

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 1

3. SOFTWARE TESTING & SOFTWARE EVOLUTION

SOFTWARE TESTING

 Testing is intended to show that a program does what it is intended to do and to

discover program defects before it is put into use.

 The testing process has two distinct goals:

1. To demonstrate to the developer and the customer that the software meets its

requirements. For custom software, this means that there should be at least one

test for every requirement in the requirements document. For generic software

products, it means that there should be tests for all of the system features, plus

combinations of these features, that will be incorporated in the product release.

2. To discover situations in which the behavior of the software is incorrect,

undesirable, or does not conform to its specification. Defect testing is

concerned with rooting out undesirable system behavior such as system

crashes, unwanted interactions with other systems, incorrect computations,

and data corruption

 Fig 3.1 helps to explain the differences between validation testing and defect testing.

 The difference between verification and validation can be mentioned as:

* ‘Validation: Are we building the right product?’

* ‘Verification: Are we building the product right?’

Fig 3.1: An input-output model of program testing

 The ultimate goal of verification and validation processes is to establish confidence

that the software system is ‘fit for purpose’.

 This means that the system must be good enough for its intended use.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 2

 The level of required confidence depends on the system’s purpose, the expectations of

the system users, and the current marketing environment for the system:

* Software purpose: The more critical the software, the more important that it

is reliable. For example, the level of confidence required for software used to

control a safety-critical system is much higher than that required for a

prototype that has been developed to demonstrate new product ideas.

* User expectations: Because of their experiences with buggy, unreliable

software, many users have low expectations of software quality. They are not

surprised when their software fails. When a new system is installed, users may

tolerate failures because the benefits of use outweigh the costs of failure

recovery.

* Marketing environment: When a system is marketed, the sellers of the

system must take into account competing products, the price that customers

are willing to pay for a system, and the required schedule for delivering that

system. If a software product is very cheap, users may be willing to tolerate a

lower level of reliability.

 Fig 3.2 shows that software inspections and testing support V & V at different stages

in the software process

Fig 3.2: Inspections and testing

 There are three advantages of software inspection over testing:

1. During testing, errors can mask (hide) other errors. When an error leads to

unexpected outputs, it is not sure that whether the later output anomalies are

due to a new error or are side effects of the original error. A single inspection

session can discover many errors in a system

2. Incomplete versions of a system can be inspected without additional costs. If a

program is incomplete, then it is required to develop specialized test harnesses

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 3

to test the parts that are available. This obviously adds to the system

development costs.

3. As well as searching for program defects, an inspection can also consider

broader quality attributes of a program, such as compliance with standards,

portability, and maintainability

 Fig 3.3 is an abstract model of the ‘traditional’ testing process, as used in plan driven

development. Test cases are specifications of the inputs to the test and the expected

output from the system (the test results), plus a statement of what is being tested.

Fig 3.3: A model of the software testing process

 A commercial software system has to go through three stages of testing:

1. Development testing, where the system is tested during development to

discover bugs and defects. System designers and programmers are likely to be

involved in the testing process.

2. Release testing, where a separate testing team tests a complete version of the

system before it is released to users. The aim of release testing is to check that

the system meets the requirements of system stakeholders.

3. User testing, where users or potential users of a system test the system in their

own environment. For software products, the ‘user’ may be an internal

marketing group who decide if the software can be marketed, released, and

sold. Acceptance testing is one type of user testing where the customer

formally tests a system to decide if it should be accepted from the system

supplier or if further development is required.

3.1 Development Testing

 Development testing includes all testing activities that are carried out by the team

developing the system.

 The tester of the software is usually the programmer who developed that software,

although this is not always the case.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 4

 During development, testing may be carried out at three levels of granularity:

1. Unit testing, where individual program units or object classes are tested. Unit

testing should focus on testing the functionality of objects or methods.

2. Component testing, where several individual units are integrated to create

composite components. Component testing should focus on testing component

interfaces.

