Software Engineering [15CS42]

1. INTRODUCTION, SOFTWARE PROCESSES,

REQUIREMENTS ENGINEERING

INTRODUCTION
1.1 Software Crisis

— Software crisis is a term used in the early days of computing science for the difficulty

of writing useful and efficient computer programs in the required time.

— The software crisis was due to the rapid increases in computer power and the

complexity of the problems that could be tackled.

— With the increase in the complexity of the software, many software problems arose

because existing methods were neither sufficient nor up to the mark.

— The causes of the software crisis were linked to the overall complexity of hardware

and the software development process.

— The crisis manifested itself in several ways:

*

Projects running over-budget

Projects running over-time

Software was very inefficient

Software was of low quality

Software often did not meet requirements

Projects were unmanageable and code difficult to maintain

Software was never delivered

1.2 Need for Software Engineering

— The need of software engineering arises because of higher rate of change in user

requirement and environment on which the software is working.

— The following factors contribute to the need of software engineering.

Large Software: As the size of software becomes large, engineering has to
step to give it a scientific process.

Scalability: If the software process were not based on scientific and
engineering concepts, it would be easier to re-create new software than to

scale an existing one.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 1

Software Engineering [15CS42]

Cost: As hardware industry has shown its skills and huge manufacturing has
lower down the price of computer and electronic hardware. But the cost of
software remains high if proper process is not adapted.

Dynamic Nature: The always growing and adapting nature of software
hugely depends upon the environment in which user works. If the nature of
software is always changing, new enhancements need to be done in the
existing one. This is where software engineering plays a good role.

Quality Management: Better process of software development provides
better and quality software product.

1.3 Professional Software Development

-

Software engineering is intended to support professional software development, rather
than individual programming.

It includes techniques that support program specification, design, and evolution, none
of which are normally relevant for personal software development.

Software is not just the programs themselves but also all associated documentation
and configuration data that is required to make these programs operate correctly.

A professionally developed software system is often more than a single program.

The system usually consists of a number of separate programs and configuration files
that are used to.set up these programs.

It may include system documentation, which describes the structure of the system;
user documentation, which explains how to use the system, and websites for users to
download recent product information

Fig 1.1 gives frequently asked questions about software.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 2

Software Engineering [15CS42]

What & s0ftware?

What are the atdbutes of good sofwans?

What i sOftware enginenng !
What are the tundamental spfware engineesing
Admties?

What i the ditference between software
enginesning and 00m puter sdence?

What s the ditference betwaen sodtware
engimeanng and system engmasnng?

What are tha key challanges fadng software
Bng INSSnng?

What are the costs of softw are engineering?

What are the best solteane enginesning techniquas
and methDuds?

What differences has the 'Web made o soltwane
Engineing?

Compuisr programs and sso0sted dooumentason.
Softerane produds méay be devsioped for & partsCular
wstomer or may be dessoped for 4 genenal market

Giood softerare should delver the requined
funcionality and pedormance 10 the user and should
be mantsinable, depandsble. and usable.

Soitwane engmesnng & an engnesnng dedphne that
& DonCBmed with all aspeds of softaans produCion.

Softeare sped fration, software desdopment,
sl terara walidstion, and sodeans aeolutson.

Computer sCen0a focuses on theosy and
fundamentals: softwane enginesnng i 0onCemed
with the pradicaliies of developing and dafvering
usetul sobterans.

Sysdem enginesing s conCamed with &l specs of
oo puier-based sysems desslopment incuding
hardeare, software, and process enginesnng. Sofeans
engineetng & part of this move genesl prooes.

Coping with indressing diversity, demands {Dr redu ced
deiveny times, and devaloping trustworgy softwans,

Roug by 60% of softerare coeds are devdopment
ot A0% are iesting Costs_ FOr CusdOm softwans,
evilufion 0ot oen excead development oosts.

While all softwans prgjecs have to be poohess onally
managed and dessoped, diffenent iechniques are
appropriste for differant typas of system. For example,
games should akeays be dessioped wmmg 4 seses of
prtotypes wheress satety oifical control systens
require & complee and anakyzable specfcation to be
desdoped. You Gan'l, therstone, say that one methDd
s betier than anoher.

ThaWeb has led 1o the svailshility of sofwans
serdCes and the posibility of developng highly
distributad 5 ondce-basad Wab b ad

Sl
spstems devslopment has bed 10 important adeanoes
in progsmmang langusges and sottaarne nsuse.

Fig 1.1: Frequently asked questions about software

— There are two fundamental types of software product:

1. Generic Products: These are stand-alone systems that are produced by a

development organization and sold on the open market to any customer who is

able to buy them. Examples of this type of product include software for PCs

such as databases, word processors,

management tools.

2. Customized (or bespoke) Products:

drawing packages and project

These are systems which are

commissioned by a particular customer. A software contractor develops the

software especially for that customer. Examples of this type of software

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru

Page 3

Software Engineering [15CS42]

include control systems for electronic devices, systems written to support a
particular business process and air traffic control systems.
— Fig 1.2 gives the essential characteristics of a professional software system.
Product characteristics Description

Maintama bality Softwcare should be written n such & way 50 that it Gan Sasdive 10
meet the thanging nesds of ustomers. This & & orisical aftsbute
becase software Change B an nevtable requirement of &
thanging busness emaninm ent.

