

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 1

4. PROJECT PLANNING AND QUALITY

MANAGEMENT

PROJECT PLANNING

 Project planning is one of the most important jobs of a software project manager.

 The project plan, which is created at the start of a project, is used to communicate

how the work will be done to the project team and customers, and to help assess

progress on the project.

 Project planning takes place at three stages in a project life cycle:

1. At the proposal stage, when there is bidding for a contract to develop or

provide a software system, a plan may be required at this stage to help

contractors decide if they have the resources to complete the work and to work

out the price that they should quote to a customer.

2. During the project startup phase, there is a need to plan who will work on the

project, how the project will be broken down into increments, how resources

will be allocated across your company, etc.

3. Periodically throughout the project, when the plan is modified , in light of

experience gained and information from monitoring the progress of the work,

more information about the system being implemented and capabilities of

development team are learnt.

 This information allows to make more accurate estimates of how long the work will

take.

4.1 Software Pricing

 In principle, the price of a software product to a customer is simply the cost of

development plus profit for the developer. Fig 4.1 shows the factors affecting

software pricing

 It is essential to think about organizational concerns, the risks associated with the

project, and the type of contract that will be used.

 These may cause the price to be adjusted upwards or downwards.

Guest
Squiggly
Software Engineering [15CS42]

Guest
Highlight
oftware Engineering [15CS4

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 2

 Because of the organizational considerations involved, deciding on a project price

should be a group activity involving marketing and sales staff, senior management,

and project managers

Fig 4.1: Factors affecting software pricing

4.2 Plan Driven Development

 Plan-driven or plan-based development is an approach to software engineering where

the development process is planned in detail.

 A project plan is created that records the work to be done, who will do it, the

development schedule, and the work products.

 Managers use the plan to support project decision making and as a way of measuring

progress.

 Plan-driven development is based on engineering project management techniques and

can be thought of as the ‘traditional’ way of managing large software development

projects.

 The principal argument against plan-driven development is that many early decisions

have to be revised because of changes to the environment in which the software is to

be developed and used

4.2.1 Project Plans

 In a plan-driven development project, a project plan sets out the resources available to

the project, the work breakdown, and a schedule for carrying out the work.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 3

 The plan should identify risks to the project and the software under development, and

the approach that is taken to risk management.

 Plans normally include the following sections:

1. Introduction: Describes the objectives of the project and sets out the

constraints (e.g., budget, time, etc.) that affect the management of the project.

2. Project organization: This describes the way in which the development team

is organized, the people involved, and their roles in the team.

3. Risk analysis: This describes possible project risks, the likelihood of these

risks arising, and the risk reduction strategies that are proposed.

4. Hardware and software resource requirements: This specifies the hardware

and support software required to carry out the development. If hardware has to

be bought, estimates of the prices and the delivery schedule may be included.

5. Work breakdown: This sets out the breakdown of the project into activities

and identifies the milestones and deliverables associated with each activity.

6. Project schedule: Shows dependencies between activities, the estimated time

required to reach each milestone, and the allocation of people to activities.

7. Monitoring and reporting mechanisms: This defines the management

reports that should be produced, when these should be produced, and the

project monitoring mechanisms to be used.

 The project plan supplements are as shown in fig 4.2.

Fig 4.2: Project plan supplements

4.2.2 The Planning Process

 Project planning is an iterative process that starts when an initial project plan is

created during the project startup phase.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 4

 Fig 4.3 is a UML activity diagram that shows a typical workflow for a project

planning process.

 At the beginning of a planning process, it is necessary to assess the constraints

affecting the project.

 These constraints are the required delivery date, staff available, overall budget,

available tools, and so on.

 It is also necessary to identify the project milestones and deliverables.

 Milestones are points in the schedule against which progress can be accessed, for

example, the handover of the system for testing.

 Deliverables are work products that are delivered to the customer.

 The process then enters a loop.

