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4.0 Introduction 

As of now the antenna was treated aperture. in this chapter it is formally considered as point source 

and later the concept extended to the formation of arrays of point sources. The pattern of any antenna 

can be regarded as produced by an array of point sources. 

Here we discuss the array arrays confined to isotropic point sources, which may represent different 

kind of antennas. 

Point Sources: 

   * Antenna that doesn't have any specified shape is called "point source". 

Consider an antenna and observation circle as shown in fig.2.1 where the radiated fields of antenna 

transverse radially at a sufficient distance id far field whereas near fields have actual variation 

ignored. 

Provided that observation made at the sufficient distance, any antenna regardless of size or 

complexity can be represented as single point source. Far field is considered because power flow and 

fields are radiated outwards at this region properly. 

 

Fig 4.1. Antenna and the observation  
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Field measurements can be done either by fixing antenna or fixing observation point but both effects 

are approximately same. 

If in case the center of the antenna is displaced by distance 'd' as shown in fig.1, the distance between 

two centers are negligible effect on the field pattern at observation circle provided that 

  R >> d , R >> b and R >> λ 

As we discussed complete description of the far field of a source requires 3 components. 

              1. Eθ(θ, ϕ) 

    2. Eϕ(θ, ϕ) 

    3. 𝛿(θ, ϕ)  

Power Patterns:  

  Let transmitting antenna in free space by point source radiation located at origin of the co-ordinates 

as shown in fig.4.2. 

 

 

Fig 4.2 Point source at origin. 

The radiated energy streams from the source radial lines. 

The time rate of energy flow per unit area is "Poynting vector or power flow density". The 

magnitude of Poynting vector is equal t radial component (|S| = Sr) 

   * A sources that radiates energy uniformly in all directions is called "isotropic antenna".  

A graph of Sr at constant radius as a function of angle is Poynting vector, power density, pattern but 

usually called "power pattern". 
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Although the isotropic source is convenient in theory, it is not physically realizable type. 

Even simplest antenna has bidirectional properties i.e., they radiate energy in some directions than 

others. 

 In contrast with isotropic antennas, they might be called as "anisotropic antennas". 

 If Sr is expressed in W/m2 , the absolute power pattern. On the other hand if it express with 

its reference value then the graph is called "relative power pattern". 

 

 

Srm - maximum power in the direction. 

A pattern with a maximum of unity is called "normalized pattern". 

4.1 Objectives 

 Apply the power theorem to solve the problems 

 Analyse the arrays of point source and their patterns 

 Analyse the different conditions and importance of various types of arrays 

4.2 Power Theorem 

If the Poynting vector is known at all points on a sphere of radius r from a point source in a lossless 

medium, the total power radiated by the source is the integral over the surface of the sphere of the 

radial components Sref the average poynting vector". Thus 

P = ∯ S . ds 

Where , P - power radiated (W) 

               Sr  - radial component of average poynting vector (Wm-2) 

               ds - infinitesimal element of area of sphere 

ds = r2 Sinθ dθ dϕ (m2) 

For an isotropic source, Sr is independent of θ and ϕ so 



Dept. Of ECE, ATMECE   

P = Sr ∯ ds 

Sr  = 
𝐏

𝟒𝝅𝒓𝟐
 

This equation indicates that the magnitude of Poynting vector varies inversely proportional to the 

square of the distance from point source radiator. 

Radiation Intensity: 

It is defined as the power radiated by an antenna per unit solid angle. Denoted by u and unit is W/Sr. 

Power Theorem for Radiation Intensity: 

 The total power radiated by an antenna is given by integral of radiation intensity over solid angle of 

the sphere. 

i.e.,                                    P = ∯ u dΩ 

For an isotropic source radiation intensity remains same at any point or the surface of the sphere. 

Let uo be the radiation of isotropic source then 

                                          P = ∯ uo dΩ         

   P = ∯ uo Sin θ dθ dϕ 

                             P =  uo ∫ 𝑺𝒊𝒏
𝝅

𝟎
𝛉 𝐝𝛉 ∫ 𝐝𝛟

𝟐𝝅

𝟎
 

                              P  = 2 𝝅uo(-Cos 𝝅 - (- Cos 0)) 

                     P = uo (4 𝝅)    

                                   uo = 
𝑷

𝟒𝝅
 

Therefore, the relation between Poynting vector and radiation intensity as follows 

W.K.T.                Sr =  
𝑷

𝟒𝝅𝒓𝟐 

                                                 Sr 𝒓𝟐=  
𝑷

𝟒𝝅
 

                               Sr 𝒓𝟐= uo 

                                                 uo = Sr 𝒓𝟐
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Examples Of Power Patterns: 

