

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 1

MODULE:IV

What are threads?

 Java provides built-in support for multithreaded programming. A multithreaded program

contains two or more parts that can run concurrently. Each part of such a program is

called a thread, and each thread defines a separate path of execution. Thus,

multithreading is a specialized form of multitasking.

 Multithreading enables you to write very efficient programs that make maximum use of

the CPU, because idle time can be kept to a minimum. Multitasking threads require less

overhead than multitasking processes.

The Thread Class and the Runnable Interface

 Java’s multithreading system is built upon the Thread class, its methods, and its

companion interface, Runnable.

 The Thread class defines several methods that help manage threads (shown below)

The Main Thread

When a Java program starts up, one thread begins running immediately. This is usually called the

main thread of your program, because it is the one that is executed when your program begins.

The main thread is important for two reasons:

• It is the thread from which other “child” threads will be spawned.

• Often, it must be the last thread to finish execution because it performs various shutdown

actions.

Although the main thread is created automatically when your program is started, it can be

controlled through a Thread object. To do so, you must obtain a reference to it by calling the

method currentThread(), which is a public static member of Thread. Its general form is

shown here:

static Thread currentThread()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 2

This method returns a reference to the thread in which it is called. Once you have a reference to

the main thread, you can control it just like any other thread.

Example:

 In this program, a reference to the current thread (the main thread, in this case) is

obtained by calling currentThread(), and this reference is stored in the local variable t.

 Next, the program displays information about the thread. The program then calls

setName() to change the internal name of the thread. Information about the thread is

then redisplayed.

 Next, a loop counts down from five, pausing one second between each line.

 The pause is accomplished by the sleep() method. The argument to sleep() specifies the

delay period in milliseconds.

Output:

Current thread: Thread[main,5,main]

After name change: Thread[My Thread,5,main]

5

4

3

2

1

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 3

These displays, in order: the name of the thread, its priority, and the name of its group. By

default, the name of the main thread is main. Its priority is 5, which is the default value, and

main is also the name of the group of threads to which this thread belongs.

The general form of sleep() is:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may throw an

InterruptedException.

Creating a Thread

There are two different ways to create threads.

• You can implement the Runnable interface.
• You can extend the Thread class, itself.

Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable interface.

You can construct a thread on any object that implements Runnable. To implement Runnable, a

class need only implement a single method called run(), which is declared like this:

public void run()

run() establishes the entry point for another, concurrent thread of execution within your

program. This thread will end when run() returns.

Thread defines several constructors.

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable interface.

This defines where execution of the thread will begin. The name of the new thread is specified

by threadName.

After the new thread is created, it will not start running until you call its start() method, which

is declared within Thread. In essence, start() executes a call to run(). The start() method is

shown here:

void start()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 4

Example:

a new Thread object is created by the following statement:

t = new Thread(this, "Demo Thread");

Next, start() is called, which starts the thread of execution beginning at the run() method. This

causes the child thread’s for loop to begin. After calling start(), NewThread’s constructor

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 5

returns to main(). When the main thread resumes, it enters its for loop. Both threads continue

running, sharing the CPU, until their loops finish.

Output:

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Exiting child thread.

Main Thread: 2

Main Thread: 1

Main thread exiting.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 6

Extending Thread Class

The second way to create a thread is to create a new class that extends Thread, and then to

create an instance of that class. The extending class must override the run() method, which is

the entry point for the new thread. It must also call start() to begin execution of the new thread.

Example:

The child thread is created by instantiating an object of NewThread, which is derived from

Thread.

Notice the call to super() inside NewThread. This invokes the following form of the Thread

constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

Creating Multiple Threads

For example, the following program creates three child threads:

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 7

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 8

As you can see, once started, all three child threads share the CPU. Notice the call to

sleep(10000) in main(). This causes the main thread to sleep for ten seconds and ensures that it

will finish last.

Using isAlive() and join()

To make main to finish last First, you can call isAlive()

on the thread. This method is defined by Thread, and its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It returns

false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly use to

wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates.

