System Software | 15CS63

MODULE-2

» Loaders and Linkers: Basic Loader Functions,

» Machine Dependent Loader

» Features, Machine Independent Loader Features,
» Loader Design Options,

» Implementation Examples.

Machine Independent Assembler Features

These are the features which do not depend on the architecture of the machine. These are:
= Lliterals
= Expressions
= Program blocks
= Control sections

Literals
A literal is defined with a prefix = followed by a specification of the literal value.
Example:

45 001A ENDFIL LDA =C“EOF" 032010

93 002D * LTORG =C“EOF" 454F46

The example above shows a 3-byte operand whose value is a character string EOF. The object code
for the instruction is also mentioned. It shows the relative displacement value of the location where
this value is stored. In the example the value is at location (002D) and hence the displacement value
is (010).

As another example the given statement below shows a 1-byte literal with the hexadecimal value
‘05’.

215 1062 WLOOP TD =X"05" E32011

It is important to understand the difference between a constant defined as a literal and a
constant defined as an immediate operand. In case of literals the assembler generates the specified
value as a constant at some other memory location. In immediate mode the operand value is
assembled as part of the instruction itself. Example

55 0020 LDA #03 010003

All the literal operands used in a program are gathered together into one or more literal pools. This
is usually placed at the end of the program. The assembly listing of a program containing literals
usually includes a listing of this literal pool, which shows the assigned addresses and the generated
data values. In some cases it is placed at some other location in the object program. An assembler
directive LTORG is used. Whenever the LTORG is encountered, it creates a literal pool that contains

GMIT, Davangere Deepak D J
26

System Software | 15CS63

all the literal operands used since the beginning of the program. The literal pool definition is done
after LTORG is encountered. It is better to place the literals close to the instructions.

A literal table is created for the literals which are used in the program. The literal table contains the
literal name, operand value and length. The literal table is usually created as a hash table on the
literal name.

Implementation of Literals:

During Pass-1:

The literal encountered is searched in the literal table. If the literal already exists, no action is taken;
if it is not present, the literal is added to the LITTAB and for the address value, it waits till it
encounters LTORG for literal definition. When Pass 1 encounters a LTORG statement or the end of
the program, the assembler makes a scan of the literal table. At this time each literal currently in the
table is assigned an address. As addresses are assigned, the location counter is updated to reflect
the number of bytes occupied by each literal.

During Pass-2:

The assembler searches the LITTAB for each literal encountered in the instruction and replaces it
with its equivalent value as if these values are generated by BYTE or WORD. If a literal represents an
address in the program, the assembler must generate a modification relocation for, if it all it gets
affected due to relocation. The following figure shows the difference between the SYMTAB and
LITTAB.

SYMTAB MHams= Value LITTAB
QOPY O
FIRET L] Literal Hex Length Addregs
CLOOP & Value
ENDF IL 1A C*EOF”* 454F4 6 3 oo2D
RETADR 20 X'05° 05 1 1076
LENZTH a3
BUFFER EYS
BUIOFEND 103&
MAXLEN 1000
RDREC lo03&
RLOOP 1040
EXIT 1L0S&
INPOUT 1L05C
WEREEC LoD
WLOOE lo&8Zz

Symbol-Defining Statements:
EQU Statement:

Most assemblers provide an assembler directive that allows the programmer to define symbols and
specify their values. The directive used for this EQU (Equate). The general form of the statement is

Symbol EQU value

This statement defines the given symbol (i.e., entering in the SYMTAB) and assigning to it the
value specified. The value can be a constant or an expression involving constants and any

GMIT, Davangere Deepak D J
27

System Software | 15CS63

othersymbol which is already defined. One common usage is to define symbolic names that can be
used to improve readability in place of numeric values.