3. System testing, where some or all of the components in a system are

integrated and the system is tested as a whole. System testing should focus on

testing component interactions.

3.1.1 Unit Testing

 Unit testing is the process of testing program components, such as methods or object

classes.

 Individual functions or methods are the simplest type of component.

 Your tests should be calls to these routines with different input parameters.

 The interface of this object is shown in fig 3.4. It has a single attribute, which is its

identifier.

 An automated test has three parts:

* A setup part, where you initialize the system with the test case, namely the

inputs and expected outputs

* A call part, where you call the object or method to be tested.

* An assertion part where you compare the result of the call with the expected

result. If the assertion evaluates to true, the test has been successful; if false,

then it has failed.

Fig 3.4: The weather station object interface

3.1.2 Choosing unit test cases

 Testing is expensive and time consuming, so it is important that you choose effective

unit test cases. Effectiveness, in this case, means two things:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 5

1. The test cases should show that, when used as expected, the component that is

being tested does what it is supposed to do.

2. If there are defects in the component, these should be revealed by test cases. 2

test cases includes:

i. Partition testing, where groups of inputs that have common

characteristics are identified and should be processed in the same way.

Tests must be chosen from within each of these groups.

ii. Guideline-based testing, where testing guidelines are used to choose

test cases. These guidelines reflect previous experience of the kinds of

errors that programmers often make when developing components

 In fig 3.5, the large shaded ellipse on the left represents the set of all possible inputs to

the program that is being tested.

 The smaller un-shaded ellipses represent equivalence partitions.

 A program being tested should process all of the members of an input equivalence

partitions in the same way.

 Output equivalence partitions are partitions within which all of the outputs have

something in common.

 The shaded area in the left ellipse represents inputs that are invalid.

 The shaded area in the right ellipse represents exceptions that may occur

Fig 3.5: Equivalence partitioning

 Example of equivalence partitioning is as shown in fig 3.6.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 6

Fig 3.6: Equivalence Partitions

 For example, say a program specification states that the program accepts 4 to 8 inputs

which are five-digit integers greater than 10,000.

 This information can then be used to identify the input partitions and possible test

input values. These are shown in the figure above.

 Equivalence partitioning is an effective approach to testing because it helps account

for errors that programmers often make when processing inputs at the edges of

partitions.

 Guidelines that could help reveal defects include:

1. Test software with sequences that have only a single value. Programmers

naturally think of sequences as made up of several values and sometimes they

embed this assumption in their programs. Consequently, if presented with a

single value sequence, a program may not work properly.

2. Use different sequences of different sizes in different tests. This decreases the

chances that a program with defects will accidentally produce a correct output

because of some accidental characteristics of the input.

3. Derive tests so that the first, middle, and last elements of the sequence are

accessed. This approach reveals problems at partition boundaries.

3.1.3 Component testing

 Software components are often composite components that are made up of several

interacting objects.

 For example, in the weather station system, the reconfiguration component includes

objects that deal with each aspect of the reconfiguration.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 7

 Testing composite components should therefore focus on showing that the component

interface behaves according to its specification.

 Fig 3.7 illustrates the idea of component interface testing. Assume that components A,

B, and C have been integrated to create a larger component or subsystem.

 The test cases are not applied to the individual components but rather to the interface

of the composite component created by combining these components.

 Interface errors in the composite component may not be detectable by testing the

individual objects because these errors result from interactions between the objects in

the component.

 Different types of interface error that can occur:

* Parameter interfaces: These are interfaces in which data or sometimes

function references are passed from one component to another. Methods in an

object have a parameter interface.

* Shared memory interfaces: These are interfaces in which a block of memory

is shared between components. Data is placed in the memory by one

subsystem and retrieved from there by other sub-systems.

* Procedural interfaces: These are interfaces in which one component

encapsulates a set of procedures that can be called by other components.

Objects and reusable components have this form of interface.

* Message passing interfaces: These are interfaces in which one component

requests a service from another component by passing a message to it. A

return message includes the results of executing the service.

