
RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 1 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

What Is OS ?

An Operating System (OS) is an interface between computer user and computer hardware. An operating system

is software which performs all the basic tasks like file management, memory management, process

management, handling input and output, and controlling peripheral devices such as disk drives and printers.

Some popular Operating Systems include Linux Operating System, Windows Operating System, VMS, OS/400,

AIX, z/OS, etc.

Definition:

An operating system is a program that acts as an interface between the user and the computer hardware and

controls the execution of all kinds of programs.

Following are some of important functions of an operating System.

 Memory Management Processor Management Device Management File Management Security

Control over system performance Job accounting Error detecting aids Coordination between

other software and users

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 2 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

An Operating System provides services to both the users and to the programs. It provides programs an

environment to execute.

 It provides users the services to execute the programs in a convenient manner.

 Following are a few common services provided by an operating system: Program execution

 I/O operations

 File System manipulation

 Communication

 Error Detection

 Resource Allocation

 Protection

Basic Functions of Operation System:

The various functions of operating system are as follows:

1. Process Management:

 A program does nothing unless their instructions are executed by a CPU.A process is a

program in execution. A time shared user program such as a complier is a process. A word

processing program being run by an individual user on a pc is a process.

 A system task such as sending output to a printer is also a process. A process needs certain

resources including CPU time, memory files & I/O devices to accomplish its task.

 These resources are either given to the process when it is created or allocated to it while it is

running. The OS is responsible for the following activities of process management.

 Creating & deleting both user & system processes.

 Suspending & resuming processes.

 Providing mechanism for process synchronization.

 Providing mechanism for process communication.

 Providing mechanism for deadlock handling.

2. Main Memory Management:

The main memory is central to the operation of a modern computer system. Main memory is a

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 3 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

large array of words or bytes ranging in size from hundreds of thousand to billions. Main

memory stores the quickly accessible data shared by the CPU & I/O device. The central

processor reads instruction from main memory during instruction fetch cycle & it both reads

&writes data from main memory during the data fetch cycle. The main memory is generally the

only large storage device that the CPU is able to address & access directly. For example, for the

CPU to process data from disk. Those data must first be transferred to main memory by CPU

generated E/O calls. Instruction must be in memory for the CPU to execute them. The OS is

responsible for the following activities in connection with memory management.

 Keeping track of which parts of memory are currently being used & by whom.

 Deciding which processes are to be loaded into memory when memory space becomes

available.

 Allocating &deal locating memory space as needed.

3. File Management:

File management is one of the most important components of an OS computer can store

information on several different types of physical media magnetic tape, magnetic disk & optical

disk are the most common media. Each medium is controlled by a device such as disk drive or

tape drive those has unique characteristics. These characteristics include access speed, capacity,

data transfer rate & access method (sequential or random).For convenient use of computer

system the OS provides a uniform logical view of information storage. The OS abstracts from

the physical properties of its storage devices to define a logical storage unit the file. A file is

collection of related information defined by its creator. The OS is responsible for the following

activities of file management.

 Creating & deleting files.

 Creating & deleting directories.

 Supporting primitives for manipulating files & directories.

 Mapping files into secondary storage.

 Backing up files on non-volatile media.

4. I/O System Management:

One of the purposes of an OS is to hide the peculiarities of specific hardware devices from the

user. For example, in UNIX the peculiarities of I/O devices are hidden from the bulk of the OS

itself by the I/O subsystem. The I/O subsystem consists of:

 A memory management component that includes buffering, catching & spooling.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 4 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 A general device- driver interfaces drivers for specific hardware devices. Only the device

driver knows the peculiarities of the specific device to which it is assigned.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 5 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

5. Secondary Storage Management:

The main purpose of computer system is to execute programs. These programs with the

data they access must be in main memory during execution. As the main memory is too

small to accommodate all data & programs & because the data that it holds are lost when

power is lost. The computer system must provide secondary storage to back-up main

memory. Most modern computer systems are disks as the storage medium to store data &

program. The operating system is responsible for the following activities of disk

management.

 Free space management.

 Storage allocation.

 Disk scheduling

Because secondary storage is used frequently it must be used efficiently.

Networking:

A distributed system is a collection of processors that don’t share memory peripheral devices

or a clock. Each processor has its own local memory & clock and the processor communicate

with one another through various communication lines such as high speed buses or networks.

The processors in the system are connected through communication networks which are

configured in a number of different ways. The communication network design must consider

message routing & connection strategies are the problems of connection & security.

Protection or security:

If a computer system has multi users & allow the concurrent execution of multiple processes

then the various processes must be protected from one another’s activities. For that purpose,

mechanisms ensure that files, memory segments, CPU & other resources can be operated on

by only those processes that have gained proper authorization from the OS.

Command interpretation:

One of the most important functions of the OS is connected interpretation where it acts as the

interface between the user & the OS.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 6 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Monolithic Operating Systems:

• Oldest kind of OS structure (“modern” examples are DOS, original MacOS)

 • Problem: applications can e.g. – trash OS software. – trash another application. – hoard CPU time. –

abuse I/O devices. – Etc.

