model of software evolution implies that a single organization is responsible for

both the initial software development and the evolution of the software

| Specificaion implemantation |
- ™, \
e | f Start |
. Release 1 _ '
) Operation validation
\ |
. Relase 2 I

Fig 3.12: A spiral model of development and evolution

— An alternate view of the software evolution life cycle is as shown in fig 3.13.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru

Page 16

Software Engineering [15CS42]

I ™ ¥
ingal Eviu 5 Phas
| DE-’E'm fment Bl — Efiiing _"'. Bout

s . . r , 0 ps e

Fig 3.13: Evolution and servicing

3.6 Evolution processes

— Software evolution processes vary depending on the type of software being
maintained, the development processes used in an organization and the skills of the
people involved.

— In some organizations, evolution may be an informal process where change requests
mostly come from conversations between the system users and developers.

— In other companies, it is a formalized process with structured documentation produced
at each stage in the process.

— The processes of change identification and system evolution are cyelic and continue
throughout the lifetime of a system (Fig 3.14).

{ Change dentification
A ProcEss .;"\-.

- "

G

'\'.\ - - r,
~.| Soitware Evoluson x,f,

ProCpss
Fig 3.14: Change identification and evolution process

— Fig 3.15 shows an overview of the evolution process.

| Y —

Change ¢ Impant '___ " Relemss '___ (" Change ."“-'___ /" System .'“-I
Requests | Analysie F \ Planning i | h'n]:lE'rnEﬁd'ilJn___- 1 [{=[=F 015 i
- _y - _ . ..
i) f Plagorm) f System)
, FedtRepsr bl adapwstion) | Enhancement

Fig 3.15: The software evolution process

— The process includes the fundamental activities of change analysis, release planning,

system implementation, and releasing a system to customers.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 17

Software Engineering [15CS42]

— The cost and impact of these changes are assessed to see how much of the system is
affected by the change and how much it might cost to implement the change.

— If the proposed changes are accepted, a new release of the system is planned.

— During release planning, all proposed changes (fault repair, adaptation, and new
functionality) are considered.

— A decision is then made on which changes to implement in the next version of the
system.

— The changes are implemented and validated, and a new. version of the system is
released.

— The process then iterates with a new set of changes proposed for the next release.

— Change implementation can be thought of @s an iteration of the development process,
where the revisions to the system are designed,.implemented, and tested.

— However, a critical difference is.that the first stage of change implementation may
involve program understanding, especially if the original system developers are not
responsible for change implementation.

— During this program understanding phase, it becomes. necessary to understand how
the program is structured, how it delivers functionality, and how the proposed change
might affect the program:

— This understanding is required to make sure that the implemented change does not
cause new problems when it is introduced into the existing system.

— The change implementation stage of this process should modify the system
specification, design, and. implementation to reflect the changes to the system (Fig
3.16).

— During the evolution process, the requirements are analyzed in detail and implications
of the changes emerge that were not apparent in the earlier change analysis process.

— This means that the proposed changes may be modified and further customer

discussions may be required before they are implemented.

Proposed .'...REEF.IIIEH'IEHLIK- ."".RBquu-EmEﬁ:..x'. " Sofwane !
Changes [\ Anslyss T\ Updsting | Development

Fig 3.16: Change implementation

— Change requests can arise for 3 reasons:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 18

Software Engineering [15CS42]

1.

If a serious system fault occurs that has to be repaired to allow normal
operation to continue.

If changes to the systems operating environment have unexpected effects that
disrupt normal operation.

If there are unanticipated changes to the business running the system, such as
the emergence of new competitors or the introduction of new legislation that
affects the system.

— Rather than modify the requirements and design, it is possible to make an emergency

fix to the program to solve the immediate problem (Fig 3.17).

Requests |\ SowceCode 0\ SourceCode 4 Sysem)

m,

Change /7 analyza /7 odily Dinfieer Macied ™,

—

Fig 3.17: The emergency repair process

— Problems may arise in situations_in which there is a handover from a development

team to a separate team responsible for evolution.

