
MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MODULE – 3

SIGNED NUMBERS AND STRINGS & MEMORY INTERFACING & 8255

SIGNED NUMBERS & STRINGS
SIGNED NUMBER ARITHMETIC OPERATIONS:

o In everyday life, numbers are used that could be positive or negative. For example, a temperature

of 5 degrees below zero can be represented as –5, and 20 degrees above zero as +20.

o Computers must be able to accommodate such numbers. To do that, an arrangement for the

representation of signed positive and negative numbers is made:

 The most significant bit (MSB) is set aside for the sign (+ or –)

 The rest of the bits are used for the magnitude.

o The sign is represented by 0 for positive (+) numbers and 1 for negative (–) numbers.

o Note that, entire 8-bit or 16-bit operand will be treated as magnitude in the case of unsigned

number representation.

Byte-sized Signed Numbers:

o In signed byte operands, D7 (MSB) is the sign and D6 to D0 are set aside for the magnitude of

the number.

 If D7 = 0, the operand is positive

 If 07 = 1, the operand is negative.

o The range of positive numbers that can be represented by the format above is 0 to + 127.

o If a positive number is larger than +127, a word sized operand must be used.

o For negative numbers D7 is 1, but the magnitude is represented in 2's complement.

o Although the assembler does the conversion, it is still important to understand how the

conversion works. To convert to negative number representation (2's complement), follow these

steps:

 Write the magnitude of the number in 8-bit binary (no sign).

 Invert each bit

 Add 1 to it.
MAHESH PRASANNA K., VCET, PUTTUR

1

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Word-sized Signed Numbers:

o In x86 computers a word is 16-bits in length. Setting aside the MSB (D15) for the sign leaves a

total of 15 bits (D14 – D0) for the magnitude. This gives a range of –32,768 to +32,767.

o If a number is larger than this, it must be treated as a multiword operand and be processed chunk

by chunk the same way as unsigned numbers.

MAHESH PRASANNA K., VCET, PUTTUR

2

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Overflow Problem in Signed Number Operations:

What is an overflow? If the result of an operation on signed numbers is too large for the register, an

overflow occurs and the programmer must be notified. Look at following Example:

o In the example above; +96 is added to +70 and the result according to the CPU is –90 (5AH).

Why?

o The reason is that, the result was more than what AL could handle. Like all other 8-bit registers,

AL could only contain up to +127. The designers of the CPU created the overflow flag

specifically for the purpose of informing the programmer that the result of the signed number

operation is erroneous.

Hence, when using signed numbers, a serious problem with regarding overflow arises that must be dealt

with. The CPU indicates the existence of the problem by raising the OF (overflow) flag, but it is up to the

programmer to take care of it. The CPU understands only 0s and 1s and ignores the human convention of

positive and negative numbers.

When Overflow Flag is Set in 8-bit Operations?

In 8-bit signed number operations, OF is set to 1, if either of the following two conditions occurs:

MAHESH PRASANNA K., VCET, PUTTUR

3

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

1. There is a carry from D6 to D7, but no carry out of D7 (CF = 0)

2. There is a carry from D7 out (CF = 1), but no carry from D6 to D7.

When Overflow Flag is Set in 16-bit Operations?

In 16-bit signed number operations, OF is set to 1, if either of the following two conditions occurs:

1. There is a carry from D14 to D15, but no carry out of D15 (CF = 0)

2. There is a carry from D15 out (CF = 1), but no carry from D14 to D15.

MAHESH PRASANNA K., VCET, PUTTUR

4

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Avoiding Erroneous Results in Signed Number Operations:

o To avoid the problems associated with signed number operations, one can sign extend the

operand.

o Sign extension copies;

 the sign bit (D7) of the lower byte of a register into the upper bits of the register, or

 the sign bit of a 16-bit register into another register.

o The instructions used to perform the sign extension are;

o CBW (convert signed byte to signed word) – will copy D7 (the sign flag) of AL to all bit

positions of AH register.

o CWD (convert signed word to signed double word): will copy D15 of AX to all bot positions of

DX register.

In the following Example (program for addition of any two signed bytes);

 If the overflow flag is not raised (OF = 0), the result of the signed number is correct and JNO

(jump if no overflow) will jump to OVER.

MAHESH PRASANNA K., VCET, PUTTUR

5

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 If OF = 1, (which means that the result is erroneous), each operand must be sign extended and

then added. That is the function of the code below the JNO instruction.

IDIV (signed number division):

The Intel manual says that IDIV means "integer division"; it is used for signed number division. In

actuality, all arithmetic instructions of 8088/86 are for integer numbers regardless of whether the

operands are signed or unsigned. To perform operations on real numbers, the 8087 coprocessor is used.

Remember that real numbers are the ones with decimal points such as "3.56".

Division of signed numbers is very similar to the division of unsigned numbers (already discussed).

Eg1:

 IDIV CH Before After
 F0H = -10H CH F0H EE = -12H
 AL 25H EEH Quotient
 AH 01H 05H Remainder

MAHESH PRASANNA K., VCET, PUTTUR

6

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Eg2:
 IDIV BL Before After

 F0H = -3H BL FDH FB = -5H
 AL 10H EBH Quotient
 AH 00H 01H Remainder

An application of signed number arithmetic is given in the following Program. It computes the average of

the Celsius temperatures: +13, -10, + 19, +14, -18, -9, +12, -19, and + 16.

Program 6-1

IMUL (signed number multiplication)

Signed number multiplication is similar in its operation to the unsigned multiplication. The only

difference between them is that the operands in signed number operations can be positive or negative;

therefore, the result must indicate the sign.

MAHESH PRASANNA K., VCET, PUTTUR

7

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Eg1:

IMUL CH Before After

 FEH = -02 CH FEH
 AL 02H FCH FFFCH = -04

AH 34H FFH

Arithmetic Shift:

The arithmetic shift is used for signed numbers. It is basically the same as the logical shift, except that the

sign bit is copied to the shifted bits. SAR (shift arithmetic right) and SAL (shift arithmetic left) are two

instructions for the arithmetic shift.

SAR (shift arithmetic right)

Eg:
SAR BH, CL R/M

 Cy

Shift right Before After
1100 0000 = -40H BH 1100 0000 1111 0000

1111 0000 = -10H CL 02H
Cy 1 0

As the bits of the destination are shifted to the right into CF, the empty bits are filled with the sign bit.

