Software Engineering !15CS42 |

4. PROJECT PLANNING AND QUALITY

MANAGEMENT
PROJECT PLANNING

— Project planning is one of the most important jobs of a software project manager.

— The project plan, which is created at the start of a project, is used to communicate
how the work will be done to the project team and customers, and to help assess
progress on the project.

— Project planning takes place at three stages in a project life cycle:

1. At the proposal stage, when there is<bidding for a contract to develop or
provide a software system, a plan may be required at this stage to help
contractors decide if they havethe resources to complete the work and to work
out the price that they should quote to a customer.

2. During the project startup phase, there is a need to plan wha will work on the
project, how the project will be broken down into increments, how resources
will be allocated across your company, etc.

3. Periodically. throughout the project, when the plan is modified , in light of
experience gained-and information from monitoring the progress of the work,
more information about the.system being implemented and capabilities of
development team are learnt.

— This information allows to make more accurate estimates of how long the work will
take.

4.1 Software Pricing

— In principle, the ‘price of a software product to a customer is simply the cost of
development plus profit for the developer. Fig 4.1 shows the factors affecting

software pricing

—> It is essential to think about organizational concerns, the risks associated with the

project, and the type of contract that will be used.

— These may cause the price to be adjusted upwards or downwards.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 1

Guest
Squiggly
Software Engineering [15CS42]

Guest
Highlight
oftware Engineering [15CS4

Software Engineering [15CS42]

—> Because of the organizational considerations involved, deciding on a project price
should be a group activity involving marketing and sales staff, senior management,

and project managers

Market opportunity A development OrganizaSon may quie & low pace beawse it washes

10 mDwe N0 & néw segment of he sofware market. Accepting & Iow
prdlit On One project may give the Dganization $he opportunity 10 m ake
& grester prof lsber, The expanence ganed may alsD halp it devdop
e produds.

0%t etimat & unentainty ¥ an Organizafion i ursure Of its 0051 eSEMAtE, it may inCresse its price
by & confingency ower and shove its nomal profit.

Contracual temms A wstomer may be willing 10 allow the developer to rétain Gamership
of the source code and reuse it in other projeds. The price charged
may then be less than # the software sounte (Dde s handed ower 1D
the mustmer.

Requiraments wlstility ¥ the requirements are ikely 10 changs, an OrganizsE0n may lwer its
PriCE 10 win & COntrad. Afer the cOontmd i swaded, high prices Gan be
thargad fior changss 10 the requirements.

Financial heslth Devalopers in fnancial diffslulty mey |ower thir prsCe b0 gan & Donimd.
I & better to make 4 smaller than nommal profit or break aven than to
£0 out Of busaness. Cash flow & more important than proft in deffscult
SC0nOmeC B es.

Fig 4.1: Factors affecting software pricing

4.2 Plan Driven Development

— Plan-driven or plan-based development is an approach to software engineering where
the development process.is planned in detail.

— A project. plan is created that records the work to be done, who will do it, the
development schedule, and the work products.

— Managers use the plan to support project decision making and as a way of measuring
progress.

— Plan-driven development is based on engineering project management techniques and
can be thought of as the ‘traditional’ way of managing large software development
projects.

— The principal argument against plan-driven development is that many early decisions
have to be revised because of changes to the environment in which the software is to
be developed and used

4.2.1 Project Plans

— Ina plan-driven development project, a project plan sets out the resources available to

the project, the work breakdown, and a schedule for carrying out the work.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 2

Software Engineering [15CS42]

— The plan should identify risks to the project and the software under development, and

the approach that is taken to risk management.

— Plans normally include the following sections:

1.

Introduction: Describes the objectives of the project and sets out the
constraints (e.g., budget, time, etc.) that affect the management of the project.
Project organization: This describes the way in which the development team
is organized, the people involved, and their roles in the team.

Risk analysis: This describes possible project risks, the likelihood of these
risks arising, and the risk reduction strategiesthat are proposed.

Hardware and software resource requirements: This specifies the hardware
and support software required to carry out the development. If hardware has to
be bought, estimates of the prices and the delivery schedule may be included.
Work breakdown: This sets out the breakdown of the project into activities
and identifies the milestones and deliverables associated with each activity.
Project schedule: Shows dependencies between activities, the estimated time
required to reach each milestone, and the allocation of people to activities.
Monitoring and reporting mechanisms: This defines the management
reports' that should be produced, when these should be produced, and the

project monitoring mechanisms to be used.

— Theproject plan supplements are as shown in fig 4.2.

Plan D esoription

Cuality plan D= bies the quality procedures and standands that wall ba
used in & projed.

\ia dstson plan Do b the apprdach, resourcess, and schadula usad for
syt walids Son.

Corlrgum B0n manag sment plan Diesrs bes the configurstion manag ement pricedunss. and
stmichines 10 be used.

Mamienance plan Predics the maintenance requirements, costs, and ofont

Staf development plan Descibies hOw the sl and expenienca of the projed 18am

mambers wall be desmoped.