 • No good for fault containment (or multi-user).

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 7 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

 • Need a better solution.

Microkernel Operating Systems:

 Alternative structure: – push some OS services into servers. – servers may be privileged (i.e.

operate in kernel mode).

 • Increases both modularity and extensibility.

 • Still access kernel via system calls, but need new way to access servers: ⇒ inter-process

 communication (IPC) schemes

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 8 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Real time Systems:

 Real time system is used when there are rigid time requirements on the operation of a processor or

flow of data. Sensors bring data to the computers. The computer analyzes data and adjusts controls to

modify the sensors inputs. System that controls scientific experiments, medical imaging systems and

some display systems are real time systems. The disadvantages of real time system are: a. A real time

system is considered to function correctly only if it returns the correct result within the time constraints.

b. Secondary storage is limited or missing instead data is usually stored in short term memory or ROM. c.

Advanced OS features are absent. Real time system is of two types such as

 • Hard real time systems: It guarantees that the critical task has been completed on time. The sudden

task is takes place at a sudden instant of time.

 • Soft real time systems: It is a less restrictive type of real time system where a critical task gets priority

over other tasks and retains that priority until it computes. These have more limited utility than hard

real time systems. Missing an occasional deadline is acceptable e.g. QNX, VX works. Digital audio or

multimedia is included in this category. It is a special purpose OS in which there are rigid time

requirements on the operation of a processor. A real time OS has well defined fixed time constraints.

Processing must be done within the time constraint or the system will fail. A real time system is said to

function correctly only if it returns the correct result within the time constraint. These systems are

characterized by having time as a key parameter.

Task :

 Task is a piece of code or program that is separate from another task and can be

executed independently of the other tasks.

 In embedded systems, the operating system has to deal with a limited number of

tasks depending on the functionality to be implemented in the embedded system.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 9 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

 Multiple tasks are not executed at the same time instead they are executed in

pseudo parallel i.e. the tasks execute in turns as the use the processor.

 From a multitasking point of view, executing multiple tasks is like a single book

being read by multiple people, at a time only one person can read it and then take

turns to read it.

 Different bookmarks may be used to help a reader identify where to resume reading

next time.

 An Operating System decides which task to execute in case there are multiple tasks

to be executed. The operating system maintains information about every task and

information about the state of each task.

 The information about a task is recorded in a data structure called the task context.

When a task is executing, it uses the processor and the registers available for all

sorts of processing. When a task leaves the processor for another task to execute

before it has finished its own, it should resume at a later time from where it stopped

and not from the first instruction. This requires the information about the task with

respect to the registers of the processor to be stored somewhere. This information

is recorded in the task context.

Task States

 In an operation system there are always multiple tasks. At a time only one task can be executed.

This means that there are other tasks which are waiting their turn to be

executed.

 Depending upon execution or not a task may be classified into the following three states:

 Running state - Only one task can actually be using the processor at a given time that task

is said to be the “running” task and its state is “running state”. No other task can be in that

same state at the same time

 Ready state - Tasks that are not currently using the processor but are ready to run are in

the “ready” state. There may be a queue of tasks in the ready state.

 Waiting state - Tasks that are neither in running nor ready state but that are waiting for

some event external to themselves to occur before the can go for execution on are in the

“waiting” state.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 10 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Process Concept:

Process: A process or task is an instance of a program in execution. The execution of a

process must programs in a sequential manner. At any time at most one instruction is

executed. The process includes the current activity as represented by the value of the program

counter and the content of the processors registers. Also it includes the process stack which

contain temporary data (such as method parameters return address and local variables) & a

data section which contain global variables.

Difference between process & program:

A program by itself is not a process. A program in execution is known as a process. A program

is a passive entity, such as the contents of a file stored on disk where as process is an active

entity with a program counter specifying the next instruction to execute and a set of associated

resources may be shared among several process with some scheduling algorithm being used to

determinate when the stop work on one process and service a different one.

Process state: As a process executes, it changes state. The state of a process is defined by the

correct activity of that process. Each process may be in one of the following states.

 New: The process is being created.

 Ready: The process is waiting to be assigned to a processor.

 Running: Instructions are being executed.

 Waiting: The process is waiting for some event to occur.

 Terminated: The process has finished execution.

Many processes may be in ready and waiting state at the same time. But only one process can

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 11 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

be running on any processor at any instant.

Process scheduling:

Scheduling is a fundamental function of OS. When a computer is multiprogrammed, it has

multiple processes completing for the CPU at the same time. If only one CPU is available, then

a choice has to be made regarding which process to execute next. This decision making

process is known as scheduling and the part of the OS that makes this choice is called a

scheduler. The algorithm it uses in making this choice is called scheduling algorithm.

Scheduling queues: As processes enter the system, they are put into a job queue. This queue

consists of all process in the system. The process that are residing in main memory and are

ready & waiting to execute or kept on a list called ready queue.

Process control block:

Each process is represented in the OS by a process control block. It is also by a process

control block. It is also known as task control block.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 12 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

A process control block contains many pieces of information associated with a specific

process. It includes the following informations.