For example
+LDT #4096

This loads the register T with immediate value 4096, this does not clearly show what exactly this
value indicates. If a statement is included as:

MAXLEN EQU 4096 and then
+LDT #MAXLEN

Then it clearly indicates that the value of MAXLEN is some maximum length value. When the
assembler encounters EQU statement, it enters the symbol MAXLEN along with its value in the
symbol table. During LDT the assembler searches the SYMTAB for its entry and its equivalent value
as the operand in the instruction. The object code generated is the same for both the options
discussed, but is easier to understand. If the maximum length is changed from 4096 to 1024, it is
difficult to change if it is mentioned as an immediate value wherever required in the instructions.
We have to scan the whole program and make changes wherever 4096 is used. If we mention this
value in the instruction through the symbol defined by EQU, we may not have to search the whole
program but change only the value of MAXLENGTH in the EQU statement (only once).

ORG Statement:

This directive can be used to indirectly assign values to the symbols. The directive is usually called
ORG (for origin). Its general format is:

ORG value
where value is a constant or an expression involving constants and previously defined symbols.

When this statement is encountered during assembly of a program, the assembler resets its location
counter (LOCCTR) to the specified value. Since the values of symbols used as labels are taken from
LOCCTR, the ORG statement will affect the values of all labels defined until the next ORG is
encountered. ORG is used to control assignment storage in the object program.Sometimes altering
the values may result in incorrect assembly.

ORG can be useful in label definition. Suppose we need to define a symbol table with the following
structure:

SYMBOL 6 Bytes
VALUE 3 Bytes
FLAG 2 Bytes

The table looks like the one given below.

GMIT, Davangere Deepak D J
28

System Software | 15CS63

SYMBOL VALUE FLAGS
STAB
(100 entries)

The symbol field contains a 6-byte user-defined symbol; VALUE is a one-word representation of the
value assigned to the symbol; FLAG is a 2-byte field specifies symbol type and other information. The
space for the table can be reserved by the statement:

STAB RESB 1100

If we want to refer to the entries of the table using indexed addressing, place the offset value of the
desired entry from the beginning of the table in the index register. To refer to the fields SYMBOL,
VALUE, and FLAGS individually, we need to assign the values first as shown below:

SYMBOL EQU STAB
VALUE EQU STAB+6
FLAGS EQU STAB+9

To retrieve the VALUE field from the table indicated by register X, we can write a statement:
LDA VALUE, X

The same thing can also be done using ORG statement in the following way:

STAB RESB 1100
ORG STAB
SYMBOL RESB 6
VALUE RESW 1
FLAG RESB 2
ORG STAB+1100

The first statement allocates 1100 bytes of memory assigned to label STAB. In the second statement
the ORG statement initializes the location counter to the value of STAB. Now the LOCCTR points to
STAB. The next three lines assign appropriate memory storage to each of SYMBOL, VALUE and FLAG
symbols. The last ORG statement reinitializes the LOCCTR to a new value after skipping the required
number of memory for the table STAB (i.e., STAB+1100).

While using ORG, the symbol occurring in the statement should be predefined as is required in EQU
statement. For example for the sequence of statements below:

ORG ALPHA

GMIT, Davangere Deepak D J
29

System Software | 15CS63

BYTE1 RESB 1

BYTE2 RESB 1

BYTE3 RESB 1
ORG

ALPHA RESB 1

The sequence could not be processed as the symbol used to assign the new location counter
value is not defined. In first pass, as the assembler would not know what value to assign to ALPHA,
the other symbol in the next lines also could not be defined in the symbol table. This is a kind of
problem of the forward reference.

EXPRESSIONS:

Assemblers also allow use of expressions in place of operands in the instruction. Each such
expression must be evaluated to generate a single operand value or address. Assemblers generally
arithmetic expressions formed according to the normal rules using arithmetic operators +, - *, /.
Division is usually defined to produce an integer result. Individual terms may be constants, user-
defined symbols, or special terms. The only special term used is * (the current value of location
counter) which indicates the value of the next unassigned memory location. Thus the statement

BUFFEND EQU *

Assigns a value to BUFFEND, which is the address of the next byte following the buffer area. Some
values in the object program are relative to the beginning of the program and some are absolute
(independent of the program location, like constants). Hence, expressions are classified as either
absolute expression or relative expressions depending on the type of value they produce.