Fig 4.2: Project plan supplements

4.2.2 The Planning Process

— Project planning is an iterative process that starts when an initial project plan is

created during the project startup phase.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 3

Software Engineering [15CS42]

— Fig 4.3 is a UML activity diagram that shows a typical workflow for a project
planning process.

— At the beginning of a planning process, it is necessary to assess the constraints
affecting the project.

— These constraints are the required delivery date, staff available, overall budget,
available tools, and so on.

— It is also necessary to identify the project milestones and deliverables.

— Milestones are points in the schedule against which progress can be accessed, for
example, the handover of the system for testing.

— Deliverables are work products that are delivered to the.customer.

— The process then enters a loop.

— You draw up an estimated schedule for the project and the activities defined in the
schedule are initiated or given permission to continue.

— After some time (usually about two to three weeks), the progress must be reviewed
and discrepancies must be noted from the planned schedule.

— Because initial estimates of project parameters are inevitably approximate, minor

slippages are normal and thereby modifications will have to be made to the original

plan.
[proy2c
= ey T o
“ 5 1}
e
e "
O identiy
", Constraints | .
_ Dothe Wark | | 0 problams]
o " identity " Define Projea | 4
—.-_- Rindx -'l_.' —"I Srhadda] ——,
e /Monitor Progres |
" Dene % -.__-l"«cgdm'l P'lan.-.-__: |
| | Malestones fsriius
A Jminor problers and slippagss) ol e
', Dalnrarabdes /
¢ mitimemsk (Replan

| Misgation Asions | -

Fig 4.3: The project planning process

4.3 Project Scheduling

— Project scheduling is the process of deciding how the work in a project will be

organized as separate tasks, and when and how these tasks will be executed.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 4

Software Engineering [15CS42]

— Here there is an estimation of the calendar time needed to complete each task, the
effort required, and who will work on the tasks that have been identified.

— It is essential to estimate the resources needed to complete each task, such as the disk
space required on a server, the time required on specialized hardware, such as a
simulator, and what the travel budget will be .

— Scheduling in plan-driven projects (Fig 4.4) involves breaking down the total work
involved in a project into separate tasks and estimating the time required to complete
each task.

— Tasks should normally last at least a week, and no longer than 2 months.

— Finer subdivision means that a disproportionate’amount of time must be spent on re-
planning and updating the project plan.

— The maximum amount of time for any task should be around 8 to 10 weeks.

— If it takes longer than this, the task should be subdivided for project planning and

scheduling.

|

denthy |"" Kantity Admity "I___'T_-.1|m.=1e REﬂlEé’l+". Allocate People H‘-___"' Craste Project)
.-.._. i r

ACEaNis Dig Bncdan Cias , frAchatise | | WDACRiEEs | | Chats y
Soitwa e requinements Bar Charts desCribing
and design minrmation the proed schedule

Fig 4.4: The project scheduling process
4.3.1 Schedule Representation
— Project schedules may simply be represented in a table or spreadsheet showing the
tasks, effort, expected duration, and task dependencies.
— There are twa types of representation that are commonly used:

1. Bar charts, which are calendar-based, show who is responsible for each
activity, the expected elapsed time, and when the activity is scheduled to begin
and end. Bar charts are sometimes called ‘Gantt charts’.

2. Activity networks, which are network diagrams, show the dependencies
between the different activities making up a project.

— Project activities are the basic planning element. Each activity has:

1. A duration in calendar days or months.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 5

Software Engineering [15CS42]

2. An effort estimate, which reflects the number of person-days or person-
months to complete the work.

3. A deadline by which the activity should be completed.

4. A defined endpoint. This represents the tangible result of completing the
activity. This could be a document, the holding of a review meeting, the
successful execution of all tests, etc.

— When planning a project, milestones must also be defined; that is, each stage in the
project where a progress assessment can be made.

— Each milestone should be documented by a short report that summarizes the progress
made and the work done.

— Milestones may be associated with a single task or with groups of related activities.

— For example, in fig 4.5, milestone M1 is associated with task T1 and milestone M3 is
associated with a pair of tasks, T2 and T4.

— A special kind of milestone is.the production of a project deliverable.

— A deliverable is a work product that is delivered to the customer. It is the outcome of
a significant project phase such as specification or design.

— Usually, the deliverables that are required are specified in the project contract and the

customer’s view of the project’s progress depends onthese deliverables.

Task T ry— Durafion (days) Dependencies
T 15 1]

T2 a 15

3 20 15 T1 (1)
T4 5 10

5 5] T2, T4 (M3)
T 0 5 T1, T2 ()
™ 25 20 T1 (M1)
™ 75 25 T4 (M)
-] i 15 T3, T6 (M5)
IO 20 15 T2, T8 (ME)
Ll i 1] T4 (MT)
Tiz 20] TIO, T11 {hdd)

Fig 4.5: Tasks, durations and dependencies

— Fig 4.6 takes the information in Figure 4.5 and presents the project schedule in a

graphical format.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 6

Software Engineering [15CS42]

Wes 0 2 3 4 5 & 7 a 3 o n
§ st |
T
]
§ o1 /m)
=
I
s *I’Mﬂ-ﬂ? LTH)
L]
|
METIATZ)
T
Ll
1
§ T | |
T8
I
[MI5TS & TH)
T
o MSTTA TE)
Ti0
& (T)
bl
§METI0A T
2
| §

Fig 4.6: Activity bar chart

— It is a bar chart showing a project calendar and the start and finish dates of tasks.