 Process state: The state may be new, ready, running, waiting or terminated state.

 Program counter:it indicates the address of the next instruction to be executed

for this purpose.

 CPU registers: The registers vary in number & type depending on the computer

architecture. It includes accumulators, index registers, stack pointer & general

purpose registers, plus any condition- code information must be saved when

an interrupt occurs to allow the process to be continued correctly after- ward.

 CPU scheduling information:This information includes process priority pointers

to scheduling queues & any other scheduling parameters.

 Memory management information: This information may include such

information as the value of the bar & limit registers, the page tables or the

segment tables, depending upon the memory system used by the operating

system.

 Accounting information: This information includes the amount of CPU and real

time used, time limits, account number, job or process numbers and so on.

 I/O Status Information: This information includes the list of I/O devices allocated to

this process, a list of open files and so on. The PCB simply serves as the repository for

any information that may vary from process to process

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 13 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Threads :

Applications use concurrent processes to speed up their operation. However,

switching between processes within an application incurs high process switching

overhead because the size of the process state information is large, so operating

system designers developed an alternative model of execution of a program,

called a thread, that could provide concurrency within an application with less

overhead

To understand the notion of threads, let us analyze process switching
overhead and see where a saving can be made. Process switching overhead
has two components:

• Execution related overhead: The CPU state of the running process
has to be saved and the CPU state of the new process has to be
loaded in the CPU. This overhead is unavoidable.

• Resource-use related overhead: The process context also has to be

switched. It involves switching of the information about resources

allocated to the process, such as memory and files, and interaction

of the process with other processes. The large size of this

information adds to the process switching overhead.

Consider child processes Pi and Pj of the primary process of an application.

These processes inherit the context of their parent process. If none of these

processes have allocated any resources of their own, their context is

identical; their state information differs only in their CPU states and contents

of their stacks. Consequently, while switching between Pi and Pj ,much of the

saving and loading of process state information is redundant. Threads exploit

this feature to reduce the switching overhead.

A process creates a thread through a system call. The thread does not have

resources of its own, so it does not have a context; it operates by using the

context of the process, and accesses the resources of the process through it.

We use the phrases ―thread(s) of a process‖ and ―parent process of a

thread‖ to describe the relationship between a thread and the process whose

context it uses.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 14 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Figure illustrates the relationship between threads and processes. In the

abstract view of Figure , processPi has three threads,which are represented

by wavy lines inside the circle representing process Pi . Figure shows an

implementation arrangement. Process Pi has a context and a PCB. Each

thread of Pi is an execution of a program, so it has its own stack and a thread

control block (TCB),which is analogous to the PCB and stores the following

information:

1. Thread scheduling information—thread id, priority and state.

2. CPU state, i.e., contents of the PSW and GPRs.

3. Pointer to PCB of parent process.

4. TCB pointer, which is used to make lists of TCBs for scheduling.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 15 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

POSIX Threads:

POSIX Threads, usually referred to as pthreads, is an execution model that exists

independently from a language, as well as a parallel execution model. It allows a program

to control multiple different flows of work that overlap in time. Each flow of work is

referred to as a thread, and creation and control over these flows is achieved by making

calls to the POSIX Threads API. POSIX Threads is an API defined by the standard POSIX.1c,

Threads extensions (IEEE Std 1003.1c-1995).

Implementations of the API are available on many Unix-like POSIX-conformant operating

systems such as FreeBSD, NetBSD, OpenBSD, Linux, Mac OS X, Android[1] and Solaris,

typically bundled as a library libpthread. DR-DOS and Microsoft Windows implementations

also exist: within the SFU/SUA subsystem which provides a native implementation of a

number of POSIX APIs, and also within third-party packages such as pthreads-w32,[2] which

implements pthreads on top of existing Windows API.

https://en.wikipedia.org/wiki/Execution_model
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/IEEE
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/DR-DOS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_Services_for_UNIX
https://en.wikipedia.org/wiki/Third-party_software_component
https://en.wikipedia.org/wiki/POSIX_Threads#cite_note-2
https://en.wikipedia.org/wiki/Windows_API

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 16 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Preemptive Scheduling:

It is the responsibility of CPU scheduler to allot a process to CPU whenever the CPU

is in the idle state. The CPU scheduler selects a process from ready queue and

allocates the process to CPU. The scheduling which takes place when a process

switches from running state to ready state or from waiting state to ready state is

called Preemptive Scheduling

Shortest Job First Scheduling (SJF) Algorithm: This algorithm associates with each

process if the CPU is available. This scheduling is also known as shortest next CPU

burst, because the scheduling is done by examining the length of the next CPU burst of

the process rather than its total length. Consider the following example:

Process CPU time

P1 3

P2 5

P3 2

P4 4

Solution:According to the SJF the Gantt chart will be

P3 P1 P2 P4

0 2 5 9 14

The waiting time for process P1 = 0, P2 = 2, P3 = 5, P4 = 9 then the turnaround time for

process P3 = 0 + 2 = 2, P1 = 2 + 3 = 5, P4 = 5 + 4 = 9, P2 = 9 + 5 =14.