Depandability and sacusty Software depends bty indudes 8 mnge of characlessSs
imduding reliability, security, and safety. Dependalde softwae
shondd not case physical or emnomac damage in the event of
system faikre. Maldous e should not be able to s00ess or
damage the sytem.

EffcienCy Softwaare should n ot make wea sl use of system resouross suth
& memory and processor Cpdes. Efidency thenstone incudes
e DEnenSss, prldesng time, memony ulilizafion, &C

Accepiability Softweare must be soceptable to the type of uses for whith it &
deggned. Thes meansthat # mus be undergandable. usable, and
mmpatiblewith other sygems that they usa.

Fig 1.2: Essential attributes of good software
1.3.1 Software Engineering
— Software engineering is an engineering discipline that is concerned with all aspects of
software production from the ‘early stages of system specification through to
maintaining the System after it has gone into use.
— Inthis definition, there are two key phrases:

1. _Engineering discipline: Engineers make things work. They apply theories,
methods, and tools where these are appropriate. However, they use them
selectively and always try to discover solutions to problems even when there
are no applicable theories and methods

2. All aspects of software production: Software engineering is not just
concerned with the technical processes of software development. It also
includes activities such as software project management and the development
of tools, methods, and theories to support software production.

— Software engineering is important for two reasons:

1. More and more, individuals and society rely on advanced software systems. It

helps users to produce reliable and trustworthy systems economically and

quickly.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 4

Software Engineering [15CS42]

2. It is usually cheaper, in the long run, to use software engineering methods and
techniques for software systems rather than just write the programs as if it was
a personal programming project.

— There are four fundamental activities that are common to all software processes.
These activities are:

1. Software Specification, where customers and engineers define the software
that is to be produced and the constraints on its operation.

2. Software Development, where the software is designed and programmed.

3. Software Validation, where the software is.checked to ensure that it is what
the customer requires.

4. Software Evolution, where the software is modified to reflect changing
customer and market requirements.

— Software engineering is related to both computer science and systems engineering:

1. Computer Science is concerned with the theories and methods that underlie
computers and software systems, whereas software engineering is concerned
with the practical problems of producing software.

2. System Engineering is concerned with all aspects of the development and
evolution of complex systems where software plays a major role. System
engineering is therefore concerned with hardware development, policy and
process design and system deployment, as well as software engineering.
System engineers are involved in specifying the system, defining its overall
architecture, and then integrating the different parts to create the finished
system. They are less concerned with the engineering of the system
components (hardware, software, etc.)

— There are three general-issues that affect many different types of software:

1. Heterogeneity: Here it becomes necessary to integrate new software with
older legacy systems written in different programming languages. The
challenge here is to develop techniques for building dependable software that
is flexible enough to cope with this heterogeneity.

2. Business and Social Change: Business and society are changing incredibly
quickly as emerging economies develop and new technologies become
available. They need to be able to change their existing software and to rapidly

develop new software.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 5

Software Engineering [15CS42]

3.

Security and Trust: As software is intertwined with all aspects of our lives, it
is essential that we can trust that software. This is especially true for remote
software systems accessed through a web page or web service interface.

1.3.2 Software Engineering Diversity

— There are many different types of application including:

1.

Stand-alone applications: These are application systems that run on a local
computer, such as a PC. They include all necessary functionality and do not
need to be connected to a network. Examples of such applications are office
applications on a PC, CAD programs, photo-manipulation software, etc.
Interactive transaction-based applications: These are applications that
execute on a remote computer and.that are accessed by users from their own
PCs or terminals. These include web applications such as e-commerce
applications where users can interact with a remote system to buy goods and
Services.

Embedded control systems: These are software control systems that control
and manage hardware devices. Examples of embedded systems include the
software in a mobile (cell) phone, software that controls anti-lock braking in a
car, and software.in a microwave oven to control the cooking process.

Batch processing systems: These are business systems that are designed to
process data in large batches. They process large numbers of individual inputs
to create corresponding outputs. Examples of batch systems include periodic
billing systems, such as phone billing systems, and salary payment systems.
Entertainment systems: These are systems that are primarily for personal use
and which are intended to entertain the user. Most of these systems are games
of one kind or-another. The quality of the user interaction offered is the most
important distinguishing characteristic of entertainment systems.

Systems for modeling and simulation: These are systems that are developed
by scientists and engineers to model physical processes or situations, which
include many, separate, interacting objects. These are often computationally
intensive and require high-performance parallel systems for execution.

Data collection systems: These are systems that collect data from their

environment using a set of sensors and send that data to other systems for

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 6

Software Engineering [15CS42]

processing. The software has to interact with sensors and often is installed in a
hostile environment such as inside an engine or in a remote location.

8. Systems of systems: These are systems that are composed of a number of
other software systems. Some of these may be generic software products, such
as a spreadsheet program. Other systems in the assembly may be specially
written for that environment.

— There are software engineering fundamentals that apply to all types of software
system:

» They should be developed using a managed and understood development
process. The organization developing the software should plan the
development process and have clear-ideas of what will be produced and when
it will be completed.

» Dependability and performance. are important for all types of systems.
Software should behave as expected, without failures and should be available
for use when it is.required. It should be safe in its operation and, as far as
possible, should be secure against external attack. The system should perform
efficiently and should not waste resources.