 You draw up an estimated schedule for the project and the activities defined in the

schedule are initiated or given permission to continue.

 After some time (usually about two to three weeks), the progress must be reviewed

and discrepancies must be noted from the planned schedule.

 Because initial estimates of project parameters are inevitably approximate, minor

slippages are normal and thereby modifications will have to be made to the original

plan.

Fig 4.3: The project planning process

4.3 Project Scheduling

 Project scheduling is the process of deciding how the work in a project will be

organized as separate tasks, and when and how these tasks will be executed.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 5

 Here there is an estimation of the calendar time needed to complete each task, the

effort required, and who will work on the tasks that have been identified.

 It is essential to estimate the resources needed to complete each task, such as the disk

space required on a server, the time required on specialized hardware, such as a

simulator, and what the travel budget will be .

 Scheduling in plan-driven projects (Fig 4.4) involves breaking down the total work

involved in a project into separate tasks and estimating the time required to complete

each task.

 Tasks should normally last at least a week, and no longer than 2 months.

 Finer subdivision means that a disproportionate amount of time must be spent on re-

planning and updating the project plan.

 The maximum amount of time for any task should be around 8 to 10 weeks.

 If it takes longer than this, the task should be subdivided for project planning and

scheduling.

Fig 4.4: The project scheduling process

4.3.1 Schedule Representation

 Project schedules may simply be represented in a table or spreadsheet showing the

tasks, effort, expected duration, and task dependencies.

 There are two types of representation that are commonly used:

1. Bar charts, which are calendar-based, show who is responsible for each

activity, the expected elapsed time, and when the activity is scheduled to begin

and end. Bar charts are sometimes called ‘Gantt charts’.

2. Activity networks, which are network diagrams, show the dependencies

between the different activities making up a project.

 Project activities are the basic planning element. Each activity has:

1. A duration in calendar days or months.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 6

2. An effort estimate, which reflects the number of person-days or person-

months to complete the work.

3. A deadline by which the activity should be completed.

4. A defined endpoint. This represents the tangible result of completing the

activity. This could be a document, the holding of a review meeting, the

successful execution of all tests, etc.

 When planning a project, milestones must also be defined; that is, each stage in the

project where a progress assessment can be made.

 Each milestone should be documented by a short report that summarizes the progress

made and the work done.

 Milestones may be associated with a single task or with groups of related activities.

 For example, in fig 4.5, milestone M1 is associated with task T1 and milestone M3 is

associated with a pair of tasks, T2 and T4.

 A special kind of milestone is the production of a project deliverable.

 A deliverable is a work product that is delivered to the customer. It is the outcome of

a significant project phase such as specification or design.

 Usually, the deliverables that are required are specified in the project contract and the

customer’s view of the project’s progress depends on these deliverables.

Fig 4.5: Tasks, durations and dependencies

 Fig 4.6 takes the information in Figure 4.5 and presents the project schedule in a

graphical format.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 7

Fig 4.6: Activity bar chart

 It is a bar chart showing a project calendar and the start and finish dates of tasks.

 Reading from left to right, the bar chart clearly shows when tasks start and end.

 The milestones (M1, M2, etc.) are also shown on the bar chart

 In Fig 4.7, it is observed that Mary is a specialist, who works on only a single task in

the project.

Fig 4.7: Staff allocation chart

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 8

 This can cause scheduling problems. If one project is delayed while a specialist is

working on it, this may have a knock-on effect on other projects where the specialist

is also required.

 These may then be delayed because the specialist is not available.

 Delays can cause serious problems with staff allocation, especially when people are

working on several projects at the same time.

 If a task (T) is delayed, the people allocated may be assigned to other work (W).

 To complete this may take longer than the delay but, once assigned, they cannot

simply be reassigned back to the original task, T.

 This may then lead to further delays in T as they complete W.

4.4 Estimation Techniques

 Project schedule estimation is difficult.

