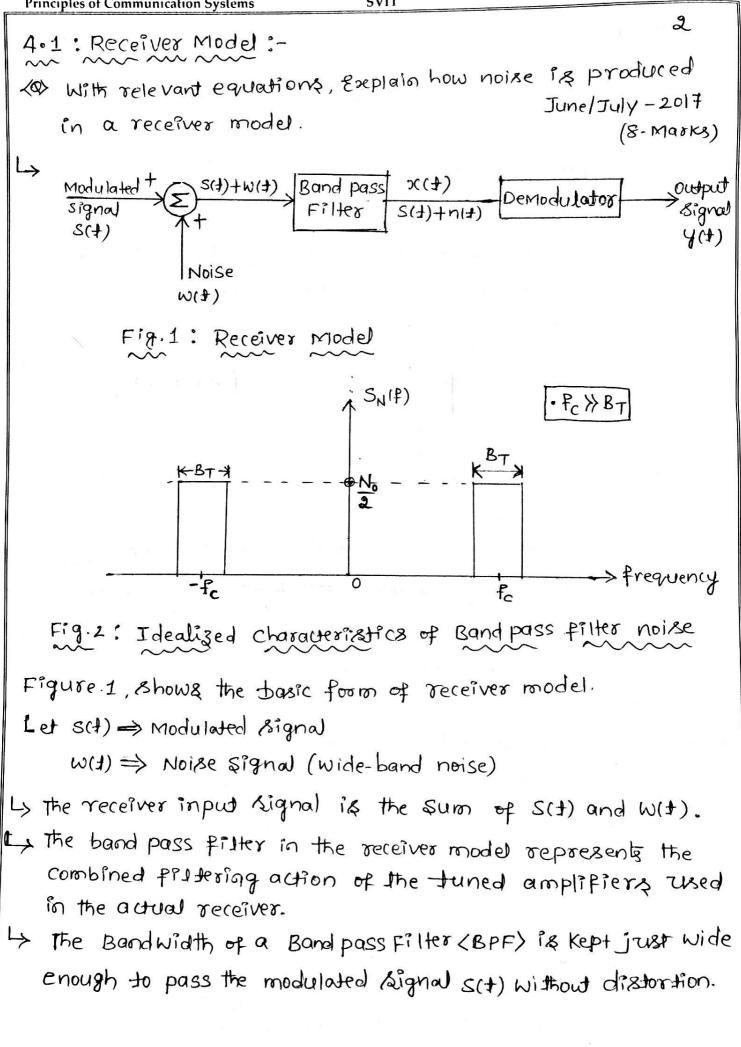

# 2018 SAI VIDYA INSTITUTE OF TECHNOLOGY Venkatesha M, Department of ECE $\widetilde{\mathbf{FRINCIPLES OF}}$


## **IV SEMESTER ECE**

## **MODULE 4: NOISE IN ANALOG MODULATION**

**SYLLABUS:** Introduction, Receiver Model, Noise in DSB-SC receivers, Noise in AM receivers, Threshold effect, Noise in FM receivers, Capture effect, FM threshold effect, FM threshold reduction, Pre-emphasis and De-emphasis in FM.



Email: Venkatesha.m@saividya.ac.in Venkatesha M, JRF & Adjunct Faculty, Dept., of ECE



| Principles of Communication Systems SVII 101.040                                      |
|---------------------------------------------------------------------------------------|
| > The Demodulator block represented to Figure 1, depends on                           |
| the type of modulation used to generate modulated signal, sch.                        |
| 4 The BPF, shown in receiver model is assumed to be ideal                             |
| with characteristics of band pass filtered noise as shown in                          |
| Pigure.2.                                                                             |
| > For the receiver model shown in figure 1, we can define the                         |
| following parameters                                                                  |
| · We denote No as the power spectral density of the noise                             |
| W(+) for both positive and Negative frequencies.                                      |
| where No = Average noise power per Unit bandwidth                                     |
| • Mid-band frequency is equal to the Carrier frequency<br>and is denoted by "fc".     |
| • Typically the carrier frequency, fox BT as shown in                                 |
| figure 2.                                                                             |
| → We Consider the filter noise, n(+) as a narrow band noise                           |
| and is defined in Canonical form by                                                   |
| $n(t) = n_1(t) \cos(a\pi f_c t) - n_q(t) \sin(a\pi f_c t)$                            |
| where, $n_1(t)$ is the imphase noise component and $\longrightarrow$ (1)              |
| na(+) is the Quadrature noise component, both components                              |
| are measured with respect to the carrier wave Ac Cos (27 fct)                         |
| L> The filtered signal x(+) available for demodulation                                |
| is defined by                                                                         |
| $\chi(t) = s(t) + n(t) \longrightarrow (2)$                                           |
| The August Maine and August (2)                                                       |
| The Average Noise power is given by "Now" ("Nox2w=Nw)                                 |
| X(+) is the output signal obtained from channel and is available                      |
| for demodulation. Therefore Pre-SNR (SNR-before demodulation)                         |
| () Channel signal to Noise ratio (SNR) is defined as                                  |
| Venkatesha M, JRF & Adjunct Faculty, Dept., of ECE Email: Venkatesha.m@saividya.ac.in |