— Reading from left to right, the bar chart clearly shows when tasks start and end.

— The milestones (M1, M2, etc.) are also shown on the bar chart

— InFig 4.7, it is observed that Mary 1s a specialist, who works on only a single task in

the project.

wesk D 2 i 4 5 & 7T & % 1w n

I I | I |
Bne T 3 e |TI0 T2
& |n i
Geetha (T2 | T Tio

13
Mg il
_ I I
Red (TB—__ |78 1 Tz
Mary o =
I

Hong 7 ——

6

Fig 4.7: Staff allocation chart

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru

Page 7

Software Engineering [15CS42]

%

This can cause scheduling problems. If one project is delayed while a specialist is
working on it, this may have a knock-on effect on other projects where the specialist
is also required.

These may then be delayed because the specialist is not available.

Delays can cause serious problems with staff allocation, especially when people are
working on several projects at the same time.

If a task (T) is delayed, the people allocated may be assigned to other work (W).

To complete this may take longer than the delay but; once assigned, they cannot
simply be reassigned back to the original task, T.

This may then lead to further delays in T as they complete W.

4.4 Estimation Techniques

—

—>

Project schedule estimation is difficult.

There might be a need to imake initial estimates on the basis of'a high-level user
requirements definition.

Organizations need.to make software effort and cost estimates.

There are two types of technique that can be used to do this:

1. Experience-based Techniques: The estimate of future effort requirements is
based on the manager’s experience of past projects and the application
domain.

2. Algorithmic cost Modeling: In this approach, a formulaic approach is used to
compute the project effort based on estimates of product attributes, such as
size, and process characteristics, such as experience of staff involved.

During development planning, estimates become more and more accurate as the
project progresses (Fig 4.8).

Experience-based techniques rely on the manager’s experience of past projects and
the actual effort expended in these projects on activities that are related to software
development.

The difficulty with experience-based techniques is that a new software project may

not have much in common with previous projects

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 8

Software Engineering [15CS42]

A
.
o
¥ 1 1 1 1 - —
Feazbilty Regurements Diesigm I:D'.I.E_ =TT Dl
0.5x
..--I-..
025

Fig 4.8: Estimate Uncertainty
4.4.1 Algorithmic Cost Modeling

— Algorithmic cost modeling uses a mathematical formula to predict project costs based
on estimates of the project size; the type of software being developed; and other team,
process, and product factors.

— An algorithmic cost model.€an be built by analyzing the costs and attributes of
completed projects, and finding the closest-fit formula to actual experience.

— Algorithmic models for estimating effort in a software project are mostly based on a
simple formula:

Effort = A * Size® * M

— Ais a constant factor which depends-on local organizational practices and the type of
software that is.developed.

— Size may be either an assessment of the code size of the software or a functionality
estimate expressed in function or application points.

— The value of exponent B usually lies between 1 and 1.5. M is a multiplier made by
combining process, product, and development attributes, such as the dependability
requirements for the software and the experience of the development team.

— All algorithmic models have similar problems:

1. Itis often difficult to estimate Size at an early stage in a project, when only the
specification is available. Function-point and application-point estimates are
easier to produce than estimates of code size but are still often inaccurate.

2. The estimates of the factors contributing to B and M are subjective. Estimates
vary from one person to another, depending on their background and

experience of the type of system that is being developed

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 9

Software Engineering [15CS42]

4.4.2 The COCOMO Il Model

— This is an empirical model that was derived by collecting data from a large number of
software projects.

— These data were analyzed to discover the formulae that were the best fit to the
observations.

— The COCOMO Il model takes into account more modern approaches to software
development, such as rapid development using dynamic languages, development by
component composition, and use of database programming.

— COCOMO I1 supports the spiral model of development.

— The sub-models (Fig 4.9) that are part of the COCOMO.I1 model are:

1. An application-composition model: Models the effort required to develop
systems that are created from reusable components, scripting, or database
programming. Software size estimates are based on application points, and a
simple size/productivity formula is used to estimate the effort required.

2. An early design model: This model is used during early stages of the system
design after the requirements have been established.

3. A reuse model: This model is used to compute the effort required to integrate
reusable components and/or automatically ‘generated program code. It is
normally used in conjunction.with the post-architecture model.

4. A post-architecture model: Once the system architecture has been designed,
a more accurate estimate of the software size can be made. Again, this model
uses the standard formula for cost estimation discussed above.

— The Application-Composition Model

The application-composition model was introduced into COCOMO 11 to
support the-estimation of effort required for prototyping projects and for
projects where the software is developed by composing existing components.

= It is based on an estimate of weighted application points (sometimes called
object points), divided by a standard estimate of application point productivity.

