
ATC-Module-2- Dr.Girijamma H A 
 

1 
 

Chapter-6 

Regular Expressions 

Regular Expression (RE) 

A RE is a string that can be formed according to the following rules: 

1. ø is a RE. 

2. ε is a RE. 

3. Every element in ∑ is a RE. 

4. Given two REs α and β,αβ is a RE. 

5. Given two REs α and β, α U β is a RE. 

6. Given a RE α, α* is a RE. 

7. Given a RE α, α+ is a RE. 

8. Given a RE α, (α) is a RE. 

if ∑ = {a,b}, the following strings are regular expressions:  

ø, ε, a,b, (a U b)*, abba U ε.  

Semantic interpretation function L for the language of regular expressions: 

1. L (ø) = ø, the language that contains no strings. 

2. L (ε) = {ε}, the language that contains empty string. 

3. For any cϵ∑, L(c) = {c}, the language that contains single character string c. 

4.  For any regular expressions α and β, L (αβ) = L (α) L (β).  

5.   For any regular expressions α and β, L (α U β) = L (α) U L (β).  

6. For any regular expression α, L (α*) = (L (α))*. 

7. For any regular expression α, L (α+) = L (αα*) = L (α) (L (α))* 

8. For any regular expression α, L ((α)) = L (α).  

 

Analysing Simple Regular Expressions 

1.L( (a U b)*b) = L((a U b)*)L(b)  

                     = (L((a U b)))*L(b) 



ATC-Module-2- Dr.Girijamma H A 
 

2 
 

                     = (L(a) U L(b))*L(b)  

                     =({a} U {b})*{b}  

                     = {a,b}*{b} 

(a U b)*b is the set of all strings over the alphabet {a, b} that end in b. 

 

2. L( ((a U b) (a U b))a(a U b)*)  

                 = L(((a U b)(a U b)))L(a) L((a U b)*)  

                 = L((a U b)(a U b)) {a} (L((a U b)})* 

                 = L((a U b))L((a U b)) {a} {a,b}* 

                 = {a, b} { a, b} {a} {a, b}* 

• ((a U b)(a U b))a(a U b)* is  

    {xay : x and y are strings of a's and b's and lxl = 2}. 

 

Finding RE for a given Language 

1.Let L = {w ϵ {a, b }*: |w| is even}.  

            L = {aa,ab,abba,aabb,ba,baabaa,-------}  

            RE =  ((a U b)(a U b))* or  ( aa U ab U ba U bb )*  

 

2.  Let L = {w ϵ {a, b }*: w starting with string abb}.  

            L = {abb,abba,abbb,abbab-------}  

            RE =  abb(a U b)* 

 

3. Let L = {w ϵ {a, b }*: w ending with string abb}.  

            L = {abb,aabb,babb,ababb-------}  

            RE = (a U b)*abb  

 

4. L = {w ϵ {0, 1}*  : w have 001 as a substring}.  

      L = {001,1001,000101,-------} 

      RE = (0 U 1)*001(0 U 1)* 

 

5. L = {w ϵ {0, 1}* : w does not have 001 as a substring}. 

     L = {0,1,010,110,101,----} 

        RE = (1 U 01)*0*  



ATC-Module-2- Dr.Girijamma H A 
 

3 
 

 

6. L = {w ϵ {a, b}* : w contains an odd number of a's}. 

           L = {a,aaa,ababa,bbaaaaba------}   

           RE = b*(ab*ab*)* a b*   or      b*ab*(ab*ab*)*  

 

7. L = {w ϵ {a, b}* :#a(w) mod 3 = 0}. 

     L = {aaa,abbaba,baaaaaa,---} 

           RE = (b*ab*ab*a)*b*  

 

8. Let L = {w ϵ {a, b }*:#a(w) <= 3}.  

            L = {a,aa,ba,aaab,bbbabb,-------}  

                RE = b*(a U ε)b*(a U ε)b*(a U ε)b* 

 

9. L = {w ϵ {0, 1}* : w contains no consecutive 0’s} 

      L={0, ε,1,01,10,1010,110,101,-----} 

       RE = (0 U ε)(1 U 10) 

 

10. L = {w ϵ {0, 1}* : w contains at least two 0’s} 

        L={00,1010,1100,0001,1010,100,000,-----} 

           RE = (0 U 1)*0(0 U 1)*0(0 U 1)* 

 

11.L  = { anbm / n>=4 and m<= 3} 

               RE= (aaaa)a*(ε U b U bb U bbb)  

 

12.L  = { anbm / n<=4 and m>= 2} 

               RE= (ε U a U aa U aaa U aaaa)bb(b)* 

 

13. L  = { a2nb2m / n>=0 and m>= 0} 

               RE= (aa)*(bb)* 

 

14. L = { anbm:(m+n) is even} 

             (m+n) is even when both a’s and b’s are even or  both odd. 