Fig 3.7: Interface testing

 Interface errors falls into 3 categories:

* Interface misuse: A calling component calls some other component and

makes an error in the use of its interface. This type of error is common with

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 8

parameter interfaces, where parameters may be of the wrong type or be passed

in the wrong order, or the wrong number of parameters may be passed.

* Interface misunderstanding: A calling component misunderstands the

specification of the interface of the called component and makes assumptions

about its behavior. The called component does not behave as expected which

then causes unexpected behavior in the calling component.

* Timing errors: These occur in real-time systems that use a shared memory or

a message-passing interface. The producer of data and the consumer of data

may operate at different speeds.

 Some general guidelines for interface testing are:

* Examine the code to be tested and explicitly list each call to an external

component. Design a set of tests in which the values of the parameters to the

external components are at the extreme ends of their ranges. These extreme

values are most likely to reveal interface inconsistencies.

* Where pointers are passed across an interface, always test the interface with

null pointer parameters.

* Where a component is called through a procedural interface, design tests that

deliberately cause the component to fail. Differing failure assumptions are one

of the most common specification misunderstandings.

* Use stress testing in message passing systems. This means that tests should be

designed that generate many more messages than are likely to occur in

practice. This is an effective way of revealing timing problems.

* Where several components interact through shared memory, design tests that

vary the order in which these components are activated. These tests may

reveal implicit assumptions made by the programmer about the order in which

the shared data is produced and consumed.

3.1.4 System Testing

 System testing during development involves integrating components to create a

version of the system and then testing the integrated system.

 System testing checks that components are compatible, interact correctly and transfer

the right data at the right time across their interfaces. There are 2 differences:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 9

1. During system testing, reusable components that have been separately

developed and off-the-shelf systems may be integrated with newly developed

components. The complete system is then tested.

2. Components developed by different team members or groups may be

integrated at this stage. System testing is a collective rather than an individual

process. In some companies, system testing may involve a separate testing

team with no involvement from designers and programmers.

 Fig 3.8 shows the sequence of operations in the weather station when it responds to a

request to collect data for the mapping system.

Fig 3.8: Collect weather data sequence chart

3.2 Test Driven Development

 Test-driven development (TDD) is an approach to program development in which

testing and code development are interleaved.

 Test-driven development was introduced as part of agile methods such as Extreme

Programming.

 The fundamental TDD process is shown in fig 3.9. The steps in the process are as

follows:

1. Start by identifying the increment of functionality that is required. This should

normally be small and implementable in a few lines of code.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 10

2. Write a test for this functionality and implement this as an automated test. This

means that the test can be executed and will report whether or not it has passed

or failed.

3. Run the test, along with all other tests that have been implemented. Initially,

the functionality is not implemented, so the new test will fail. This is

deliberate as it shows that the test adds something to the test set.

4. You then implement the functionality and re-run the test. This may involve

refactoring existing code to improve it and add new code to what’s already

there.

5. Once all tests run successfully, then move on to implementing the next chunk

of functionality.

Fig 3.9: Test-driven development

 Benefits of test-driven development are:

1. Code coverage: In principle, every code segment that you write should have

at least one associated test. Therefore, you can be confident that all of the code

in the system has actually been executed. Code is tested as it is written so

defects are discovered early in the development process.

2. Regression testing: A test suite is developed incrementally as a program is

developed. Regression tests can be run to check that changes to the program

have not introduced new bugs.

3. Simplified debugging: When a test fails, it should be obvious where the

problem lies. The newly written code needs to be checked and modified.

Debugging tools need not be used to locate the problem. Reports of the use of

test-driven development suggest that it is hardly ever necessary to use an

automated debugger in test-driven development

4. System documentation: The tests themselves act as a form of documentation

that describe what the code should be doing. Reading the tests can make it

easier to understand the code.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 11

3.3 Release Testing

 Release testing is the process of testing a particular release of a system that is

intended for use outside of the development team.