**Principles of Communication Systems** 

· V(+) is applied to Low-pass-filter it eliminates all higher freq-- vency components & produces output signal y(t) = m\_d(t)+n\_d(t). To-find channel SNR (SNR);:-

15FC45

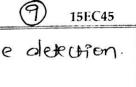
$$V(4) = \left[S(4) + n_{1}(4) \cos(4\pi F_{c} t) - n_{q}(t) \sin(4\pi F_{c} t)\right] \cos(4\pi F_{c} t)$$

$$V(4) = S(4) \cdot \cos(4\pi F_{c} t) + n_{1}(4) \cos^{2}(8\pi F_{c} t) - n_{q}(4) \cdot \sin(4\pi F_{c} t) \cdot \cos(4\pi F_{c} t)$$

$$V(4) = S(4) \cdot \cos^{2}(8\pi F_{c} t) + n_{1}(4) \cos^{2}(8\pi F_{c} t) - n_{q}(4) \cdot \sin(4\pi F_{c} t) \cdot \cos(4\pi F_{c} t)$$

$$V(4) = A_{c} \cdot m(4) \cdot \cos^{2}(8\pi F_{c} t) + n_{1}(4) \cos^{2}(8\pi F_{c} t) - n_{q}(4) \cdot \sin(4\pi F_{c} t) \cdot \cos(4\pi F_{c} t)$$

$$V(4) = A_{c} \cdot m(4) \cdot \cos^{2}(8\pi F_{c} t) + n_{1}(4) \cos^{2}(8\pi F_{c} t) - n_{q}(4) \cdot \sin(4\pi F_{c} t) \cdot \cos(4\pi F_{c} t)$$


$$V(4) = A_{c} \cdot m(4) \cdot (1 + \cos(4\pi F_{c} t)) + n_{1}(4) \cdot (1 + \cos(4\pi F_{c} t)) - n_{q}(4) \cdot \sin(4\pi F_{c} t) - \infty(4)$$

$$V(4) = \frac{A_{c} \cdot m(4)}{2} \left(1 + (\cos(4\pi F_{c} t)) + n_{1}(4) \cdot (1 + \cos(4\pi F_{c} t)) - n_{q}(4) \cdot \sin(4\pi F_{c} t) - \infty(4) \cdot \frac{1}{2} \sin(4\pi F_{c} t) - \infty(4)$$

$$V(4) = \frac{A_{c} \cdot m(4)}{2} \left(1 + (\cos(4\pi F_{c} t)) + n_{1}(4) \cdot (1 + \cos(4\pi F_{c} t)) - n_{q}(4) \cdot \sin(4\pi F_{c} t) - \infty(4) \cdot \frac{1}{2} \sin(4\pi F_{c} t) - \frac{1}{2} \sin(4\pi F_{c} t) -$$

### SVIT

∴ Figure of - Merit for DSBSC - Jeceiver Ayrien is  
Figure of - Merit for DSBSC - Jeceiver Ayrien is  
Figure of Merit = 
$$\frac{(SNR)_0}{(SNR)_c}$$
 → (8)  
Substitute equation (A) and equation (B) in equation (P)  
Ne get  
FOM =  $\frac{(SNR)_0}{(SNR)_c} = \frac{(A_c^2 P)}{(A_c^2 P)} = 1$   
∴ Figure of Merit (FOM) for DSBSC Jeceiver is Unity.  
4.3: Noise in AM Jeceiver/3:-  
(2) Obtain the expression for Figure of Merit of AM Jeceiverss  
Tusing Envelope defector.  
L> Let m(t) be the message signal with average power 'P'  
P = E[m<sup>2</sup>(H)] = E[(Amsin(2R[mt]))^2] = A\_m^2  
C(4) be the Carrier Signal with C(t)) = A<sub>c</sub> cos2Afct. Then  
the Amplitude wodulated (AM) - Signal, s(H) is given by  
S(t) = A<sub>c</sub>[1+ kam(t]] cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) DC Blocking  
Cignet S(H) = A<sub>c</sub>[1+ kam(t]] Cos(2RFct) → (1) Cignet S(H) = A<sub>c</sub>[1] Cignet S(H) = A<sub>c</sub>[1