               RE = (aa)*(bb)* U a(aa)*b(bb)*    

 



ATC-Module-2- Dr.Girijamma H A 
 

4 
 

 

 

 

Three operators of RE in precedence order(highest to lowest) 

 

1. Kleene star  

2. Concatenation  

3. Union 

 

Eg: (a U bb*a) is evaluated as (a U (b(b*)a)) 

 

Kleene's Theorem 

 

Theorem 1: 

Any language that can be defined by a regular expression can be accepted by some 

finite state machine. 

Theorem 2: 

 Any language that can be accepted by a finite state machine can be defined by   

some  regular expressions. 

Note: These two theorems are proved further. 

 

Buiding an FSM from a RE 

 

Theorem 1:For Every RE, there is an Equivalent FSM. 

Proof: The proof is by construction. 

We can show that given a RE α, 

we can construct an FSM M such that L (α) = L (M). 

Steps: 

1. If α is any cϵ∑ ,we construct simple FSM shown in Figure(1) 

 
                  Figure (1) 



ATC-Module-2- Dr.Girijamma H A 
 

5 
 

 

 

2. If α is any ø, we construct simple FSM shown in Figure(2).  

   
                  Figure (2) 

3.  If α is ε,we construct simple FSM shown in Figure(3). 

    
          Figure (3)  

4. Let β and γ be regular expressions.  

If L(β) is regular,then FSM M1 = (K1, ∑ , δ1, s1, A1). 

If L(γ) is regular,then FSM M2 = (K2, ∑ , δ2, s2, A2). 

If α is the RE β U γ, FSM M3=(K3, ∑ , δ3, s3, A3) and 

    L(M3)=L(α)=L(β) U L(γ) 

    M3 = ({S3} U K1 U K2, ∑ , δ3, s3, A1 U A2), where  

    δ3  = δ1 U δ2 U { ((S3, ε), S1),((S3, ε),S2)}.  

 
α = β U γ  

 

5. If α is the RE βγ, FSM M3=(K3, ∑ , δ3, s3, A3) and  

 L(M3)=L(α)=L(β)L(γ) 

M3 = (K1 U K2, ∑ , δ3, s1, A2), where  



ATC-Module-2- Dr.Girijamma H A 
 

6 
 

δ3  = δ1 U δ2 U { ((q, ε), S2):qϵA1}.  

 
                                                             α = βγ  

 

6. If α is the regular expression β*, FSM M2 = (K2, ∑, δ2 s2, A2) such that  

L (M2) = L (α)) = L (β )*. 

M2 = ({S2} U K1, ∑, δ2,S2,{S2} U A1), where 

δ2  = δ1 U {((S2, ε ),S1)} U {((q, ε ),S1):q ϵ A1}. 

  

 
                                              α = β* 

 

Algorithm to construct FSM, given a regular expression α 

 

regextofsm(α : regular expression) =  

    Beginning with the primitive subexpressions of α and working 

    outwards  until an FSM for an of α has been built do:  

   Construct an FSM as described in previous theorem. 

 

Building an FSM from a Regular Expression 

 

1. Consider the regular expression (b U ab )*.  

 

 
               An FSM for b  



ATC-Module-2- Dr.Girijamma H A 
 

7 
 

  
 

                An FSM for a  

 

 
                                An FSM for ab  

 

   
                               An FSM for (b U ab) 

 



ATC-Module-2- Dr.Girijamma H A 
 

8 
 

 
                                 An FSM for (b U ab)* 

 

2. Construct FSM for the RE (b(a U b)b)*  

 



ATC-Module-2- Dr.Girijamma H A 
 

9 
 

 

 

 

 

 

 

 

 

 



ATC-Module-2- Dr.Girijamma H A 
 

10 
 

Building a Regular Expression from an FSM 

Building an Equivalent Machine M 

 

 

Algorithm for FSM to RE(heuristic) 

fsmtoregexheuristic(M: FSM) =  

1. Remove from M-any unreachable states. 

2. No accepting states then return the RE ø. 

3. If the start state of M is has incoming transitions into it, create a new start 

state s. 

4. If there is more than one accepting state of M or one accepting state with 

outgoing transitions from it, create a new accepting state.  

5. M has only one state, So L (M} = { ε } and return RE ε. 

6. Until only the start state and the accepting state  remain  do:  

       6.1. Select some state rip of M.  

       6.2. Remove rip from M.  

       6.3. Modify the transitions. The labels on the rewritten 

              transitions may be any regular expression. 

7. Return the regular expression that labels from the  

    start state to the accepting state.  