Then average waiting time = (0 + 2 + 5 + 9)/4 = 16/4 = 4

Average turnaround time = (2 + 5 + 9 + 14)/4 = 30/4 =

7.5

The SJF algorithm may be either preemptive or non preemptive algorithm. The

preemptive SJF is also known as shortest remaining time first.

Consider the following example.

Process Arrival Time CPU time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 17 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

In this case the Gantt chart will be

P1 P2 P4 P1 P3

0 1 5 10 17 26

The waiting time for

process P1 = 10 - 1 =9

P2 = 1 – 1 = 0

P3 = 17 – 2 = 15

P4 = 5 – 3 = 2

The average waiting time = (9 + 0 + 15 + 2)/4 = 26/4 = 6.5

Round Robin Scheduling Algorithm: This type of algorithm is designed only for the time

sharing system. It is similar to FCFS scheduling with preemption condition to switch between

processes. A small unit of time called quantum time or time slice is used to switch between

the processes. The average waiting time under the round robin policy is quiet long. Consider

the following example:

Process CPU time

P1 3

P2 5

P3 2

P4 4

Time Slice = 1 millisecond.

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P4 P2 P4 P2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The waiting time for process

P1 = 0 + (4 – 1) + (8 – 5) = 0 + 3 + 3 = 6

P2 = 1 + (5 – 2) + (9 – 6) + (11 – 10) + (12 – 11) + (13 – 12) = 1 + 3 + 3 + 1 + 1 + 1 = 10

P3 = 2 + (6 – 3) = 2 + 3 = 5

P4 = 3 + (7 – 4) + (10 – 8) + (12 – 11) = 3 + 3 + 2 + 1 = 9

The average waiting time = (6 + 10 + 5 + 9)/4 = 7.5

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 18 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Task Communication :

A shared memory is an extra piece of memory that is attached to some address spaces for

their owners to use. As a result, all of these processes share the same memory segment and

have access to it. Consequently, race conditions may occur if memory accesses are not

handled properly. The following figure shows two processes and their address spaces. The

yellow rectangle is a shared memory attached to both address spaces and both process 1

and process 2 can have access to this shared memory as if the shared memory is part of its

own address space. In some sense, the original address spaces is "extended" by attaching

this shared memory.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 19 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Definition - What does Pipe mean?

A pipe is a method used to pass information from one program process to another. Unlike

other types of inter-process communication, a pipe only offers one-way communication by

passing a parameter or output from one process to another. The information that is passed

through the pipe is held by the system until it can be read by the receiving process. also

known as a FIFO for its behavior.

In computing, a named pipe (also known as a FIFO) is one of the methods for intern-

process communication.

 It is an extension to the traditional pipe concept on Unix. A traditional pipe is

“unnamed” and lasts only as long as the process.

 A named pipe, however, can last as long as the system is up, beyond the life of the

process. It can be deleted if no longer used.

 Usually a named pipe appears as a file, and generally processes attach to it for inter-

process communication. A FIFO file is a special kind of file on the local storage which

allows two or more processes to communicate with each other by reading/writing

to/from this file.

 A FIFO special file is entered into the filesystem by calling mkfifo() in C. Once we have

created a FIFO special file in this way, any process can open it for reading or writing,

in the same way as an ordinary file. However, it has to be open at both ends

simultaneously before you can proceed to do any input or output operations on it.

Message passing:

Message passing can be synchronous or asynchronous . Synchronous message

passing systems require the sender and receiver to wait for each other while

transferring the message. In asynchronous communication the sender and

receiver do not wait for each other and can carry on their own computations

while transfer of messages is being done.

https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 20 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The advantage to synchronous message passing is that it is conceptually less complex.

Synchronous message passing is analogous to a function call in which the message sender

is the function caller and the message receiver is the called function. Function calling is

easy and familiar. Just as the function caller stops until the called function completes, the

sending process stops until the receiving process completes. This alone makes synchronous

message unworkable for some applications. For example, if synchronous message passing

would be used exclusively, large, distributed systems generally would not perform well

enough to be usable. Such large, distributed systems may need to continue to operate while

some of their subsystems are down; subsystems may need to go offline for some kind of

maintenance, or have times when subsystems are not open to receiving input from other

systems.

Message queue:

Message queues provide an asynchronous communications protocol, meaning that the

sender and receiver of the message do not need to interact with the message queue at the

same time. Messages placed onto the queue are stored until the recipient retrieves them.

Message queues have implicit or explicit limits on the size of data that may be transmitted

in a single message and the number of messages that may remain outstanding on the

queue.