» Understanding and managing the software specification and requirements are
important. It is important.to understand what different customers and users of
the system expect from it and then it is needed to manage their expectations so
that a useful system can be delivered within budget and to schedule.

+ Existing-resources must be used efficiently. This means that, where
appropriate, you should reuse software that has already been developed rather
than write new software.

1.3.3 Software engineering and the Web

— The next stage in the development of web-based systems was the notion of web
services.

— Web services are software components that deliver specific, useful functionality and
which are accessed over the Web. - Applications are constructed by integrating these
web services, which may be provided by different companies.

— In principle, this linking can be dynamic so that an application may use different web

services each time that it is executed.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 7

Software Engineering [15CS42]

— Changes in the software organization, led to changes in the ways that web-based
systems are engineered. For example:

Software reuse has become the dominant approach for constructing web-based
systems. When building these systems, you think about how you can assemble
them from pre-existing software components and systems.
It is now generally recognized that it is impractical to specify all the
requirements for such systems in advance. Web-based systems should be
developed and delivered incrementally.
User interfaces are constrained by the capabilities of web browsers. Web
forms with local scripting are more commonly used. Application interfaces on
web-based systems are often poorer than the specially designed user interfaces
on PC system products.

1.4 Software Engineering Ethics

— Some professional responsibilities includes:

e Confidentiality: You should normally respect the confidentiality of your
employers or clients irrespective of whether or not a formal confidentiality
agreement has been signed.

e Competence: You should not misrepresent your level of competence. You
should not knowingly accept work that is outside your competence.

e Intellectual Property Rights: You should be aware of local laws governing
the use of intellectual property such as patents and copyright. You should be
careful to ensure that the intellectual property of employers and clients is
protected.

e Computer Misuse: You should not use your technical skills to misuse other

people’s computers.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 8

Software Engineering [15CS42]

Software Engineering Code of Ethics and Prof essional Pradice
ACM MIEEE-CS Mnt Task Fonfe on SDftweare Engmeesng EBthics and Professonal Praosoes

PREAMBLE

The short wersion of the ode summarizes. sspirations st & high levd of the abstracion; the dsuses that are
inthuded in the full version give ecamples and detalls of how these spirstions change the way we ad &
softeane engineering profess onaks. Without the s pirstions, the details can bacom e legalisic and tediouws;
withiut the detailks, the sspirations Can baoome high sounding but empty; together, the aspiraions and the
dtails form a cohBsive ohde.

Soltwans enginesrs shall commit themssves 10 malang the snabsis, spedficstion, desgn, devalopment,
tessing and maintenance of software a bensfidal and respeded profession. In aoordance with e
commitment 10 the health, safety and wellare of the public, software enginees shall adhers to the following
Eight Prindiples:

1. FUBLIC — Software enfine&rs 5hall act consistently with the public interest.

2. CLIENT AKD EMPLOYER — Software engineers shall act in a manner that 15 in the
best interests of their client and employer consistent with the public interest.

3. FPRODUCT — Software engineers shall ensure that thelir products and related
modi fications meat the highest professional standards possible.

4. JUDEMENT — Software engineers shall maintain integrity and independence in their
professional judgment.

5. MANABEMENT — Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and
maintenance.

6. PROFESSION — Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.

7. COLLEABUES — Software engineers shall be fair to and supportive of their

colleagues.

. SELF — Software engineers shall participate in 1ifelong l1earning regarding the

practice of their profession and shall promote an ethical approach to the
practice of the professiaon.

Fig 1.3: ACM/IEEE Code of Ethics

1.5 Case Studies

— 3 types of systems used as case studies are:
1. An Embedded System:
* This is a system where the software controls a hardware device and is
embedded in that device.
= Issues-.in embedded systems typically include physical size,
responsiveness, power management, etc.
= The example of an embedded system used here is a software system to
control a.medical device.
2. An Information System:
= This is a system whose primary purpose is to manage and provide
access to a database of information.
= Issues in information systems include security, usability, privacy, and
maintaining data integrity.
= The example of an information system t used here is a medical records
system.

3. A Sensor-based Data Collection System:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 9

Software Engineering [15CS42]

= This is a system whose primary purpose is to collect data from a set of
sensors and process that data in some way.

= The key requirements of such systems are reliability, even in hostile
environmental conditions, and maintainability.

~ The example of a data collection system used here is a wilderness

weather station.

1.5.1 An insulin pump control system

%

%

An insulin pump is a medical system that simulates the operation of the pancreas.
The software controlling this system is an embedded system, which collects
information from a sensor and controls a pump that delivers a controlled dose of
insulin to a user.
Diabetes is a relatively common condition where the human pancreas is unable to
produce sufficient quantities of a hormone called insulin.
Insulin metabolises glucose (sugar) in the blood.
A software-controlled insulin delivery system might work by using a micro sensor
embedded in the patient to measure some blood parameter that is proportional to the
sugar level.
This is then sent to the pump controller.
This controller computes the sugar level and the amount of insulin that is needed. It
then sends signals to a miniaturized pump to deliver the insulin via a permanently
attached needle.
Fig 1.4 shows the insulin pump hardware.
Fig 1.5 is a UML activity model that illustrates how the software transforms an input
blood sugar level to a sequence of commands that drive the insulin pump.
Two essential high-level requirements that this system must meet includes:

The system shall be available to deliver insulin when required.