— There are two potentially problematic situations:

1.

2.

Where the development team has used an agile approach but the evolution
team is unfamiliar with agile methods and prefers a plan-based approach. The
evolution team may expect detailed documentation to support evolution and
this is rarely produced in agile processes.

Where a plan-based approach has been used for development but the evolution
team prefers to use agile methods. In this case, the evolution team may have to
start-from scratch developing automated tests and the code in the system may

not have been refactored and simplified as is expected in agile development.

3.7 Program Evelution Dynamics

%

%

Program evolution dynamics is the study of system change.

Lehman and Belady proposed few laws for system change. They claimed these laws

are likely to be true for all types of large organizational software systems (what they

call Etype systems).

These are systems in which the requirements are changing to reflect changing

business needs.

New releases of the system are essential for the system to provide business value.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 19

Software Engineering [15CS42]

— Fig 3.18 below shows the Lehman’s laws.

Consnuing change

I Cremsing Complesity

Large program esDlution

Oz a5 On 2l s ity

Consesateon Of tam ilarnty

Confnmuing grissth

Dedmang quality

A progeam that Bused in a real-workd endronment must necessa sy
changs, Or B8 bemmm e progresiely 18ss et in that Ensironment.

As an evDbding program Changes, is srudure tends 10 bemme mone
complex. Exfra respurces must be devoted to prasesdng and simplilying
the strudure.

Progeam evDluSon i & seif-reguls Sing process. System attributes such
& size, Bme b@ween réesses, and the number of reported enrars s
approamately invanant for each system releass.

Cwer & program's lifesime, is mte of development & spprisimately Constant
and indepandent of the resounces devoied 0 sysiem deselopment.

Ower the lelme of & system, the moremental dhange in each relese 5
apprxamately Constant.

The funolionality offesed by systems has 10 ConSinually indres se 1o
maintain user ssteiscion.

The quality of systems will dedin e unles they are modified 10 reflea
changas in their operational environment.

Evolufion proCesses inD0p-Deaie mulisgent, mulSloop feedbadk sysdems
and you hawe to trast them asfeedbad systems 10 schieve significant

[produd irpaie Ement.

Fig 3.18: Lehman’s laws

3.8 Software Maintenance

— Software maintenance. is the general process of changing a system after it has been

delivered.

— Thereare three different types of software maintenance:

1. Fault repairs: Coding errors are usually relatively cheap to correct; design

errors_are-more_expensive as they may involve rewriting several program
components Requirements errors are the most expensive to repair because of
the extensive system redesign which may be necessary.

Environmental adaptation: This type of maintenance is required when some
aspect of the system’s environment such as the hardware, the platform
operating system, or other support software changes. The application system
must be modified to adapt it to cope with these environmental changes.
Functionality addition: This type of maintenance is necessary when the
system requirements change in response to organizational or business change.
The scale of the changes required to the software is often much greater than

for the other types of maintenance.

— Fig 3.19 shows an approximate distribution of maintenance costs.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 20

Software Engineering [15CS42]

— The specific percentages will obviously vary from one organization to another but,
universally; repairing system faults is not the most expensive maintenance activity.
— Evolving the system to cope with new environments and new or changed

requirements consumes most maintenance effort.

e
.

r .."\\

f;-’ Fault Repair
A (17%)
P
/ ..
.
i H'"-..___‘
| L . Funofi onality
Eﬁm@ﬂ S addiion o
I‘::'“‘ " mModifcsfion
(] - 6 53)

Fig 3.19: Maintenance effort distribution

— It is usually more expensive to add functionality after a system-is in.operation than it
is to implement the same functionality during development. The reasons for this are:

1. Team stability: After a system has been delivered, it is normal for the
development team to be broken up and for people to work on new projects.
The new.team or the individuals responsible for system maintenance do not
understand the system or the background to system design decisions. They
need to spend time understanding the existing system before implementing
changes to it.