Consider noise in AM receivers Using Envelope dektion.  
Consider noise in AM receivers Using Envelope dektion.  
To determine channel SNR (SNR)<sub>C</sub>:-  
Ly The AM signal is given by  

$$S(t) = A_c [I + K_a m(t)] \cos (a\pi f_c t) \longrightarrow (I)$$
  
Solution is the Average power  
of modulated Aignal  $f_c = E [\{S(t)\}^2]$   
 $= E [\{A_c [I + K_a m(t)]^2 \cos^2 (a\pi f_c t)]^2]$   
 $= E [\{A_c^2 \cdot (I + K_a m(t)]^2 \cos^2 (a\pi f_c t)]^2]$   
 $= E [\{I + K_a m(t)\}^2], E [(A_c \cos (a\pi f_c t))^2]$   
 $= E [\{I + K_a m(t)\}^2], E [(A_c \cos (a\pi f_c t))^2]$   
 $= E [[I + K_a^m(t)] + 2 K_a m(t)], (\frac{A_c^2}{2})$   
 $= ([I + E [K_a^2 m^2(t)] + E [2K_a m(t)]), \frac{A_c^2}{32}$   
 $= (1 + K_a^2 p), \frac{A_c^2}{32}$   
 $= (1 + K_a^2 p), \frac{A_c^2}{32}$   
 $= (1 + K_a^2 p), A_c^2$   
 $= (2)$   
Ly Average power of  $f_c$   
 $= (1 + K_a^2 p), A_c^2$   
 $= (2)$   
Ly Average power of the noise in message bandwidth  $I_c$   
 $given by "N_0 w"$ , where  $w = Bandwidth of message 22gned models
 $(SNR)_C = \frac{Average power of Noise in message Bandwidth  $I_c$   
 $Average power of Noise ratio is
 $(SNR)_C = \frac{(1 + K_a^2 p)A_c^2}{2N_0 w}$   
 $= (1 + K_a^2 p)A_c^2$   
 $(A)$$$$ 

Principles of Communication systems  
SVIT:  
SVIT:  
10  
10  
10  
The total signal at the imput of Envelope detector is  

$$x(t) = S(t) + n(t)$$
 → (3)  
where  $n(t)$  represents narrow band noise in terms of  
In-phase and Quadrature Components.  
 $n(t) = n_1(t) \cos(2\pi i_1 t) - n_Q(t) \sin(2\pi i_1 t)$   
 $substitute  $s(t) \le n(t)$  in equation (3) we get-  
 $\alpha(t) = A_c[1+k_a m(t)] \cos(2\pi i_1 t) + n_1(t) \cos(2\pi i_1 t) - n_Q(t) \sin(2\pi i_1 t)$   
 $z(t) = \int (A_c t A_c k_a m(t) + n_1(t)) \cos(2\pi i_1 t) - n_Q(t) \sin(2\pi i_1 t)$   
 $z(t) = \int (A_c t A_c k_a m(t) + n_1(t)) \cos(2\pi i_1 t) - n_Q(t) \sin(2\pi i_1 t)$   
 $z(t) = \int (A_c t A_c k_a m(t) + n_1(t))^2 + n_Q^2(t)$   
 $i_d e urvelope detector is
 $y(t) = \sqrt{(A_c t A_c k_a m(t) + n_1(t))^2 + n_Q^2(t)}$   
 $z(t) = A_c t A_c k_a m(t) + n_1(t))^2 + n_Q^2(t)$   
 $i_d e urvelope detector is
 $y(t) = A_c t A_c k_a m(t) + n_1(t) \rightarrow (z)$   
 $z(t)$   
Equation (b) gives the olp of an  
 $z(t) = \sqrt{A_c t A_c k_a m(t) + n_1(t)} \rightarrow (z)$   
 $z(t)$   
 $z(t)$$$$ 

15EC45

Principles of Communication Systems SVIT United  
Average power of demacdulated 
$$[] = A_c^2 K_a^2 P$$
  
Average power of output Noise] = Nox B<sub>T</sub> : B<sub>T</sub>=2W for  
 $E \{ v_T^{(4)} \}$  =  $a N_{0} N$   
 $e \{ NR \}_{0} = \frac{A_c^2 K_a^2 P}{A_c N_{0} W}$   
 $(SNR)_{0} = \frac{A_c^2 K_a^2 P}{(SNR)_{0}} \longrightarrow (C)$   
Substituting equation (A) and (B) is equation (C) we  
get.  
Figure of Merit =  $\frac{\left(\frac{A_c^2 K_a^2 P}{a N_{0} W}\right)}{\left(\frac{A_c^2 (1+K_a^2 P)}{a N_{0} W}\right)}$   
Fom =  $\frac{A_c^2 K_a^2 P}{A_c^2 (1+K_a^2 P)}$   
Fom =  $\frac{A_c^2 K_a^2 P}{A_c^2 (1+K_a^2 P)} \longrightarrow (D)$   
The Average power of the modulating wave  $m(t)$  is  
 $P = \frac{A_m^2}{2}$   
Substituting Value of P is equation (D) we get  
Fom =  $\frac{K_a^2 A_m^2}{(1+K_a^2 A_m^2)} : N KT$  Modulation Index of Amis  
 $P = \frac{M_a^2}{2}$   
 $(1 + K_a^2 A_m^2) : N KT Modulation Index of Amis
Fom =  $\frac{\mu^2/2}{(1+K_a^2 A_m^2)} : N KT Modulation Max of Amis
 $P = \frac{M_a^2}{2} + \frac{\mu^2}{2} + \frac{\mu^2}{2}$$$ 