Here is an improved version of the preceding example that uses join() to ensure that the main

thread is the last to stop. It also demonstrates the isAlive() method.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 9

Output:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

New thread: Thread[Three,5,main]

Thread One is alive: true

Thread Two is alive: true

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 10

Thread Three is alive: true

Waiting for threads to finish.

One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Two: 3

Three: 3

One: 2

Two: 2

Three: 2

One: 1

Two: 1

Three: 1

Two exiting.

Three exiting.

One exiting.

Thread One is alive: false

Thread Two is alive: false

Thread Three is alive: false

Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities

Thread priorities are used by the thread scheduler to decide when each thread should be allowed

to run. In theory, higher-priority threads get more CPU time than lower-priority threads. In

practice, the amount of CPU time that a thread gets often depends on several factors besides its

priority.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.

This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be

within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and

10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is

currently 5. These priorities are defined as static final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of Thread,

shown here:

final int getPriority()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 11

The following example demonstrates two threads at different priorities, One thread is set two

levels above the normal priority, as defined by Thread.NORM_

PRIORITY, and the other is set to two levels below it. The threads are started and allowed to

run for ten seconds. Each thread executes a loop, counting the number of iterations. After ten

seconds, the main thread stops both threads. The number of times that each thread madeit

through the loop is then displayed.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 12

The higher-priority thread got the majority of the CPU time.

Low-priority thread: 4408112

High-priority thread: 589626904

Synchronization

When two or more threads need access to a shared resource, they need some way to ensure that

the resource will be used by only one thread at a time. The process by which this is achieved is

called synchronization.

Key to synchronization is the concept of the monitor (also called a semaphore). A monitor is an

object that is used as a mutually exclusive lock, or mutex. Only one thread can own a monitor at

a given time. When a thread acquires a lock, it is said to have entered the monitor. All other

threads attempting to enter the locked monitor will be suspended until the first thread exits the

monitor. These other threads are said to be waiting for the monitor.

Using Synchronized Methods

To enter an object’s monitor, just call a method that has been modified with the synchronized

keyword. While a thread is inside a synchronized method, all other threads that try to call it (or

any other synchronized method) on the same instance have to wait. To exit the monitor and

relinquish control of the object to the next waiting thread, the owner of the monitor simply

returns from the synchronized method.

The following program has three simple classes. The first one, Callme, has a single method

named call(). The call() method takes a String parameter called msg. This method tries to print

the msg string inside of square brackets. The interesting thing to notice is that after call() prints

the opening bracket and the msg string, it calls Thread.sleep(1000), which pauses the current

thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme class and

a String, which are stored in target and msg, respectively. The constructor also creates a new

thread that will call this object’s run() method. The thread is started immediately. The run()

method of Caller calls the call() method on the target instance of Callme, passing in the msg

string. Finally, the Synch class starts by creating a single instance of Callme, and three instances

of Caller, each with a unique message string. The same instance of Callme is passed to each

Caller.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 13

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 14

As you can see, by calling sleep(), the call() method allows execution to switch to another

thread. This results in the mixed-up output of the three message strings. In this program, nothing

exists to stop all three threads from calling the same method, on the same object, at the same

time. This is known as a race condition, because the three threads are racing each other to

complete the method.

To fix the preceding program, you must serialize access to call(). That is, you must restrict its

access to only one thread at a time. To do this, you simply need to precede call()’s definition

with the keyword synchronized, as shown here:

class Callme {

synchronized void call(String msg) {

...

After

synchronized has been added to call(), the output of the program is as follows:

[Hello]

[Synchronized]

[World]

The synchronized Statement

You simply put calls to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized.

Here is an alternative version of the preceding example, using a synchronized block within the

run() method:

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 15

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 16

Interthread Communication

Java supports interprocess communication mechanism via the wait(), notify(), and notifyAll()

methods.

• wait() tells the calling thread to give up the monitor and go to sleep until some other

thread enters the same monitor and calls notify().