~ The estimate is then adjusted according to the difficulty of developing each
application point.

= Application composition usually involves significant software reuse.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 10

Software Engineering [15CS42]

It is almost certain that some of the application points in the system will be
implemented using reusable components the final formula for effort
computation for system prototypes is:
PM = (NAP * (1 - %reuse / 100)) / PROD
Where,
PM - the effort estimate in person-months.
NAP - the total number of application points in the delivered system.

%reuse—>an estimate of the amount of reused code in the development.

— The Early Design Model

*

This model may be used during the early stages of.a project, before a detailed
architectural design for the system is available.
Early design estimates are most useful for option exploration where you need
to compare different ways of implementing the user requirements.
The estimates produced at this stage are based on the standard formula for
algorithmic models, namely:
Effort = A * Size® * M
Boehm proposed that the coefficient A should.be 2.94.
The exponent B reflects the increased effort required as the size of the project
Increases.
This can vary from 1.1 to 1.24 depending on the novelty of the project, the
development flexibility, the risk resolution processes used, the cohesion of the
development team, and the process maturity level of the organization.
This results in an effort computation as follows:
PM = 2.94 * Size!" =129 x
Where
M = PERS * RCPX * RUSE * PDIF * PREX * FCIL * SCED

The multiplier M is based on seven project and process attributes that increase
or decrease the estimate.

The attributes used in the early design model are product reliability and
complexity (RCPX), reuse required (RUSE), platform difficulty (PDIF),

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 11

Software Engineering [15CS42]

personnel capability (PERS), personnel experience (PREX), schedule (SCED),
and support facilities (FCIL).

— The Reuse Model

*

*

COCOMO I considers two types of reused code.
‘Black-box’ code is code that can be reused without understanding the code or
making changes to it.
The development effort for black-box code is taken to be zero.
‘White box’ code has to be adapted to integrate.it with new code or other
reused components.
A model (often in UML) is analyzed and code is generated to implement the
objects specified in the model.
The COCOMO Il reuse model includes a formula to estimate the effort
required to integrate this generated code:
PMauto = (ASLOC * AT/ 100) /'/ATPROD // Estimate for generated code
Where,
ASLOC -> total number of lines of reused code, including code that is
automatically generated.
AT —>.percentage of reused code that is automatically generated.
ATPROD -> productivity.of engineers in integrating such code.
If there are a total of 20,000 lines of reused source code in a system and 30%
of this is automatically generated, then the effort required to integrate the
generated codeis:

(20.000 * 30/100) / 2400 = 2.5 person months //Generated Code
The following formula is used to calculate the number of equivalent lines of
source,code:

ESLOC = ASLOC * AAM
Where,
ESLOC - the equivalent number of lines of new source code.
ASLOC -> the number of lines of code in the components that have to be
changed.
AAM - an Adaptation Adjustment Multiplier (AAM) which adjusts the

estimate to reflect the additional effort required to reuse code.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 12

Software Engineering [15CS42]

* AAM is the sum of three components:

I. Anadaptation component (referred to as AAF) that represents the costs
of making changes to the reused code. The adaptation component
includes subcomponents that take into account design, code, and
integration changes.

ii. An understanding component (referred to as SU) that represents the
costs of understanding the code to be reused and the familiarity of the
engineer with the code. SU ranges from 50 for complex unstructured
code to 10 for well-written, object-oriented code.

iii. An assessment factor (referred to'as AA) that represents the costs of
reuse decision making. That‘is, some analysis is always required to
decide whether or not code can be reused, and.this is included in the
cost as AA. AA varies from 0 to 8 depending on the amount of
analysis effort required.

— The Post-Architecture Level

» The post-architecture model is the most detailed of the COCOMO |1 models.

= It is used once an initial architectural design for the system is available so the
subsystem structure is known.
An estimation for each part of the system can then be made.
The starting point for estimates produced at the post-architecture level is the
same basic formula used in the early design estimates:

+ Estimate-of the code size can be done using three parameters:

I. An estimate of the total number of lines of new code to be developed
(SLOC).

ii. ", An estimate of the reuse costs based on an equivalent number of source
lines of code (ESLOC), calculated using the reuse model.

iii. An estimate of the number of lines of code that are likely to be
modified because of changes to the system requirements. The value of
the exponent B is based on five factors, as shown in Fig 4.9 These
factors are rated on a six-point scale from 0 to 5, where 0 means ‘extra

high’ and 5 means ‘very low’.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 13

Software Engineering [15CS42]

Scale factor Explanation

Frecadantednes Refles the previow expenience of the Drganizstion with this ype of
praject Very low means nO prossias Bxpenienis; extra-high means that he
Organiza®on i completely tamilar wath this apploation domain.

Development fedbility Refleds the degree of # exibility in the development prooess. Very kow
maans & présdibed process i wed; axira-high means that the dient sats
only general goaks.

Arnchitertuns,isk resohation Refleds the extent of risk analysis canried out. Very low means limle

analysin; extra-high means a complete and thordugh rsk anabyss.