ATC-Module-2- Dr.Girijamma H A 
 

11 
 

Example 1 for building a RE from FSM 

Let M be:  

 

Step 1:Create a new start state and a new accepting  state and link them to M 

After adding new start state 4 and accepting state 5 

 

Step 2: let rip be state 3 

 



ATC-Module-2- Dr.Girijamma H A 
 

12 
 

After  removing rip state 3 

1-2-1:ab U aaa*b 

1-2-5:a  

Step 3: Let rip be state 2 

After removing rip state 2 

 

4-1-5: (ab U aaa*b)*(a U ε) 

Step 4: Let rip be state 1 

After removing rip state 1 

 

RE = (ab U aaa*b)*(a U ε)  

 

 

 

 

 



ATC-Module-2- Dr.Girijamma H A 
 

13 
 

Theorem 2 :For Every FSM ,there is an equivalent regular expression 

Statement : Every regular language can be defined with a regular expression. 

Proof : By Construction 

               Let FSM M = (K,∑,δ,S,A),construct a regular expression α such that 

  L(M) = L(α) 

 

Collapsing Multiple Transitions 

 

 

{C1,C2,C3.......Cn} - Multiple Transition 

Delete and replace by {C1 U C2 U C3.......U Cn} 

If any of the transitions are missing, add them without changing L(M) by labeling 

all of the new transitions with the RE ø.  

 



ATC-Module-2- Dr.Girijamma H A 
 

14 
 

Select a state rip and remove it and modify the transitions as shown below. 

Consider any states p and q.once we remove rip,how can M get from p to q? 

Let R(p,q) be RE that labels the transition in M from P to Q.Then the new machine 

M' will be removing rip,so R'(p,q) 

   R'(p,q) = R(p,q) U R(p,rip)R(rip,rip)*R(rip,q) 

Ripping States out one at a time 

R'(1,3) = R(1,3) U R(1,rip)R(rip,rip)*R(rip,3) 

      = R(1,3) U R(1,2)R(2,2)*R(2,3) 

      = ø U ab*a 

      = ab*a 

Algorithm to build RE that describes L(M) from any FSM M = (K,∑,δ,S,A) 

Two Sub Routines: 

1. standardize : To convert M to the required form 

2. buildregex : Construct the required RE from  

                           modified machine M 

1.Standardize (M:FSM) 

i. Remove unreachable states from M 

ii. Modify start state 

iii. Modify accepting states 

iv. If there is more than one transition between states p and q ,collapse them to 

single transition 

v. If there is no transition between p and q and p ∉A, q ∉S,then create a 

transiton between p and q labled Φ 

 



ATC-Module-2- Dr.Girijamma H A 
 

15 
 

2.buildregex(M:FSM) 

i. If M has no accepting states then return RE Φ 

ii. If M has only one accepting state ,return RE ε 

iii. until only the start state and the accepting state remain do: 

a. Select some state rip of M 

b. Find R'(p,q) = R(p,q) U R(p,rip).R(rip,rip)*.R (rip,q) 

c. Remove rip on d all transitions into ad out of it 

iv. Return the RE that labels from start state to the accepting state 

Example 2: Build RE from FSM 

 

Step 1: let RIP be state 4  

1-4-2 : bb  

After removing rip state 4  

 

Step 2: Collapse multiple transitions from state 1 to state 2  

1-2: a U bb  

After collapsing  multiple transitions from state 1 to state 2  



ATC-Module-2- Dr.Girijamma H A 
 

16 
 

 

Step 3: let rip be state 2  

1-3: (a U bb)b*a  

After removing rip state 2  

 

RE = (a U bb)b*a  

Example 3: Build RE From FSM 

 

Step 1: Remove state s  as it is dead state 

After removing state s 

 

Step 2: Add new start state t and new accepting state u 



ATC-Module-2- Dr.Girijamma H A 
 

17 
 

After adding t and u 

 

Step 3: Let rip be state q 

p-q-p: 01  

After removing rip state q 

 

Step 4: Let rip be state r 

p-r-p: 10  

After removing rip state r 

 

RE = (01 U 10)* 

 

 



ATC-Module-2- Dr.Girijamma H A 
 

18 
 

Example 4:A simple FSM with no simple RE 

L = {w ε {a,b}* : w contains an even no of a's and an odd number of  b's} 

 

[3] even a's odd b's  

 

 



ATC-Module-2- Dr.Girijamma H A 
 

19 
 

 

 

 



ATC-Module-2- Dr.Girijamma H A 
 

20 
 

 

 

 



ATC-Module-2- Dr.Girijamma H A 
 

21 
 

 

Building DFSM 

• It is possible to construct a DFSM directly from a set of patterns 

• Suppose we are given a set K of n keywords and a text string s. 