• notify() wakes up a thread that called wait() on the same object.

• notifyAll() wakes up all the threads that called wait() on the same object. One of the

threads will be granted access.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException

final void notify()

final void notifyAll()

The following sample program that incorrectly implements a simple form of the producer/

consumer problem. It consists of four classes: Q, the queue that you’re trying to synchronize;

Producer, the threaded object that is producing queue entries; Consumer, the threaded object

that is consuming queue entries; and PC, the tiny class that creates the single Q, Producer, and

Consumer.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 17

Although the put() and get() methods on Q are synchronized, nothing stops the producer from

overrunning the consumer, nor will anything stop the consumer from consuming the same queue

value twice. Thus, you get the erroneous output shown here.

Put: 1

Got: 1

Got: 1

Got: 1

Got: 1

Got: 1

Put: 2

Put: 3

Put: 4

Put: 5

Put: 6

Put: 7

Got: 7

As you can see, after the producer put 1, the consumer started and got the same 1 five times in a

row. Then, the producer resumed and produced 2 through 7 without letting the consumer have a

chance to consume them.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 18

The proper way to write this program in Java is to use wait() and notify() to signal in both

directions, as shown here:

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 19

Inside get(), wait() is called. This causes its execution to suspend until the Producer notifies

you that some data is ready. When this happens, execution inside get() resumes. After the data

has been obtained, get() calls notify(). This tells Producer that it is okay to put more data in the

queue. Inside put(), wait() suspends execution until the Consumer has removed the item from

the queue. When execution resumes, the next item of data is put in the queue, and notify() is

called. This tells the Consumer that it should now remove it.

Here is some output from this program:

Put: 1

Got: 1

Put: 2

Got: 2

Put: 3

Got: 3

Put: 4

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 20

Got: 4

Put: 5

Got: 5

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 21

Event Handling

The Delegation Event Model
 Delegation event model defines standard and consistent mechanisms to generate and

process events.

 A source generates an event and sends it to one or more listeners. In this scheme, the

listener simply waits until it receives an event. Once an event is received, the listener

processes the event and then returns.

 In the delegation event model, listeners must register with a source in order to receive an

event notification. This provides an important benefit: notifications are sent only to

listeners that want to receive them.

Events:

 An event is an object that describes a state change in a source.

 It can be generated as a consequence of a person interacting with the elements in a

graphical user interface.

 Some of the activities that cause events to be generated are pressing a button, entering a

character via the keyboard, selecting an item in a list, and clicking the mouse.

Event Sources:

 A source is an object that generates an event. This occurs when the internal state of that

object changes in some way. Sources may generate more than one type of event.

 A source must register listeners in order for the listeners to receive notifications about a

specific type of event.

 Each type of event has its own registration method. General form:

public void addTypeListener(TypeListener el)

 Here, Type is the name of the event, and el is a reference to the event listener. For

example, the method that registers a keyboard event listener is called addKeyListener().

The method that registers a mouse motion listener is called addMouseMotionListener(

).

 A source must also provide a method that allows a listener to unregister an interest in a

specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

 Here, Type is the name of the event, and el is a reference to the event listener. For

example, to remove a keyboard listener, you would call removeKeyListener().

Event Listeners

 A listener is an object that is notified when an event occurs.

 It has two major requirements. First, it must have been registered with one or more

sources to receive notifications about specific types of events. Second, it must implement

methods to receive and process these notifications.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 22

Event Classes

ActionEvent Class

 An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a

 menu item is selected.

 ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

 Here, src is a reference to the object that generated this event. The type of the event is

specified by type, and its command string is cmd. The argument modifiers indicates

which modifier keys (ALT, CTRL, META, and/or SHIFT) were pressed when the event

was generated. The when parameter specifies when the event occurred.