 There are two important distinctions between release testing and system testing during

the development process:

1. A separate team that has not been involved in the system development should

be responsible for release testing.

2. System testing by the development team should focus on discovering bugs in

the system (defect testing). The objective of release testing is to check that the

system meets its requirements and is good enough for external use (validation

testing).

 Release testing is usually a black-box testing process where tests are derived from the

system specification.

 The system is treated as a black box whose behavior can only be determined by

studying its inputs and the related outputs.

3.3.1 Requirements based testing

 A general principle of good requirements engineering practice is that requirements

should be testable; that is, the requirement should be written so that a test can be

designed for that requirement.

 Consider MHC-PMS system (mental health care patient management system)

 If a patient is known to be allergic to any particular medication, then prescription of

that medication shall result in a warning message being issued to the system user.

 If a prescriber chooses to ignore an allergy warning, they shall provide a reason why

this has been ignored.

 To check if these requirements have been satisfied, it might be necessary to develop

several related tests:

1. Set up a patient record with no known allergies. Prescribe medication for

allergies that are known to exist. Check that a warning message is not issued

by the system.

2. Set up a patient record with a known allergy. Prescribe the medication to that

the patient is allergic to, and check that the warning is issued by the system.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 12

3. Set up a patient record in which allergies to two or more drugs are recorded.

Prescribe both of these drugs separately and check that the correct warning for

each drug is issued.

4. Prescribe two drugs that the patient is allergic to. Check that two warnings are

correctly issued.

5. Prescribe a drug that issues a warning and overrule that warning. Check that

the system requires the user to provide information explaining why the

warning was overruled.

3.3.2 Scenario testing

 Scenario testing is an approach to release testing where typical scenarios are devised

and are used to develop test cases for the system.

 A scenario is a story that describes one way in which the system might be used.

 Scenarios should be realistic and real system users should be able to relate to them.

 When scenario-based approach is used, normally several requirements within the

same scenario are tested.

 Therefore, as well as checking individual requirements, checking that combinations of

requirements do not cause problems.

3.3.3 Performance testing

 Once a system has been completely integrated, it is possible to test for emergent

properties, such as performance and reliability.

 Performance tests have to be designed to ensure that the system can process its

intended load.

 This usually involves running a series of tests where the load is increased, until the

system performance becomes unacceptable.

 To test whether performance requirements are being achieved, an operational profile

may be constructed.

 An operational profile is a set of tests that reflect the actual mix of work that will be

handled by the system.

 This type of testing has two functions:

1. It tests the failure behavior of the system. Circumstances may arise through an

unexpected combination of events where the load placed on the system

exceeds the maximum anticipated load. In these circumstances, it is important

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 13

that system failure should not cause data corruption or unexpected loss of user

services.

2. It stresses the system and may cause defects to come to light that would not

normally be discovered. Although it can be argued that these defects are

unlikely to cause system failures in normal usage, there may be unusual

combinations of normal circumstances that the stress testing replicates.

3.4 User Testing

 User or customer testing is a stage in the testing process in which users or customers

provide input and advice on system testing.

 This may involve formally testing a system that has been commissioned from an

external supplier, or could be an informal process where users experiment with a new

software product to see if they like it and that it does what they need.

 In practice, there are three different types of user testing:

1. Alpha testing, where users of the software work with the development team

to test the software at the developer’s site.

2. Beta testing, where a release of the software is made available to users to

allow them to experiment and to raise problems that they discover with the

system developers.

3. Acceptance testing, where customers test a system to decide whether or not it

is ready to be accepted from the system developers and deployed in the

customer environment.

 There are six stages in the acceptance testing process, as shown in fig 3.10.

 They are:

1. Define acceptance criteria: This stage should, ideally, take place early in the

process before the contract for the system is signed. The acceptance criteria

should be part of the system contract and be agreed between the customer and

the developer. Detailed requirements may not be available and there may be

significant requirements change during the development process.