One can use the SAR instruction to divide a signed number by 2, as shown next:

MAHESH PRASANNA K., VCET, PUTTUR

8

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

SAL (shift arithmetic left)

SAL & SHL (shift left) do exactly the same thing.

Signed Number Comparison

Although the CMP (compare) instruction is the same for both signed and unsigned numbers, the J

condition instruction used to make a decision for the signed numbers is different from that used for the

unsigned numbers.

o In unsigned number comparisons, CF and ZF are checked for conditions of larger, equal, and

smaller.

o In signed number comparison, OF, ZF, and SF are checked.

o The memories used to detect the conditions above are as follows:

MAHESH PRASANNA K., VCET, PUTTUR

9

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Program 6-2

STRING & TABLE OPERATIONS:

o There is a group of instructions referred to as string instructions in the x86 family of

microprocessors.

o They are capable of performing operations on a series of operands located in consecutive memory

locations.

o For example, while the CMP instruction can compare only 2 bytes (or words) of data, the CMPS

(compare string) instruction is capable of comparing two arrays of data located in memory

locations pointed at by the SI and DI registers. These instructions are very powerful and can be

used in many applications,

Use of SI and DI, DS and ES in String Instructions:

o For string operations to work, designers of CPUs must set aside certain registers for specific

functions. These registers must permanently provide the source and destination operands.

o In 088/86 microprocessor, the SI and DI registers always point to the source and destination

operands, respectively.

o To generate the physical address, the 8088/86 always uses SI as the offset of the DS (data

segment) register and DI as the offset of ES (extra segment).

o The ES register must be initialized for the string operation(s) to work.
MAHESH PRASANNA K., VCET, PUTTUR

10

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Byte and Word Operands in String Instructions:

o In each of the string instructions, the operand can be a byte or a word.

o Operands are distinguished by the letters B (byte) and W (word) in the instruction mnemonic.

DF, the Direction Flag:

o To process operands located in consecutive memory locations; it requires that, the pointer be

incremented or decremented.

o In string operations this is achieved by the direction flag. Of the 16 bits of the flag register (D0 –

D15), bit 11 (D10) is set aside for the direction flag (DF).

o It is the job of the string instruction to increment or decrement the SI and DI pointers; but it is the

job of the programmer to specify the choice of increment or decrement by setting the direction

flag to high or low.

o The instructions CLD (clear direction flag) and STD (set direction flag) are specifically designed

for the purpose.

o CLD (clear direction flag) will reset (put to zero) the DF, indicating that the string instruction

should increment the pointers automatically. This is referred to as auto-increment.

o STD (set the direction flag) sets DF to 1, indicating to the string instruction that the pointers SI

and DI should be decremented automatically. This is referred to as auto-decrement.

Table: Summary of String Operations

Instruction Mnemonic Destination Source Prefix

Move string byte MOVSB ES: DI DS: SI REP

Move string word MOVSW ES: DI DS: SI REP

Store string byte STOSB ES: DI AL REP

Store string word STOSW ES: DI AX REP

Load string byte LODSB AL DS: SI None

Load string word LODSW AX DS: SI None

Compare string byte CMPSB ES: DI DS: SI REPE/REPNE

Compare string word CMPSW ES: DI DS: SI REPE/REPNE

Scan string byte SCASB ES: DI AL REPE/REPNE

Scan string word SCASW ES: DI AX REPE/REPNE

REP/REPZ/REPNZ Prefix:

o REP (repeat) prefix allows a string instruction to perform the operation repeatedly.

o REP assumes that CX holds the number of times that the instruction should be repeated.

o In other words, the REP prefix tells the CPU to perform the string operation and then decrements

the CX register automatically. This process is repeated until CX becomes zero.

MAHESH PRASANNA K., VCET, PUTTUR

11

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o REPZ (repeat zero)/REPE (repeat equal) repeat the string operation as long as source and

destination operands are equal (ZF = 1) or until CX becomes zero.

o REPNZ (repeat not zero)/REPNE (repeat not equal) repeat the string operation as long as

source and destination operands are not equal (ZF = 0) or until CX becomes zero.

Instruction Code Condition for Exit

REP CX = 0

REPE/REPZ CX = 0 or ZF = 0

REPNE/REPNZ CX = 0 or ZF = 1

 After the transfer of every byte by the MOVSB instruction, both the SI and DI registers are

incremented automatically once only (notice CLD).

 The REP prefix causes the CX counter to be decremented and MOVSB is repeated until CX

becomes zero.

 An alternative solution for above Example would change only two lines of code:

MOV CX, 10

REP MOVSB

 In this case the MOVSW will transfer a word (2 bytes) at a time and increment the SI and DI

registers each twice. REP will repeat that process until CX becomes zero. Notice that, the CX has

the value of 10 in it; since 10 words is equal to 20 bytes.

STOS and LODS Instructions:

STOSB – stores the byte in the AL register into memory location pointed at by ES: DI and then

increment DI once (if DF = 0) or decrement DI once (if DF = 1).

STOSW – stores the content of AX in memory locations ES: DI and ES: DI+1 (AL into ES: DI and AH

into ES: Dl+1) then increments DI twice (if DF = 0) or decrements DI twice (if DF = 1).

MAHESH PRASANNA K., VCET, PUTTUR

12

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
LODSB – loads the contents of memory location pointed at by DS: SI into AL and increments SI once (if

DF = 0) or decrements SI once (if DF = l).

LODSW – loads the content of memory locations pointed at by DS: SI into AL and DS: SI+l into AH.

The SI is incremented twice if DF = 0 or SI is decremented twice if DF = 1.

• LODS is never used with a REP prefix.

Testing Memory using STOSB and LODSB:

 The following Example uses string instructions STOSB and LODSB to test an area of RAM

memory.

 First AAH is written into 100 locations by using word-sized operand AAAAH and a count of 50.

 In the test part, LODSB brings in the contents of memory locations into AL one by one, and each

time it is eXclusive-ORed with AAH (the AH register has the hex value of AA).

o If they are the same, ZF = l and the process is continued.

o Otherwise, the pattern written there by the previous routine is not there and the program

will exit.