Email: Ve .m@saividya.ac.1

Principles of Communication Systems SVIT ISPC3  
4.4. Noise in FM Sectiver 2:- 12  
A.4. Noise Iso FM Sectiver 2:- 12  
A.4. Signal is 1:5 B<sup>2</sup>.  
I The single-ture Frequency modulated wave S(t) is given  
by,  
S(t) = Ac Cos (
$$2\pi F_c t + 2\pi k_f \int^{t} m(t) dt$$
) (1)  
Where  $m(t) = Message signal.$   
Let  $\Phi(t) = 2\pi K_f \int^{t} m(t) dt$ , then  
S(t) = Ac Cos ( $2\pi F_c t + \Phi(t)$ ) (2)  
FM Signal EBPF 2(t) Frequency C(P)  
S(t) Noise  
W(t)  
Fig1: Model of FM receives thing Frequency  
discriminator.  
To determine Channel SNR (SNR)c:-  
W-K.T the FM signal is  
S(t) = A\_c Cos ( $2\pi F_c t + \Phi(t)$ ) (2)  
Fig. S(t) SNR (SNR)c:-  
W-K.T the FM signal is  
S(t) = A\_c Cos ( $2\pi F_c t + \Phi(t)$ ) (3)  
Average power of noise in  $J = N_0 \times W$   
message band widt is  
 $(SNR)_c = \frac{A_c^2}{2N_0W}$  (A)

Principles of Communication Systems

(14) <u>15EC45</u>

L

$$\begin{aligned} f(t) &= \frac{1}{a^{2}\pi} \frac{d}{dt} \left[ \frac{\phi(t)}{\phi} + \frac{\eta_{\phi}(t)}{A_{c}} \right] : \phi(t) = \frac{1}{a^{2}\pi} \frac{d}{dt} \left[ \frac{1}{a^{2}\pi} k_{f} \int_{0}^{t} m(t) dt + \frac{\eta_{\phi}(t)}{A_{c}} \right] \\ &= \frac{1}{a^{2}\pi} \frac{d}{dt} \left[ \frac{1}{a^{2}\pi} k_{f} \int_{0}^{t} m(t) dt + \frac{\eta_{\phi}(t)}{A_{c}} \right] \\ &= \frac{1}{a^{2}\pi} \frac{d}{dt} \left[ \frac{1}{a^{2}\pi} k_{f} \int_{0}^{t} m(t) dt + \frac{\eta_{\phi}(t)}{A_{c}} \right] \\ &= \frac{1}{a^{2}\pi} \frac{d}{dt} \left[ \frac{1}{a^{2}\pi} k_{f} \int_{0}^{t} m(t) dt + \frac{\eta_{\phi}(t)}{A_{c}} \right] \\ &= \frac{1}{a^{2}\pi} \frac{d}{dt} \left[ \frac{1}{a^{2}\pi} k_{f} \int_{0}^{t} m(t) dt + \frac{\eta_{\phi}(t)}{A_{c}} \right] \\ &= \frac{1}{a^{2}\pi} \frac{d}{dt} \left[ \frac{1}{a^{2}\pi} k_{f} \int_{0}^{t} m(t) dt + \frac{\eta_{\phi}(t)}{A_{c}} \right] \\ &= \frac{1}{a^{2}g^{2}} \frac{d}{a^{2}g^{2}} \frac{d}{a^{$$

Venkatesha M, JRF & Adjunct Faculty, Dept., of ECF

Principles of Communication Systems

15

FOM = 
$$\frac{3}{2} \frac{k_{F}^{2} A_{PD}^{2}}{2} = \frac{3}{2} \left(\frac{k_{F} A_{PD}}{W}\right)^{2} \longrightarrow (E)$$
  
We know that the modulation index of FM-Rignoul  
 $\beta = \frac{\Delta F}{f_{PD}} = \frac{k_{F} A_{PD}}{W}$   
 $\therefore$  tusing the value of 'B' in Form equation (E)  
We get Figure of - Merit of FM receiver  
 $FOM = \frac{3}{2} \beta^{2} = 1.5 \beta^{2}$  holds  
 $\beta = \frac{k_{F} A_{PD}}{W}$   
 $\beta = \frac{k_{F} A_{PD}}{W}$ 

6 <1> An AM receiver operating with a Stausoidal wave of 80% modulation has an output signal to noise ratio of 30dB. Calculate the corresponding channel s/1-to-noise ratio. prove the formula used. L W.K.T. The FOM of AM received is Given data .  $Fom = \frac{\mu^2}{2 + \mu^2} = \frac{0.8^2}{2 + 0.8^2} = 0.2424$  $\mu = 0.8$ (SNR) = 30dB.  $W:K \circ T$ ,  $FOM = \frac{(SNR)_0}{(SNR)_0}$ (SNR) = ? " (SNR) = (SNR)  $(SNR)_{n} = 10^{n} \left(\frac{30}{10}\right) = 1000$  $(SNR)_{c} = \frac{(SNR)_{0}}{FOM} = \frac{1000}{0.2424} = 4.125$ (SNR) = 10 log (4125) (SNR) Z 36.15 dB · For destandion of Fomfor Am receiver refer the AMreceiver FOM derivation. \$2> The average noise per/unit BW measured at the front end of AM receiver is 103 watt/HZ. The Modulating wave is sinceroldal with a carrier power of 80kw and Sideband power of lokw per Side band. The message BW is 4KHZ. Determine the (SNR) of