 There might be a need to make initial estimates on the basis of a high-level user

requirements definition.

 Organizations need to make software effort and cost estimates.

 There are two types of technique that can be used to do this:

1. Experience-based Techniques: The estimate of future effort requirements is

based on the manager’s experience of past projects and the application

domain.

2. Algorithmic cost Modeling: In this approach, a formulaic approach is used to

compute the project effort based on estimates of product attributes, such as

size, and process characteristics, such as experience of staff involved.

 During development planning, estimates become more and more accurate as the

project progresses (Fig 4.8).

 Experience-based techniques rely on the manager’s experience of past projects and

the actual effort expended in these projects on activities that are related to software

development.

 The difficulty with experience-based techniques is that a new software project may

not have much in common with previous projects

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 9

Fig 4.8: Estimate Uncertainty

4.4.1 Algorithmic Cost Modeling

 Algorithmic cost modeling uses a mathematical formula to predict project costs based

on estimates of the project size; the type of software being developed; and other team,

process, and product factors.

 An algorithmic cost model can be built by analyzing the costs and attributes of

completed projects, and finding the closest-fit formula to actual experience.

 Algorithmic models for estimating effort in a software project are mostly based on a

simple formula:

Effort = A * Size
B
 * M

 A is a constant factor which depends on local organizational practices and the type of

software that is developed.

 Size may be either an assessment of the code size of the software or a functionality

estimate expressed in function or application points.

 The value of exponent B usually lies between 1 and 1.5. M is a multiplier made by

combining process, product, and development attributes, such as the dependability

requirements for the software and the experience of the development team.

 All algorithmic models have similar problems:

1. It is often difficult to estimate Size at an early stage in a project, when only the

specification is available. Function-point and application-point estimates are

easier to produce than estimates of code size but are still often inaccurate.

2. The estimates of the factors contributing to B and M are subjective. Estimates

vary from one person to another, depending on their background and

experience of the type of system that is being developed

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 10

4.4.2 The COCOMO II Model

 This is an empirical model that was derived by collecting data from a large number of

software projects.

 These data were analyzed to discover the formulae that were the best fit to the

observations.

 The COCOMO II model takes into account more modern approaches to software

development, such as rapid development using dynamic languages, development by

component composition, and use of database programming.

 COCOMO II supports the spiral model of development.

 The sub-models (Fig 4.9) that are part of the COCOMO II model are:

1. An application-composition model: Models the effort required to develop

systems that are created from reusable components, scripting, or database

programming. Software size estimates are based on application points, and a

simple size/productivity formula is used to estimate the effort required.

2. An early design model: This model is used during early stages of the system

design after the requirements have been established.

3. A reuse model: This model is used to compute the effort required to integrate

reusable components and/or automatically generated program code. It is

normally used in conjunction with the post-architecture model.

4. A post-architecture model: Once the system architecture has been designed,

a more accurate estimate of the software size can be made. Again, this model

uses the standard formula for cost estimation discussed above.

 The Application-Composition Model

* The application-composition model was introduced into COCOMO II to

support the estimation of effort required for prototyping projects and for

projects where the software is developed by composing existing components.

* It is based on an estimate of weighted application points (sometimes called

object points), divided by a standard estimate of application point productivity.

* The estimate is then adjusted according to the difficulty of developing each

application point.

* Application composition usually involves significant software reuse.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 11

* It is almost certain that some of the application points in the system will be

implemented using reusable components the final formula for effort

computation for system prototypes is:

 PM = (NAP * (1 - %reuse / 100)) / PROD

Where,

PM  the effort estimate in person-months.

NAP  the total number of application points in the delivered system.

%reusean estimate of the amount of reused code in the development.

 The Early Design Model

* This model may be used during the early stages of a project, before a detailed

architectural design for the system is available.

* Early design estimates are most useful for option exploration where you need

to compare different ways of implementing the user requirements.