1. Unidirectional Cosine Pattern 

         The radiation intensity of unidirectional cosine pattern is given as   

                                         u=um Cos θ 

where um is the maximum radiation intensity and u is having value in upper hemisphere. 

i.e.,                                u={
𝐮𝐦𝐂𝐨𝐬 𝛉 ;  𝟎 <  𝜃 <  

𝝅

𝟐

                    𝟎 <  𝜃 <  𝝅
𝟎;  𝑬𝒍𝒔𝒆𝒘𝒉𝒆𝒓𝒆

 

 

2. Bidirectional Cosine Pattern 

           The radiation intensity of unidirectional cosnine pattern is given as   

                                         u=um Cos θ 

and has the value in both the hemisphere 

i.e.,                              u={
𝐮𝐦𝐂𝐨𝐬 𝛉 ;  𝟎 <  𝜃 <  𝝅
                    𝟎 <  𝜃 <  𝝅

𝟎;  𝑬𝒍𝒔𝒆𝒘𝒉𝒆𝒓𝒆
  

It is also known as groundnut pattern because of its appearance as shown. 
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3.Unidirectional Sine Pattern  

     The radiation intensity is given as 

i.e.,                             u={
𝐮𝐦𝐒𝐢𝐧 𝛉 ;  𝟎 <  𝜃 <  

𝝅

𝟐

                    𝟎 <  𝜃 <  𝝅
𝟎;  𝑬𝒍𝒔𝒆𝒘𝒉𝒆𝒓𝒆

 

The maximum radiation intensity at  𝛉 = 
𝝅

𝟐
 

 

4.Bidirectional Sine Pattern 

        The radiation intensity is given as 

i.e.,            u={
𝐮𝐦𝐒𝐢𝐧 𝛉 ;  𝟎 <  𝜃 <  𝝅
                    𝟎 <  𝜃 <  𝝅

𝟎;  𝑬𝒍𝒔𝒆𝒘𝒉𝒆𝒓𝒆
 

It is also known as doughnut pattern and pattern as shown. 

 

2.3 Field pattern 

A pattern showing variation of the electric field intensity at a constant radius r as a function 

of angle(θ , φ) is called “field pattern” 
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The power pattern and the field patterns are inter-related: 

 

P(θ, φ) = (1/η)*|E(θ, φ )|2 = η*|H(θ, φ)|2 

P = power 

E = electrical field component vector 

H = magnetic field component vector 

η = 377 ohm (free-space impedance) 

 

The power pattern is the measured (calculated) and plotted received power: |P(θ, φ)| at a 

constant (large) distance from the antenna 

The amplitude field pattern is the measured (calculated) and plotted electric (magnetic) 
 

field intensity, |E(θ, φ)| or |H(θ, φ)| at a constant (large) distance from the antennas 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig 4.3: Relation of poynting vector s and 2 electric field components of a far field 

 

4.4 ARRAY OF TWO POINT SOURCES 

ARRAY is an assembly of antennas in an electrical and geometrical of such a nature that the 

radiation from each element add up to give a maximum field intensity in a particular direction& 

cancels in other directions. An important characteristic of an array is the change of its radiation 

pattern in response to different excitations of its antenna elements. 

Here let us consider the different cases of two isotropic sources placed λ/2 apart with 

different scenarios. 

 



Dept. Of ECE, ATMECE   

1. Obtain the field pattern for 2 isotropic point sources with equal amplitude and 

opposite phase. Assume distance between 2 sources is ‘d’. 

Sol : 

This case is identical with the previous but two sources are in opposite phase instead of same phase  

let the two sources 1 and 2 are located symmetrically with respect to origin of –ve 

coordinates   consider a observation point p at distance ’r’, the angle θ in measured clockwise from 

positive x-axis 

if origin is considered as reference, the field from source 1 is related by (dr/2)cos θ and field from 

source 2 is advanced by         

(dr/2) cos θ    wr  dr =βd=2π/2jEo *d ………… 1 

then total electric feald in the direction at a large distance r is given              

                                           E=2Eo [exp(j*Ψ/2 -exp(-j*Ψ/2)]   

 

From which                      E=2JEo[(exp(j*Ψ/2) -exp(-j*Ψ/2))/2] …………..2  

j indicates the phase reversal of one source and it is not in portent   

 

E=2jEo sin(Ψ/2) 

 