MAHESH PRASANNA K., VCET, PUTTUR

13

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
CMPS (Compare String):

o CMPS allows the comparison of two arrays of data pointed at by the SI and DI registers.

o One can test for the equality or inequality of data by the use of REPE or REPNE prefixes,

respectively.

o The comparison can be performed a byte at a time or a word at time by using CMPSB or

CMPSW forms of the instruction.

For example, if comparing "Euorop" and "Europe" for equality, the comparison will continue using the

REPE CMPS as long as the two arrays are the same.

 Here, the two arrays are to be compared letter by letter.

 The first characters pointed at by SI and DI are compared. In this case they are the same ("E"), so

the zero flag is set to 1 and both SI and DI are incremented.

 Since ZF = 1, the REPE prefix repeats the comparison.

 This process is repeated until the third letter is reached. The third letters “o” and "r" are not the

same; therefore, ZF = 0, and the comparison will stop.

SCAS (Scan String):

o SCASB – compares each byte of the array pointed at by ES: DI with the contents of the AL

register, and depending on which prefix, REPE or REPNE, is used, a decision is made for

equality or inequality.

MAHESH PRASANNA K., VCET, PUTTUR

14

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o For example, in the array "Mr. Gones", one can scan for the letter "G" by loading the AL register

with the character "G" and then using the "REPNE SCASB" operation to look for that letter.

 Here, the letter "G" is compared with "M".

 Since they are not equal, DI is incremented and CX is decremented, and the scanning is repeated

until the letter "G" is found or the CX register is zero. In this example, since "G" is found, ZF = 1,

indicating that there is a letter "G" in the array.

Replacing the Scanned Character:

o SCASB can be used to search for a character in an array, and if it is found, it will be replaced

with the desired character. (See Example given above).

o In string operations the pointer is incremented after each execution (if DF = 0). Therefore, in the

example above, DI must be decremented, causing the pointer to point to the scanned character

and then replace it.

XLAT Instruction and Look-Up Tables:

o There is often a need in computer applications for a table that holds some important information.

To access the elements of the table, 8088/86 microprocessors provide the XLAT (translate)

instruction.

MAHESH PRASANNA K., VCET, PUTTUR

15

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o To understand the XLAT instruction, one must first understand tables. The table is commonly

referred to as a look-up table.

o Assume that one needs a table for the values of x2, where x is between 0 and 9. First the table is

generated and stored in memory:

o It is possible to access the square of any number from 0 to 9 by the use of XLAT instruction.

 To do that, the register BX must have the offset address of the look-up table, and the

number whose square is sought must be in the AL register.

 Then after the execution of XLAT, the AL register will have the square of the number.

o The following shows how to get the square of 5 from the table:

o After execution of this program, the AL register will have 25 (19H), the square of 5.

o It must be noted that, for XLAT to work the entries of the look-up table must be in sequential

order and must have a one-to-one relation with the element itself. This is because of the way

XLAT work.

o In actuality, XLAT is one instruction, which is equivalent to the following code:

Code Conversion using XLAT:

o In many microprocessor-based systems, the keyboard is not an ASCII type of keyboard.

o One can use XLAT to translate the hex keys of such keyboards to ASCII.

o Assuming that the keys are 0-F, the following is the program to convert the hex digits of 0-F to

their ASCII equivalents.

MAHESH PRASANNA K., VCET, PUTTUR

16

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MEMORY & MEMORY INTERFACING
SEMICONDUCTOR MEMORIES

» In the design of computers, semiconductor memories are used as primary storage for code and

data. Semiconductor memories are connected directly to the CPU. For this reason, semiconductor

memories are referred to as primary memory. Most widely used semiconductor memories are

ROM and RAM.

» Read-only memory (ROM) contains system software and permanent system data.

» Random access memory (RAM) or read/write memory contains temporary data and application

software.

Memory Organization:

» The number of bits that a semiconductor memory chip can store is called its capacity. It can be in

the units of K bits (kilobits)/M bits (megabits).

» Memory chips are organized into a number of locations within the IC. Each location can hold 1

bit, 4-bits, 8-bits, or even 16-bits.

» Each memory chip contains 2x locations, where x is the number of address pins on the chip.

» Each location contains y bits, where y is the number of data pins on the chip.

» The entire chip will contain 2x x y bits – the capacity of the chip.

The pin connections common to all memory devices are –

» Address Connections. All memory devices have address inputs that select a memory location

within the memory device. Address inputs are always labeled from A0 to An (Note, ‘n’ is one less

than the total number of address pins). The number of address pins found on a memory device is

determined by the number of memory locations found within it.

» Data Connections. All memory devices have a set of data outputs or input/outputs. The device

illustrated in the following Figure has a common set of I/O (input/output) connections.

MAHESH PRASANNA K., VCET, PUTTUR

17

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» As shown in the Fig. above; the memory chips have CS (chip select) pin that must be activated

for memory contents to be accessed. That means, no data can be written into or read form the

memory chip unless CS is activated.

» Sometimes, OE (output enable)/RD (read)/WR (write) pins may also be present along with CS

pin.

Examples: 1] A given memory chip has 12 address pins and 8 data pins. Find the memory

organization and the capacity.

Solution:

 Memory chip has 12 address lines ↔ 212 = 4,096 locations.

 Memory chip has 8 data lines ↔ Each location hold 8 bits of data.

 Thus, the memory organization is 4,096 x 8 = 4K x 8 = 32K bits capacity.

Examples: 2] A 512K memory chip has 8 data pins. Find the organization.

Solution:

 The memory chip has 8 data lines ↔ Each location within the chip can hold 8 bits of data.

 Given, the capacity of the memory chip = 512K.

 Hence, the locations within the memory chip = 512K / 8 = 64K.

 Since, 216 = 64K; the memory chip has 16 address lines.

 Hence, the memory organization is: 64K x 8 = 512K bits capacity.

MEMORY ADDRESS DECODING:

o Consider a 32K x 8 capacity memory chip. This chip has 15 (215 = 32K) address lines and 8 data

lines.

o Suppose, this memory chip is to be interfaced to x86 microprocessor, which is having 20 address

lines and 16 data lines.

o This means that, the microprocessor sends out a 20-bit memory address whenever it reads or

writes data. Hence there is a mismatch that must be corrected.

o The decoder corrects the mismatch by decoding the address pins that do not connect to the

memory component.