 You can obtain the command name for the invoking ActionEvent object by using the

getActionCommand() method, shown here:

String getActionCommand()

 The getModifiers() method returns a value that indicates which modifier keys (ALT,

CTRL, META, and/or SHIFT) were pressed when the event was generated. Its form is

shown here:

int getModifiers()

 The method getWhen() returns the time at which the event took place. This is called the

event’s timestamp. The getWhen() method is shown here:

long getWhen()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 23

AdjustmentEvent Class
 An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment

events.

 AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int data)

Here, src is a reference to the object that generated this event. The id specifies the event.

The type of the adjustment is specified by type, and its associated data is data.

ComponentEvent Class
 A ComponentEvent is generated when the size, position, or visibility of a component is

changed.

 There are four types of component events.

 ComponentEvent has this constructor:

ComponentEvent(Component src, int type)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type.

 ComponentEvent is the superclass either directly or indirectly of ContainerEvent,

FocusEvent, KeyEvent, MouseEvent, and WindowEvent.

 The getComponent() method returns the component that generated the event. It is

shown here:

Component getComponent()

ContainerEvent Class
 A ContainerEvent is generated when a component is added to or removed from a

container.

 There are two types of container events. The ContainerEvent class defines int constants

that can be used to identify them: COMPONENT_ADDED and

COMPONENT_REMOVED.

 ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src, int type, Component comp)

Here, src is a reference to the container that generated this event. The type of the event is

specified by type, and the component that has been added to or removed from the

container is comp.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 24

 You can obtain a reference to the container that generated this event by using the

getContainer() method, shown here:

Container getContainer()

 The getChild() method returns a reference to the component that was added to or

removed from the container. Its general form is shown here:

Component getChild()

FocusEvent Class
 A FocusEvent is generated when a component gains or loses input focus. These events

are identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

 FocusEvent is a subclass of ComponentEvent and has these constructors:

FocusEvent(Component src, int type)

FocusEvent(Component src, int type, boolean temporaryFlag)

FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

Here, src is a reference to the component that generated this event. The type of the event

is specified by type. The argument temporaryFlag is set to true if the focus event is

temporary. Otherwise, it is set to false.

 You can determine the other component by calling getOppositeComponent(), shown

here:

Component getOppositeComponent()

The opposite component is returned.

 The isTemporary() method indicates if this focus change is temporary. Its form is

shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

InputEvent Class
 It is the superclass for component input events.

 Its subclasses are KeyEvent and MouseEvent.

 InputEvent defines several integer constants that represent any modifiers, such as the

control key being pressed, that might be associated with the event.

 To test if a modifier was pressed at the time an event is generated, use the isAltDown(),

isAltGraphDown(), isControlDown(), isMetaDown(), and isShiftDown() methods.

The forms of these methods are shown here:

boolean isAltDown()

boolean isAltGraphDown()

boolean isControlDown()

boolean isMetaDown()

boolean isShiftDown()

 You can obtain a value that contains all of the original modifier flags by calling the

getModifiers() method. It is shown here:

int getModifiers()

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 25

ItemEvent Class
 An ItemEvent is generated when a check box or a list item is clicked or when a

checkable menu item is selected or deselected.

 There are two types of item events, which are identified by the following integer

constants:

 ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example, this

might be a list or choice element. The type of the event is specified by type. The specific

item that generated the item event is passed in entry. The current state of that item is in

state.

 The getItem() method can be used to obtain a reference to the item that generated an

event. Its signature is shown here:

Object getItem()

 The getItemSelectable() method can be used to obtain a reference to the ItemSelectable

object that generated an event. Its general form is shown here:

temSelectable getItemSelectable()

KeyEvent Class
 A KeyEvent is generated when keyboard input occurs. There are three types of key

events, which are identified by these integer constants: KEY_PRESSED,

KEY_RELEASED, andKEY_TYPED.

 There are many other integer constants that are defined by KeyEvent. For example,

VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the

numbers and letters. Here are some others:

 The VK constants specify virtual key codes

 KeyEvent is a subclass of InputEvent. Here is one of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

Here, src is a reference to the component that generated the event. The type of the event

is specified by type

 getKeyChar(), which returns the character that was entered, and getKeyCode(), which

returns the key code. Their general forms are shown here:

char getKeyChar()

int getKeyCode()

 If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED.