Many implementations of message queues function internally: within an operating

system or within an application. Such queues exist for the purposes of

that system only.[1][2][3]

Other implementations allow the passing of messages between different computer systems,

potentially connecting multiple applications and multiple operating systems.[4] These

message queueing systems typically provide enhanced resilience functionality to ensure

that messages do not get "lost" in the event of a system failure. Examples of commercial

implementations of this kind of message queueing software (also known as message-

oriented middleware) include IBM WebSphere MQ (formerly MQ Series) and Oracle

https://en.wikipedia.org/wiki/Asynchronous_communication
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Message_queue#cite_note-1
https://en.wikipedia.org/wiki/Message_queue#cite_note-1
https://en.wikipedia.org/wiki/Message_queue#cite_note-3
https://en.wikipedia.org/wiki/Message_queue#cite_note-4
https://en.wikipedia.org/wiki/Resilience_(network)
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/IBM_WebSphere_MQ
https://en.wikipedia.org/wiki/Oracle_Advanced_Queuing

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 21 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Advanced Queuing (AQ). There is a Java standard called Java Message Service, which has

several proprietary and free software implementations.

Implementations exist as proprietary software, provided as a service, open source

software, or a hardware-based solution.

Mail box:

Mailboxes provide a means of passing messages between tasks for data exchange or task

synchronization. For example, assume that a data gathering task that produces data needs

to convey the data to a calculation task that consumes the data. This data gathering task can

convey the data by placing it in a mailbox and using the SEND command; the calculation

task uses RECEIVE to retrieve the data. If the calculation task consumes data faster than the

gatherer produces it, the tasks need to be synchronized so that only new data is operated

on by the calculation task. Using mailboxes achieves synchronization by forcing the

calculation task to wait for new data before it operates. The data producer puts the data in

a mailbox and SENDs it. The data consumer task calls RECEIVE to check whether there is

new data in the mailbox; if not, RECEIVE calls Pause() to allow other tasks to execute while

the consuming task is waiting for the new data.

https://en.wikipedia.org/wiki/Oracle_Advanced_Queuing
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_Message_Service
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Message_queuing_service

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 22 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Signaling :

signals are commonly used in POSIX systems. Signals are sent to the current process telling

it what it needs to do, such as, shutdown, or that it has committed an exception. A process

has several signal-handlers which execute code when a relevant signal is encountered. The

ANSI header for these tasks is <signal.h>, which includes routines to allow signals to be

raised and read.

Signals are essentially software interrupts. It is possible for a process to ignore most

signals, but some cannot be blocked. Some of the common signals are Segmentation

Violation (reading or writing memory that does not belong to this process), Illegal

Instruction (trying to execute something that is not a proper instruction to the CPU), Halt

(stop processing for the moment), Continue (used after a Halt), Terminate (clean up and

quit), and Kill (quit now without cleaning up).

RPC:

Remote Procedure Call (RPC) is a powerful technique for constructing distributed,

client-server based applications. It is based on extending the conventional local

procedure calling, so that the called procedure need not exist in the same address

space as the calling procedure. The two processes may be on the same system, or they

may be on different systems with a network connecting them.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 23 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The following steps take place during a RPC:

1. A client invokes a client stub procedure, passing parameters in the usual way. The

client stub resides within the client’s own address space.

2. The client stub marshalls(pack) the parameters into a message. Marshalling includes

converting the representation of the parameters into a standard format, and copying each

parameter into the message.

3. The client stub passes the message to the transport layer, which sends it to the remote

server machine.

4. On the server, the transport layer passes the message to a server stub,

which demarshalls(unpack) the parameters and calls the desired server routine using the

regular procedure call mechanism.

5. When the server procedure completes, it returns to the server stub (e.g., via a normal

procedure call return), which marshalls the return values into a message. The server stub

then hands the message to the transport layer.

6. The transport layer sends the result message back to the client transport layer, which

hands the message back to the client stub.

7. The client stub demarshalls the return parameters and execution returns to the caller.

Process Synchronization

A co-operation process is one that can affect or be affected by other processes

executing in the system. Co-operating process may either directly share a logical

address space or be allotted to the shared data only through files. This

concurrent access is known as Process synchronization.

Critical Section Problem:

Consider a system consisting of n processes (P0, P1, ………Pn -1) each process has

a segment of code which is known as critical section in which the process may be

changing common variable, updating a table, writing a file and so on. The

important feature of the system is that when the process is executing in its

critical section no other process is to be allowed to execute in its critical section.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 24 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The execution of critical sections by the processes is a mutually exclusive. The

critical section problem is to design a protocol that the process can use to

cooperate each process must request permission to enter its critical section. The

section of code implementing this request is the entry section. The critical section

is followed on exit section. The remaining code is the remainder section.

Example:

While (1)

{

Entry Section;

Critical

Section; Exit

Section;

Remainder Section;

}

A solution to the critical section problem must satisfy the following three conditions.

1. Mutual Exclusion: If process Pi is executing in its critical section then no

any other process can be executing in their critical section.

2. Progress: If no process is executing in its critical section and some

process wish to enter their critical sections then only those process that

are not executing in their remainder section can enter its critical section

next.

3. Bounded waiting: There exists a bound on the number of times that

other processes are allowed to enter their critical sections after a

process has made a request.