The system and FOM. VTUQ.P  $C = Grven : N_0 = 10^3 Watt H2 : P_c = \frac{A_c}{2} = 80 KW \implies A_c = 400V$ Side band power  $P_s = A_c^2 \mu^2 \pm 10 \times 10^3 \implies \mu = 0.707$ Message bandwidts, w = 4KH2  $(SNR)_0 = \frac{A_c^2 \mu^2}{2N_0 W} = \frac{(400)^2 \times 0.7072}{2 \times 10^3 \times 4 \times 10^3} = 5000 \ \text{2} \ \text{FOM} = \frac{\mu^2}{2 + \mu^2} = 0.2 \text{ J}$ 

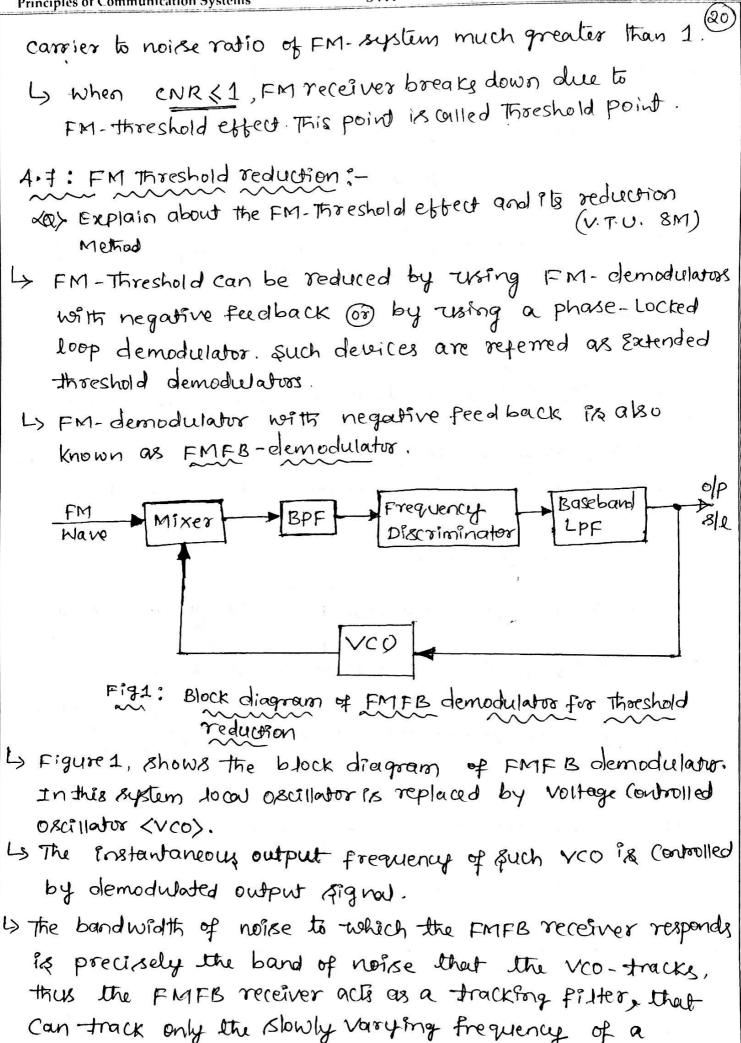
Email: Venkatesha.m@saividya.ac.in Venkatesha M, JRF & Adjunct Faculty, Dept., of ECE

| Principles of Communication System | les of Communication System | ms |
|------------------------------------|-----------------------------|----|
|------------------------------------|-----------------------------|----|