Taam oohasion Refleds how well the devalopment team knws each other and work
togather. Viery low means wery difficult intersions; exira-high mesns an
intagrated and efiedive team with nd Communi Cation problers.

Process maturity Refleds the proces matusty of the organizsfion. The compulstion of this
walue depends on the OV Matusity Quesonnaine, but an eimate can be
achieved by subtmding the MM process matusity level inom 5.

Fig 4.9: Scale factors used in the exponent computation in the post-architecture model

» Possible values for the ratings used in exponent calculation are therefore:
i. Precedentedness, rated low (4). This is.a new project for the

organization.

ii. Development flexibility, rated very high (1). No client involvement in
the development process so there are few externally imposed changes

iii. Architecture/risk resolution, rated very low (5).“There has been no
risk analysis carried out.

iv. ~ Team cohesion, rated nominal (3). This Is a new team so there is no
information available'on cohesion.

v. Process maturity,rated nominal (3). Some process control is in place.

«Fig 4.10 shows how the cost driver attributes can influence effort estimates.

Expanent valua 117

System sre (induding tacos for reuse and 128,000 DS

reguirement wolas ity

Initial COCOMO estimate with out oSt drivers T30 person-months

Reeia billity Ny high, multiplier = 138
Complanity Wiy high, multipliar =13
M emary Donstaint High, muMigiier = 121
Tool use Low, multipier =1.12
Schedule Arcelersted, muliphier =1.29
Adjusied OO0 esmate 1306 person-months
Reeia bility Ve bow, mul pliar = D75
Complanity Wiery bow, rrl plier = 075
Memony Cconstraind None, mulsplier =1

Tool use Viery high, multiplier = 072
Schadule Mommal, muliplier =1
Adjusted OO0 esimate 95 person-months

Fig 4.10: The effect of cost drivers on effort estimates

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 14

Software Engineering [15CS42]

4.4.3 Project Duration and Staffing

— The COCOMO model includes a formula to estimate the calendar time required to
complete a project:

— TDEV is the nominal schedule for the project, in calendar months, ignoring any
multiplier that is related to the project schedule.

— PM s the effort computed by the COCOMO model. B is the complexity-related
Exponent

— There is a complex relationship between the number of people working on a project,
the effort that will be devoted to the project, and the‘project delivery schedule.

— If four people can complete a project in 13 months (i.e:, 52 person-months of effort),
then you might think that by adding one mare person, you can complete the work in
11 months (55 person-months of effort).

— The COCOMO model suggests that you will, in fact, need six people to finish the
work in 11 months (66 person=months of effort).

— The reason for this is that adding people actually reduces the productivity of existing
team members and so the actual increment of effort added is Jess than one person.

— As the project team increases in size, team members spend more time communicating
and defining‘interfaces between the parts of the system developed by other people.

— Doubling the number of staff (for example) therefore does not mean that the duration

ofthe project will be halved

QUALITY MANAGEMENT

— Software quality management for software systems has three principal concerns:

1. At the organizational level, quality management is concerned with establishing
a framewark of organizational processes and standards that will lead to high
quality software. This means that the quality management team should take
responsibility for defining the software development processes to be used and
standards that should apply to the software and related documentation,
including the system requirements, design, and code.

2. At the project level, quality management involves the application of specific

quality processes, checking that these planned processes have been followed,

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 15

Software Engineering [15CS42]

and ensuring that the project outputs are conformant with the standards that
are applicable to that project.

Quality management at the project level is also concerned with establishing a
quality plan for a project. The quality plan should set out the quality goals for
the project and define what processes and standards are to be used.

— Quality assurance (QA) is the definition of processes and standards that should lead to

high-quality products and the introduction of quality processes into the manufacturing

process.

— Quality control is the application of these quality processes to weed out products that

are not of the required level of quality.

— Quality management provides an independent check on the software development

process.

— The quality management process checks.the project deliverables to ensure that they

are consistent with organizational standards and goals

Software Developmant o1 o2 o3 o4 oS

Process P - =

- e

Cuality banagement

Process

P

S L L L

Standards and CQuality Cruality Reviewr Reports

PFrooedures Plan

Fig 4.11: Quality management and software development

— An outline structure for quality plan includes:

1.

Product introduction: A description of the product, its intended market, and
the quality expectations for the product.

Product plans: The critical release dates and responsibilities for the product,
along with plans for distribution and product servicing

Process descriptions: The development and service processes and standards
that should be used for product development and management.

Quality goals: The quality goals and plans for the product, including an
identification and justification of critical product quality attributes.

Risks and risk management: The key risks that might affect product quality

and the actions to be taken to address these risks

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 16

Software Engineering [15CS42]

4.5 Software Quality

— Different software quality attributes are as shown below

Salety Lind erstand sbility Portability
Sapurity Test shility ks aility

R eiia bty M apt bty Reus.ability
ResilienCe b odularnity Eficiency
Robustness Comipleuity Les mahility

Fig 4.12: Software quality attributes

— A manufacturing process involves configuring, setting up, and operating the machines
involved in the process.