Deadlock:
In a multiprogramming environment several processes may compete for a finite

number of resources. A process request resources; if the resource is available at

that time a process enters the wait state. Waiting process may never change its

state because the resources requested are held by other waiting process. This

situation is known as deadlock.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 25 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Deadlock Characteristics: In a deadlock process never finish executing and

system resources are tied up. A deadlock situation can arise if the following four

conditions hold simultaneously in a system.

 Mutual Exclusion: At a time only one process can use the resources. If

another process requests that resource, requesting process must wait

until the resource has been released.

 Hold and wait: A process must be holding at least one resource and

waiting to additional resource that is currently held by other processes.

 No Preemption: Resources allocated to a process can’t be forcibly taken

out from it unless it releases that resource after completing the task.

 Circular Wait: A set {P0, P1, …….Pn} of waiting state/ process must exists

such that P0 is waiting for a resource that is held by P1, P1 is waiting for

the resource that is held by P2 ….. P(n – 1) is waiting for the resource that

is held by Pn and Pn is waiting for the resources that is held by P4.

Dining Philosopher Problem: Consider 5 philosophers to spend their lives in thinking &

eating. A philosopher shares common circular table surrounded by 5 chairs each occupies

by one philosopher. In the center of the table there is a bowl of rice and the table is laid

with 6 chopsticks as shown in below figure.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 26 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

When a philosopher thinks she does not interact with her colleagues. From time to time a

philosopher gets hungry and tries to pickup two chopsticks that are closest to her. A

philosopher may pickup one chopstick or two chopsticks at a time but she cannot pickup a

chopstick that is already in hand of the neighbor. When a hungry philosopher has both her

chopsticks at the same time, she eats without releasing her chopsticks. When she finished

eating, she puts down both of her chopsticks and starts thinking again. This problem is

considered as classic synchronization problem. According to this problem each chopstick is

represented by a semaphore. A philosopher grabs the chopsticks by executing the wait

operation on that semaphore. She releases the chopsticks by executing the signal operation on

the appropriate semaphore

The structure of dining philosopher is as follows:

do{

Wait (chopstick [i]);

Wait (chopstick [(i+1)%5]);

.

Eat

.

Signal (chopstick [i]);

Signal (chopstick [(i+1)%5]);

.

Think

.

} While (1);

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 27 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Integrated Development Environment:

Integrated development environments are designed to maximize programmer productivity

by providing tight-knit components with similar user interfaces. IDEs present a single

program in which all development is done. This program typically provides many features

for authoring, modifying, compiling, deploying and debugging software. This contrasts with

software development using unrelated tools, such as vi, GCC or make.

One aim of the IDE is to reduce the configuration necessary to piece together multiple

development utilities, instead providing the same set of capabilities as a cohesive unit.

Reducing that setup time can increase developer productivity, in cases where learning to

use the IDE is faster than manually integrating all of the individual tools. Tighter

integration of all development tasks has the potential to improve overall productivity

beyond just helping with setup tasks. For example, code can be continuously parsed while

it is being edited, providing instant feedback when syntax errors are introduced. That can

speed learning a new programming language and its associated libraries.

Some IDEs are dedicated to a specific programming language, allowing a feature set that

most closely matches the programming paradigms of the language. However, there are

many multiple-language IDEs, such as Eclipse, ActiveState Komodo, IntelliJ IDEA, Oracle

JDeveloper, NetBeans, Codenvy and Microsoft Visual Studio. Xcode, Xojo and Delphi are

dedicated to a closed language or set of programming languages.

While most modern IDEs are graphical, text-based IDEs such as Turbo Pascal were in

popular use before the widespread availability of windowing systems like Microsoft

Windows and the X Window System (X11). They commonly use function keys or hotkeys to

execute frequently used commands or macros.

http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Make_%28software%29
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/ActiveState_Komodo
http://en.wikipedia.org/wiki/IntelliJ_IDEA
http://en.wikipedia.org/wiki/Oracle_JDeveloper
http://en.wikipedia.org/wiki/Oracle_JDeveloper
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Xojo
http://en.wikipedia.org/wiki/Embarcadero_Delphi
http://en.wikipedia.org/wiki/Turbo_Pascal
http://en.wikipedia.org/wiki/Turbo_Pascal
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/Keyboard_shortcut

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 28 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

A cross compiler is a compiler capable of creating executable code for a platform other

than the one on which the compiler is running. For example in order to compile for

Linux/ARM you first need to obtain its libraries to compile against.

A cross compiler is necessary to compile for multiple platforms from one machine. A

platform could be infeasible for a compiler to run on, such as for the microcontroller of an

embedded system because those systems contain no operating system. In

paravirtualization one machine runs many operating systems, and a cross compiler could

generate an executable for each of them from one main source.

Cross compilers are not to be confused with a source-to-source compilers. A cross

compiler is for cross-platform software development of binary code, while a source-to-

source "compiler" just translates from one programming language to another in text code.

Both are programming tools.