2. Plan acceptance testing: This involves deciding on the resources, time, and

budget for acceptance testing and establishing a testing schedule. The

acceptance test plan should also discuss the required coverage of the

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 14

requirements and the order in which system features are tested. It should

define risks to the testing process, such as system crashes and inadequate

performance, and discuss how these risks can be mitigated.

3. Derive acceptance tests: Once acceptance criteria have been established, tests

have to be designed to check whether or not a system is acceptable.

Acceptance tests should aim to test both the functional and non-functional

characteristics (e.g., performance) of the system.

4. Run acceptance tests: The agreed acceptance tests are executed on the

system. Ideally, this should take place in the actual environment where the

system will be used, but this may be disruptive and impractical. Therefore, a

user testing environment may have to be set up to run these tests. It is difficult

to automate this process as part of the acceptance tests may involve testing the

interactions between end-users and the system.

5. Negotiate test results: It is very unlikely that all of the defined acceptance

tests will pass and that there will be no problems with the system. If this is the

case, then acceptance testing is complete and the system can be handed over.

More commonly, some problems will be discovered. In such cases, the

developer and the customer have to negotiate to decide if the system is good

enough to be put into use. They must also agree on the developer’s response to

identified problems.

6. Reject/accept system: This stage involves a meeting between the developers

and the customer to decide on whether or not the system should be accepted. If

the system is not good enough for use, then further development is required to

fix the identified problems. Once complete, the acceptance testing phase is

repeated.

Fig 3.10: The acceptance testing process

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 15

3.5 Test Automation

 Test automation is essential for test-first development.

 Test-first development is an approach to development where tests are written before

the code to be tested

 Tests are written as executable components before the task is implemented.

 These testing components should be standalone, should simulate the submission of

input to be tested, and should check that the result meets the output specification.

 An automated test framework is a system that makes it easy to write executable tests

and submit a set of tests for execution.

 Test automation tools such as JUnit that can re-run component tests when new

versions of the component are created, can commonly be used

 JUnit is a set of java classes that the user extends to create an automated testing

environment.

 As testing is automated, there is always a set of tests that can be quickly and easily

executed.

 Whenever any functionality is added to the system, the tests can be run and problems

that the new code has introduced can be caught immediately

 Test-first development and automated testing usually results in a large number of tests

being written and executed.

 This approach does not necessarily lead to thorough program testing. There are three

reasons for this:

1. Programmers prefer programming to testing and sometimes they take

shortcuts when writing tests.

2. Some tests can be very difficult to write incrementally

3. It becomes difficult to judge the completeness of a set of tests.

 An automated test has three parts:

1. A setup part, where you initialize the system with the test case, namely the

inputs and expected outputs.

2. A call part, where you call the object or method to be tested.

3. An assertion part where you compare the result of the call with the expected

result. If the assertion evaluates to true, the test has been successful; if false,

then it has failed.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 16

Fig 3.11: System building

 System building involves assembling a large amount of information about the

software and its operating environment.

 Therefore, for anything apart from very small systems, it always makes sense to use

an automated build tool to create a system build as shown in fig 3.11.

SOFTWARE EVOLUTION

 Software evolution may be triggered by changing business requirements, by reports of

software defects, or by changes to other systems in a software system’s environment.

software engineering as a spiral process with requirements, design, implementation,

and testing going on throughout the lifetime of the system (Figure 3.12).

 This process can be started by creating release 1 of the system.

 Once delivered, changes are proposed and the development of release 2 starts almost

immediately.

 This model of software evolution implies that a single organization is responsible for

both the initial software development and the evolution of the software

Fig 3.12: A spiral model of development and evolution

 An alternate view of the software evolution life cycle is as shown in fig 3.13.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 17

Fig 3.13: Evolution and servicing

3.6 Evolution processes

 Software evolution processes vary depending on the type of software being

maintained, the development processes used in an organization and the skills of the

people involved.

 In some organizations, evolution may be an informal process where change requests

mostly come from conversations between the system users and developers.

 In other companies, it is a formalized process with structured documentation produced

at each stage in the process.