• Find the occurences of s in keywords K 

• K can be defined by RE  

 (Σ*(K1 U K2 U........U Kn)Σ*)+  

• Accept any string in which at least one keyword occurs 

Algorithm- buildkeywordFSM 

• To build dfsm that accepts any string with atleast one of the specified 

keywords 

    Buildkeyword(K:Set of keywords) 

• Create a start state q0  

• For each element k of K do 

 Create a branch corresponding to k 



ATC-Module-2- Dr.Girijamma H A 
 

22 
 

• Create a set of transitions that describe what to do when a branch dies  

• Make the states at the end of each branch accepting 

 

 

 

Applications Of Regular Expressions 

• Many Programming languages and scripting systems provide support for 

regular expression matching 

• Re's are used in emails to find spam messages 

• Meaningful words in protein sequences are called motifs 

• Used in lexical analysis 

• To Find Patterns in Web 

• To Create Legal passwords 

• Regular expressions are useful in a wide variety of text processing tasks,  



ATC-Module-2- Dr.Girijamma H A 
 

23 
 

• More generally string processing, where the data need not be textual.  

• Common applications include data validation, data scraping (especially web 

scraping), data wrangling, simple parsing, the production of syntax 

highlighting systems, and many other tasks.  

RE for Decimal Numbers 

RE = -? ([0-9]+(\.[0-9]*)? | \.[0-9]+) 

• (α)? means the RE α can occur  0 or 1 time. 

• (α)* means the RE α can repeat  0 or more times. 

• (α)+ means the RE α can repeat 1 or more times. 

24.23,-24.23, .12, 12. ----- are some examples 

Requirements for legal password 

• A password must begin with a letter 

• A password may contain only letters numbers and a underscore character 

• A password must contain atleast 4 characters and no more than 8 characters 

((a-z) U (A-Z)) 

((a-z) U (A-Z) U (0-9) U _) 

((a-z) U (A-Z) U (0-9) U _) 

((a-z) U (A-Z) U (0-9) U _) 

((a-z) U (A-Z) U (0-9) U _ U ε) 

((a-z) U (A-Z) U (0-9) U _ U ε)  

((a-z) U (A-Z) U (0-9) U _ U ε) 

((a-z) U (A-Z) U (0-9) U _ U ε)  

Very lengthy regular expression 



ATC-Module-2- Dr.Girijamma H A 
 

24 
 

Different notation for writing RE  

• α means that the pattern α must occur exactly once. 

• α* means that the pattern may occur any number of times(including zero). 

• α+ means that the pattern α must occur atleast once. 

• α{n,m} means that the pattern must occur atleast n times but not more than 

m times 

• α{n} means that the pattern must occur n times exactly 

• So RE of a legal password is : 

 RE = ((a-z) U (A-Z))((a-z) U (A-Z) U (0-9) U _){3,7} 

Examples: RNSIT_17,Bangalor, VTU_2017 etc 

• RE for an ip address is :  

 RE = ((0-9){1,3}(\.(0-9){1,3}){3}) 

Examples: 121.123.123.123 

                  118.102.248.226 

                     10.1.23.45 

Manipulating and Simplifying Regular Expressions 

Let α, β, ү represent regular expressions and we have the following identities. 

1. Identities involving union 

2. Identities involving concatenation 

3. Identities involving Kleene Star 

Identities involving Union 

• Union is Commutative 

 α U β = β U α 



ATC-Module-2- Dr.Girijamma H A 
 

25 
 

• Union is Associative 

 (α U β) U ү = α U (β U ү) 

• Φ is the identity for union 

 α U Φ = Φ U α = α 

• union is idempotent 

 α U α = α 

• For any 2 sets A and B, if B ⊆ A, then A U B = A 

    a* U aa = a*, since L(aa) ⊆ L(a*). 

Identities involving concatenation 

• Concatenation is associative 

 (αβ)ү = α(βү) 

• ε is the identity for concatenation 

 αε = εα = α 

•  Φ is a zero for concatenation. 

     αΦ = Φα = Φ 

• Concatenation distributes over union 

 (α U β)ү = (αү) U (βү) 

 ү(α U β) = (үα) U (үβ) 

Identities involving Kleene Star 

• Φ* = ε  

• ε* = ε  

• (α*)* = α* 

• α*α* = α* 



ATC-Module-2- Dr.Girijamma H A 
 

26 
 

• If α* ⊆ β* then α*β* = β* 

• Similarly If β* ⊆ α* then α*β* = α* 

     a*(a U b)* = (a U b)*, since L(a*) ⊆ L((a U b)*).  

• (α U β)* = (α*β*)* 

• If L(β) ⊆ L(α) then (α U β)* = α* 

   (a U ε)* = a*,since {ε} ⊆ L(a*). 