The system shall perform reliably and deliver the correct amount of insulin to

counteract the current level of blood sugar

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 10

Software Engineering [15CS42]

Neede
Pz em by

Fig 1.4: Insulin pump hardware

i T o 1 .
= Blood | Analyze Sensor | Blood | Compute | insulin
Sen SO0 | Reading J Sligar | Insulin ,- Liog

Insulin

[ro5e

I
ot ot

. . . - .
- Insulin [Contral Insulin"l Pump | Compune Pump | ' 1
a:. ! Pump | Pump Diada , Commands | | |

i e - e, i

Fig 1.5: Activity model of the insulin pump
1.5.2 A patient information system for mental health care
— Al patient information system to support mental health care is a medical information
system that maintains. information about patients suffering from mental health
problems and the treatments that they have received.
— Most mental health patients do not require dedicated hospital treatment but need to
attend specialist clinics regularly where they can meet a doctor who has detailed
knowledge of their problems.

— To make it easier for patients to attend, these clinics are not just run in hospitals.

\J

They may also be held in local medical practices or community centers.

— The MHC-PMS (Mental Health Care-Patient Management System) is an information
system that is intended for use in clinics. It makes use of a centralized database of
patient information but has also been designed to run on a PC, so that it may be
accessed and used from sites that do not have secure network connectivity.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 11

Software Engineering [15CS42]

— When the local systems have secure network access, they use patient information in
the database but they can download and use local copies of patient records when they
are disconnected.

— The system is not a complete medical records system so does not maintain

information about other medical conditions.

A C-Pais MAH RS SAH C-PRAs
Local Local Local
. o
" -~

BAHCIAS 5 envey

Patient Distabase

Fig 1.6: The organization of the MHC-PMS

— The MHC-PMS has two overall-goals:

To generate management information that allows health service managers to
assess performance against local and government targets.

To provide medical staff with timely information to support the treatment of
patients.

— The system is used to record information about patients (name, address, age, next of
Kin, etc.), consultations (date, doctor seen, subjective impressions of the patient, etc.),
conditions, and treatments.

— Reports are generated-at regular intervals for medical staff and health authority
managers

— The key features of the system are:

1. Individual care Management: Clinicians can create records for patients, edit
the information in the system, view patient history, etc.

2. Patient Monitoring: The system regularly monitors the records of patients
that are involved in treatment and issues warnings if possible problems are
detected.

3. Administrative Reporting: The system generates monthly management
reports showing the number of patients treated at each clinic, the number of
patients who have entered and left the care system, number of patients

sectioned, the drugs prescribed and their costs, etc.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 12

Software Engineering [15CS42]

1.5.3 A wilderness weather station

— Wilderness weather stations are part of a larger system (Figure 1.5.4), which is a
weather information system that collects data from weather stations and makes it
available to other systems for processing.

— The systems in Fig 1.7 are:

1. The weather station system: This is responsible for collecting weather data,
carrying out some initial data processing, and transmitting it to the data
management system.

2. The data management and archiving system: This system collects the data
from all of the wilderness weather stations, carries out data processing and
analysis, and archives the data in a form that can be retrieved by other
systems, such as weather forecasting systems.

3. The station maintenance. system: This system can communicate by satellite
with all wilderness weather stations to monitor the health of these systems and
provide reports of‘problems. It can update the embedded software in these
systems. In the event of system problems, this system can also be used to
remotely control a wilderness weather system

— Each weather station is battery-powered and must be entirely self-contained—there
are no external power or network cables available.

— All.communications are through a relatively slow-speed satellite link and the weather
station must include some mechanism (solar or wind power) to charge its batteries.

— As they are deployed in wilderness areas, they are exposed to severe environmental
conditions and may be damaged by animals.

— The station software is therefore not just concerned with data collection.

— It must also:

Monitor the instruments, power, and communication hardware and report
faults to the management system.

Manage the system power, ensuring that batteries are charged whenever the
environmental conditions permit but also that generators are shut down in

potentially damaging weather conditions, such as high wind.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 13

Software Engineering [15CS42]

*

Allow for dynamic reconfiguration where parts of the software are replaced

with new versions and where backup instruments are switched into the system

in the event of system failure.

1] 1
=5y SEIm LR =y
Wea her Stmion Drata Man dgement
and Archiving
1
15"'1 B L
Staion Maintenanoe

Fig 1.7: The weather station’s environment

SOFTWARE PROCESSES

— A software process is a set of related activities that leads to the production of a

software product.

— These activities may involve the development of software from scratch in a standard

programming language like Java or C.

— 4 activities that are fundamental to software engineering:

1.

Software Specification: The functionality of the software and constraints on
its operation must be defined.

Software Design and Implementation: The software to meet the
specification must be produced

Software Validation: The software must be validated to ensure that it does
what the customer wants.

Software Evolution: The software must evolve to meet changing customer

needs.

— Process descriptions may also include:

1.

Products, which are the outcomes of a process activity. For example, the
outcome of the activity of architectural design may be a model of the software
architecture.