When a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 26

MouseEvent Class
 There are eight types of mouse events.

 MouseEvent is a subclass of InputEvent. Here is one of its constructors:

MouseEvent(Component src, int type, long when, int modifiers, int x, int y, int clicks,

boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event

is specified by type. The system time at which the mouse event occurred is passed in

when. The odifiers argument indicates which modifiers were pressed when a mouse event

occurred. The coordinates of the mouse are passed in x and y. The click count is passed in

clicks. The triggersPopup flag indicates if this event causes a pop-up menu to appear on

this platform.

 getX() and getY(): These return the X and Y coordinates of the mouse within the

component when the event occurred. Their forms are shown here:

int getX()

int getY()

 getPoint() method to obtain the coordinates of the mouse.

Point getPoint()

 The translatePoint() method changes the location of the event. Its form is shown here:

void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.

 The getClickCount() method obtains the number of mouse clicks for this event.

Its signature is shown here:

int getClickCount()

 The isPopupTrigger() method tests if this event causes a pop-up menu to appear on this

platform. Its form is shown here:

boolean isPopupTrigger()

 getButton() method, shown here:

int getButton()

It returns a value that represents the button that caused the event. The return value will be

one of these constants defined by MouseEvent:

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 27

MouseWheelEvent Class

 The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of

MouseEvent.

 MouseWheelEvent defines these two integer constants:

 Here is one of the constructors defined by MouseWheelEvent:

MouseWheelEvent(Component src, int type, long when, int modifiers, int x, int y, int

clicks, boolean triggersPopup, int scrollHow, int amount, int count)

Here, src is a reference to the object that generated the event. The type of the event is

specified by type. The system time at which the mouse event occurred is passed in when.

The modifiers argument indicates which modifiers were pressed when the event occurred.

 To obtain the number of rotational units, call getWheelRotation(), shown here:

int getWheelRotation()

TextEvent Class
 These are generated by text fields and text areas when characters are entered by a user or

program. TextEvent defines the integer constant TEXT_VALUE_CHANGED.

 The one constructor for this class is shown here:

TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type.

WindowEvent Class
 There are ten types of window events.

 WindowEvent is a subclass of ComponentEvent. It defines several constructors.

WindowEvent(Window src, int type)

WindowEvent(Window src, int type, Window other)

WindowEvent(Window src, int type, int fromState, int toState)

WindowEvent(Window src, int type, Window other, int fromState, int toState)

other specifies the opposite window when a focus or activation event occurs. The

fromState specifies the prior state of the window, and toState specifies the new state that

the window will have when a window state change occurs.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 28

 getWindow(). It returns the Window object that generated the event. Its general form is

shown here:

Window getWindow()

Sources of Events

Event Listener Interfaces

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 29

ActionListener Interface

This interface defines the actionPerformed() method that is invoked when an action event

occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

AdjustmentListener Interface

This interface defines the adjustmentValueChanged() method that is invoked when an

adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface

This interface defines four methods that are invoked when a component is resized, moved,

shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)

void componentMoved(ComponentEvent ce)

void componentShown(ComponentEvent ce)

void componentHidden(ComponentEvent ce)

The ContainerListener Interface

This interface contains two methods. When a component is added to a container,

componentAdded() is invoked. When a component is removed from a container,

componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 30

void componentRemoved(ContainerEvent ce)

The FocusListener Interface

This interface defines two methods. When a component obtains keyboard focus, focusGained()

is invoked. When a component loses keyboard focus, focusLost() is called. Their general forms

are shown here:

void focusGained(FocusEvent fe)

void focusLost(FocusEvent fe)

The ItemListener Interface

This interface defines the itemStateChanged() method that is invoked when the state of an

item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

The KeyListener Interface

This interface defines three methods. The keyPressed() and keyReleased() methods are

invoked when a key is pressed and released, respectively. The keyTyped() method is invoked

when a character has been entered.