Simple Logic Gates as Address Decoder:

 The CS (chip select) input pin (in any memory chip) is usually active low and can be activated

using some simple logic gates; such as NAND gate and Inverters.

 The following Fig. shows some simple NAND gate decoding for memory chips, along with the

address range calculations.

MAHESH PRASANNA K., VCET, PUTTUR

18

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Simple Logic Gates as Decoder (1)

Fig: Simple Logic Gates as Decoder (2)

MAHESH PRASANNA K., VCET, PUTTUR

19

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Notice that, the output of the NAND gate is active low and that the CS pin is also active low. That

makes them a perfect match.

o Also notice that Al9-A16 must equal 1001 in order for CS to be activated. This results in the

assignment of addresses 9000H to 9FFFFH to this memory block.

Using the 74LS138 as Decoder:

o The 74LS138 has 8 NAND gates in it; therefore, a single chip can control 8 blocks of memory.

o In 74LS138 decoder; the three inputs A, B, C generates eight active low outputs Y0 to Y7.

o Each Y output can be connected to the CS of memory chip, allowing control of 8 memory blocks

by a single 74LS138.

 Consider the following memory decoding diagram. We have, A0-A15 from the CPU, directly

connected to A0-A15 of the memory chip.

 A16-A18 are used for the A, B, and C inputs of 74LS138; A19 is controlling G1 pin. G2A and

G2B are grounded.

MAHESH PRASANNA K., VCET, PUTTUR

20

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 To enable 74LS138; G2A = 0, G2B = 0; and G1 = 1.

 To select Y4; CBA = 100.

 This gives the address range (for the memory chip controlled by Y4): C0000H to CFFFFH.

MAHESH PRASANNA K., VCET, PUTTUR

21

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

DATA INTEGRITY IN RAM & ROM:

o When storing data, one major concern is maintaining data integrity – ensuring that, the data

retrieved is the same as the data stored.

o The same principle applies when transferring data from one place to another – ensuring that, the

data received is the same as the data transmitted.

o There are many way to ensure data integrity depending on the type of storage.

o The checksum method is used for ROM and the parity bit method is used for DRAM.

o For mass storage devices such as hard disks and for transferring data on the Internet, the CRC

(cyclic redundancy check) method is employed.

Checksum Byte:

o During the current surge, or when the PC is turned on, or during operation, the contents of the

ROM may be corrupted.

o To ensure the integrity of the contents of ROM, every PC must perform a checksum calculation.

The process of checksum will detect any corruption of the contents of ROM.

o The checksum method uses a checksum byte. This checksum byte is an extra byte that is tagged

to the end of a series of bytes of data.

o To calculate the checksum byte of a series of bytes of data, the following steps can be taken .

1. Add the bytes together and drop the carries.

2. Take the 2's complement of the total sum, and that is the checksum byte, which becomes the

last byte of the stored information.
MAHESH PRASANNA K., VCET, PUTTUR

22

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o To perform the checksum operation, add all the bytes, including the checksum byte. The result

must be zero. If it is not zero, one or more bytes of data have been changed (corrupted).

Checksum Program:

 When the PC is turned on, one of the first things the BIOS does is to test the system ROM. The

code for such a test is stored in the BIOS ROM.

 The following Figure shows the program using the checksum method.

MAHESH PRASANNA K., VCET, PUTTUR

23

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Notice in the code how all the bytes are added together without keeping the track of carries. Then,

the total sum is ORed with itself to see if it is zero. The zero flag is expected to be set to high

upon return from this subroutine. If it is not, the ROM is corrupted.

Fig: PC BIOS Checksum Routine

Use of Parity Bit in DRAM Error Detection:

o System boards or memory modules are populated with DRAM chips of various organizations,

depending on the time they were designed and the availability of a given chip at a reasonable

cost.

o The memory technology is changing so fast that DRAM chips on the boards have a different look

every year or two. While early PCs used 64K DRAMs, current PCs commonly use 1G chips.

o To understand the use of a parity bit in detecting data storage errors, we use some simple

examples from the early PCs to clarify some very important design concepts.

DRAM Memory Banks:

 The arrangement of DRAM chips on the system or memory module board is often referred to as a

memory bank. For example, the 64K bytes of DRAM can be arranged as one bank of 8 IC chips

of 64K x 1 organization, or 4 bank of 16K x 1 organization.

 The first IBM PC introduced in 1981, used memory chip of l6K x l organization.

 The following Figure shows the memory banks for 640K bytes of RAM using 256K and 1M

DRAM chips.

 Notice the use of an extra bit for every byte of data to store the parity bit.

 With the extra parity bit every bank requires an extra chip of x 1 organization for parity check.

MAHESH PRASANNA K., VCET, PUTTUR

24

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 The following Figure shows DRAM design and parity bit circuitry for a bank of DRAM.

MAHESH PRASANNA K., VCET, PUTTUR

25

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 First, note the use of the 74LS158 to multiplex the 16 address lines A0-A15, changing them to the

8 address lines of MA0-MA7 (multiplexed address) as required by the 64K x l DRAM chip.

 The resistors are for the serial bus line termination to prevent undershooting and overshooting at

the inputs of DRAM. They range from 20 to 50 ohms, depending on the speed of the CPU and the

printed circuit board layout.

 A few additional observations above Figure should be made. The output of multiplexer addresses

MA0-MA7 will go to all the banks. Likewise, memory data MD0-MD7 and memory data parity

MDP will go to all the banks.

 The 74LS245 not only buffers the data bus MD0-MD7 but also boosts it to drive all DRAM

inputs. Since the banks of the DRAMs are connected in parallel and the capacitance loading is

additive, the data line must be capable of driving all the loads.

Parity Bit Generator/Checker in IBM PC:

o There are two types of errors that can occur in DRAM chips:

o Hard error – some bits or an entire row of memory cell inside the memory chip get stuck to high

or low permanently, thereafter always producing l or 0 regardless of what you write into the

cell(s).

o Soft error – a single bit is changed from 1 to 0 or from 0 to 1 due to current surge or certain kinds

of particle radiation in the air. Parity is used to detect soft errors.

o Including a parity bit to ensure data integrity in RAM is the most widely used method; since, it is

the simplest and cheapest.

o This method can only indicate if there is a difference between the data that was written to

memory and the data that was read.

o It cannot correct the error as is the case with some high-performance computers. In those

computers and some of the x86-based servers, the EDC (error detection and correction) method is

used to detect and correct the error bit.

o The early IBM PC and compatibles use the 74S280 parity bit generator and checker to implement

the concept of the parity bit.