Absolute Expressions:

The expression that uses only absolute terms is absolute expression. Absolute expression may
contain relative term provided the relative terms occur in pairs with opposite signs for each pair.
Example:

MAXLEN EQU BUFEND-BUFFER

In the above instruction the difference in the expression gives a value that does not depend on the
location of the program and hence gives an absolute immaterial o the relocation of the program. The
expression can have only absolute terms. Example:

MAXLEN EQU 1000

Relative Expressions: All the relative terms except one can be paired as described in “absolute”. The
remaining unpaired relative term must have a positive sign. Example:

STAB EQU OPTAB + (BUFEND — BUFFER)

Handling the type of expressions: to find the type of expression, we must keep track the type of
symbols used. This can be achieved by defining the type in the symbol table against each of the
symbol as shown in the table below:

GMIT, Davangere Deepak D J
30

System Software | 15CS63

Symbol Type Value
RETADR R 0030
BUFFER R 0036
BUFEND R 1036
MAXLEN A 1000

Program Blocks:

Program blocks allow the generated machine instructions and data to appear in the object
program in a different order by Separating blocks for storing code, data, stack, and larger data block.

Assembler Directive USE:
USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block. If no USE
statements are included, the entire program belongs to this single block. Each program block may
actually contain several separate segments of the source program. Assemblers rearrange these
segments to gather together the pieces of each block and assign address. Separate the program into
blocks in a particular order. Large buffer area is moved to the end of the object program. Program
readability is better if data areas are placed in the source program close to the statements that
reference them.

In the example below three blocks are used :

= Default: executable instructions
= CDATA: all data areas that are less in length
= CBLKS: all data areas that consists of larger blocks of memory

CDATA

CBLKS

GMIT, Davangere Deepak D J
31

System Software | 15CS63
(default) block - Block number
o000l oY coey START 0
0000 0 FIRST STL RETADR 172063
0003 0 CLOOP JSUB RDREC 482021
0006 0 LOA LENGTH 032060
0009 0 COMP #0 290000
oooc 0 JEQ ENDFIL 332006
000F 0 JSUB WRREC 4B203B
0012 0 J CLOOP 3IF2FEE
00156 0 ENDFIL LOA =C'EQF 032055
001& 0 STA BUFFER 0F2056
001B 0 LDA #3 010003
001E 0 STA LEMNGTH 0F2043
0021 0 JSUB WRREC 482029
0024 0 J E@RETADR JE203F
10000 1 USE CDATA 4 CDATA block
000D~ 1 RETADR RESW 1
00 1 LENGTH RESW 1
10000 2 USE CBLKS =+ CBLKS block
Q000 2 BUFFER RESDB UG
1000 2 BUFEND EQU .
1000 MAXLEN EQU BUFEMD-BUFFER
I (default) block
1 0027 ; 0 RDREC USE
0027 0 CLEAR X B410
0029 0 CLEAR A B400
0028 1] CLEAR s B440
002D 0 +LDT #MAXLEN 75101000
0031 0 RLOOP TD INFUT E32038
0034 0 JEOQ RLOOP 332FFA
0037 0 RD INFUT DB2032
003A 0 COMPR AS ADD4
Qo3Cc 0 JEQ EXIT 332008
003F 0 STCH BUFFER,X 5TAOZF
0042 0 TIXR T Baso
0044 0 JLT RLOOP 3AB2FEA
| 0047 0 EXIT STX LENGTH 13201F
004A, 0 RSUB 4F0000
_ {0006] 1 USE CDATA = CDATA block
0006 1 INFUT BYTE X'E1 F1
{default) block
004D O _UsE~
004D 0 WRREC CLEAR X B410
004F 0 LDT LENGTH 72017
0052 0 WLOOP TD =xos E3201B
0055 0 JEQ WLOORP 322FFA
0058 0 LDCH BUFFER.X 53A016
00sB a WD =X'08' DF2012
005E 0 TIXR T B850
0060 0 JLT WLOOP 3B2FEF
0063 0 RSUB 4F0000
10007, 1 CDATA <——CDATA block
LTORG
ooo7 1 # =C'EOF 454F46
. D00A 1 ® =xX'os' 05
END FIRST

GMIT, Davangere

32

Deepak DJ

System Software | 15CS63

Arranging code into program blocks:
Pass1
A separate location counter for each program block is maintained.
Save and restore LOCCTR when switching between blocks.
At the beginning of a block, LOCCTR is set to 0.
Assign each label an address relative to the start of the block.