 The processes of change identification and system evolution are cyclic and continue

throughout the lifetime of a system (Fig 3.14).

Fig 3.14: Change identification and evolution process

 Fig 3.15 shows an overview of the evolution process.

Fig 3.15: The software evolution process

 The process includes the fundamental activities of change analysis, release planning,

system implementation, and releasing a system to customers.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 18

 The cost and impact of these changes are assessed to see how much of the system is

affected by the change and how much it might cost to implement the change.

 If the proposed changes are accepted, a new release of the system is planned.

 During release planning, all proposed changes (fault repair, adaptation, and new

functionality) are considered.

 A decision is then made on which changes to implement in the next version of the

system.

 The changes are implemented and validated, and a new version of the system is

released.

 The process then iterates with a new set of changes proposed for the next release.

 Change implementation can be thought of as an iteration of the development process,

where the revisions to the system are designed, implemented, and tested.

 However, a critical difference is that the first stage of change implementation may

involve program understanding, especially if the original system developers are not

responsible for change implementation.

 During this program understanding phase, it becomes necessary to understand how

the program is structured, how it delivers functionality, and how the proposed change

might affect the program.

 This understanding is required to make sure that the implemented change does not

cause new problems when it is introduced into the existing system.

 The change implementation stage of this process should modify the system

specification, design, and implementation to reflect the changes to the system (Fig

3.16).

 During the evolution process, the requirements are analyzed in detail and implications

of the changes emerge that were not apparent in the earlier change analysis process.

 This means that the proposed changes may be modified and further customer

discussions may be required before they are implemented.

Fig 3.16: Change implementation

 Change requests can arise for 3 reasons:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 19

1. If a serious system fault occurs that has to be repaired to allow normal

operation to continue.

2. If changes to the systems operating environment have unexpected effects that

disrupt normal operation.

3. If there are unanticipated changes to the business running the system, such as

the emergence of new competitors or the introduction of new legislation that

affects the system.

 Rather than modify the requirements and design, it is possible to make an emergency

fix to the program to solve the immediate problem (Fig 3.17).

Fig 3.17: The emergency repair process

 Problems may arise in situations in which there is a handover from a development

team to a separate team responsible for evolution.

 There are two potentially problematic situations:

1. Where the development team has used an agile approach but the evolution

team is unfamiliar with agile methods and prefers a plan-based approach. The

evolution team may expect detailed documentation to support evolution and

this is rarely produced in agile processes.

2. Where a plan-based approach has been used for development but the evolution

team prefers to use agile methods. In this case, the evolution team may have to

start from scratch developing automated tests and the code in the system may

not have been refactored and simplified as is expected in agile development.

3.7 Program Evolution Dynamics

 Program evolution dynamics is the study of system change.

 Lehman and Belady proposed few laws for system change. They claimed these laws

are likely to be true for all types of large organizational software systems (what they

call Etype systems).

 These are systems in which the requirements are changing to reflect changing

business needs.

 New releases of the system are essential for the system to provide business value.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 20

 Fig 3.18 below shows the Lehman’s laws.

Fig 3.18: Lehman’s laws

3.8 Software Maintenance

 Software maintenance is the general process of changing a system after it has been

delivered.

 There are three different types of software maintenance:

1. Fault repairs: Coding errors are usually relatively cheap to correct; design

errors are more expensive as they may involve rewriting several program

components Requirements errors are the most expensive to repair because of

the extensive system redesign which may be necessary.

2. Environmental adaptation: This type of maintenance is required when some

aspect of the system’s environment such as the hardware, the platform

operating system, or other support software changes. The application system

must be modified to adapt it to cope with these environmental changes.

3. Functionality addition: This type of maintenance is necessary when the

system requirements change in response to organizational or business change.

The scale of the changes required to the software is often much greater than

for the other types of maintenance.

 Fig 3.19 shows an approximate distribution of maintenance costs.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 21

 The specific percentages will obviously vary from one organization to another but,

universally; repairing system faults is not the most expensive maintenance activity.