Roles, which reflect the responsibilities of the people involved in the process.
Examples of roles are project manager, configuration manager, programmer,

etc.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 14

Software Engineering [15CS42]

3. Pre and post-conditions, which are statements that are true before and after a
process activity has been enacted or a product produced. For example, before
architectural design begins, a pre-condition may be that all requirements have
been approved by the customer; after this activity is finished, a post-condition
might be that the UML models describing the architecture have been reviewed

1.6 Models

— A software process model is a simplified representationof a software process.
— Each process model represents a process from a particular perspective, and thus

provides only partial information about that process.
1.6.1 The Waterfall Model

— Because of the cascade from one phase to another, this model is known as the
‘waterfall model’ or software life‘cycle.

— The waterfall model is an example of a plan- driven process.

— The principal stages of the waterfall model [Fig 1.8] directly reflect the fundamental
development activities:

1. Requirements analysis and definition: The system’s services, constraints,
and goals are established by consultation with system users. They are then
defined in detail and serve as a system specification.

2. System and software design: The systems design process allocates the
requirements to either hardware or software systems by establishing an overall
system architecture. Software design involves identifying and describing the
fundamental software system abstractions and their relationships.

3. Implementation‘and unit testing: During this stage, the software design is
realized as a set of programs or program units. Unit testing involves verifying
that each unit meets its specification.

4. Integration and system testing: The individual program units or programs
are integrated and tested as a complete system to ensure that the software
requirements have been met. After testing, the software system is delivered to
the customer.

5. Operation and maintenance: This is the longest life cycle phase. The system

is installed and put into practical use. Maintenance involves correcting errors

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 15

Software Engineering [15CS42]

which were not discovered in earlier stages of the life cycle, improving the
implementation of system units and enhancing the system’s services as new

requirements are discovered.

I'. Resquir Bman't "-I
Dfurmtadn

g Sytem and
\ Spftweare Desgn

Implementation
and Linit Testng

It Egration dud. }
\ System Testing

{ Oporafion and
Maird enance

Fig 1.8: The Waterfall Model

— The waterfall model is consistent with. other engineering process -models and
documentation is produced at each phase.

— This makes the process visible so managers can monitor progress against the
development plan.

— Its major problem is.the inflexible partitioning of the project into distinct stages.

— Commitments must be made at an early stage in the process, which makes it difficult

to respond to changing customer requirements
1.6.2 Incremental Development

— Incremental development is based on the idea of developing an initial implementation,
exposing this to user comment and evolving it through several versions until an
adequate system has been developed [Fig 1.9].

— Incremental ‘development has three important benefits, compared to the waterfall
model:

The cost of accommodating changing customer requirements is reduced. The
amount of analysis and documentation that has to be redone is much less than
is required with the waterfall model.

It is easier to get customer feedback on the development work that has been
done.

More rapid delivery and deployment of useful software to the customer is

possible, even if all of the functionality has not been included.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 16

Software Engineering [15CS42]

— From a management perspective, the incremental approach has two problems:

= The process is not visible. Managers need regular deliverables to measure
progress. If systems are developed quickly, it is not cost-effective to produce
documents that reflect every version of the system.

= System structure tends to degrade as new increments are added. Unless time
and money is spent on refactoring to improve the software, regular change
tends to corrupt its structure. Incorporating further software changes becomes
increasingly difficult and costly.

Ciomadurrent
Adraties

| — Initial
- \Viemion

Outhing _ higrmedisie]
D Céiption —l-.. Deysnpmant) . Vemimn \

Final
Vemion

| Specificaion

Fig 1.9: Incremental Development

1.6.3 Boehm’s Spiral Model

— Here, the software process is represented as a spiral, rather than a sequence of
activities with some backtracking from one activity to another [Fig 1.10].

— Each loop in the spiral represents a phase of the software process.

— Thus, the innermost loop might be concerned with system feasibility, the next loop
with requirements definition, the next loop with system design, and so on.

— Each loop in the spiral is split into four sectors:

1. Objective Setting: Specific objectives for that phase of the project are
defined. Constraints on the process and the product are identified and a
detailed management plan is drawn up. Project risks are identified.

2. Risk Assessment and Reduction: For each of the identified project risks, a
detailed analysis is carried out. Steps are taken to reduce the risk. For example,
if there is a risk that the requirements are inappropriate, a prototype system
may be developed.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 17

Software Engineering [15CS42]

3. Development and Validation: After risk evaluation, a development model for
the system is chosen. For example, throwaway prototyping may be the best
development approach if user interface risks are dominant.

4. Planning: The project is reviewed and a decision made whether to continue
with a further loop of the spiral. If it is decided to continue, plans are drawn up
for the next phase of the project.

Detesmine Dbjeces, —

e T ——— Evaluate Mternatees,
At atves, and e T— Iden iy, Resobve Fisis
Comtraants - Rk -
—— e Mnaigse
Rk
— Andyms
B ’
Anhyis - Oiperadon al ™,

. Prototpe 3 Prototype
., Frotogype 2
Foshc Prote
1 -,
R vibw o fpel 4

- 1
Requirements Pla | Simuladions, Mod o, Benchmaks

L i Conospt of
mpes Operafion | £
o~ Hequirsmens /. Product
D'Eg-l 4 Dt millesd

- L D= J
Requsement -) an
Oevspmen: | T S i
T B 'D' Linit Test
. Imt=gmation = gn) :
Plan Bext Phase . 20d Test Flan Vav h-n_a;;tm _
- I Acoeptance g

Sendice Xt =" Do, Veridy
—T Hext-Lewel Produc

Fig 1.10: Boehm’s spiral model of the software process

1.7 Process Activities

— The four -basic process. activities of specification, development, validation, and
evolution are organized differently in different development processes

1.7.1 Software Specification

— It is the process of understanding and defining what services are required from the
system and identifying the constraints on the system’s operation and development.