74S280 Parity Bit Generator & Checker:

 The 74S280 chip has 9 inputs and 2 outputs. Depending on whether an even or odd number of

ones appear in the input, the even or odd output is activated (according to following Table).

 As can be seen from Table, if all 9 inputs have an even number of 1 bits, the even output goes

high (as in cases 1 and 4). If the 9 inputs have an odd number of high bits, the odd output goes

high (as in cases 2 and 3).

MAHESH PRASANNA K., VCET, PUTTUR

26

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

The way the IBM PC uses this chip is as follows:

 Notice that in above Figure (DRAM design and parity bit circuitry for a bank of DRAM), inputs

A – H are connected to the data bus, which is 8 bits, or one byte. The I input is used as a parity bit

to check the correctness of the byte of data read from memory. When a byte of information is

written to a given memory location in DRAM, the even-parity bit is generated and saved on the

ninth DRAM chip as a parity bit with use of control signal 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀����������. This is done by activating the

tri-state buffer using 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀����������. At this point, I of the 74S280 is equal to zero, since 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀��������� high.

 When a byte of data is read from the same location, the parity bit is gated into the I input of the

74S280 through 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀���������. This time the odd output is taken out and fed into a 74LS74. If there is a

difference between the data written and the data read, the Q output (called PCK, parity bit check)

of the 74LS74 is activated and Q activates NMI, indicating that there is a parity bit error,

meaning that the data read is not the same as the data written. Consequently, it will display

a parity bit error message.

 For example, if the byte of data written to a location has an even number of ls, A to H has an even

number of ls, and I is zero, then the even-parity output of 74S280 becomes 1 and is saved on

parity bit DRAM. This is case 1 shown in the above Table. If the same byte of data is read and

there is an even number of ls (the byte is unchanged), I from the ninth bit DRAM, which is 1, is

input to the 74S280, even becomes low, and odd becomes high, which is case 2 in the above

Table. This high from the odd output will be inverted and fed to the 74LS74, making Q low.

This means that 𝑄𝑄� is high thereby indicating that the written byte is the same as the byte read and

there is no errors occurred.

 If the number of 1s in the byte has changed from even to odd and the 1 from the saved parity

DRAM makes the number of inputs even (case 4 above), the odd output becomes low, which is

inverted and passed to the 74LS74 D flip-flop. This makes Q = 1 and 𝑄𝑄� = 0, which signals the

NMI to display a parity bit error message on the screen.

Case
Inputs Outputs

A – H I Even ODD

1 Even 0 1 0

2 Even 1 0 1

3 Odd 0 0 1

4 Odd 1 1 0

MAHESH PRASANNA K., VCET, PUTTUR

27

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
16-BIT MEMORY INTERFACING:

In this section, memory interfacing for 16-bit CPUs will be discussed. 80286 is taken as an example, but

the concepts can apply to any 16-bit microprocessor.

ODD & EVEN Banks:

In a 16-bit CPU such as the 80286, memory locations 00000-FFFFF are designated as odd and even bytes

as shown in the following Fig. This Figure shows only 1M byte of memory; the concept of odd and even

banks applies to the entire memory space of a given processor with a 16-bit data bus.

Fig: ODD & EVEN Banks of Memory

To distinguish between odd and even bytes, the CPU provides a

signal called BHE (bus high enable). BHE in association with A0

is used to select the odd or even byte according to following

Table.

The following Figure shows 640KB of DRAM for 16-bit buses.

Fig: 640K Bytes of DRAM with ODD & EVEN Banks Designation

The following Figure shows the use of A0 and BHE as bank selectors. Here, the 74LS245 chip is used as

a data bus buffer.

BHE A0 Memory Selection

0 0 Even Word D0 – D15

0 1 Odd Byte D8 – D15

1 0 Even Byte D0 – D7

1 1 None -

MAHESH PRASANNA K., VCET, PUTTUR

28

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: 16-bit Data Connection in the Systems with 16-bit Data Bus

Memory Cycle Time and Inserting Wait States:

o To access an external device such as memory or I/O, the CPU provides a fixed amount of time

called a bus cycle time. During this bus cycle time, the read and write operation of memory or I/O

must be completed.

o The bus cycle time used for accessing memory is often referred to as MC (memory cycle) time.

The time from when the CPU provides the addresses at its address pins to when the data is

expected at its data pins is called memory read cycle time.

o The processors such as the 8088/86, the memory cycle time takes 4 clocks, and from 286 to

Pentium, the memory cycle time is only 2 clocks.

o If memory is slow and its access time does not match the MC time of the CPU, extra time can be

requested from the CPU to extend the read cycle time. This extra time is called a wait state (WS).

MAHESH PRASANNA K., VCET, PUTTUR

29

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» It must be noted that, memory access time is not the only factor in slowing down the CPU. The

other factor is the delay associated with signals going through the data and address path.

» Delay associated with reading data stored in memory has the following two components:

1. The time taken for address signals to go from CPU pins to memory pins, (going through

decoders and buffers (e.g., 74LS245)); plus the time taken for the data to travel from memory

to CPU, is referred to as a path delay.

2. The memory access time to get the data out of the memory chip. This is the larger (80% of the

read cycle time) of the two components.

» The total sum of these two (path delay + memory access time) must equal the memory read cycle

time provided by the CPU.

MAHESH PRASANNA K., VCET, PUTTUR

30

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Accessing EVEN & ODD Words:

o Intel defines 16-bit data as a word. The address of a word can start at an even or an odd number.

o For example, in the instruction "MOV AX, [2000]" the address of the word being fetched into AX

starts at an even address. In the case of "MOV AX, [2007]" the address starts at an odd address.

o In systems with a 16-bit data bus, accessing a word from an odd addressed location can be

slower.

o As shown in the following Fig, in the 8-bit system, accessing a word is treated like accessing two

bytes regardless of whether the address is odd or even. Since accessing a byte takes one memory

cycle, accessing any word will take 2 memory cycles.