 Evolving the system to cope with new environments and new or changed

requirements consumes most maintenance effort.

Fig 3.19: Maintenance effort distribution

 It is usually more expensive to add functionality after a system is in operation than it

is to implement the same functionality during development. The reasons for this are:

1. Team stability: After a system has been delivered, it is normal for the

development team to be broken up and for people to work on new projects.

The new team or the individuals responsible for system maintenance do not

understand the system or the background to system design decisions. They

need to spend time understanding the existing system before implementing

changes to it.

2. Poor development practice: The contract to maintain a system is usually

separate from the system development contract. The maintenance contract

may be given to a different company rather than the original system developer.

3. Staff skills: Maintenance staff are often relatively inexperienced and

unfamiliar with the application domain. Maintenance has a poor image among

software engineers.

4. Program age and structure: As changes are made to programs, their

structure tends to degrade. Consequently, as programs age, they become

harder to understand and change.

3.8.1 Maintenance prediction

 It is essential to estimate the overall maintenance costs for a system in a given time

period.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 22

 Fig 3.20 shows these predictions and associated questions.

 Predicting the number of change requests for a system requires an understanding of

the relationship between the system and its external environment

Fig 3.20: Maintenance prediction

 To evaluate the relationships between a system and its environment, you should

assess:

1. The number and complexity of system interfaces: The larger the number of

interfaces and the more complex these interfaces, the more likely it is that

interface changes will be required as new requirements are proposed.

2. The number of inherently volatile system requirements: Requirements that

reflect organizational policies and procedures are likely to be more volatile

than requirements that are based on stable domain characteristics.

3. The business processes in which the system is used: As business processes

evolve, they generate system change requests. The more business processes

that use a system, the more the demands for system change.

 Examples of process metrics that can be used for assessing maintainability are as

follows:

1. Number of requests for corrective maintenance: An increase in the number

of bug and failure reports may indicate that more errors are being introduced

into the program than are being repaired during the maintenance process. This

may indicate a decline in maintainability.

2. Average time required for impact analysis: This reflects the number of

program components that are affected by the change request. If this time

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 23

increases, it implies more and more components are affected and

maintainability is decreasing.

3. Average time taken to implement a change request: This is not the same as

the time for impact analysis although it may correlate with it. This is the

amount of time needed to modify the system and its documentation, after the

assessment of which components are affected

4. Number of outstanding change requests: An increase in this number over

time may imply a decline in maintainability.

3.8.2 Software Engineering

 To make legacy software systems easier to maintain, these systems can be

reengineered to improve their structure and understandability.

 Reengineering may involve re-documenting the system, refactoring the system

architecture, translating programs to a modern programming language, and modifying

and updating the structure and values of the system’s data.

 There are two important benefits from reengineering rather than replacement:

1. Reduced risk: There is a high risk in redeveloping business-critical software.

Errors may be made in the system specification or there may be development

problems. Delays in introducing the new software may mean that business is

lost and extra costs are incurred

2. Reduced cost: The cost of reengineering may be significantly less than the

cost of developing new software.

 Fig 3.21 is a general model of the reengineering process.

Fig 3.21: The reengineering process

 The input to the process is a legacy program and the output is an improved and

restructured version of the same program.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 24

 The activities in this reengineering process are as follows:

1. Source code translation: Using a translation tool, the program is converted

from an old programming language to a more modern version of the same

language or to a different language.

2. Reverse engineering: The program is analyzed and information extracted

from it. This helps to document its organization and functionality. Again, this

process is usually completely automated.

3. Program structure improvement: The control structure of the program is

analyzed and modified to make it easier to read and understand. This can be

partially automated but some manual intervention is usually required.

4. Program modularization: Related parts of the program are grouped together

and, where appropriate, redundancy is removed. In some cases, this stage may

involve architectural refactoring (e.g., a system that uses several different data

stores may be to use a single repository). This is a manual process.