— Once the machines are operating correctly, product quality naturally follows

— The quality of the product is measured and the process is changed until the quality
level needed is achieved.

— Fig 4.13 illustrates this process-based approach to achieving product quality.

-~ - .-__' =, .
- \ " Aasess Produa
I. Cehn g Proiess —'-'I F"Il:lw'j.ll:'l .-._. . ':'Udh'r' .--_,
|rrr|:|1l:h'E Sy Mo L_.,h.ldi'l'r' ~. Yes 7 Sandaslize
] H ok 47 . Poes

Fig 4.13: Process based quality

4.6 Software Standards

— Software standards are_important for three reasons:
1. Standards capture wisdom that is of value to the organization. They are based
on knowledge about the best or most appropriate practice for the company.
This knowledge is often only acquired after a great deal of trial and error.
2. Standards provide a framework for defining what ‘quality’ means in a
particular setting. This depends on setting standards that reflect user

expectations for software dependability, usability, and performance.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 17

Software Engineering [15CS42]

3. Standards assist continuity when work carried out by one person is taken up
and continued by another. Standards ensure that all engineers within an
organization adopt the same practices.

— There are two related types of software engineering standard that may be defined and
used in software quality management:

1. Product Standards:

~ These apply to the software product being developed.

» They include document standards, such as the structure of
requirements documents, documentation standards, such as a standard
comment header for an object class definition, and coding standards,
which define how a programming language should be used.

2. Process Standards:

= These define the processes that should be followed during software
development.

= They should'encapsulate good development practice:

= Process standards may include definitions of specification, design and
validation processes, process support tools, and a description of the

documents that should be written during these processes.

4.7 Reviews and Inspections

— Reviews and inspections are QA activities that check the quality of project
deliverables.

— This involves examining the software, its documentation and records of the process to
discover errors and omissions and to see if quality standards have been followed.

— During a review;-a group of people examine the software and its associated
documentation, looking for potential problems and non-conformance with standards.

— The review team makes informed judgments about the level of quality of a system or
project deliverable.

— Project managers may then use these assessments to make planning decisions and
allocate resources to the development process.

— Quality reviews are based on documents that have been produced during the software

development process.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 18

Software Engineering [15CS42]

— The purpose of reviews and inspections is to improve software quality, not to assess
the performance of people in the development team.

— Reviewing is a public process of error detection, compared with the more private
component-testing process

4.7.1 The Review Process

— Review process is structured into 3 phases:
1. Pre-Review Activities:
~ These are preparatory activities that are-essential for the review to be
effective.
= Pre-review activities are concerned with review planning and review
preparation.
= Review planning involves setting up a review team, arranging a time
and place for the“review, and distributing the documents to be
reviewed.
= During review preparation, the team may meet to get an overview of
the software to be reviewed
2. The Review Meeting:
=~ During the review meeting, an author of the document or program
being reviewed should ‘walk through’ the document with the review
team.
= The review itself should be relatively short—two hours at most. One
team member should chair the review and another should formally
record all review decisions and actions to be taken.
3. Post-Review Activities:
After a review meeting has finished, the issues and problems raised
during the review must be addressed.
This may involve fixing software bugs, refactoring software so that it
conforms to quality standards, or rewriting documents.
4.7.2 Program Inspections
— Program inspections are ‘peer reviews’ where team members collaborate to find bugs
in the program that is being developed.

— Inspections may be part of the software verification and validation processes.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 19

Software Engineering [15CS42]

— They complement testing as they do not require the program to be executed.

— This means that incomplete versions of the system can be verified and that
representations such as UML models can be checked.

— During an inspection, a checklist of common programming errors is often used to
focus the search for bugs.

— This checklist may be based on examples from books or from knowledge of defects
that are common in a particular application domain.

— Possible checks are as shown in fig 4.14.

Faiilt class Insp edtion chetk

Data tsuls = #re all program sanables nftishred betons ther valuss are wsed?
= Hawe all constants been named?
= Should the upper bound of arres be equal to the are of the
amay or Siee - 17
= i charaDier ssngs are used, i a delimter exphiCty assigned?
= |& therg any pssbiity of bulfer owerfboe?

Control faulls = For each conditional @stement, s the condiion oosea?
= |5 each lp0p Cestam b0 enmEnate?
= fre oompound statements 0w edly beadk eted?
* In Cose ststements, ane all possible ceses sooounted for?
= Ha bresk & required stier each Case in Cae ststements, has it
besn ind uded?
gt output faults Ao sl input wadabes wad?
Are sl output varishlos ssggned a value batom they are outpuf
Can unexpeded mputs Causs DOnmupisin?

Interface faulls * Do all unoson and method calls have the oot number of
s ears]
* Do foemi al and sctual pammeter types match?
Aue the parameters in the right ordas?
i components a0t shared memany, do they heve the same modal of
the shared memory Suchune?

Stirage manag ament fauls « i alinked struchre & modified, have sl nks baen comealy
T v £l ?

i dynamiCsiorage i used, has space been allncated commedhy?
s space explidtly deallocsted sher it s no longar required?