* The estimates produced at this stage are based on the standard formula for

algorithmic models, namely:

Effort = A * Size
B
 * M

* Boehm proposed that the coefficient A should be 2.94.

* The exponent B reflects the increased effort required as the size of the project

increases.

* This can vary from 1.1 to 1.24 depending on the novelty of the project, the

development flexibility, the risk resolution processes used, the cohesion of the

development team, and the process maturity level of the organization.

* This results in an effort computation as follows:

PM = 2.94 * Size
(1.1 – 1.24)

 * M

Where

M = PERS * RCPX * RUSE * PDIF * PREX * FCIL * SCED

* The multiplier M is based on seven project and process attributes that increase

or decrease the estimate.

* The attributes used in the early design model are product reliability and

complexity (RCPX), reuse required (RUSE), platform difficulty (PDIF),

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 12

personnel capability (PERS), personnel experience (PREX), schedule (SCED),

and support facilities (FCIL).

 The Reuse Model

* COCOMO II considers two types of reused code.

* ‘Black-box’ code is code that can be reused without understanding the code or

making changes to it.

* The development effort for black-box code is taken to be zero.

* ‘White box’ code has to be adapted to integrate it with new code or other

reused components.

* A model (often in UML) is analyzed and code is generated to implement the

objects specified in the model.

* The COCOMO II reuse model includes a formula to estimate the effort

required to integrate this generated code:

PMAuto = (ASLOC * AT / 100) / ATPROD // Estimate for generated code

Where,

ASLOC  total number of lines of reused code, including code that is

automatically generated.

AT  percentage of reused code that is automatically generated.

ATPROD  productivity of engineers in integrating such code.

* If there are a total of 20,000 lines of reused source code in a system and 30%

of this is automatically generated, then the effort required to integrate the

generated code is:

(20.000 * 30/100) / 2400 = 2.5 person months //Generated Code

* The following formula is used to calculate the number of equivalent lines of

source code:

ESLOC = ASLOC * AAM

Where,

ESLOC  the equivalent number of lines of new source code.

ASLOC  the number of lines of code in the components that have to be

changed.

AAM  an Adaptation Adjustment Multiplier (AAM) which adjusts the

estimate to reflect the additional effort required to reuse code.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 13

* AAM is the sum of three components:

i. An adaptation component (referred to as AAF) that represents the costs

of making changes to the reused code. The adaptation component

includes subcomponents that take into account design, code, and

integration changes.

ii. An understanding component (referred to as SU) that represents the

costs of understanding the code to be reused and the familiarity of the

engineer with the code. SU ranges from 50 for complex unstructured

code to 10 for well-written, object-oriented code.

iii. An assessment factor (referred to as AA) that represents the costs of

reuse decision making. That is, some analysis is always required to

decide whether or not code can be reused, and this is included in the

cost as AA. AA varies from 0 to 8 depending on the amount of

analysis effort required.

 The Post-Architecture Level

* The post-architecture model is the most detailed of the COCOMO II models.

* It is used once an initial architectural design for the system is available so the

subsystem structure is known.

* An estimation for each part of the system can then be made.

* The starting point for estimates produced at the post-architecture level is the

same basic formula used in the early design estimates:

* Estimate of the code size can be done using three parameters:

i. An estimate of the total number of lines of new code to be developed

(SLOC).

ii. An estimate of the reuse costs based on an equivalent number of source

lines of code (ESLOC), calculated using the reuse model.

iii. An estimate of the number of lines of code that are likely to be

modified because of changes to the system requirements. The value of

the exponent B is based on five factors, as shown in Fig 4.9 These

factors are rated on a six-point scale from 0 to 5, where 0 means ‘extra

high’ and 5 means ‘very low’.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 14

Fig 4.9: Scale factors used in the exponent computation in the post-architecture model

* Possible values for the ratings used in exponent calculation are therefore:

i. Precedentedness, rated low (4). This is a new project for the

organization.

ii. Development flexibility, rated very high (1). No client involvement in

the development process so there are few externally imposed changes

iii. Architecture/risk resolution, rated very low (5). There has been no

risk analysis carried out.

iv. Team cohesion, rated nominal (3). This is a new team so there is no

information available on cohesion.

v. Process maturity, rated nominal (3). Some process control is in place.