Fig: Accessing EVEN & ODD Words in 8-bit CPU

o In the 16- bit system, accessing a word with an even address takes one memory cycle. That is

because; one byte is carried on D0-D7 and the other on D8-Dl5 in the same memory cycle.

MAHESH PRASANNA K., VCET, PUTTUR

31

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o But, accessing a word with an odd address requires two memory cycles. For example, see how

accessing the word in the instruction "MOV AX, [F617]" works as shown in following Fig.

Fig: Accessing an Odd-Addressed Word in 16-bit Processor

o Assuming that DS = F000H in this instruction, the contents of physical memory locations FF6

l7H and FF6l8H are being moved into AX.

o In the first cycle, the 286 CPU accesses location FF617H and puts it in AL.

o In the second cycle, the contents of memory location FF618H are accessed and put into AH.

o Hence, it will be wise to put any words on an even address if the program is going to be run on a

16-bit system.

o A pseudo-instruction is specifically designed for this purpose. It is the EVEN directive and is

used as follows:

o This directive ensures that, the VALUE1, a word-sized operand, is located in an even address

location. Hence, an instruction such as “MOV AX, VALUE1” will take only a single memory

cycle.

Bus Bandwidth:

» The main advantage of the 16-bit data bus is; doubling of the rate of transfer of information

between the CPU and the outside world. The rate of data transfer is generally called bus

bandwidth. In other words, bus bandwidth is a measure of how fast buses transfer information

between the CPU and memory or peripherals. The wider the data bus, the higher the bus

bandwidth.

» But, the advantage of the wider external data bus comes at the cost of increasing the size of the

printed circuit board. Bus bandwidth is measured in MB (megabytes) per second and is calculated

as follows:

bus bandwidth = (1/bus cycle time) x bus width in bytes

MAHESH PRASANNA K., VCET, PUTTUR

32

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o In the above formula, bus cycle time can be either memory or I/O cycle time.

o There are two ways to increase the bus bandwidth:

 Use a wider data bus.

 Shorten the bus cycle time.

o While the data bus width has increased from 16-bit in the 80286 to 64-bit in the Pentium, the bus

cycle time is reaching a maximum of 133 MHz.

8255 I/O PROGRAMMING
8088 INPUT/OUTPUT INSTRUCTIONS:

o All x86 microprocessors, from the 8088 to the Pentium, can access external devices called ports.

This is done using I/O instructions.

o The x86 CPU has I/O space in addition to memory space. While memory can contain Opcode and

data, I/O ports contain data only.

o There are two instructions for this purpose: OUT and IN. These instructions can send data from

the accumulator (AL or AX) to ports or bring data from ports into the accumulator.

o In accessing ports, we can use an 8-bit or 16-bit data port.

MAHESH PRASANNA K., VCET, PUTTUR

33

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
8-bit Data Ports:

o The 8-bit I/O operation of the 8088 is applicable to all x86 CPUs from the 8088 to the Pentium.

o The 8-bit port uses the D0-D7 data bus to communicate with I/O devices.

o In 8-bit port programming, register AL is used as the source of data, when using the OUT

instruction; and as the destination, for the IN instruction. This means that to input or output data

from any other registers, the data must first be moved to the AL register.

o Instructions OUT and IN have the following formats:

In format (l) –

 port# is the address of the port and can be from 00 to FFH, allowing up to 256 input and 256

output ports.

 In this format, the 8-bit port address is carried on address bus A0-A7.

 No segment register is involved in computing the address.

In format (2) –

 port# is the address of the port and can be from 0000 to FFFFH, allowing up to 65,536 input and

65,536 output ports.

 In this format, the 16- bit port address is carried on the address bus A0-A15.

 The use of a register as a pointer for the port address has an advantage in that the port address can

be changed very easily, especially in. cases of dynamic compilations where the port address can

be passed to DX.

» I/O instructions are widely used in programming peripheral devices such as printers, hard disks,

and keyboards.

» The port address can be either 8-bit or 16-bit. For an 8-bit port address, we can use the immediate

addressing mode.

» The following program sends a byte of data to a fixed port address of 43H:

MAHESH PRASANNA K., VCET, PUTTUR

34

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» The 8-bit address used in immediate addressing mode limits the number of ports to 256 for input

plus 256 for output. To have a larger number of ports we must use the 16-bit port address

instruction.

» To use the 16-bit port address, register indirect addressing mode must be used. The register used

for this purpose is DX.

» The following program sends values 55H and AAH to I/O port address 300H (a 16-bit port

address).

» We can only use register DX for 16-bit I/O addresses; no other register can be used for this

purpose. Also, notice the use of register AL for 8-bit data:

» Just like the OUT instruction, the IN instruction uses the DX register to hold the address and AL

to hold the arrived 8-bit data. In other words, DX holds the 16-bit port address while AL receives

the 8-bit data brought in from an external port.

» The following program gets data from port address 300H and sends it to port address 302H.

I/O ADDRESS DECODING & DESIGN:

The decoding of I/O ports is done by using TTL logic gates 74LS373 and 74LS244. The following are the

steps:
MAHESH PRASANNA K., VCET, PUTTUR

35

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

1. The control signals IOR and IOW are used along with the decoders.

2. For an 8-bit port address, A0-A7 is decoded.

3. If the port address is 16-bit (using DX), A0-A15 is decoded.

Using 74LA373 in an Output Port Design:

o In every computer, whenever data is sent out by the CPU via the data bus, the data must be

latched by the receiving device. While memories have an internal latch to grab the data, a latching

system must be designed for simple I/O ports.

o The 74LS373 can be used for this purpose. Notice in the following Fig. that in order to make the

74LS373 work as a latch, the OC pin must be grounded.

Fig: 74LS373 D Latch

o For an output latch, it is common to AND the output of the address decoder with the control

signal IOW to provide the latching action as shown in Figure.

Fig: Design for “OUT 99H, AL”

MAHESH PRASANNA K., VCET, PUTTUR

36

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Design for Output Port Address of 31FH

IN Port Design Using the 74LA244:

o When the data is coming in by way of a data bus, it must come in through a three-state buffer.

This is referred to as tri-stated. See the following Fig for the internal circuitry of 74LS244.