Simplification of Regular Expressions 

1. ((a* U Φ)* U aa)  = (a*)* U aa            //L(Φ) ⊆ L(a*) 

                                =  a* U aa              //(α*)* = α* 

                                = a*                       // L(aa) ⊆ L(a*) 

2. (b U bb)*b* = b*b*                             //L(bb) ⊆ L(b*)     

                       = b*                                // α*α* = α* 

3. ((a U b)* b* U ab)*  

                      = ((a U b)* U ab)*       //L(b*) ⊆ L(a U b)* 

                      = (a U b)*                  //L(a*) ⊆ L(a U b)*)  

4. ((a U b)* (a U ε )b*  = (a U b)* //L((a U ε )b*) ⊆ L(a u b)*    

     

5. (Φ* U b)b*              = (ε U b)b*       //Φ* = ε 

                                   = b*                 //L(ε U b) ⊆ L(b*) 

6. (a U b)*a* U b  = (a U b)* U b   // L(a*) ⊆ L((a U b)*) 

                            = (a U b)*          // L(b) ⊆ L((a U b)*) 

7.((a U b)+)* = (a U b)* 



ATC-Module-2- Dr.Girijamma H A 
 

27 
 

Chapter-7  

Regular Grammars 

Regular grammars sometimes called as right linear grammars.  

A regular grammar G is a quadruple (V, ∑ , R, S) 

• V is the rule alphabet which contains nonterminals  

      and terminals.  

• ∑ (the set of terminals) is a subset of V 

• R (the set of rules) is a finite set of rules of the form 

   X  Y 

• S (the start symbol) is a nonterminal.  

All rules in R must: 

• Left-hand side should be a single nonterminal. 

• Right-hand side is ε or a single terminal or a single terminal followed by a 

single nonterminal.   

Legal Rules 

Sa  

Sε  

TaS  

Not legal rules 

SaSa  

STT 

aSaT  

ST 



ATC-Module-2- Dr.Girijamma H A 
 

28 
 

• The language generated by a grammar G = (V, ∑ , R, S) denoted by L( G) is 

the set of all strings w in ∑*  such that it is possible to start with S. 

• Apply some finite set of rules in R, and derive w. 

• Start symbol of any grammar G will be the symbol on the left-hand side of 

the first rule in RG  

Example of Regular Grammar 

Example 1:Even Length strings 

Let L = {wϵ {a, b }*: lwl is even}.  

The following regular expression defines L:  

((aa) U (ab) U (ba) U (bb))* or ((a U b)(a U b))* 

       DFSM accepting L 

 

Regular Grammar G defining L 

Sε  

SaT  

SbT  

TaS  

TbS  

Derivation of string using Rules 

Derivation of string “abab” 



ATC-Module-2- Dr.Girijamma H A 
 

29 
 

S => aT  

   => abT  

   => abaS  

   => ababS  

   => abab  

Regular Grammars and Regular Languages 

THEOREM   

Regular Grammars Define Exactly the Regular Languages 

Statement: 

The class of languages that can be defined with regular grammars is exactly the 

regular languages. 

Proof: Regular grammar  FSM 

            FSM  Regular grammar  

The following algorithm constructs an FSM M from a regular grammar G = (V, 

∑ , R, S) and assures that  

 L (M) = L (G):  

Algorithm-Grammar to FSM 

grammartofsm ( G: regular grammar) =  

1. Create in M a separate state for each nonterminal in V. 

2. Make the state corresponding to S the start state. 

3. If there are any rules in R of the form Xw, for some  

      w ϵ ∑, then create an additional state labeled #. 

 4. For each rule of the form X wY, 



ATC-Module-2- Dr.Girijamma H A 
 

30 
 

     add a transition from X to Y labeled w. 

5. For each rule of the form Xw, add a transition from X 

    to # labeled w.  

6. For each rule of the form Xε, mark state X as 

    accepting.  

7. Mark state # as accepting. 

8. If M is incomplete then M requires a dead state.  

    Add a new state D. For every (q, i) pair for which no 

   transition has already been defined, create a transition 

   from q to D labeled i. For every i in Σ, create a transition 

   from D to D labeled i.  

Example 2:GrammarFSM 

Strings that end with aaaa  

Let L = {wϵ {a, b }*: w end with the pattern aaaa}.  

RE = (a U b)*aaaa  

Regular Grammar G  

SaS  

SbS  

SaB  

BaC  

CaD  

Da  

 



ATC-Module-2- Dr.Girijamma H A 
 

31 
 

Example 3:The Missing Letter Language 

Let ∑ = {a, b, c}.  

LMissing = { w : there is a symbol a € ∑ not appearing in w}.  