2. Poor development practice: The contract to maintain a system is usually
separate from the system development contract. The maintenance contract
may be given to a different company rather than the original system developer.

3. Staff skills: Maintenance staff are often relatively inexperienced and
unfamiliar. with the application domain. Maintenance has a poor image among
software engineers.

4. Program age and structure: As changes are made to programs, their
structure tends to degrade. Consequently, as programs age, they become

harder to understand and change.
3.8.1 Maintenance prediction

— It is essential to estimate the overall maintenance costs for a system in a given time

period.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 21

Software Engineering [15CS42]

— Fig 3.20 shows these predictions and associated questions.

— Predicting the number of change requests for a system requires an understanding of

the relationship between the system and its external environment

What parts of the system
wall b the mist Sxpensne

What parts Of tha system are - 0 mamiam?
mosl likely 10 be sftedad by -~ -

thange requasts?

. Predicing Y
|."' s i bty '

What will be the Heame
| I mantenanie Ot of this
| Predicing System pradiceng | system?

. Changes Mantenanie [

Ot
'\ ;
ht -~ -

— e What will be the costs of

Hows mang change -] B maintsining ths sytem
requests can be ower the e yesr?
expated?

Fig 3.20: Maintenance prediction

— To evaluate the relationships_ between a system and its environment, you should

assess:
1.

The number and complexity of system interfaces: The larger the number of
interfaces and the more complex these interfaces, the more likely it is that
interface changes will be required as new requirements are proposed.

The number of inherently volatile system requirements: Requirements that
reflect organizational policies and procedures are likely to be more volatile
than requirements that are based on stable domain characteristics.

The business-processes in which the system is used: As business processes
evolve, they generate system change requests. The more business processes

that use a system, the more the demands for system change.

— Examples ofiprocess metrics that can be used for assessing maintainability are as

follows:

1.

2.

Number of requests for corrective maintenance: An increase in the number
of bug and failure reports may indicate that more errors are being introduced
into the program than are being repaired during the maintenance process. This
may indicate a decline in maintainability.

Average time required for impact analysis: This reflects the number of

program components that are affected by the change request. If this time

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 22

Software Engineering [15CS42]

increases, it implies more and more components are affected and
maintainability is decreasing.

3. Average time taken to implement a change request: This is not the same as
the time for impact analysis although it may correlate with it. This is the
amount of time needed to modify the system and its documentation, after the
assessment of which components are affected

4. Number of outstanding change requests: An increase in this number over
time may imply a decline in maintainability.

3.8.2 Software Engineering

— To make legacy software systems easier t0 maintain, these systems can be
reengineered to improve their structure and.understandability.

— Reengineering may involve re-documenting. the system, refactoring the system
architecture, translating programs to a modern programming language, and modifying
and updating the structure andwalues of the system’s data.

— There are two important benefits from reengineering rather than replacement:

1. Reduced risk: There is a high risk in redeveloping business-critical software.
Errors may be made in the system specification or there may be development
problems. Delays.in introducing the new software may mean that business is
lost and extra costs are incurred

2. Reduced cost: The cost of reengineering may be significantly less than the
cost of developing new software.

— Fig 3:21.is-a'general model of the reengineering process.

O Al Pinog sam Reengneered
Pr I:g:m DoCumentation Progmm Crignal Data
., Iy
/ i ",- ,f: /
] E@ﬂ&aﬂg J p ‘~ d
; i .-_ ' ._.. .-'_ ‘I -‘l _.\.
| Su:l:m:e Code | Progeam | i Diata |
. Trandaton | | 'l."l:rJ.J!I-mumn:rn . Reengineeding |
Mg i Sty
" Program
Strudwe f
b Improvement &
e . "

Ras tructured Rgn gm Bered
Pin0g eam DCata

Fig 3.21: The reengineering process

— The input to the process is a legacy program and the output is an improved and

restructured version of the same program.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 23

Software Engineering [15CS42]

— The activities in this reengineering process are as follows:

—>

1. Source code translation: Using a translation tool, the program is converted
from an old programming language to a more modern version of the same
language or to a different language.