— The requirements engineering process aims (Fig 1.11) to produce an agreed
requirements document that specifies a system satisfying stakeholder requirements.

— Requirements are usually presented at two levels of detail.

— End-users and customers need a high-level statement of the requirements; system
developers need a more detailed system specification.

— There are four main activities in the requirements engineering process:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 18

Software Engineering [15CS42]

1. Feasibility Study:

*

An estimate is made of whether the identified user needs may be
satisfied using current software and hardware technologies.

The study considers whether the proposed system will be cost-effective
from a business point of view and if it can be developed within

existing budgetary constraints.

2. Requirements Elicitation and Analysis:

*

Process of deriving the system requirements through observation of
existing systems, discussions with potential users and procurers, task
analysis, and so on.

May involve the development of one or more system models and

prototypes.

3. Requirements Specification:

*

It is the activity of translating the information gathered during the
analysis activity into a document that defines a set of requirements.
Two types of requirements may be included in this document.

User requirements are abstract statements of the system requirements
for the customer and end-user of the system; system requirements are a

more detailed description of the functionality to be provided.

4. Requirements Validation:

*

Feasibility Requirements
Elicitation and
Study]
Analysis

This activity checks the requirements for realism, consistency, and
completeness.
During this process, errors in the requirements document are inevitably

discovered. It must then be modified to correct these problems.

Requirements
Specification

Feasibility

Requirements
Report Validation
System
Models

User and System
Requirements

\—v Requirements

Document

Fig 1.11: The Requirements Engineering Process

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 19

Software Engineering [15CS42]

1.7.2 Software Design and Implementation

— The implementation stage of software development is the process of converting a
system specification into an executable system.

— A software design is a description of the structure of the software to be implemented,
the data models and structures used by the system, the interfaces between system
components and, sometimes, the algorithms used .

— Fig 1.12 shows an abstract model of this process showing the inputs to the design
process, process activities, and the documents produced-as outputs from this process.

— It shows four activities that may be part of the design process for information systems:

1. Architectural design, where you identify the overall structure of the system,
the principal components (sometimes called sub-systems or modules), their
relationships, and how they aredistributed.

2. Interface design, where you define the interfaces between system
components. This interface specification must be unambiguous. With a precise
interface, a component can be used without other components having to know
how it is implemented. Once interface specifications are agreed, the
components can be designed and developed concurrently.

3. Component design, where you take each system component and design how
it will operate. This'may be a simple statement of the expected functionality to
be implemented, with the specific design left to the programmer. The design
model may be used to automatically generate an implementation.

4. Database design, where you design the system data structures and how these
are to be represented in a database. Again, the work here depends on whether

an existing database is to be reused or a new database is to be created

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 20

Software Engineering [15CS42]

Design inputs

PMlattorm
Indom &8 0n

Design Outputs

System
Ardh e e

Databass
Spaciicataon

Intariace
5 pediication

Componen
SpeecifiCcataon

Fig 1.12: A general model of the design process

1.6.3 Software Validation

— Software validation or, more generally, verification and validation (V&V) is intended

to show that a system both conforms to its specification and that it meets the
expectations of the system customer.
Program testing, where the system is executed using simulated test data, is the
principal validation technique.
Validation may also involve checking processes, such as inspections and reviews, at
each stage of the software process from user requirements definition to program
development.
Fig 1.13 shows a three-stage testing process in which system components are tested
then the integrated system is tested and, finally, the system is tested with the
customer’s data.
The stages in the testing process are:
1. Development Testing:
= The components making up the system are tested by the people
developing the system.
= Each component is tested independently, without other system

components.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru

Page 21

Software Engineering [15CS42]

= Components may be simple entities such as functions or object classes,
or may be coherent groupings of these entities.
2. System Testing:
= System components are integrated to create a complete system.
~ This process is concerned with finding errors that result from
unanticipated interactions between components and component
interface problems.
= It is also concerned with showing that the system meets its functional
and non-functional requirements, and testing the emergent system
properties.
3. Acceptance Testing:
= This is the final stage -in the testing process before the system is
accepted for operational use.
= The system is tested with data supplied by the system customer rather
than with simulated test data. Acceptance testing may reveal errors and
omissions in the system requirements definition, because the real data
exercise the system in different ways from the test data.
— Fig 1.14 illustrates how test plans are the link between testing and development
activities. This is sometimes called the VV-model of development.
— Acceptance testing is sometimes called “alpha testing’.
— Custom systems are developed for a single client.
— The alpha testing process continues until the system developer and the client agree
that the delivered system is an acceptable implementation of the requirements.
— When a system is to be marketed as a software product, a testing process called ‘beta
testing’ is often used.
— Beta testing involves delivering a system to a number of potential customers who

agree to use that system. They report problems to the system developers.