Fig: 74LS244 Octal Buffer

MAHESH PRASANNA K., VCET, PUTTUR

37

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Here, since 1G and 2G each control only 4 bits of 74LS244, both must be activated for 8 bits

input. The following Fig shows the use of 74LS244 as an entry port to the system data bus. In the

following Figures, the address decoder and IOR control signal together activate the tri-state input.

Fig: Input Port Design for “IN AL, 5FH”

Fig: Design for “IN AL, 9FH”

Memory-Mapped I/O:

» Communicating with the I/O devices using IN and OUT instructions is referred to as peripheral

I/O. Some designers also refer to it as isolated I/O.

MAHESH PRASANNA K., VCET, PUTTUR

38

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» Some new RISC processors do not have IN and OUT instructions; they use memory-mapped I/O.

» In memory-mapped I/O, a memory location is assigned to be an input and output port.

» The following are the differences between peripheral I/O and memory-mapped I/O in x86 PC:

Isolated (Peripheral) I/O Memory-Mapped I/O

1. The IN and OUT instructions

transfer data between the

microprocessors accumulator or

memory and the I/O device.

1. Instructions that access memory locations are used

instead of IN and OUT instructions: MOV AL, [2000]

will access the input port & MOV [2000], AL will access

the output port.

2. Only A0-A15 are decoded; Hence,

DS initialization is not required;

decoding circuitry may be less

expensive.

2. Entire 20-bit address, A0-A19, must be decoded

(decoding circuitry is expensive); Hence DS must be

loaded before accessing memory-mapped I/O:

3. IOR and IOW control signals are

used.
3. MEMR and MEMW control signals are used.

4. Limited only to 65,536 input ports 4. The number of ports can be as high as 220 (1,048,576).

MAHESH PRASANNA K., VCET, PUTTUR

39

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

and 65,536 output ports.

5. Data should be moved to

accumulator for any kind of

operations.

5. Arithmetic and logic operations can be performed

directly, without moving data to accumulator.

6. The user can expand the memory to

its full size without using any

memory space for I/O devices.

6. Uses memory address space, which could lead to

memory space fragmentation.

I/O ADDRESS MAP OF x86 PCs:

Any system that needs to be compatible with the x86 IBM PC must follow the I/O map of the following

Table:

Table: I/O Map for x86 PC

MAHESH PRASANNA K., VCET, PUTTUR

40

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Absolute vs. Linear Select Address Decoding:

o In decoding addresses, either all the address lines or a selected number of them are decoded.

• If all the address lines are decoded, it is called absolute decoding.

• If only selected address pins are used for decoding, it is called linear select decoding –

This is cheaper due to the less number of input and the fewer the gates needed for

decoding. The disadvantage is that it creates what are called aliases, the same port with

multiple addresses. Hence, port address documentation is necessary.

Portable Addresses 300 – 31FH in x86 PC:

In the x86 PC, the address range 300H – 31FH is set aside for prototype cards to be plugged into the

expansion slot. These prototype cards can be data acquisition boards used to monitor analog signals such

as temperature, pressure, and so on. Interface cards using the prototype address space use the following

signals on the 62-pin section of the ISA expansion slot:

1. IOR and IOW. Both are active low.

2. AEN signal: AEN = 0 when the CPU is using the bus.

3. A0-A9 for address decoding.

MAHESH PRASANNA K., VCET, PUTTUR

41

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Use of Simple Logic Gates as Address Decoders:

The following Fig shows the circuit design for a 74LS373 latch connected to port address 300H of an x86

PC via an ISA expansion slot. Notice the use of signals A0-A9 and AEN. AEN is low when the x86

microprocessor is in control of the buses. Here, we are using simple logic gates such as NAND and

inverter gates for the I/O address decoder. These can be replaced with the 74LS138 chip because the

74LS138 is a group of NAND gates in a single chip.

Fig: Using Simple Logic Gates for I/O Address Decoder (I/O Address 300H)

Use of 74LS138 as Decoder:

The following Fig shows the 74LS138.

The following Fig is an example of the use of a 74LA138 for an I/O address decoder.

MAHESH PRASANNA K., VCET, PUTTUR

42

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Using 74LS138 for I/O Address Decoding

 This is an address decoding for an input port located at address 304H.

 The Y4 output, together with the IOR signal, controls the 74LS244 input buffer.

 Note that, each Y output can control a single I/O device.

IBM PC I/O Address Decoder:

The following Fig shows a 74LS138 chip used as an I/O address decoder in the original IBM PC.

Fig: Port Address Decoding in the Original IBM PC

 Notice that, while A0 to A4 go to individual peripheral input addresses, A5, A6, and A7 are

responsible for the selection of outputs Y0 to Y7.

 In order to enable the 74LS138, pins A8, A9, and AEN all must be low. While A8 and A9 will

directly affect the port address calculations, AEN is low only when the x86 is in control of the

system bus (see the following Table).

Table: Port Address Decoding Table on the Original PC

MAHESH PRASANNA K., VCET, PUTTUR

43

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Port 61H and Time Delay Generation:

o In order to maintain compatibility with the IBM PC and run operating systems such as MS-DOS

and Windows, the assignment of I/O port addresses must follow the standard.

o Port 61H is a widely used port. We can use this port to generate a time delay which will work in

any PC with any type of processor from the 286 to the Pentium.

o I/O port 61H has eight bits (D0-D7). Bit D4 is of particular interest to us. In all 286 and higher

PCs bit D4 of port 61H changes its state every 15.085 microseconds (µs) (stays low for 15.085

µs and then changes to high and stay high for the same amount of time before it goes low again).

o This toggling of bit D4 goes on indefinitely as long as the PC is on.

• The following program shows how to use port 61H to generate a delay of 1/2 second. In this

program all the bits of port 310H are toggled with a 1/2 second delay in between.

Notice that, when port 61H is read, all the bits are masked except D4. The program waits for D4 to

change every 15.085 µs before it loops again.

PROGRAMMING & INTERFACING THE 8255:

The 8255 is –

» a widely used 40-pin DIP I/O chip.

» Having three separately accessible ports, A, B, and C, which can be programmed to be input or

output port, hence the name PPI (programmable peripheral interface).