2. Reverse engineering: The program is analyzed and information extracted
from it. This helps to document its organization and functionality. Again, this
process is usually completely automated.

3. Program structure improvement: The control‘structure of the program is
analyzed and modified to make it easier to read and understand. This can be
partially automated but some manual intervention is usually required.

4. Program modularization: Related parts of the program are grouped together
and, where appropriate, redundancy is removed. In some cases, this stage may
involve architectural refactoring (e.g., a system that uses several different data
stores may be to use a single repository). This is a manual process.

5. Data reengineering: The data processed by the program is'changed to reflect
program changes. This may mean redefining database schemas and converting
existing databases to the new structure.

The costs of reengineering obviously depend on the extent of the work that is carried

out. There is a spectrum of possible approaches to reengineering, as shown in fig 3.22.

Al nmated Program Program and Diata
RestrChiring Rastruduning
Automated Sournoe Automated Resrudunng Restruduning Flus
Ciod e {Cionsersa0n with Manusl Changes Arthiteoum] Changes
Inioressed Ciost

Fig 3.22: Reengineering approaches

3.8.3 Preventative maintenance by refactoring

%

%

Refactoring is the process of making improvements to a program to slow down
degradation through change.

It means modifying a program to improve its structure, to reduce its complexity, or to
make it easier to understand.

Refactoring is sometimes considered to be limited to object-oriented development but
the principles can be applied to any development approach.

Examples of factors that can be improved through refactoring include:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 24

Software Engineering [15CS42]

1. Duplicate code: The same of very similar code may be included at different
places in a program. This can be removed and implemented as a single method
or function that is called as required.

2. Long methods: If a method is too long, it should be redesigned as a number
of shorter methods.

3. Switch (case) statements: These often involve duplication, where the switch
depends on the type of some value. The switch statements may be scattered
around a program. In object-oriented languages, you can often use
polymorphism to achieve the same thing.

4. Data clumping: Data clumps occur when the same group of data items (fields
in classes, parameters in methods) reoccurs in several places in a program.
These can often be replaced with‘an object encapsulating all of the data.

5. Speculative generality: This occurs when developers include generality in a

program in case it is required in future. This can often simply be removed.

3.9 Legacy system management

— For new software systems developed using modern software engineering processes,
such as incremental development and CBSE, it is possible to plan how to integrate
system development and evolution:

— There are four.strategic options:

1. Scrap the system completely: This option should be chosen when the system
is'not making an effective contribution to business processes. This commonly
occurs when business processes have changed since the system was installed
and are no longer reliant on the legacy system.

2. Leave thesystem unchanged and continue with regular maintenance: This
option should be chosen when the system is still required but is fairly stable
and the system users make relatively few change requests.

3. Reengineer the system to improve its maintainability: This option should
be chosen when the system quality has been degraded by change and where a
new change to the system is still being proposed. This process may include
developing new interface components so that the original system can work

with other, newer systems.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 25

Software Engineering [15CS42]

4. Replace all or part of the system with a new system: This option should be
chosen when factors, such as new hardware, mean that the old system cannot
continue in operation or where off-the-shelf systems would allow the new
system to be developed at a reasonable cost.

— From the fig 3.23, it is observed that there are 4 clusters of systems:

1. Low quality, low business value: Keeping these systems in operation will be
expensive and the rate of the return to the business will be fairly small. These
systems should be scrapped.

2. Low quality, high business value: These systems are making an important
business contribution so they cannot be.scrapped. However, their low quality
means that it is expensive to maintain them.

3. High quality, low business value: These are systems that don’t contribute
much to the business but which may not be very expensive to maintain. It is
not worth replacing these systems so normal system maintenance may be
continued if expensive changes are not.required and the system hardware
remains in use.