#### SVIT

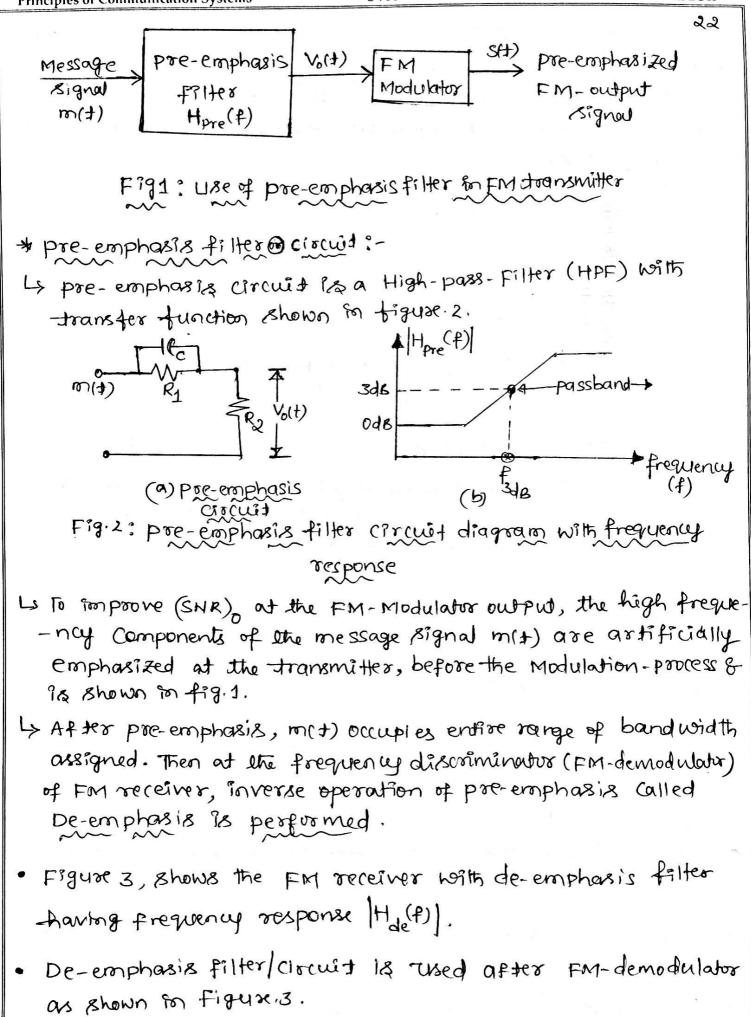
Find FOM of AM receiver when depth of Modulat-  
-ion 5% (a) 100 y. (b) 50%. (c) 30% VTU Q.P  
Ly W.K.T. FOM- of AM receiver 7% given by  
FOM = 
$$\frac{\mu^2}{2+\mu^2}$$
 (c)  
(a) when  $\mu = 100\% = 1$ .  
FOM =  $\frac{\mu^2}{2+\mu^2} = \frac{1}{2+1} = \frac{1}{3} = 0.3323$   
(b) when  $\mu = 50\% = 0.5$   
FOM =  $\frac{\mu^2}{2+\mu^2} = \frac{0.5^2}{2+0.5^2} = 0.1111$   
(c) when  $\mu = 30\% = 0.3$   
FOM =  $\frac{\mu^2}{2+\mu^2} = \frac{0.3^2}{2+0.5^2} = 0.043$   
(c) when  $\mu = 30\% = 0.3$   
FOM =  $\frac{\mu^2}{2+\mu^2} = \frac{0.3^2}{2+0.5^2} = 0.043$   
(c) when  $\mu = 30\% = 0.3$   
FOM =  $\frac{\mu^2}{2+\mu^2} = \frac{0.3^2}{2+0.5^2} = 0.043$   
(c) when  $\mu = 30\% = 0.3$   
FOM =  $\frac{\mu^2}{2+\mu^2} = \frac{0.3^2}{2+0.5^2} = 0.043$   
(c) when  $\mu = 30\% = 0.3$   
FOM =  $\frac{1}{2+\mu^2} = \frac{0.3^2}{2+0.5^2} = 0.043$   
(c) when  $\mu = 30\% = 0.3$   
FOM =  $\frac{1}{2+\mu^2} = \frac{10.3^2}{2+0.5^2} = 0.043$   
(c) when  $\mu = 30\% = 0.3$   
FOM =  $\frac{1}{2+\mu^2} = \frac{10.043}{2+0.5^2} = 0.043$   
(c) when  $\mu = 30\% = 0.3$   
FOM =  $\frac{1}{2+\mu^2} = \frac{10.043}{2+0.5^2} = 0.043$   
(c) when  $\mu = 50\% = 1.5$   $\mu = 0.043$   
FOM =  $1.5 \mu^2 = 1.5 (7.5)^2$   
FOM =  $1.5 \mu^2 = 1.5 (7.5)^2$   
FOM =  $1.5 \mu^2 = 1.5 (7.5)^2$   
FOM =  $84.345$ 