Store the block name or number in the SYMTAB along with the assigned relative address of
the label

Indicate the block length as the latest value of LOCCTR for each block at the end of Pass1

Assign to each block a starting address in the object program by concatenating the program
blocks in a particular order

Pass 2.

Calculate the address for each symbol relative to the start of the object program by adding
The location of the symbol relative to the start of its block

The starting address of this block

Control Sections:

A control section is a part of the program that maintains its identity after assembly; each
control section can be loaded and relocated independently of the others. Different control sections
are most often used for subroutines or other logical subdivisions. The programmer can assemble,
load, and manipulate each of these control sections separately.

Because of this, there should be some means for linking control sections together. For
example, instructions in one control section may refer to the data or instructions of other control
sections. Since control sections are independently loaded and relocated, the assembler is unable to
process these references in the usual way. Such references between different control sections are
called external references.

The assembler generates the information about each of the external references that will
allow the loader to perform the required linking. When a program is written using multiple control
sections, the beginning of each of the control section is indicated by an assembler directive
assembler directive: CSECT

The syntax :
sechame CSECT
separate location counter for each control section

Control sections differ from program blocks in that they are handled separately by the
assembler. Symbols that are defined in one control section may not be used directly another control
section; they must be identified as external reference for the loader to handle. The external
references are indicated by two assembler directives:

EXTDEF (external Definition):

GMIT, Davangere Deepak D J
33

System Software | 15CS63

It is the statement in a control section, names symbols that are defined in this section but may be
used by other control sections. Control section names do not need to be named in the EXTREF as

they are automatically considered as external symbols.

EXTREF (external Reference):

It names symbols that are used in this section but are defined in some other control section.

The order in which these symbols are listed is not significant. The assembler must include proper
information about the external references in the object program that will cause the loader to insert
the proper value where they are required.

_Implicitly defined as an external symbaol

F
COopy

. first control section

START4 0 COPY FILE FROM INPUT TO OUTPUT
EXTDEF __ BUFFER,BUFEND,LENGTH
EXTREF RDREC,WRREC
FIRST STL RETADR SAVE RETURN ADDRESS
CLOOP [+1suB ROREC READ INPUT RECORD
LDA LENGTH TEST FOR EOF (LENGTH=0)
COoMP #0
JEQ ENDFIL EXIT IF EOF FOUND
[+psuB WRREC WRITE OUTPUT RECORD
] CLoop LOOP
ENDFIL LDA =C'EQF INSERT END OF FILE MARKER
STA BUFFER
LDA #3 SET LENGTH = 3
STA LENGTH
[+hsuB WRREC WRITE EOF
] @RETADR RETURN TO CALLER
RETADR RESW 1
LENGTH RESW 1 LENGTH OF RECORD
LTORG
BUFFER RESB 4096 4096-BYTE BUFFER AREA
BUFEND EQU *
MAXLEN EQU BUFFEND-BUFFER
Implicitly defined as an external symbol
rofEC CSECT . —— second control section
' SUBROUTINE TO READ RECORD INTO BUFFER
'EXTREF BUFFER,LENGTH,BUFFEND
CLEAR X CLEAR LOOP COUNTER
CLEAR A CLEAR A TO ZERD
CLEAR S CLEAR S TO ZERO
LDT MAXLEN
RLOCE TD INPUT TEST INPUT DEVICE
JEQ) RLOOP LOOP UNTIL READY
RD INPUT READ CHARACTER INTO REGISTER A
COMPR AS TEST FOR END OF RECORD (X'007)
JEQ EXIT EXIT LOOP IF EQR
+STCH BUFFER,X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAX LEMGTH HAS
T RLOOP BEEN REACHED
EXIT +5TX LENGTH SAVE RECORD LENGTH
RSUB RETURN TO CALLER
INPUT BYTE ¥F1 CODE FOR INPUT DEVICE
MAXLEN WORD BUFFEND-BUFFER