* Fig 4.10 shows how the cost driver attributes can influence effort estimates.

Fig 4.10: The effect of cost drivers on effort estimates

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 15

4.4.3 Project Duration and Staffing

 The COCOMO model includes a formula to estimate the calendar time required to

complete a project:

 TDEV is the nominal schedule for the project, in calendar months, ignoring any

multiplier that is related to the project schedule.

 PM is the effort computed by the COCOMO model. B is the complexity-related

Exponent

 There is a complex relationship between the number of people working on a project,

the effort that will be devoted to the project, and the project delivery schedule.

 If four people can complete a project in 13 months (i.e., 52 person-months of effort),

then you might think that by adding one more person, you can complete the work in

11 months (55 person-months of effort).

 The COCOMO model suggests that you will, in fact, need six people to finish the

work in 11 months (66 person-months of effort).

 The reason for this is that adding people actually reduces the productivity of existing

team members and so the actual increment of effort added is less than one person.

 As the project team increases in size, team members spend more time communicating

and defining interfaces between the parts of the system developed by other people.

 Doubling the number of staff (for example) therefore does not mean that the duration

of the project will be halved

QUALITY MANAGEMENT

 Software quality management for software systems has three principal concerns:

1. At the organizational level, quality management is concerned with establishing

a framework of organizational processes and standards that will lead to high

quality software. This means that the quality management team should take

responsibility for defining the software development processes to be used and

standards that should apply to the software and related documentation,

including the system requirements, design, and code.

2. At the project level, quality management involves the application of specific

quality processes, checking that these planned processes have been followed,

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 16

and ensuring that the project outputs are conformant with the standards that

are applicable to that project.

3. Quality management at the project level is also concerned with establishing a

quality plan for a project. The quality plan should set out the quality goals for

the project and define what processes and standards are to be used.

 Quality assurance (QA) is the definition of processes and standards that should lead to

high-quality products and the introduction of quality processes into the manufacturing

process.

 Quality control is the application of these quality processes to weed out products that

are not of the required level of quality.

 Quality management provides an independent check on the software development

process.

 The quality management process checks the project deliverables to ensure that they

are consistent with organizational standards and goals

Fig 4.11: Quality management and software development

 An outline structure for quality plan includes:

1. Product introduction: A description of the product, its intended market, and

the quality expectations for the product.

2. Product plans: The critical release dates and responsibilities for the product,

along with plans for distribution and product servicing

3. Process descriptions: The development and service processes and standards

that should be used for product development and management.

4. Quality goals: The quality goals and plans for the product, including an

identification and justification of critical product quality attributes.

5. Risks and risk management: The key risks that might affect product quality

and the actions to be taken to address these risks

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 17

4.5 Software Quality

 Different software quality attributes are as shown below

Fig 4.12: Software quality attributes

 A manufacturing process involves configuring, setting up, and operating the machines

involved in the process.

 Once the machines are operating correctly, product quality naturally follows

 The quality of the product is measured and the process is changed until the quality

level needed is achieved.

 Fig 4.13 illustrates this process-based approach to achieving product quality.

Fig 4.13: Process based quality

4.6 Software Standards

 Software standards are important for three reasons:

1. Standards capture wisdom that is of value to the organization. They are based

on knowledge about the best or most appropriate practice for the company.

This knowledge is often only acquired after a great deal of trial and error.

2. Standards provide a framework for defining what ‘quality’ means in a

particular setting. This depends on setting standards that reflect user

expectations for software dependability, usability, and performance.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 18

3. Standards assist continuity when work carried out by one person is taken up

and continued by another. Standards ensure that all engineers within an

organization adopt the same practices.