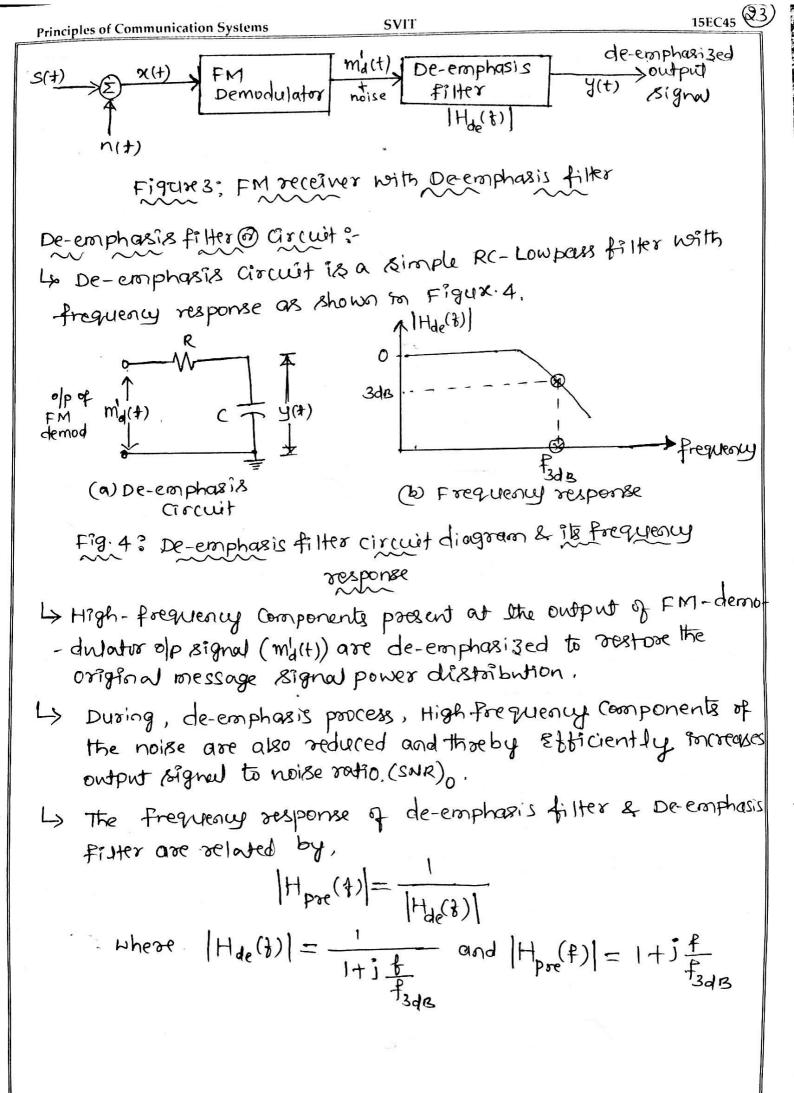
Venkatesha M, JRF & Adjunct Faculty, Dept., of ECE

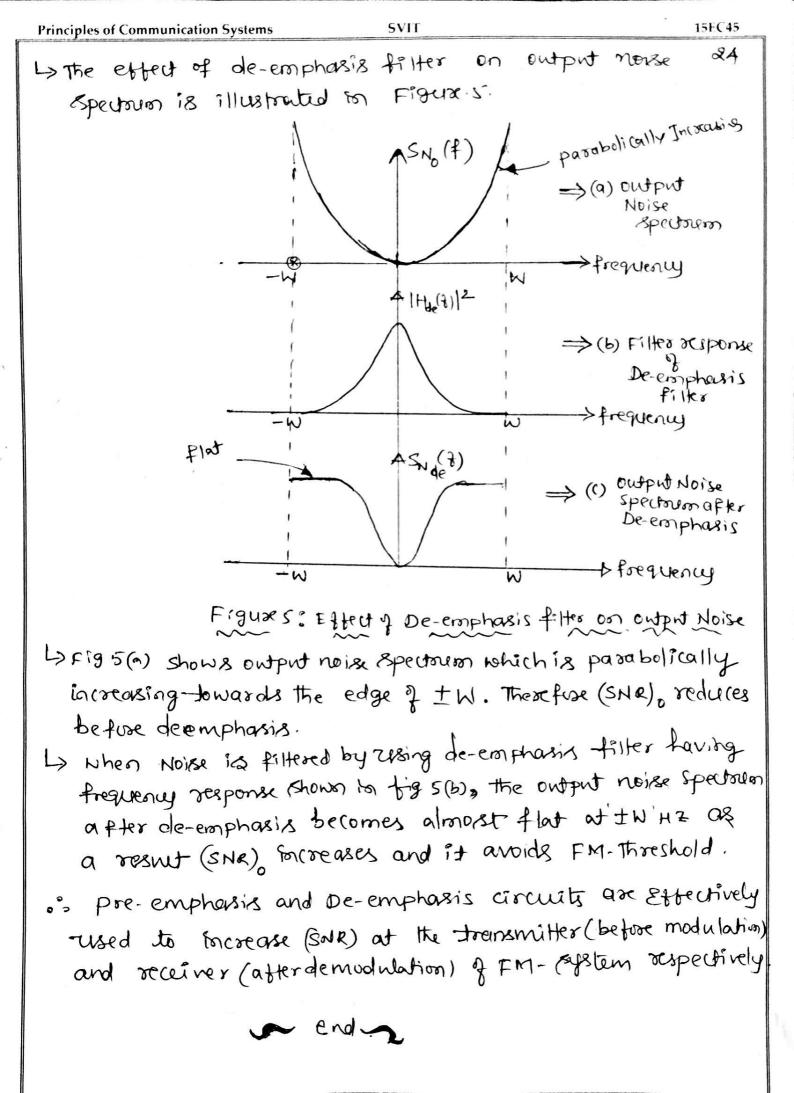

-

· Email: Venkatesha.m@saividya.ac.in

Principles of Communication Systems  
SVIT  
To find output SNR:-  
Nr.F. General definition of Figure-d-Mesit  
FOM = 
$$\frac{(SNR)_0}{(SNR)_c}$$
  