Grammar G generating LMissing  

 



ATC-Module-2- Dr.Girijamma H A 
 

32 
 

 

 



ATC-Module-2- Dr.Girijamma H A 
 

33 
 

 

Algorithm FSM to Grammar 

1. Make M deterministic (to get rid of ε-transitions). 

2. Create a nonterminal for each state in the new M. 

3. The start state becomes the starting nonterminal. 

4. For each transition δ(T, a) = U, make a rule of the form T → aU.  

5. For each accepting state T, make a rule of the form T → ε.  

 

Example 7:Build grammar from FSM  

 



ATC-Module-2- Dr.Girijamma H A 
 

34 
 

RE = (a U bb)b*a  

Grammar  

AaB  

AbD  

BbB  

BaC  

DbB  

Cε  

Derivation of string “aba” 

A => aB  

   => abB  

   => abaC  

   => aba  

Derivation of string “bba” 

   A => bB  

      => bbB  

      => bbaC  

      => bba  

Example 8:A simple FSM with no simple RE 

L = {w ε {a,b}* : w contains an even no of a's and an odd  

                          number of b's} 



ATC-Module-2- Dr.Girijamma H A 
 

35 
 

 

Grammar 

AaB  

AbC  

BaA  

BbD  

CbA  

CaD  

DbB  

DaC  

Cε  

Derivation of string “ababb” 

A => aB  

   => abD  

   => abaC  

   => ababA  

   => ababbC  

   => ababb 



ATC-Module-2- Dr.Girijamma H A 
 

36 
 

 

Satisfying Multiple Criteria 

Let L = { wϵ {a, b }*: w contain an odd number of a’s and 

              w ends in a}.  

 

SbS  

SaT  

T ε 

TaS  

TbX  

XaS  

XbX  

 



ATC-Module-2- Dr.Girijamma H A 
 

37 
 

Conclusion on Regular Grammars 

• Regular grammars define exactly the regular languages. 

• But regular grammars are often used in practice as FSMs and REs are easier 

to work. 

• But as we move further there will no longer exist a technique like regular 

expressions. 

• So we discuss about context-free languages and context-free-grammars are 

very important to define the languages of push-down automata.  

 

Chapter-8 

Regular and Nonregular Languages 

• The language a*b* is regular. 

• The language AnBn = {anbn :n>=0} is not regular. 

• The language {w Є {a,b}*:every a is immediately followed by b} is regular. 

• The language {w Є {a, b}*:every a has a matching b somewhere and no b  

      matches more than one a}  is not regular.  

• Given a new language L, how can we know whether or not it is regular? 

Theorem 1: The Regular languages are countably infinite 

Statement:  

There are countably infinite number of regular languages. 

Proof:  

• We can enumerate all the legal DFSMs with input alphabet ∑. 

• Every regular language is accepted by at least one of them.  

• So there cannot be more regular languages than there  are DFSMs. 



ATC-Module-2- Dr.Girijamma H A 
 

38 
 

•  But the number of regular languages is infinite 

  because it includes the following infinite set of 

  languages: 

    {a}, { aa} , { aaa}, { aaaa}. { aaaaa}, { aaaaaa } ---- 

•  Thus there are at most a countably infinite number of  

  regular languages.  

 

Theorem 2 : The finite Languages 

Statement: Every finite language is regular.  

Proof:  

•  If L is the empty set, then it is defined by the R.E Ø and so 

   is regular.  

•  If it is any finite language composed of the strings 

  s1,s2,….sn for some positive integer n, then it is defined by 

  the R.E:           s1
 U s2 U …U sn  

•   So it too is regular 

 

 Regular expressions are most useful when the elements of  L match one or 

more patterns. 

  FSMs are most useful when the elements of L share  some simple structural 

properties.  

 

 



ATC-Module-2- Dr.Girijamma H A 
 

39 
 

Examples: 

• L1 = {w Є {0-9}*: w is the social security number of the 

                              current US president}. 

L1 is clearly finite and thus regular. There exists a simple 

FSM to accept it. 

•  L2 = {1 if Santa Claus exists and 0 otherwise}. 

•  L3 = {1 if God exists and 0 otherwise}. 

L 2 and L3 are perhaps a little less clear. 

So either the simple FSM that accepts { 0} or the simple  

FSM that accepts { 1} and nothing else accepts L2 and L3. 

• L
4 
= {1 if there were people in north America more than 

           10000 years age and 0 otherwise}. 

•  L
5 
= {1 if there were people in north America more than 

           15000 years age and 0 otherwise}. 

L
4
 is clear. It is the set { 1}. 

L
5
 is also finite and thus regular. 

•  L
6 
= {w Є {0-9}*: w is the decimal representation, without 

                             leading 0’s, of a prime Fermat number} 

  

• Fermat numbers are defined by 

       Fn = 22n + 1 ,  n >= 0. 

• The first five elements of F are {3, 5, 17, 257,65537}. 

• All of them are prime. It appears likely that no other Fermat numbers are 

prime. If that is true,then L6 

    is finite and thus regular. 