34

GMIT, Davangere

Deepak DJ

System Software | 15CS63
_~ Implicitly defined as an external symbol
v _— third control section
WRREC CSECT o
SUBROUTINE TO WRITE RECORD FROM BUFFER
{EXTREF LENGTH,BUFFER |
CLEAR X CLEAR LOOP COUNTER
+LDT LENGTH
WLOOP TD =X'05" TEST OUTPUT DEVICE
JEQ WLOOP LOOP UNTIL READY
+LDCH BUFFER, X GET CHARACTER FROM BUFFER
WD =X'05' WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS HAVE
JLT WLOOP BEEN WRITTEN
RSUB RETURN TO CALLER
END FIRST

Object Code for the example program:

ooon - COPY START 0

EXTDEF BUFFER,BUFFEND LENGTH

EXTREF RDREC,WRREC
0000 FIRST STL RETADR 172027
0003 CLOOP +J5UB ROREC 4ptooo00 Case 1
0007 LDA LEMGTH 032023
0004 COMP #0 290000
000D JEQ EMDFIL 332007
0010 +I5UB WRREC 4B100000
o014] CLOOP 3IF2FEC
o017 ENDFIL LDA =CEOF 032016
00LA 5TA BUFFER OF2016
0010 LD& #3 010003
020 STA LENGTH DF200A
0023 +J5UB WRREC 4B100000
anz7] @RETADR 3E2000
0024 RETADR RESW 1
0020 LENGTH RESW 1

LTORG
0030 * =C'EQF 454F46
0033 BUFFER RESE 4096
1033 BUFEND EQU *
1000 MAXLEN EQU BUFEMD-BUFFER

35 GMIT, Davangere Deepak D J

System Software

15CS63

O} RDREC CSECT
SUBROUTINE TO READ RECORD INTO BUFFER

EXTREF BUFFER,LENGTH,BUFEND
O CLEAR K Ed1id
Wiz CLE&R & Erdid
W CLEAR < ErlHa
LG LT MAELEN Fr2F
g RLCEIP T IMPLIT E320ME
00C JEQ RLODE 332FFA
00F RD INPUT DB2015
12 COMPR AS F
0014 JEQ EXIT 332009
[+5TCH BLIFFER,, ¥ e LN
(HIHE TIXR T BERD
(10 R BLOCE IBIFEY
(121 ExIT +5Tx LENGTH | 13 10HICI |
(124 RELB AELHI0
27 INPUT BYTE XF1° Fi
0023 MAXLEN WORD BUFFEMD-EUFFER [poooog | Case 2
00 WRREC CSECT

SUBROUTIME TO WRITE RECORD FROM BLIFFER

EXTREF LEMGTH, BUFFER
I CLEAR X B4l
002 +LDT LENGTH 700000
DO0G WLOOP D =X'05 E32012
Dong JEQ WLOOP 332FFA
(1] +LIXCH BUFFER,X S3G00000 |
ooin) =005 DF2008
0013 TINR T Basn
15 T WLOOR IB2FEE
0018 RSUB AFO000

EMD FIRST
D01 ' =X'015" 05

The assembler must also include information in the object program that will cause the loader to
insert the proper value where they are required. The assembler maintains two new record in the
object code and a changed version of modification record.

Define record (EXTDEF)

Col. 1

Col. 2-7 Name of external symbol defined in this control section

Col. 8-13 Relative address within this control section (hexadecimal)

Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

Col. 1

Col. 2-7 Name of external symbol referred to in this control section

Col. 8-73 Name of other external reference symbols

36

GMIT, Davangere

Deepak DJ

System Software | 15CS63

Modification record

Col.1 M

Col. 2-7 Starting address of the field to be modified (hexadecimal)

Col. 8-9 Length of the field to be modified, in half-bytes (hexadecimal)

Col.11-16 External symbol whose value is to be added to or subtracted from the indicated field

A define record gives information about the external symbols that are defined in this
control section, i.e., symbols named by EXTDEF.

A refer record lists the symbols that are used as external references by the control section,
i.e., symbols named by EXTREF.

The new items in the modification record specify the modification to be performed: adding
or subtracting the value of some external symbol. The symbol used for modification my be defined
either in this control section or in another section.