from given data  $(SNR)_c = 15 dB = 1010g[(SNR)_c]$   
from given data  $(SNR)_c = 15 dB = 1010g[(SNR)_c]$   
c  
s  
 $(SNR)_c = 10n^{(\frac{15}{10})} = 10^{15}$   
 $(SNR)_c = 31.6227$   
Also Hr.F.  
Also Hr.F.  
Substitute FOM = 84.375  
c  
substitute FOM = 84.375  
c  
 $(SNR)_c = 50M \times (SNR)_c$   
c  
 $= 84.375 \times 31.6227 = 2668.16 = 34.362de$   
s  
An FM veceiver recieves an FM signal  
s(+) = 10 cos[(27x16^3 +) + 6 Sim(27x16^3 +)]. (alculate  
the figure. ~~cf~~ - Merit for this veceiver. VTU 0.P  
c  
~~fiven~~  
s(+) = 10 cos[(27x16^3 + 6 Sim(27x16^3 +)]. (alculate  
the figure. ~~cf~~ - Merit for this veceiver. VTU 0.P  
c  
~~fiven~~  
s(+) = 10 cos[(27x16^3 + 6 Sim(27x16^3 +)]. (alculate  
the figure. ~~cf~~ - Merit for this veceiver. VTU 0.P  
c  
~~fiven~~  
s(+) = 10 cos[(27x16^3 + 6 Sim(27x16^3 +)]. (alculate  
the figure. ~~cf~~ - Merit for this veceiver. VTU 0.P  
c  
~~fiven~~  
s(+) = 10 cos[(27x16^3 + 6 Sim(27x16^3 +)]. (alculate  
the figure. ~~cf~~ - Merit for this veceiver. VTU 0.P  
c  
fiven  
s(+) = 10 cos[(27x16^3 + 6 Sim(27x16^3 +)]. (alculate  
the figure. ~~cf~~ - Merit for this veceiver. VTU 0.P  
c  
c  
s(+) = 10 cos[(27x16^3 + 6 Sim(27x16^3 +)]. (alculate  
t  
s(+) = 10 cos[(27x16^3 + 6 Sim(27x16^3 +)]. (alculate  
t  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
t  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
t  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
t  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
t  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
t  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
s(+) = 10 cos[(27x16^3 + 16 Sim(27x16^3 +)]. (alculate  
s(+)


| Principles of Communication Systems SVIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15EC45                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 4.5: Capture effect :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                                             |
| Kox write a short note on Capture effection FM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4-Marks)                                                      |
| In FM system, the signal can be affected by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f another                                                      |
| frequency modulated signal whose frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iz close                                                       |
| to the carrier frequency of the desired FM.<br>Then the receiver may lock kuch an interfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - signal.<br>rence signal                                      |
| and suppresses the desired FM-signal & in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | terference                                                     |
| signal becomes more stronger than the desired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |
| When the strength of the desired signal and<br>signal are nearly equal, the receiver locks<br>signal for sometime and desired signal for the<br>and this go as on randomly and receiver Capture<br>signal. This effect is known as "Capture-e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Baterference<br>Baterference<br>& Some fime<br>es the Stronger |
| 4.6: FM-Threshold Effect :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |
| (Q> Explain FM threshold effect in FM-848 le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (6-Markg)                                                      |
| 4) The (SNR) of an FM-signed is valid o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |
| the (CNR) mesured at the frequency discrimination of the contract of the second discrimination of the s | natur input                                                    |
| i.e., $(SNR)_0 = \frac{3A_c^2 k_f^2 P}{2N_0 w^3}$ is Valid iff CNR >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ÷1                                                             |
| if CNR < 1 then FM signed is corrupted by noi.<br>FM receiver breaks down & is called Threshold eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | se and                                                         |
| i.e., Threshold effect is defined as the minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | em Carrier                                                     |
| to noise ratio (CNR) that gives the (SNR) not li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ess than the                                                   |
| Value predicted by the Usual SNR-formula a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rsummy u                                                       |
| Amoul noise power.<br>Ly The Threshold effect an be avoided by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | keeping                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O                                                              |


15EC45




Venkatesha M, JRF & Adjunct Faculty, Dept., of ECE

**Principles of Communication Systems** SVIT 15EC45 21 Wide-band FM signal. 4 Therefore it responds only to a namow band of noise Centered about frequency "fc", as a result FMFB-receivers allows a threshold Extension upto 5dB to 7dB as shown in Figure. 2. A ENR) ods IP SNR 5to TOB Threshold >(CNR) dB Extended Threshold by 5dBto7ds Fig.2: Graph showing the Extended threshold Effect L> ... FMFB demodulator with negative feedback provides 5dB to 7dB Enhancement to (CNR) & Ft always majortains CNRX1 and it avoids FM-Threshold effect. Pre-emphasis and De-emphasis in FM -(2) With circuits and characteristics, explain the importance of pre-emphasis and De-emphasis in FM-systems. VTU = 8M-I> pre-emphasis and De-emphasis methods are commonly used In FM-transmitter and FM-receiver respectively to improve the Threshold. pre-emphasis and De-emphasis are simple RC networks 4 used to Ponprove threshold upto 13dB to 16dB. L> Figure 1 shows the FM transmitter with pre-emphasize filter having transfer function Hp.(f). L> Figure 1, shows the pre-emphasis filter used before FM-transmitter.