ATC-Module-2- Dr.Girijamma H A 
 

40 
 

• lf it turns out that the set of Fermat numbers is infinite,then it is almost 

surely not regular.  

Four  techniques for showing that a language L(finite or infinite) is regular: 

1. Exhibit a R.E for L. 

2. Exhibit an FSM for L. 

3. Show that the number of equivalence of ≈L is finite. 

4. Exhibit a regular grammar for L. 

Closure Properties of Regular Languages 

The Regular languages are closed under  

•  Union 

•  Concatenation 

•  Kleene star 

•  Complement 

•  Intersection 

•  Difference 

•  Reverse 

•  Letter substitution 

Closure under Union, Concatenation and Kleene star 

Theorem: The regular languages are closed under union, 

                  concatenation and Kleene star. 

Proof: By the same constructions that were used in the  

           proof of Kleene’s theorem. 

Closure under Complement 



ATC-Module-2- Dr.Girijamma H A 
 

41 
 

Theorem:  

The regular languages are closed under complement. 

Proof:  

•  If L1 is regular, then there exists a DFSM M1=(K,∑,δ,s,A)  

   that  accepts it.  

•  The DFSM M2=(K, ∑,δ,s,K-A), namely M1 with accepting  

   and nonaccepting states swapped, accepts ¬(L(M1) 

   because it rejects all strings that M1 accepts and rejects 

   all strings that M1 accepts.  

Steps: 

1. Given an arbitrary NDFSM  M1,construct an equivalent  

     DFSM M'  using the algorithm ndfsmtodfsm. 

2. If M1 is already deterministic, M' = M1. 

3. M'  must be stated completely, so if needed add dead 

    state and all transitions to it. 

4. Begin building M2 by setting it equal to M'.   

5. Swap accepting and nonaccepting states. So 

      M2=(K, ∑,δ,s,K-A)  

Example: 

• Let L = {w Є {0,1}* : w is the string ending with 01} 

    RE = (0 U 1)*01  

• The complement of L(M) is the DFSM that will accept 

     strings that do not end with 01. 



ATC-Module-2- Dr.Girijamma H A 
 

42 
 

Closure under Intersection 

Theorem:  

The regular languages are closed under intersection. 

Proof: 

•  Note that  

   L(M1) ∩ L(M2) = ¬ (¬L(M1) U ¬L(M2)). 

•  We have already shown that the regular languages are closed under both 

complement  and union. 

•  Thus they are closed under intersection. 

• Example: 

 

• Fig (a) is DFSM L1 which accepts strings that have 0. 

• Fig(b) is DFSM L2 which accepts strings that have 1. 



ATC-Module-2- Dr.Girijamma H A 
 

43 
 

• Fig(c) is Intersection or product construction which accepts that have both 0 

and 1.  

The  Divide and Conquer Approach 

• Let L = {w Є {a,b}* : w contains an even number of a’s and an odd number 

of b’s and all a’s come in runs of three }.   

• L is regular because it is the intersection of two regular languages, 

L = L1 ∩ L2, where 

•  L1 = {w Є {a,b}* : w contains an even number of a’s 

     and an odd number of b’s},and 

  L2 = {w Є {a,b}*: all a’s come in runs of three}. 

• L1 is regular as we have an FSM accepting L1

 

• L2 = {w Є {a,b}*: all a’s come in runs of three}. 

• L2 is regular as we have an FSM accepting L2 

 



ATC-Module-2- Dr.Girijamma H A 
 

44 
 

L = {w Є {a,b}* : w contains an even number of a’s and an odd number of b’s and 

all a’s come in runs of three }.   

L is regular because it is the intersection of two regular languages,L = L1 ∩ L2  

Closure under Set difference 

Theorem:  

The regular languages are closed under set difference.  

Proof: 

 L(M1) - L(M2) = L(M1) ∩ ¬L(M2) 

•  Regular languages are closed under both complement 

  and intersection is shown. 

•  Thus regular languages are closed under set difference.  

Closure under Reverse 

Theorem:  

The regular languages are closed under reverse. 

Proof: 

•   LR = { w Є ∑* : w = xR for some x Є L}. 

Example: 

1. Let L = {001,10,111} then  LR = {100,01,111} 

2. Let L be defined by RE (0 U 1)0* then LR is 0*(0 U 1) 

reverse(L) = {x ∈ Σ* : x = wR for some w ∈ L}.   

By construction.  

• Let M = (K, Σ, δ, s, A) be any FSM that accepts L.   

•  Initially, let M′ be M.  



ATC-Module-2- Dr.Girijamma H A 
 

45 
 

•  Reverse the direction of every transition in M′.  

•  Construct a new state q.  Make it the start state of M′. 

•  Create an ε-transition from q to every state that was an accepting state in M.  

•  M′ has a single accepting state, the start state of M.  