                       E=2jEo sin((dr/2) cos θ…………….3 

Normalize eq3   2jEo=1, for d=π  

E=sin ((π /2) cos θ)…………….4 

Since    dr= βd=2π/λ*( λ/2)= π 

In above eq  

For θ=0, E=1 

θ=30, E=0.977 

θ=60, E=0.70                                      

θ=90, E=0 

θ=120, E=0.70  

θ=150, E=0.97 

θ=180, E=-1 

θ=210, E=-0.97 

θ=240, E=-0.70 

θ=270, E=0 

θ=300, E=0.70 
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θ=330, E=0.97, θ=360, E=1 

4.5 ARRAY OF ‘n’ ISOTROPIC POINT SOURCES 

Uniformly excited equally spaced linear arrays Linear arrays of N-isotropic point sources of equal 

amplitude and spacing: An array is said to be linear if the individual elements of the array are spaced 

equally along a line and uniform if the same are fed with currents of equal amplitude and having uniform 

phase shift along the line 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.4   Linear arrays of N-isotropic point sources of equal amplitude and spacing: 
 
The total field E at distance point in the direction of is given by 

 

E=1+℮
jψ

+ ℮ 
j2ψ

 +℮ 
j2ψ

 +.................................. + ℮ 
j(n-1)ψ

 (1) 

 

Where Ψ= total phase difference between adjacent source Ψ =dr*cos +δ =2π/λ*d*cosφ +δ 

δ = phase difference of adjacent source 

multipliying equation (1) by ℮ 
jφ

 

 

E ℮ 
jψ

 =℮ 
jψ

 + ℮ 
j2ψ

 +℮ 
j3ψ

 +................................ + ℮ 
jnψ      (3) 

Subtract (1)-(3) yields 

E(1- ℮ 
jψ

) = (1- ℮ 
jnψ

 ) E=1℮ 
jnψ

/1- ℮ 
jψ

 

E = ℮ 
j(n-1)ψ/2

 {sin(nΨ/2)) /sin(Ψ/2) } 

If the phase is referred to the centre point of the array, then E redu

ces to 

E=(sin(nΨ/2)) /sin(Ψ/2) 

when Ψ=0 E=lim (sin(nΨ/2)) /sin(Ψ/2) 

ψ 0, E =n=Emax 

Ψ=0 E=Emax= n ……….normalizing 

Enorm =E/Emax =(1/n)(sin(nΨ/2)) /sin(Ψ/2)
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4.5 CASE 1: LINEAR BROAD SIDE ARRAY 
 

An array is said to be broadside if the phase angle is such that it makes maximum radiation 

perpendicular to the line of array i.e. 900&2700 

 

For broad side array Ψ=0 & δ=0 

 

Therefore Ψ =dr*cos Φ +δ=βdcos Φ +0=0 Φ= ±90
0
 

 

therefore     Φ max= 900&2700 

 

Broadside array example for n=4 and d=λ/2 
 

By previous results we have Φ max = 900&2700 

 

Direction of pattern maxima: 

E=(1/n)(sin(nΨ/2)) /sin(Ψ/2) 
 

This is maximum when numerator is maximum i.e. sin(nΨ/2)=1 nΨ/2= ±(2k+1)π/2 

where k=0,1,2........ 

K=0 major lobe maxima 

K=1 nΨ/2= ±3π/2 Ψ= ±3π/4 

Therefore dr*cos Φ =2π/λ*d*Cos Φ = ±3π/4 cos Φ =±3/4 

Φ =( Φ max)minor lobe= cos 
-1
 (± 3/4) = ±41.40 or ±138.60 

At K=2, ϕ= cos-1 (± 5/4) which is not possible 
 

Direction of pattern minima or nulls 

It occurs when numerator=0 i.e. sin(nΨ/2) =0 nΨ/2= ±kπ 

where k=1,2,3.................................  now using condition δ=0 

Ψ =±2kπ/n= ±kπ/2 dr*cos Φ = 2π/λ*d/2*cos Φ 

Substituting for d and rearranging the above term πcos Φ = ±kπ/2 cos Φ = ±k/2 
Therefore  Φ min =cos-1(±k/2) 

 k=1, Φ min =cos-1(±1/2) = ±600 or ±1200 

 k=2, Φ min =cos-1(±2/2)= ±00 or 1800 
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Fig.4.5 Radiation Array for Broadside Array with 4 Elements 
 
From the pattern we see that 

Beamwidth between first pair of nulls =BWFN=60 0 

Half power beam width =BWFN/ 2=300 

CASE2: END FIRE ARRAY 

 

An array is said to be end fire if the phase angle is such that it makes maximum radiation 

in the line of array i.e. 00&1800 

For end fire array Ψ=0 & Φ =00 &1800 

 

Therefore Ψ =dr*cos Φ +δ δ= -dr 
 

The above result indicates that for an end fire array the phase difference b/w sources is 

retarded progressively by the same amount as spacing b/w the sources in radians. 