Excepion management aulis * Hawe all possble amor conditions baen taken intD acoound?

Fig 4.14: An inspection checklist

4.8 Software Measurement and Metrics

— Software measurement is concerned with deriving a numeric value or profile for an
attribute of a software component, system, or process.
— The long-term goal of software measurement is to use measurement in place of

reviews to make judgments about software quality.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 20

Software Engineering [15CS42]

— Using software measurement, a system could ideally be assessed using a range of
metrics and, from these measurements, a value for the quality of the system could be
inferred.

— Software metric is a characteristic of a software system, system documentation, or
development process that can be objectively measured.

— Examples of metrics include the size of a product in lines of code.

— Software metrics may be either control metrics or predictor metrics.

— Control metrics support process management, and predictor metrics helps to predict
characteristics of the software.

— Control metrics are usually associated with software processes.

— Examples of control or process metrics aredthe average effort and the time required to
repair reported defects.

— Predictor metrics are associated with the software itself and are sometimes known as
‘product metrics.

— Both control and predictor metrics may influence. management decision making, as

shown in fig 4.15.

7 Solwware Software
Proces Proudunt
Ciondrol Mt Prededor Mstnc
M esraments Wags yrements

f ..Udﬂd;gE'H'IE'ﬂ -"-_
CeaCEaons i

Fig 4.15: Predictor and control measurements
— There are two ways in which measurements of a software system may be used:

1. To assign a value to system quality attributes: By measuring the
characteristics of system components, such as their cyclomatic complexity,
and then aggregating these measurements, you can assess system quality
attributes, such as maintainability.

2. To identify the system components whose quality is substandard:

Measurements can identify individual components with characteristics that

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 21

Software Engineering [15CS42]

deviate from the norm. For example, components can be measured to discover
those with the highest complexity.
— Fig 4.16 shows some external software quality attributes and internal attributes that
could, intuitively, be related to them.
— The diagram suggests that there may be relationships between external and internal
attributes, but it does not say how these attributes are related.
— If the measure of the internal attribute is to be a useful predictor of the external
software characteristic, three conditions must hold

1. The internal attribute must be measured accurately. This is not always
straightforward and it may require .special-purpose tools to make the
measurements.

2. A relationship must exist between the attribute that can be measured and the
external quality attribute that iIs of interest. That is, the value of the quality
attribute must be related, in some way, to the value of the attribute than can be
measured.

3. This relationship between the internal and external attributes must be
understood, validated, and expressed in terms of a formula or model. Model
formulation involves identifying the functional form of the model (linear,
exponential, etc.)by analysis of collected data, identifying the parameters that
are to. be included in the model, and calibrating these parameters using

existing data.

External Quality Attributes Internal Attributes
| Dap#h of mhestance Tree
- L
Maintsmabadity [- e
- -
N _.-" -
N e Cpchorm stic Complexity
=, e L
Refisblity [e : ~
-.__:"- w:._' - : Program S m Lines
- S - of Code
Reusability | —— T
o~ Number of Error
L Mesages
Usahilrty .
LY
| Length of Usar Manual

Fig 4.16: Relationships between internal and external software

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 22

Software Engineering [15CS42]

4.8.1 Product Metrics

— Product metrics are predictor metrics that are used to measure internal attributes of a
software system.

— Examples of product metrics include the system size, measured in lines of code, or the
number of methods associated with each object class.

— Product metrics fall into two classes:

1. Dynamic metrics, which are collected by measurements made of a program in
execution. These metrics can be collected during system testing or after the
system has gone into use. An example might be the number of bug reports or
the time taken to complete a computation.

2. Static metrics, which are collected<y measurements made of representations
of the system, such as the design, program, or documentation. Examples of
static metrics are the code size and the average length of identifiers used.

— The metrics in fig 4.17 are-applicable to any program but more specific object-
oriented (OO) metrics have also been proposed
Sodtware metric Description
Fan-n /Fan-Dud Fan-n B 8 masure of the number of lundsons Of methods that call
andther fundson or method (Say X} Fan-out & the number of fundsmns
that are called by funaion X. A high value for fan-in means that X i tightly

ooupled 10 the rest of the design and changes 10 X will have extersive
knock-on effects. A high valus for fan-out suggests that the owerall

complexity of X may be high bacsuse of the comploxity of the control
logic naeded 10 coordinate the clled compaonents.

Lesigth of coda This i & mesude of the se of a piogram. Genarally, the larger the sie of
the mode of & compoment, the more comples and esor-prone that
componient i ik ely 0 be. Langth of code has been shown to be one o
the mps refishie metss for predicing erOr-proneness i 00m ponents.

Cychom ati C compleity This is a messure of the control complesity of 8 progsam . This contnal
mmplety méay be relsted 0 program wnderstands ity | dsous
oyCiom atc complesity in Chapter 8.,

Length of id entifies This &6 & messuns of the sverage longth of identifiers (nam e for wanables,

dasss methods &C) in & program. The lnger the idenifies, the more
Bkaly they ane o be masninglu and hence the mon undests ndshle the

prigram.