 

Closure under letter substitution or Homomorphism 

• The regular languages are closed under letter substitution. 

• Consider any two alphabets, ∑1 and ∑2. 

• Let sub be any function from ∑1 to ∑2*. 

• Then letsub is a letter substitution function from L1 to L2 iff letsub(L1) = { 

w Є ∑2*:Ǝy Є L1(w = y except that every character c of y has been replaced 

by sub(c))}. 

• Example 1 

Consider ∑1 = {a,b} and ∑2 = {0,1} 

Let sub be any function from ∑1 to ∑2*. 

 sub(a) = 0, sub(b) = 11 

letsub(anbn : n >= 0}) = { 0n12n : n >= 0} 

• Example 2 

Consider ∑1 = {0,1,2} and ∑2 = {a,b} 

Let h be any function from ∑1 to ∑2*. 

 h(0) = a, h(1) = ab, h(2) = ba  

h(0120) = h(0)h(1)h(2)h(0) 

= aabbaa  



ATC-Module-2- Dr.Girijamma H A 
 

46 
 

 h(01*2) = h(0)(h(1))*h(2) 

= a(ab)*ba  

Long Strings Force Repeated States 

Theorem: Let M=(K,∑,δ,s,A) be any DFSM. If M accepts any string of length |K | 

or greater, then that string will force M to visit some state more than once. 

Proof:  

• M must start in one of its states.  

• Each time it reads an input  character, it visits some state. So ,in processing a 

string of length n, M creates a total of n+1 state visits. 

•  If n+1 > | K |, then, by the pigeonhole principle, some state must get more 

than one visit.  

• So, if n>= | K |,then M must visit at least one state more than once.  

 

The Pumping Theorem for Regular Languages 

Theorem: If L is regular language, then: 

Ǝk >= 1 (∀strings w ϵ L, where |w| >= k ( Ǝx, y, z ( w = xyz,         

                                                                |xy| <= k, 

                                                                y ≠ ε,and 

                                                           ∀q >= 0(xyqz ϵ L)))). 

Proof: 

• If L is regular then it is accepted by some DFSM M=(K,∑,δ,s,A). 

Let k be |K| 

• Let w be any string in L of length k or greater. 

• By previous theorem to accept w, M must traverse some loop at least once. 



ATC-Module-2- Dr.Girijamma H A 
 

47 
 

• We can carve w up and assign the name y to the first substring to drive M 

through a loop. 

• Then x is the part of w that precedes y and z is the part of w that follows y. 

• We show that each of the last three conditions must then hold: 

• |xy| <= k 

    M must not traverse thru a loop. 

    It can read k - 1 characters without revisiting any states. 

    But kth character will take M to a state visited before.  

• y ≠ ε 

    Since M is deterministic, there are no loops traversed by ε.  

• ∀q >= 0 (xyqz ϵ L) 

    y can be pumped out once and the resulting string must  

    be in L. 

Steps to prove Language is not regular by contradiction method. 

1. Assume L is regular. 

2.  Apply pumping theorem for the given language. 

3.  Choose a string w, where w ϵ L and IwI >= k. 

4. Split w into xyz such that |xy| <= k and y ≠ ε. 

5. Choose a value for q such that xyqz is not in L. 

6. Our assumption is wrong and hence the given language is not regular. 

   

 

 



ATC-Module-2- Dr.Girijamma H A 
 

48 
 

Problems on Pumping theorem (Showing that the language is not regular) 

1. Show that AnBn is not Regular 

                      Let L be AnBn = { anbn : n >= 0}.  

                 Proof by contradiction. 

              Assume the given language is regular. 

              Apply pumping theorem and split the string w into xyz 

              Choose w to be akbk (We get to choose any w).  

                                                    1                       2 

                                  a a a a a … a a a a a b b b b … b b b b b b  

                                                          x    y     z  

We show that there is no x, y, z with the required properties: 

  k |xy|  , 

y    

 q > = 0 (xyqz is in L y must be in region 1.  

So y = apSince |xy|   1.for some p  Let q = 2, producing: ak+pbk  L, since it has 

more awhich  ’s than b’ s. 

2. {aibj : i, j ≥ 0 and i - j = 5}.  

• Not regular.   

• L consists of all strings of the form a*b* where the number of a’s is five 

more than the number of b’s. 

• We can show that L is not regular by pumping.  

• Let w = ak+5bk.   

• Since |xy| ≤ k, y must equal ap for some p > 0.   



ATC-Module-2- Dr.Girijamma H A 
 

49 
 

• We can pump y out once, which will generate the string ak+5-pbk, which is not 

in L because the number of a’s is is less than 5 more than the number of b’s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 



ATC-Module-2- Dr.Girijamma H A 
 

50 
 

  

 

 

 

 

 

 

 