If d= λ/2 δ= -dr = - 2π/λ x λ /2= -π 
The above result indicates that source 2 lags behind source1 by π radians. 
 

End fire array example for n=4 and d=λ/2 

Direction of maxima 

Maxima occurs when sin(nΨ/2)=1 

i.e.Ψ/2= ±(2k+1)π/2 where k=0,1,2........ 

Ψ = ±(2k+1)π/n dr*cos Φ +δ= ±(2k+1)π/n 

cos Φ = [±(2k+1)π/n –δ]/dr 
 

Therefore Φ max =cos-1 {[±(2k+1)π/n –δ]/dr} 

By definition For end fire array : δ= -dr = -2π/λ*d 
Therefore Φ max =cos-1 {[±(2k+1)π/n –δ]/ (-2π/λ*d) } 

For n=4, d=λ/2 dr=π after substituting these values in above 

equation & solving we get 
Φmax=cos-1 {[±(2k+1)/4 +1} Where k=0,1,2...... 
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For major lobe maxima, 
 

Ψ = 0=dr*cos Φ + δ 

=dr*cos Φ -dr 

=dr(cos Φ -1) cos Φ m=1 there fore Φ m=00 or 1800 

Minor lobe maxima occurs when k=1,2,3...... 

K=1 (Φ max)minor1=cos-1 {[±(3)/4 +1} 

=cos-1 (7/4 or 1/4) Since cos-1 (7/4 ) is not possible 

Therefore (Φ max)minor1=cos-1 (1/4)=75.5 
 

K=2 (Φ max)minor2=cos-1 {[±(5)/4 +1} 

=cos-1 (9/4 or -1/4) 

Since cos-1 (9/4 ) is not possible 
Therefore 

(Φ max)minor1=cos-1 (-1/4)=104.4 

Direction of nulls: 

it occurs when numerator=0 

i.e. sin(nΨ/2) =0 nΨ/2= ±kπ 

where k=1,2,3.................................  Here Ψ =dr*cos Φ + δ=dr(cos Φ -1) dr=2π/λ*λ/2=π 

Substituting for d and n 

dr(cos Φ -1)= ±2kπ/n cos Φ = ±k/2+1 therefore 

Φ null =cos-1(±k/2+1) 

k=1 , Φ null1 =cos-1(±1/2+1) = cos-1(3/2 or 1/2) 

since cos-1(3/2) not exist , Φ null1 = cos-1(1/2)= ±60 there fore 

Φ null1 = ±60 
 

k= 2, 

Φ null2 =cos-1(±2/2+1) 

= cos-1(2 or 0) 
since cos-1(2) not exist , 
Φ null2 = cos-1(0)= ±90 there fore Φ null2 = ±900 

k=3, Φ null3 =cos-1(±3/2+1) = cos-1(5/2 or-1/2) 

since cos-1(5/2) not exist , Φ null3 = cos-1(-1/2)= ±1200 there fore, Φ null3 = ±1200 
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Fig.2.6 Radiation Array for End Fire Array with 5 Elements 
 

4.6 OUTCOMES 

 

 Able to calculate directivity for practical antennas by using the procedure  

 Able to calculate major lobe minor lobe, HPBW, FNBW for two isotropic antennas, BSA, 

EFA different problems for given data 

 

4.7 QUESTIONS 
 

1. State and prove power theorem and its application. 

2. Derive an expression for the power radiated from an isotropic point source with sine 

squared power pattern. 

3. Eight point sources are spaced apart. They have a phase difference of π/3 between 

adjacent elements. Obtain the field pattern. Also find BWFN and HPBW. 

4. Derive the expression for total field in case of two isotropic point sources with the 

same amplitude and equal phase. Plot the field pattern for two isotropic sources 

spaced apart. 

5. Explain the principle of pattern multiplication. 

6. Derive an expression and draw the field pattern for isotropic point sources of same 

amplitude and opposite phase. Also determine its maxima, minima and HPBW. 

7. 4 isotropic point sources are placed apart. The power applied is with equal amplitude 

and a phase difference of π/3 between adjacent elements. Determine BWFN. 

8. Derive the field equation for a linear array of n isotropic point sources of equal 

amplitude and spacing. Explain its operation as (a) broadside array (b) end fire array. 
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4.8 Further Readings 

 Antennas and Propagation for Wireless Communication Systems - Sineon R Saunders, 

John Wiley, 2003.  

 Antennas and wave propagation - G S N Raju: Pearson Education 2005. 