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

The MouseListener Interface

This interface defines five methods.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

The MouseMotionListener Interface

This interface defines two methods.

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

The MouseWheelListener Interface

This interface defines the mouseWheelMoved() method that is invoked when the mouse

wheel is moved. Its general form is shown here:

void mouseWheelMoved(MouseWheelEvent mwe)

The TextListener Interface

This interface defines the textChanged() method that is invoked when a change occurs

in a text area or text field. Its general form is shown here:

void textChanged(TextEvent te)

The WindowFocusListener Interface

This interface defines two methods: windowGainedFocus() and windowLostFocus(). These

are called when a window gains or loses input focus. Their general forms are shown here:

void windowGainedFocus(WindowEvent we)

void windowLostFocus(WindowEvent we)

The WindowListener Interface

This interface defines seven methods.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 31

void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 32

Handling Mouse Events
To handle mouse events, you must implement the MouseListener and the

MouseMotionListener interfaces.

// Demonstrate the mouse event handlers.
import java.awt.*;

import java.awt.event.*;

import java.applet.*;
/*

<applet code="MouseEvents" width=300 height=100>

</applet>
*/

public class MouseEvents extends Applet implements MouseListener, MouseMotionListener

{

String msg = "";
int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init()

{
addMouseListener(this);

addMouseMotionListener(this);

}

// Handle mouse clicked.
public void mouseClicked(MouseEvent me)

 {

// save coordinates
mouseX = 0;

mouseY = 10;

msg = "Mouse clicked.";
repaint();

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me)
{

// save coordinates

mouseX = 0;
mouseY = 10;

msg = "Mouse entered.";

repaint();
}

// Handle mouse exited.

public void mouseExited(MouseEvent me)

{
// save coordinates

mouseX = 0;

mouseY = 10;
msg = "Mouse exited.";

repaint();

}

// Handle button pressed.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 33

public void mousePressed(MouseEvent me)

{

// save coordinates
mouseX = me.getX();

mouseY = me.getY();

msg = "Down";
repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me)
{

// save coordinates

mouseX = me.getX();
mouseY = me.getY();

msg = "Up";

repaint();
}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{
// save coordinates

mouseX = me.getX();

mouseY = me.getY();
msg = "*";

showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

repaint();
}

// Handle mouse moved.

public void mouseMoved(MouseEvent me)

{
// show status

showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

}
// Display msg in applet window at current X,Y location.

public void paint(Graphics g)

{

g.drawString(msg, mouseX, mouseY);
}

}

 It displays the current coordinates of the mouse in the applet’s status window. Each time a

button is pressed, the word “Down” is displayed at the location of the mouse pointer.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 34

Each time the button is released, the word “Up” is shown. If a button is clicked, the

message “Mouse clicked” is displayed in the upperleft corner of the applet display area.

 It displays the current coordinates of the mouse in the applet’s status window. Each time

a button is pressed, the word “Down” is displayed at the location of the mouse pointer.

Each time the button is released, the word “Up” is shown. If a button is clicked, the

message “Mouse clicked” is displayed in the upperleft corner of the applet display area.

 The MouseEvents class extends Applet and implements both the MouseListener and

MouseMotionListener interfaces.

 Inside init(), the applet registers itself as a listener for mouse events. This is done by

using addMouseListener() and addMouseMotionListener(), which, as mentioned, are

members of Component. They are shown here:

void addMouseListener(MouseListener ml)

void addMouseMotionListener(MouseMotionListener mml)

Handling Keyboard Events
 When a key is pressed, a KEY_PRESSED event is generated. This results in a call to the

keyPressed() event handler.

 When the key is released, a KEY_RELEASED event is generated and the keyReleased(

) handler is executed.