 There are two related types of software engineering standard that may be defined and

used in software quality management:

1. Product Standards:

* These apply to the software product being developed.

* They include document standards, such as the structure of

requirements documents, documentation standards, such as a standard

comment header for an object class definition, and coding standards,

which define how a programming language should be used.

2. Process Standards:

* These define the processes that should be followed during software

development.

* They should encapsulate good development practice.

* Process standards may include definitions of specification, design and

validation processes, process support tools, and a description of the

documents that should be written during these processes.

4.7 Reviews and Inspections

 Reviews and inspections are QA activities that check the quality of project

deliverables.

 This involves examining the software, its documentation and records of the process to

discover errors and omissions and to see if quality standards have been followed.

 During a review, a group of people examine the software and its associated

documentation, looking for potential problems and non-conformance with standards.

 The review team makes informed judgments about the level of quality of a system or

project deliverable.

 Project managers may then use these assessments to make planning decisions and

allocate resources to the development process.

 Quality reviews are based on documents that have been produced during the software

development process.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 19

 The purpose of reviews and inspections is to improve software quality, not to assess

the performance of people in the development team.

 Reviewing is a public process of error detection, compared with the more private

component-testing process

4.7.1 The Review Process

 Review process is structured into 3 phases:

1. Pre-Review Activities:

* These are preparatory activities that are essential for the review to be

effective.

* Pre-review activities are concerned with review planning and review

preparation.

* Review planning involves setting up a review team, arranging a time

and place for the review, and distributing the documents to be

reviewed.

* During review preparation, the team may meet to get an overview of

the software to be reviewed

2. The Review Meeting:

* During the review meeting, an author of the document or program

being reviewed should ‘walk through’ the document with the review

team.

* The review itself should be relatively short—two hours at most. One

team member should chair the review and another should formally

record all review decisions and actions to be taken.

3. Post-Review Activities:

* After a review meeting has finished, the issues and problems raised

during the review must be addressed.

* This may involve fixing software bugs, refactoring software so that it

conforms to quality standards, or rewriting documents.

4.7.2 Program Inspections

 Program inspections are ‘peer reviews’ where team members collaborate to find bugs

in the program that is being developed.

 Inspections may be part of the software verification and validation processes.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 20

 They complement testing as they do not require the program to be executed.

 This means that incomplete versions of the system can be verified and that

representations such as UML models can be checked.

 During an inspection, a checklist of common programming errors is often used to

focus the search for bugs.

 This checklist may be based on examples from books or from knowledge of defects

that are common in a particular application domain.

 Possible checks are as shown in fig 4.14.

Fig 4.14: An inspection checklist

4.8 Software Measurement and Metrics

 Software measurement is concerned with deriving a numeric value or profile for an

attribute of a software component, system, or process.

 The long-term goal of software measurement is to use measurement in place of

reviews to make judgments about software quality.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 21

 Using software measurement, a system could ideally be assessed using a range of

metrics and, from these measurements, a value for the quality of the system could be

inferred.

 Software metric is a characteristic of a software system, system documentation, or

development process that can be objectively measured.

 Examples of metrics include the size of a product in lines of code.

 Software metrics may be either control metrics or predictor metrics.

 Control metrics support process management, and predictor metrics helps to predict

characteristics of the software.

 Control metrics are usually associated with software processes.

 Examples of control or process metrics are the average effort and the time required to

repair reported defects.

 Predictor metrics are associated with the software itself and are sometimes known as

‘product metrics.

 Both control and predictor metrics may influence management decision making, as

shown in fig 4.15.

Fig 4.15: Predictor and control measurements

 There are two ways in which measurements of a software system may be used:

1. To assign a value to system quality attributes: By measuring the

characteristics of system components, such as their cyclomatic complexity,

and then aggregating these measurements, you can assess system quality

attributes, such as maintainability.