Depth of Condisional nessng Thes & &4 messure of the depth of nesing 0f il-staifm enis in & program.
Deeply nested d-sgatements are hard 0 understand and potengally
SO pr Dne.

Fog index This &6 & messure o the average langth of words and sentences in

documents. The higher the value of 8 dooument’s Fog index, the mona
ditficult the dooument s 10 und erstand.

Fig 4.17: Static software product metrics

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 23

Software Engineering [15CS42]

— Fig 4.18 summarizes Chidamber and Kemerer’s suite

Object-oriented mewic [r———
Weightad methDds pir dass This is the numbas 0 methodsin esth fes, weighted by $he cOmpledty of
VMO ach mathod Theretore, a smplem athod may have a complexity of 1, and

& large and momplex method & muech higher sa e The larger the salue for
this metic, the more complex the objad das=. Complex olyens are maore
Bkiely to be ditficult t0 und erstand . They may not be log sally cohesive, so

Cannidt be reused Seceesly &5 superilassss manmhentans reg.

Diepth of inhestan oz tree (M) This represents the num ber of dsorste lewals in fhe mhestanoa treg
where subdaises mhest sttibutes and operations (methods) from
supaniases The degper the inheitance tres, the more comples the
dizggn . Many obgent dasmes may have 10 be undestood 10 undestand
the object deses &t the lesves of the tree.

MNumber of Chillkdren [MNOLC) Thie & a maasure 0o the number of mmediate subds=os m & das. B
messures the breadth of a Ol hierarchy, whereas DT measunss s
depth. A high walus tor NOC may indeiate greaier rewse. [tmay mesan that
more sfort should be made in wkdating base dases bacsuse of the
mumber of subdassas that depend on them.

Coupling betersen objaa e s, are coupled when methods in one dass use mathods or instanca

dlemes (TBO) waiables definad in & different dess. B0 & a masure of how much
oupling exests. A high walue for B0 means that dases are feghly
depend ent, and theretone # i mone Bkely fhat changing one dass wall
sftert oiher desies in the progmm.

Response for & des ([FFC) RFC = a measure of the number of methods that oould poientally be
exanuted in respOms 104 messaps rerewed by an objen of that dles.
fgain, RFC s relsted to complesity. The highier the value for RFC, the mare
momplex & O and hente the more ey it & that itwill incude emons.

Lack of cohasson in methods LOC#A &= calulsied by conssd esing pairs 0f methods in & dess. LODM &

(LOOBAY the ditieren ce betersen the numbser of method pairs wathout shared
Atributas and the number of method pais with shared stributes. The
walue of this metsc hes been wad gy debated and it et in sevenal
saiations. k & not dear if freally sdds any addiional, usshul information
ower and above that provided by other metncs.

Fig 4.18: The CK object oriented metrics suite
4.8.2 Software Component Analysis
— A measurement process that may be part of a software quality assessment process is
shown in fig 4.19.
— Each system.component can be analyzed separately using a range of metrics.
— The values of these metrics may then be compared for different components and,
perhaps, with historical measurement data collected on previous projects.
— The key stages in this component measurement process are:
1. Choose measurements to be made:
= The questions that the measurement is intended to answer should be
formulated and the measurements required to answer these questions
defined.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 24

Software Engineering [15CS42]

= Measurements that are not directly relevant to these questions need not
be collected.
2. Select components to be assessed:
*You may not need to assess metric values for all of the components in
a software system.
= Sometimes, a representative selection of components can be selected
for measurement, allowing to make an overall assessment of system
quality.
3. Measure component characteristics:
= The selected components are measured and the associated metric
values computed.
= This normally involves” processing the component representation
(design, code, etc.) using an automated data collection tool.
= This tool may be specially written or may be a feature of design tools
that are already in use.
4. ldentify anomalous measurements:
= After the component measurements have been made, it can be
compared with each other and to previous measurements that have
been recorded in-a. measurement database.
5. Analyze anomalous components:
= When the components that have anomalous values for chosen metrics
have been identified, it becomes necessary to examine them to decide
whether ar not these anomalous metric values mean that the quality of
the component is compromised.

=%, An anomalous metric value for complexity

¢~ Chomse /7 Analge

Mesuremant | Anomslows |
_tobe Made \ Components J

| /7 sdem /7 densty |
Cl:lln'rpl:rnEnt.m Aniomal ous

b, be Asessed " Mesmurements

| /7 Memare |
Companent

. Charanerisio

Fig 4.19: The process of product measurement

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 25

Software Engineering [15CS42]

4.8.3 Measurement Ambiguity

— When you collect quantitative data about software and software processes, the data
must be analyzed in order to be understood.

— It is easy to misinterpret data and to make inferences that are incorrect.

— There are several reasons for the users to make change requests:

1. The software is not good enough and does not do what customers want it to
do. They therefore request changes to deliver the functionality that they
require.

2. Alternatively, the software may be very good and so it is widely and heavily
used. Change requests may be generated because there are many software
users who creatively think of new things that could be done with the software.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 26