 If a character is generated by the keystroke, then a KEY_TYPED event is sent and the

keyTyped() handler is invoked.
// Demonstrate the key event handlers.
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*
<applet code="SimpleKey" width=300 height=100>

</applet>

*/
public class SimpleKey extends Applet implements KeyListener

{

String msg = "";
int X = 10, Y = 20; // output coordinates

public void init()

{

addKeyListener(this);
}

public void keyPressed(KeyEvent ke)

{
showStatus("Key Down");

}

public void keyReleased(KeyEvent ke)
{

showStatus("Key Up");

}

public void keyTyped(KeyEvent ke)
{

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 35

msg += ke.getKeyChar();

}

// Display keystrokes.
public void paint(Graphics g)

 {

g.drawString(msg, X, Y);

}
}

Adapter Classes

An adapter class provides an empty implementation of all methods in an event listener interface.

Adapter classes are useful when you want to receive and process only some of the events that are

handled by a particular event listener interface.

For example, the MouseMotionAdapter class has two methods, mouseDragged() and

mouseMoved(), which are the methods defined by the MouseMotionListener interface. If you

were interested in only mouse drag events, then you could simply extend MouseMotionAdapter

and override mouseDragged(). The empty implementation of mouseMoved() would handle the

mouse motion events for you.

// Demonstrate an adapter.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter(this));

addMouseMotionListener(new MyMouseMotionAdapter(this));

}

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 36

}

class MyMouseAdapter extends MouseAdapter

{

AdapterDemo adapterDemo;

public MyMouseAdapter(AdapterDemo adapterDemo)

{

this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me)

{

adapterDemo.showStatus("Mouse clicked");

}

}

class MyMouseMotionAdapter extends MouseMotionAdapter

{

AdapterDemo adapterDemo;

public MyMouseMotionAdapter(AdapterDemo adapterDemo)

{

this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{

adapterDemo.showStatus("Mouse dragged");

}

}

 It displays a message in the status bar of an applet viewer or browser when the mouse is

clicked or dragged. However, all other mouse events are silently ignored.

 The program has three classes.

 AdapterDemo extends Applet. Its init() method creates an instance of

MyMouseAdapter and registers that object to receive notifications of mouse events. It

also creates an instance of MyMouseMotionAdapter and registers that object to receive

notifications of mouse motion events.

 MyMouseAdapter extends MouseAdapter and overrides the mouseClicked() method.

The other mouse events are silently ignored by code inherited from the MouseAdapter

class.

 MyMouseMotionAdapter extends MouseMotionAdapter and overrides the

mouseDragged() method. The other mouse motion event is silently ignored by code

inherited from the MouseMotionAdapter class.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 37

Inner Classes
An inner class is a class defined within another class, or even within an expression.

// Inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="InnerClassDemo" width=200 height=100>

</applet>

*/

public class InnerClassDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter());

}

class MyMouseAdapter extends MouseAdapter

{

public void mousePressed(MouseEvent me)

{

showStatus("Mouse Pressed");

}

}

}

 Here, InnerClassDemo is a top-level class that extends Applet. MyMouseAdapter is an

inner class that extends MouseAdapter.

 Because MyMouseAdapter is defined within the scope of InnerClassDemo, it has

access to all of the variables and methods within the scope of that class. Therefore, the

mousePressed() method can call the showStatus() method directly.

Sem: IV Subject: Object Oriented Concepts Module: 4 Author: Prof. S V Manjaragi

Department of CSE, HIT, Nidasoshi Page No. 38

Anonymous Inner Classes
An anonymous inner class is one that is not assigned a name.

// Anonymous inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="AnonymousInnerClassDemo" width=200 height=100>

</applet>

*/

public class AnonymousInnerClassDemo extends Applet

{

public void init()

{

addMouseListener(new MouseAdapter()

{

public void mousePressed(MouseEvent me)

{

showStatus("Mouse Pressed");

}

});

}

}

There is one top-level class in this program: AnonymousInnerClassDemo.

The init() method calls the addMouseListener() method. Its argument is an expression that

defines and instantiates an anonymous inner class.