| | l

f . Com ponent AOCeptanDs .
Testing Teséing

— —

Fig 1.13: Stages of testing

=i Sysdem Teséng =

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 22

Software Engineering [15CS42]

¢ Requirements ¢ symem Y ¢ sptem /" Dewmiled
_ Spedficison e _ Spedfication * _ Desgn J _ Desgn
Systam Sub-Sp@tem © Moduleand Yy
J"'.F:'":;“E Integrasion vt e et Don | Unit Code
Test Plan Test Plan Y, andTest F
ey “ Aczeptance " sptem) -".Suh-s-,ﬂEm"“':l
[Sendce > \ Tesd | ', Intagration Tes Integration Tes

Fig 1.14: Testing phases in a plan-driven software process
1.6.4 Software Evolution

— The flexibility of software systems is one of the main reasons why more and more
software is being incorporated in large, complex systems.

— Once a decision has been made to manufacture hardware, it is very expensive to make
changes to the hardware design.

— However, changes can be.made to software at any time during or after the system
development.

— Even extensive changes are still much cheaper than corresponding changes to system
hardware.

— The fig 1.15 shows that software.is continually changed over its lifetime in response
to changing requirements and customer needs

:

. -, . - -, .
{ Deme SyEtem | Mesess Exs@ing f Propose Sysiem f Aty

5 F!BqqumEﬂ:: F B . Sytens A Changes y L, Sysems
Emsting Haw
Sptems Sp@tem

Fig 1.15: System Evolution

REQUIREMENTS ENGINEERING

1.8 Requirements Engineering Processes

— Requirements engineering processes may include four high-level activities.
— These focus on assessing if the system is useful to the business (feasibility study),

discovering requirements (elicitation and analysis), converting these requirements into

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 23

Software Engineering [15CS42]

some standard form (specification), and checking that the requirements actually
define the system that the customer wants (validation).
— Fig 1.16 below shows this interleaving. The activities are organized as an iterative

process around a spiral, with the output being a system requirements document.

Requi rements
Spedification

’ Sysiem Reguirsments -
Spacificatson and
Mod ding

Lser Requirements

¢ g Spaaficatson \
I R‘\\\\‘ # Busines Requirements FJ.
{ Spacfication |
{ H\" -~ ,-"d ..
| I ‘\-\\\ f }L-_f’/ |
\) Start Feesibidity |
18, ! | i
Requirements | S-,:Raq. . Study | Requirements
Hicitstion | Fhdtstson - s . validstion
%, Requirements J
... Elictation “Pratotyping
Resiews
System Requirements ———

D oCument

Fig 1.16: A spiral view of the requirements engineering process.

— The amount of time and effort devoted to each activity in each iteration depends on
the stage of the overall process and the type of system being developed.

— Thisspiral model accommodates approaches to development where the requirements
are developed to different levels of detail.

— The number of iterations around the spiral can vary so the spiral can be exited after

some or all of the user requirements have been elicited

1.9 Requirements Elicitation and Analysis

— After an initial feasibility study, the next stage of the requirements engineering
process is requirements elicitation and analysis.

— In this activity, software engineers work with customers and system end-users to find
out about the application domain, what services the system should provide, the
required performance of the system, hardware constraints, and so on.

— A process model of the elicitation and analysis process is shown in fig 1.17.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 24

Software Engineering [15CS42]

| . Requir ements
- D vy

o

]
2. legquerements
Ol sriscatann and
Organestain

1. Requir ements
Spacifi cation

'

1. Beqguer ements
Pz ateon and
Negoistion

Fig 1.17: The requirements elicitation and analysis process

— The process activities are:

1. Requirements discovery: This is the process of interacting with stakeholders
of the system to discover their requirements. Domain requirements from
stakeholders and documentation are also discovered during this activity.

2. Requirements classification and organization: This activity takes the
unstructured collection of requirements, groups related .requirements, and
organizes them into coherent clusters. The most common way of grouping
requirements is to use a model of the system architecture to identify sub-
systems and to associate requirements with each sub-system.

3. Requirements prioritization and negotiation: This activity is concerned
with . prioritizing requirements and finding and resolving requirements
conflicts through negotiation. Usually, stakeholders have to meet to resolve
differences-and agree on compromise requirements.

4. Requirements specification: The requirements are documented and input into
the next round of the spiral. Formal or informal requirements documents may
be produced.

— Eliciting and understanding requirements from system stakeholders is a difficult
process for several reasons:

~ Stakeholders often don’t know what they want from a computer system except
in the most general terms; they may find it difficult to articulate what they
want the system to do; they may make unrealistic demands because they don’t
know what is and isn’t feasible.

~ Stakeholders in a system naturally express requirements in their own terms

and with implicit knowledge of their own work. Requirements engineers,

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 25

Software Engineering [15CS42]

without experience in the customer’s domain, may not understand these
requirements.

Different stakeholders have different requirements and they may express these
in different ways. Requirements engineers have to discover all potential
sources of requirements and discover commonalities and conflict.

Political factors may influence the requirements of a system. Managers may
demand specific system requirements because these will allow them to
increase their influence in the organization.

The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. The importance of
particular requirements may change..New requirements may emerge from new

stakeholders who were not originally consulted.