5. Data reengineering: The data processed by the program is changed to reflect

program changes. This may mean redefining database schemas and converting

existing databases to the new structure.

 The costs of reengineering obviously depend on the extent of the work that is carried

out. There is a spectrum of possible approaches to reengineering, as shown in fig 3.22.

Fig 3.22: Reengineering approaches

3.8.3 Preventative maintenance by refactoring

 Refactoring is the process of making improvements to a program to slow down

degradation through change.

 It means modifying a program to improve its structure, to reduce its complexity, or to

make it easier to understand.

 Refactoring is sometimes considered to be limited to object-oriented development but

the principles can be applied to any development approach.

 Examples of factors that can be improved through refactoring include:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 25

1. Duplicate code: The same of very similar code may be included at different

places in a program. This can be removed and implemented as a single method

or function that is called as required.

2. Long methods: If a method is too long, it should be redesigned as a number

of shorter methods.

3. Switch (case) statements: These often involve duplication, where the switch

depends on the type of some value. The switch statements may be scattered

around a program. In object-oriented languages, you can often use

polymorphism to achieve the same thing.

4. Data clumping: Data clumps occur when the same group of data items (fields

in classes, parameters in methods) reoccurs in several places in a program.

These can often be replaced with an object encapsulating all of the data.

5. Speculative generality: This occurs when developers include generality in a

program in case it is required in future. This can often simply be removed.

3.9 Legacy system management

 For new software systems developed using modern software engineering processes,

such as incremental development and CBSE, it is possible to plan how to integrate

system development and evolution.

 There are four strategic options:

1. Scrap the system completely: This option should be chosen when the system

is not making an effective contribution to business processes. This commonly

occurs when business processes have changed since the system was installed

and are no longer reliant on the legacy system.

2. Leave the system unchanged and continue with regular maintenance: This

option should be chosen when the system is still required but is fairly stable

and the system users make relatively few change requests.

3. Reengineer the system to improve its maintainability: This option should

be chosen when the system quality has been degraded by change and where a

new change to the system is still being proposed. This process may include

developing new interface components so that the original system can work

with other, newer systems.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 26

4. Replace all or part of the system with a new system: This option should be

chosen when factors, such as new hardware, mean that the old system cannot

continue in operation or where off-the-shelf systems would allow the new

system to be developed at a reasonable cost.

 From the fig 3.23, it is observed that there are 4 clusters of systems:

1. Low quality, low business value: Keeping these systems in operation will be

expensive and the rate of the return to the business will be fairly small. These

systems should be scrapped.

2. Low quality, high business value: These systems are making an important

business contribution so they cannot be scrapped. However, their low quality

means that it is expensive to maintain them.

3. High quality, low business value: These are systems that don’t contribute

much to the business but which may not be very expensive to maintain. It is

not worth replacing these systems so normal system maintenance may be

continued if expensive changes are not required and the system hardware

remains in use.

4. High quality, high business value: These systems have to be kept in

operation. However, their high quality means that you don’t have to invest in

transformation or system replacement. Normal system maintenance should be

continued.

Fig 3.23: An example of a legacy system assessment

 Factors used in environment assessment are as shown in fig 3.24.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 27

Fig 3.24: Factors used in environment assessment

 To assess the technical quality of an application system, you have to assess a range of

factors (Fig 3.25) that are primarily related to the system dependability, the

difficulties of maintaining the system and the system documentation

Fig 3.25: Factors used in application assessment

 Data that may be useful in quality assessment are:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 28

1. The number of system change requests: System changes usually corrupt the

system structure and make further changes more difficult. The higher this

accumulated value, the lower the quality of the system.

2. The number of user interfaces: This is an important factor in forms-based

systems where each form can be considered as a separate user interface. The

more interfaces, the more likely that there will be inconsistencies and

redundancies in these interfaces.

3. The volume of data used by the system: The higher the volume of data

(number of files, size of database, etc.), the more likely that it is that there will

be data inconsistencies that reduce the system quality.