Uses of cross compilers

The fundamental use of a cross compiler is to separate thebuild environment from target

environment. This is useful in a number of situations:

Embedded computers where a device has extremely limited resources. For example, a

microwave oven will have an extremely small computer to read its touchpad and door

sensor, provide output to a digital display and speaker, and to control the machinery for

cooking food. This computer will not be powerful enough to run a compiler, a file system,

or a development environment. Since debugging and testing may also require more

resources than are available on an embedded system, cross- compilation can be less

involved and less prone to errors than native compilation.

Compiling for multiple machines. For example, a company may wish to support several

different versions of an operating system or to support several different operating

systems. By using a cross compiler, a single build environment can be set up to compile for

each of these targets.

Compiling on a server farm. Similar to compiling for multiple machines, a complicated

build that involves many compile operations can be executed across any machine that is

free, regardless of its underlying hardware or the operating system version that it is

running.

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Platform_%28computing%29
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Paravirtualization
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Source-to-source_compiler
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Server_farm

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 29 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Bootstrapping to a new platform. When developing software for a new platform, or the

emulator of a future platform, one uses a cross compiler to compile necessary tools such

as the operating system and a native compiler.

 What is a Disassembler?

In essence, a disassembler is the exact opposite of an assembler. Where an assembler

converts code written in an assembly language into binary machine code, a disassembler

reverses the process and attempts to recreate the assembly code from the binary machine

code.

Since most assembly languages have a one-to-one correspondence with underlying

machine instructions, the process of disassembly is relatively straight-forward, and a basic

disassembler can often be implemented simply by reading in bytes, and performing a table

lookup. Of course, disassembly has its own problems and pitfalls, and they are covered

later in this chapter.

Many disassemblers have the option to output assembly language instructions in Intel,

AT&T, or (occasionally) HLA syntax. Examples in this book will use Intel and AT&T syntax

interchangeably. We will typically not use HLA syntax for code examples, but that may

change in the future.

Decompilers

Decompilers take the process a step further and actually try to reproduce the code in a

high level language. Frequently, this high level language is C, because C is simple and

primitive enough to facilitate the decompilation process. Decompilation does have its

drawbacks, because lots of data and readability constructs are lost during the original

compilation process, and they cannot be reproduced. Since the science of decompilation is

still young, and results are "good" but not "great", this page will limit itself to a listing of

decompilers, and a general (but brief) discussion of the possibilities of decompilation.

http://en.wikipedia.org/wiki/Bootstrapping_%28compilers%29

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 30 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Tools

As with other software, embedded system designers use compilers, assemblers, and

debuggers to develop embedded system software. However, they may also use some more

specific tools:

For systems using digital signal processing, developers may use a math workbench such

as Scilab / Scicos, MATLAB / Simulink, EICASLAB, MathCad, Mathematica,or FlowStone

DSP to simulate the mathematics. They might also use libraries for both the host and

target which eliminates developing DSP routines as done in DSPnano RTOS.

model based development tool like VisSim lets you create and simulate graphical data

flow and UML State chart diagrams of components like digital filters, motor controllers,

communication protocol decoding and multi-rate tasks. Interrupt handlers can also be

created graphically. After simulation, you can automatically generate C-code to the VisSim

RTOS which handles the main control task and preemption of background tasks, as well as

automatic setup and programming of on-chip peripherals.

 Debugging

Embedded debugging may be performed at different levels, depending on the facilities

available. From simplest to most sophisticated they can be roughly grouped into the

following areas:

Interactive resident debugging, using the simple shell provided by the embedded

operating system (e.g. Forth and Basic)

External debugging using logging or serial port output to trace operation using either a

monitor in flash or using a debug server like the Remedy Debugger which even works for

heterogeneous multicore systems.

An in-circuit debugger (ICD), a hardware device that connects to the microprocessor via a

JTAG or Nexus interface. This allows the operation

of the microprocessor to be controlled externally, but is typically restricted to specific

debugging capabilities in the processor.

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Scilab
http://en.wikipedia.org/wiki/Scicos
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Simulink
http://en.wikipedia.org/wiki/EICASLAB
http://en.wikipedia.org/wiki/MathCad
http://en.wikipedia.org/wiki/Mathematica
http://en.wikipedia.org/w/index.php?title=FlowStone_DSP&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=FlowStone_DSP&action=edit&redlink=1
http://en.wikipedia.org/wiki/DSPnano_RTOS
http://en.wikipedia.org/wiki/VisSim
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/VisSim
http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/Preemption_%28computing%29
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Remedy_Debugger
http://en.wikipedia.org/wiki/Remedy_Debugger
http://en.wikipedia.org/wiki/Multi-core_processor
http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/Nexus_%28standard%29

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 31 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

An in-circuit emulator (ICE) replaces the microprocessor with a simulated equivalent,

providing full control over all aspects of the microprocessor.

A complete emulator provides a simulation of all aspects of the hardware, allowing all of it

to be controlled and modified, and allowing debugging on a normal PC. The downsides are

expense and slow operation, in some cases up to 100X slower than the final system.

For SoC designs, the typical approach is to verify and debug the design on an FPGA

prototype board. Tools such as Certus are used to insert probes in the FPGA RTL that

make signals available for observation. This is used to debug hardware, firmware and

software interactions across multiple FPGA with capabilities similar to a logic analyzer.