4. High quality, high business value: These systems have to be kept in
operation. However, their high quality means.that you don’t have to invest in

transformation or system.replacement. Normal system maintenance should be

continued.
High Buminass Value
A LE‘ ,_.L,ud;'r : High Businass Value
——— High CQruality
"-.- ’ ! .-"'- _ -."._
:- ? Il:l .l Fi i m 'u '\'H...
. m | & m |
U - e i ? &
5 — -
=
H Lorey Business Value Lorer Business Valus
B Lows Quslity High Quality
5 .-".. T e _-"" [| \"\-\.
[3 | | 4 '
W] , -

System Quality

Fig 3.23: An example of a legacy system assessment

— Factors used in environment assessment are as shown in fig 3.24.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 26

Software Engineering [15CS42]

Supplior sta bality I the supplior o6llin aviganca? b e supplier inandally 4abla and kel 10
Conmue imn EI.i:I.‘B'I'EE?.ﬁ‘E':.Ip‘iEI’i:I-I‘HJlNEEI’h busnes does sDmedne alsa
maintain the spatems?

Failure rata Dwoes the hardware haee & high mie of reponed talures? Doss the suppaornt
software omsh and force system restans?

Age Hiows Did s e hardesane and sOftsare? The ol er the hardwane and suppont softwans,
the more obsdae itwil be. Bmay s8ll hnaion oeeal bt there oould be sgrficant
aronarmiC and businas benefits 10 mining 10 & more modem sptem.

Performanca s the pedormance of the spdem sdequaste? Do pedormance problems hae a
sgnilicant e on system usens?

Suppdd resuinsments What local support i requirsd by the hardean and a0l ans? B fiere ara high
ot sssofisted wath the suppon, it may be worth DOnsid ening system
raplacamen.

Msinienanie 004 What are the costs of hardeane maintenance and suppon software Brences? Older

hasdwsame may hawe highes mainbenance coes than modem systems. Suppont
softvaa e may have high annual Boensing coss.

inte 0p exshility Ase there prablems intertading $ha sy em 10 other syatems? Can compiars, for
example, be used with Curent veniom of $1e Operating sytem? b hardwane

Fig 3.24: Factors used in environment assessment

— To assess the technical quality of an application system, you have to assess a range of
factors (Fig 3.25) that are primarily related to the system dependability, the
difficulties of maintaining the system and the system documentation
Fachor i estions
Linel Brs e ability Hiwer ditficuli & it 10 undersand the sounte code of the wrent spsiem? How

complex are the ntrol strudures that are used? Do vanisbles have
meaninghul names that reflent ther funcion?

Damernd o8 on What system dDumentstion s aailshs? k& the dooum entsSion complete,
corsistent, and Curent?

Data E thens an explicit d.sta mods for the spstem? To what extent & dats duploned
aores files? b the dats used by the system up-to-dste and comsstend

Parfonmance k the pesformanie of the spphoation adeguate? Do performance problers
have & significant effent on system wsers?

Progmam ming languags Arg mDdem compilars available for the programming language used o
degdop the sstem? k the programming language 8l wad for new spEtem
dewdlopment?

Configuralion manag ament Are all versions of all parts of the sysem managed by & configuration
management sydem? b thens an explicht desoripion of the werdions of
Companents that are wmed in the wrent system?

Test data Dipes best data for the system exia? |s there & recoed Of regression tests
carmied Dutt when néw iestures hawe been added t0 the syshem?

Parsonnel skills Are there pedple svailable who have the skills t0 mantsn the applicstion?
Asg there people seailsble who haes epenience with the spgem?

Fig 3.25: Factors used in application assessment

— Data that may be useful in quality assessment are:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 27

Software Engineering [15CS42]

1. The number of system change requests: System changes usually corrupt the
system structure and make further changes more difficult. The higher this
accumulated value, the lower the quality of the system.

2. The number of user interfaces: This is an important factor in forms-based
systems where each form can be considered as a separate user interface. The
more interfaces, the more likely that there will be inconsistencies and
redundancies in these interfaces.

3. The volume of data used by the system: The higher the volume of data
(number of files, size of database, etc.), the more likely that it is that there will
be data inconsistencies that reduce the system quality.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 28