The object program is shown below. There is a separate object program for each of the control
sections. In the Define Record and refer record the symbols named in EXTDEF and EXTREF are
included.

In the case of Define, the record also indicates the relative address of each external symbol within
the control section.

For EXTREF symbols, no address information is available. These symbols are simply named in the
Refer record.

COPY
HCOPY 000000001033

DBUFFER000033BUFENDO01033L ENGTHO0002D

RRDREC WRREC|

10000001 D1 7202748100000032023290000332007481000003F 2FECN320160F2016
T0000100DO100030F200A4B1000003E2000

100003003454F 46

MO0000405+RDREC

MD0001105+WRREC

M00002405+WRREC

E000000

GMIT, Davangere Deepak D J
37

System Software | 15CS63

RDEEC
HRDREC £0000000002B
RBUFFERLENGTHBUFEND |
10000001 DB410B400B44077201FE3201B332FFADB2015A00433200957900000B850
700001DOE3B2FEY] 31000004F000QF 1000000
N00001805+BUFFER
M00002105+LENGTH
MO0002806+BUFEND =
"ﬂﬂﬂﬂzﬂﬂﬁ:ﬂuFFER | BUFEMND - BUFFER
E
WRREC
HWRREC 00000000001C
RLENGTHBUFFER
10000001 GB41077100000E3201232FFA53900000DF2008B8503B2F EE4F000005
M00000305+LENGTH |
MO000ODOS5+BUFFER |
E

Assembler Desigh Options

One and Multi-Pass Assembler
So far, we have presented the design and implementation of a two-pass assembler.
Here, we will present the design and implementation of
— One-pass assembler
If avoiding a second pass over the source program is necessary or desirable.
— Multi-pass assembler
Allow forward references during symbol definition.
One-Pass Assembler
The main problem is about forward reference.
Eliminating forward reference to data items can be easily done.
— Simply ask the programmer to define variables before using them.
However, eliminating forward reference to instruction cannot be easily done.
— Sometimes your program needs a forward jump.

— Asking your program to use only backward jumps is too restrictive.

GMIT, Davangere Deepak D J
38

System Software

15CS63

11U

115
120
121
122
124
125
130
£35
140
145

2039
ARy

. 15\9@ are two types _ﬂfene-pass assembler:

160
165
170
1713

Loc Source statement Object ¢
COPY START 1000

EOF BYTE C’'EQF' 454F46

THREE WORD 3 000003

ZERO WORD 0 000000

RETADR RESW p
LENGTH RESW 1

BUFFER RESB 4096 /

200F FIRST STL RETADR 141009
2012 CLOOP JSUB RDREC 48203D
2005 LDA LENGTH 00100C
SUBROUTINE TO READ RECOR

INPUT BYTE X'Fl’ F
MAXLEN WORD 4096 i

203D RDREC LDX ZERO 0
2040 LDA ZERO 0
2043 RLOOP TD INPUT E
2046 JEQ RLOOP 3
2049 RD INPUT {3
COMP ZERO 2

155 producedhbjéttode directly in memory for immédiate executiofsi X T'T' 3
%cgéaager is needed STCH BUFFER g X >
2055 TIX MAXLEN 2
JZ)ed:-)agd-go for program developmenbaf‘%esting RLOOP %
Ec@@ﬁr computipgxXenter where most'stidents reassefnbig theirplograms '
RSUB 4

180

10K

S95iEe

Can save time for scanning the source code again

Internal Implementation

Produce the usual kind of object program for later execution

39

GMIT, Davangere

Deepak DJ

System Software | 15CS63

The assembler generate object code instructions as it scans the source program.

If an instruction operand is a symbol that has not yet been defined, the operand address is
omitted when the instruction is assembled.

The symbol used as an operand is entered into the symbol table.
This entry is flagged to indicate that the symbol is undefined yet.

The address of the operand field of the instruction that refers to the undefined symbol is
added to a list of forward references associated with the symbol table entry.

When the definition of the symbol is encountered, the forward reference list for that symbol
is scanned, and the proper address is inserted into any instruction previously generated.