MAHESH PRASANNA K., VCET, PUTTUR

44

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

» They can also be changed dynamically, in contrast to the 74LS244 and 74LS373, which are hard-

wired.

Port A (PA0-PA7):

» This 8-bit port A can be programmed all as input or all as output.

Port B (PB0-PB7):

» This 8-bit port B can be programmed all as input or all as output.

Port C (PC0-PC7):

» This 8-bit port C can be programmed all as input or all as output.

» It can also be split into two parts; CU (upper bits PC4-PC7) and CL (lower bits PC0-PC3). Each

can be used as input or output.

» Any bit of Port C can be programmed individually.

Fig: 8255 PPI Chip

RD and WR:

» Active low input signals to 8255.

» If 8255 is using peripheral I/O design, IOR and IOW of the system bus are connected to these two

pins.

» If 8255 is using memory-mapped I/O, MEMR and MEMW of the system bus will activate these

two pins.

MAHESH PRASANNA K., VCET, PUTTUR

45

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
RESET:

» Active high signal input to 8255.

» Used to clear the control register.

» When RESET is activated, all the ports are initialized as input ports.

» This pin must be connected to the RESET output of the system bus, or grounded, making it

inactive.

A0, A1, and CS:

» CS (chip select) selects the entire chip.

» Address pins A0 and A1 selects specific port within the 8255.

» These three pins are used to access ports A, B, C, or the control register; as shown in the table:

Mode Selection of the 8255A:

The ports (A, B, and C) of the 8255 can be programmed in various modes, as shown in the following Fig.

CS A1 A0 Selects

0 0 0 Port A

0 0 1 Port B

0 1 0 Port C

0 1 1 Control Register

1 x x 8255 is not selected

MAHESH PRASANNA K., VCET, PUTTUR

46

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Fig: Control Word Format

Mode 0, the simple I/O mode, is the most widely used mode. In this mode, any of the ports A, B, CU, and

CL can be programmed as input or output. In this mode, all bits are out or all are in. In other words, there

is no control of individual bits.

MAHESH PRASANNA K., VCET, PUTTUR

47

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MAHESH PRASANNA K., VCET, PUTTUR

48

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MAHESH PRASANNA K., VCET, PUTTUR

49

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Buffering 300 – 31FH Address Range:

o When accessing the system bus via the expansion slot; we must make sure that the plug-in card

does not interfere with the working of system buses on the motherboard.

o To do that we isolate (buffer) a range of I/O addresses using the 74LS245 chip.

o In buffering, the data bus is accessed only for a specific address range, and access by any address

beyond the range is blocked.

o The following Fig shows how the I/O address range 300H-31FH is buffered with the use of the

74LS245.

o The following Fig shows another example of 8255 interfacing using the 74LS138 decoder. As

shown in the Fig., Y0 and Y1 are used for the 8255 and 8253, respectively. The Table shows the

74LS 138 address assignment.

MAHESH PRASANNA K., VCET, PUTTUR

50

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o The following Fig shows the circuit for buffering all the buses. The 74LS244 is used to boost the

address and control signals.

Fig: Design of 8-bit ISA PC Bus Extender

» The following shows a test program to toggle the PA and PB bits. Notice that in order to avoid

locking up the system, INT 16H is used to exit upon pressing any key.

MAHESH PRASANNA K., VCET, PUTTUR

51

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Visual C/C++ I/O Programming:

o Microsoft Visual C++ is a programming language widely used on the Windows platform.

o Since Visual C++ is an object-oriented language, it comes with many classes and objects to make

programming easier and more efficient.

o But, there is no object or class for directly accessing I/O ports in the full Windows version of

Visual C++.

o The reason for that is that Microsoft wants to make sure the x86 system programming is under

full control of the operating system. This prevents any hacking into the system hardware.

o This applies to Windows NT, 2000, XP, and higher.

MAHESH PRASANNA K., VCET, PUTTUR

52

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o Hence, none of the system INT instructions such as INT 21H and I/O operations are applicable in

Windows XP and its subsequent versions.

o To access the I/O and other hardware features of the x86 PC in the XP environment you must use

the Windows Platform SDK provided by Microsoft.

• The situation is different in the Windows 9x (95 and 98) environment.

• While INT 21H and other system interrupt instructions are blocked in Windows 9x, direct I/O

addressing is available.

• To access I/O directly in Windows 9x, you must program Visual C++ in console mode.

• The instruction syntax for I/O operations is shown in the following Table.

x86 Assembly Visual C++

OUT port#, AL _outp (port#, byte)

OUT DX, AL _outp (port#, byte)

IN AL, port# _inp (port#)

IN AL, DX _inp (port#)

• Notice the use of the underscore character (_) in both the _outp and _inp instructions.

• Also note that, while the x86 Assembly language makes a distinction between the 8-bit and 16-bit

I/O addresses by using the DX register, there is no such distinction in C programming. In other

words, for the instruction "outp (port#, byte)" the port# can take any address value between 0000

and FFFFH.

MAHESH PRASANNA K., VCET, PUTTUR

53

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

I/O Programming in Linux C/C++:

o Linux is a popular operating system for the x86 PC.

o The following Table provides the C/C++ syntax for I/O programming in the Linux OS

environment.

x86 Assembly Linux C/C++

OUT port#, AL outb (byte, port#)

OUT DX, AL outb (byte, port#)

IN AL, port# inb (port#)

IN AL, DX inb (port#)

Compiling & Running Linux C/C++ Programs with I/O Functions:

• To compile the I/O programs, the following points must be noted:

o To compile with a keypress loop, you must link to library ncurses as follows:

> gcc -lncurses toggle.c -o toggle

• To run the program, you must either be root or root must change permissions on executable for

hardware port access.

Example: (as root or superuser)

MAHESH PRASANNA K., VCET, PUTTUR

54

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

> chown root toggle

> chmod 4750 toggle

• Now toggle can be executed by users other than root.

MAHESH PRASANNA K., VCET, PUTTUR

55

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

By: Mahesh Prasanna K.,

DePt. of Cse, VCet.

____________*********____________

MAHESH PRASANNA K., VCET, PUTTUR

56

	MODULE – 3
	SIGNED NUMBERS AND STRINGS & MEMORY INTERFACING & 8255
	After
	1100 0000 = -40H

	Before