2. To identify the system components whose quality is substandard:

Measurements can identify individual components with characteristics that

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 22

deviate from the norm. For example, components can be measured to discover

those with the highest complexity.

 Fig 4.16 shows some external software quality attributes and internal attributes that

could, intuitively, be related to them.

 The diagram suggests that there may be relationships between external and internal

attributes, but it does not say how these attributes are related.

 If the measure of the internal attribute is to be a useful predictor of the external

software characteristic, three conditions must hold

1. The internal attribute must be measured accurately. This is not always

straightforward and it may require special-purpose tools to make the

measurements.

2. A relationship must exist between the attribute that can be measured and the

external quality attribute that is of interest. That is, the value of the quality

attribute must be related, in some way, to the value of the attribute than can be

measured.

3. This relationship between the internal and external attributes must be

understood, validated, and expressed in terms of a formula or model. Model

formulation involves identifying the functional form of the model (linear,

exponential, etc.)by analysis of collected data, identifying the parameters that

are to be included in the model, and calibrating these parameters using

existing data.

Fig 4.16: Relationships between internal and external software

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 23

4.8.1 Product Metrics

 Product metrics are predictor metrics that are used to measure internal attributes of a

software system.

 Examples of product metrics include the system size, measured in lines of code, or the

number of methods associated with each object class.

 Product metrics fall into two classes:

1. Dynamic metrics, which are collected by measurements made of a program in

execution. These metrics can be collected during system testing or after the

system has gone into use. An example might be the number of bug reports or

the time taken to complete a computation.

2. Static metrics, which are collected by measurements made of representations

of the system, such as the design, program, or documentation. Examples of

static metrics are the code size and the average length of identifiers used.

 The metrics in fig 4.17 are applicable to any program but more specific object-

oriented (OO) metrics have also been proposed

Fig 4.17: Static software product metrics

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 24

 Fig 4.18 summarizes Chidamber and Kemerer’s suite

Fig 4.18: The CK object oriented metrics suite

4.8.2 Software Component Analysis

 A measurement process that may be part of a software quality assessment process is

shown in fig 4.19.

 Each system component can be analyzed separately using a range of metrics.

 The values of these metrics may then be compared for different components and,

perhaps, with historical measurement data collected on previous projects.

 The key stages in this component measurement process are:

1. Choose measurements to be made:

* The questions that the measurement is intended to answer should be

formulated and the measurements required to answer these questions

defined.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 25

* Measurements that are not directly relevant to these questions need not

be collected.

2. Select components to be assessed:

* You may not need to assess metric values for all of the components in

a software system.

* Sometimes, a representative selection of components can be selected

for measurement, allowing to make an overall assessment of system

quality.

3. Measure component characteristics:

* The selected components are measured and the associated metric

values computed.

* This normally involves processing the component representation

(design, code, etc.) using an automated data collection tool.

* This tool may be specially written or may be a feature of design tools

that are already in use.

4. Identify anomalous measurements:

* After the component measurements have been made, it can be

compared with each other and to previous measurements that have

been recorded in a measurement database.

5. Analyze anomalous components:

* When the components that have anomalous values for chosen metrics

have been identified, it becomes necessary to examine them to decide

whether or not these anomalous metric values mean that the quality of

the component is compromised.

* An anomalous metric value for complexity

Fig 4.19: The process of product measurement

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 26

4.8.3 Measurement Ambiguity

 When you collect quantitative data about software and software processes, the data

must be analyzed in order to be understood.

 It is easy to misinterpret data and to make inferences that are incorrect.

 There are several reasons for the users to make change requests:

1. The software is not good enough and does not do what customers want it to

do. They therefore request changes to deliver the functionality that they

require.

2. Alternatively, the software may be very good and so it is widely and heavily

used. Change requests may be generated because there are many software

users who creatively think of new things that could be done with the software.