Memory
address Contgpn/ Symbol V
1000 454F4600 00030000/ OOXXXXXX XXXXXXXX LENGTH (1
1010 XXXXXXXX XXXXXX XXXXXXXX XXXXXXXX RDREC *
. THREE |1
L]
2000 XXXXXXX KXXXXXX XXXXX x1l4 ZERO 1
2010 1ooc 28100 s TR
2020 0
3 EOF 1
ENDFIL LA
; 4/
RETADR |1
BUFFER |1
CLOOP |2
~EIRST 1<

40 GMIT, Davangere Deepak D J

System Software | 15CS63

Memory Symbol Value
address Contents _ENGTH T T00C]
1000 454F4600 00030000 OOXXXXXX XXXXXXXX RDREC | 203D
1010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
. THREE 1003
L]
. ZERO 1006
2000 XXXXXXXX XXXXXXXX XXXXXXXX XXX d ; 7
2010 10094820 3D00100C 28100630 02448—— WRHEO (14 [9% 201F
2020 2~U010000C 100F0010 OSS&clo0s EOF 1000

40094C00 O0OF10010 00041006
43D82039 28100630

ENDFIL | 2024

RETADR | 1009

BUFFER | 100F

* Between scanning line 40 and 160:
CLOOP | 201

— Online 45, when te symbol ENDFIL is defined, the 5
SYMTAB entry.

€
O0F

3 ! : : _MAXLEN | 203A
erts this value into the instruction operand field{at-address_

INPUT 2039

— The assembler then in
201C).

— From this point on, any reference 2050

to ENDFIL would not be forward feféfences a’ﬁ&{i L

\g

would not be entered into a list. RLOOP/,’ZO#.S’
* At the end of the processing of the program, any SYMTAB entries fMmarked with *

indicate undefined symbols.
— These should be flagged by the assembler as errors.
Multi-Pass Assembler
* If we use a two-pass assembler, the following symbol definition cannot be allowed.
ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

» This is because ALPHA and BETA cannot be defined in pass 1. Actually, if we allow multi-pass
processing, DELTA is defined in pass 1, BETA is defined in pass 2, and ALPHA is defined in
pass 3, and the above definitions can be allowed.

* This is the motivation for using a multi-pass assembler.

41 GMIT, Davangere Deepak D J

System Software

15CS63

» It is unnecessary for a multi-pass assembler to make more than two passes over the entire

program.

* Instead, only the parts of the program involving forward references need to be processed in

multiple passes.

* The method presented here can be used to process any kind of forward references.

Multi-Pass Assembler Implementation

Steps:

» Use a symbol table to store symbols that are not totally defined yet.

* For a undefined symbol, in its entry,

— We store the names and the number of undefined symbols which contribute to the

calculation of its value.

— We also keep a list of symbols whose values depend on the defined value of this

symbol.

* When a symbol becomes defined, we use its value to reevaluate the values of all of the

symbols that are kept in this list.

* The above step is performed recursively.

1 HALFSZ
MAXLEN
3 PREVBT

4 BUFFER
- BUFEND

EQU
EQU
EQU

RESB
EQU

MAXLEN/
BUFEND-E
BUFFER-]

System Software | 15CS63

HALFSZ(&1 %XLENQ 0

P

7S
BUFEND | * or—p| MAXLEN
HALFSZ |&1| MAXLEN/2 0
MAXLEN |&2| BUFEND-BUFFER &r—| HALFSZ
BUFFER | * &+—P| MAXLEN

System Software | 15CS63

BUFEND | * o+r—{ MAXLEN | 0

HALFSZ |&1| MAXLEN/2 0
PREVBT |&1|BUFFER-1 0
MAXLEN |&2| BUFEND-BUFFER o+—P| HALFSZ | 0

BUFEND | * o MAXL!

HALFSZ |&1| MAXLEN/2 0
PREVBT |1033 0
 ,MAXLEN | &1| BUFEND-BUFFER o—t+—P{ HALF!

 BUFFER 1034 0

System Software | 15CS63

BUFEND | 2034 0
HALFSZ | 800 s 0
|
PREVBT | 1033 0
MAXLEN | 1 000/ / 0
BUFFER | 1034 0

45

GMIT, Davangere

Deepak DJ