Unless restricted to external debugging, the programmer can typically load and run

software through the tools, view the code running in the processor, and start or stop its

operation. The view of the code may be as HLL source-code, assembly code or mixture of

both.

Simulation is the imitation of the operation of a real-world process or system over time.[1]

The act of simulating something first requires that a model be developed; this model

represents the key characteristics or behaviors/functions of the selected physical or

abstract system or process. The model represents the system itself, whereas the simulation

represents the operation of the system over time.

Simulation is used in many contexts, such as simulation of technology for performance

optimization, safety engineering, testing, training, education, and video games. Often,

computer experiments are used to study simulation models.

Key issues in simulation include acquisition of valid source information about the relevant

selection of key characteristics and behaviours, the use of simplifying approximations and

assumptions within the simulation, and fidelity and validity of the simulation outcomes.

http://en.wikipedia.org/wiki/In-circuit_emulator
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Source-code
http://en.wikipedia.org/wiki/Assembly_code
http://en.wikipedia.org/wiki/Simulation#cite_note-definition-1
http://en.wikipedia.org/wiki/Simulation#cite_note-definition-1
http://en.wikipedia.org/wiki/Function_%28engineering%29
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Computer_experiment

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 32 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Emulator

This article is about emulators in computing. For a line of digital musical instruments, see

E-mu Emulator. For the Transformers character, see Circuit Breaker

(Transformers).#Shattered Glass. For other uses, see Emulation (disambiguation).

DOSBox emulates the command-line interface of DOS.

In computing, an emulator is hardware or software or both that duplicates (or emulates)

the functions of one computer system (the guest) in another computer system (the host),

different from the first one, so that the emulated behavior closely resembles the behavior

of the real system (the guest).

The above described focus on exact reproduction of behavior is in contrast to some other

forms of computer simulation, in which an abstract model of a system is being simulated.

For example, a computer simulation of a hurricane or a chemical reaction is not emulation.

OUT-OF-CIRCUIT :The code to be run on the target embedded system is always developed

on the host computer. This code is called the binary executable image or simply hex code.

The process of putting this code in the memory chip of the target embedded system is

called Downloading.

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/E-mu_Emulator
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Emulation_%28disambiguation%29
http://en.wikipedia.org/wiki/Emulation_%28disambiguation%29
http://en.wikipedia.org/wiki/DOSBox
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Computer_simulation

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 33 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

There are two ways of downloading the binary image on the embedded system:

1. Using a Device Programmer

A device programmer is a piece of hardware that works in two steps.

Step 1 Once the binary image is ready on the computer, the device programmer is

connected to the computer and the binary image is transferred to the device programmer.

Step 2 The microcontroller/microprocessor or memory chip, usually the ROM which is

supposed to contain the binary image is placed on the proper socket on the device

programmer. The device programmer contains a software interface through which the user

selects the target microprocessor for which the binary image has to be downloaded. The

Device programmer then transfers the binary image bit by bit to the chip.

2. Using In System Programmer(ISP)

Certain Target embedded platforms contain a piece of hardware called ISP that have a

hardware interface to both the computer as well the chip where the code is to be

downloaded.

The user through the ISP’s software interface sends the binary image to the target board.

This avoids the requirement of frequently removing the microprocessor / microcontroller

or ROM for downloading the code if a device programmer had to be used.

DEBUGGING THE EMBEDDED SOFTWARE

 Debugging is the process of eliminating the bugs/errors in software.

 The software written to run on embedded systems may contain errors and hence

needs debugging.

 However, the difficulty in case of embedded systems is to find out the bug/ error

itself. This is because the binary image you downloaded on the target board was free

of syntax errors but

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 34 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

still if the embedded system does not function the way it was supposed to be then it can be

either because of a hardware problem or a software problem. Assuming that the hardware

is perfect all that remains to check is the software.

 The difficult part here is that once the embedded system starts functioning there is

no way for the user or programmer to know the internal state of the components on

the target board.

 The most primitive method of debugging is using LEDs. This is similar to using a

printf or a cout statement in c/c++ programs to test if the control enters the loop or

not. Similarly an LED blind or a pattern of LED blinks can be used to check if the

control enters a particular piece of code.

There are other advanced debugging tools like;

a. Remote debugger

b. Emulator

c. Simulator

Remote Debuggers

 Remote Debugger is a tool that can be commonly used for:

 Downloading

 Executing and

 Debugging embedded software

 A Remote Debugger contains a hardware interface between the host computer and

the target embedded system.

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 35 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

	Basic Functions of Operation System:
	1. Process Management:
	2. Main Memory Management:
	3. File Management:
	4. I/O System Management:
	5. Secondary Storage Management:
	Networking:
	Protection or security:
	Command interpretation:

	Difference between process & program:
	Process scheduling:
	Process control block:
	Process CPU time
	Definition - What does Pipe mean?
	Critical Section Problem:

	Deadlock:
	The Integrated Development Environment:

	What is a Disassembler?
	Decompilers
	Tools
	Debugging
	Emulator