1.9.1 Requirements Discovery

— Requirements discovery (sometime called requirements elicitation) is the process of

gathering information about the required system and existing systems, and distilling

the user and system requirements from this information.

— For example, system stakeholders for the mental healthcare patient information

system include:

*

*

*

Patients whose information.is recorded in the system.

Doctors who are responsible for assessing and treating patients.

Nurses who coordinate the consultations with doctors and administer some
treatments.

Medical receptionists who manage patients’ appointments.

IT staff who are responsible for installing and maintaining the system. These
different. requirements sources (stakeholders, domain, systems) can all be
represented as system viewpoints with each viewpoint showing a subset of the

requirements for the system.

1.9.2 Interviewing

— In these interviews, the requirements engineering team puts questions to stakeholders

about the system that they currently use and the system to be developed.

— Interviews may be of two types:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 26

Software Engineering [15CS42]

1. Closed interviews, where the stakeholder answers a pre-defined set of
questions.

2. Open interviews, in which there is no pre-defined agenda. The requirements
engineering team explores a range of issues with system stakeholders and
hence develop a better understanding of their needs.

— It can be difficult to elicit domain knowledge through interviews for two reasons:

1. All application specialists use terminology and jargon that are specific to a
domain. It is impossible for them to discuss domain requirements without
using this terminology.

2. Some domain knowledge is so familiar t0 stakeholders that they either find it
difficult to explain or they think it 1s so fundamental that it isn’t worth
mentioning. For example, for.a librarian, it goes without saying that all
acquisitions are catalogued before they are added to the library. However, this
may not be obvious to the interviewer, and so it isn’t taken into account in the
requirements.

— Effective interviewers have two characteristics:

1. They are open-minded, avoid pre-conceived ideas about the requirements, and
are willing to-listen to stakeholders. If the stakeholder comes up with
surprising requirements, then they are willing to change their mind about the
system.

2. They prompt the interviewee to get discussions going using a springboard
question; a requirements proposal, or by working together on a prototype
system. They find it much easier to talk in a defined context rather than in
general terms

1.9.3 Scenarios

— They are descriptions of example interaction sessions.
— Each scenario usually covers one or a small number of possible interactions.
— Different forms of scenarios are developed and they provide different types of
information at different levels of detail about the system.
— At its most general, a scenario may include:
A description of what the system and users expects when the scenario starts.

A description of the normal flow of events in the scenario.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 27

Software Engineering [15CS42]

= Adescription of what can go wrong and how this is handled.
= Information about other activities that might be going on at the same time.
= Adescription of the system state when the scenario finishes.

1.9.4 Use Cases

— A use case identifies the actors involved in an interaction and names the type of
interaction.

— Use cases are documented using a high-level use case diagram.

\

The set of use cases represents all of the possible interactions that will be described in

the system requirements.

\

Actors in the process, who may be human or_other systems, are represented as stick
figures.

Each class of interaction is represented as a named ellipse.

Lines link the actors with the interaction.

Arrowheads may be added toines to show how the interaction is initiated.

RN

Each use case should be documented with a textual description. These can then be

linked to other models in the UML that will develop the scenario in more detail.

\J

For example, a brief description of the Setup Consultation use case from fig 1.18
below might be:

Setup consultation allows two or more doctors, working in different offices, to view
the same record at the same time. One doctor initiates the consultation by choosing

the people involved from a drop-down menu of doctors who are online.

The patient record is then displayed on their screens but only the initiating doctor
can edit the record. In addition, a text chat window is created to help coordinate
actions. It is assumed that a phone conference for voice communication will be

separately set up.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 28

Software Engineering [15CS42]

Register 7 Export
. Fatient - f . Ststissis
% T " Mongger e
Miadical Receptionist personal o, | ¥ Generata
- i Report
- i - —
/ View
‘. Recrd ./ O
. — j: .
:t Bt /" Dooior
Husse Recod /
- S.EH;I.

Consultason !
Fig 1.18 Use cases for the MHC-PMS
1.9.5 Ethnography
— Ethnography is an observational technique that can be used to understand operational
processes and help derive support requirements for these processes.
— The value of ethnography is that it helps discover implicit system requirements that
reflect the actual ways that people work, rather than the formal processes defined by

the organization.

/ tmnl:guphll:) f E-Ehne-ﬁng- \ / . Foausad
L hnalgsis Meetings \ Ethnography u
. -~ . iy _ o S
"~ { Prototype
-, Ewaluatson
'EE'“E'"CST’HEH‘I s S-p.h?m w

. Development \, Prtotyping

Fig 1.19: Ethnography and Prototyping for Requirements Analysis
— Ethnography is particularly effective for discovering two types of requirements:

1. Requirements that are derived from the way in which people actually work,
rather than the way in which process definitions say they ought to work

2. Requirements that are derived from cooperation and awareness of other
people’s activities.

— Ethnography can be combined with prototyping as shown in fig 1.19.

1.10 Functional and Non functional Requirements
— Software system requirements are often classified as functional requirements or non-

functional requirements:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 29

Software Engineering [15CS42]

1. Functional requirements: These are statements of services the system should
provide, how the system should react to particular inputs, and how the system
should behave in particular situations.

2. Non-functional requirements: These are constraints on the services or
functions offered by the system. They include timing constraints, constraints
on the development process, and constraints imposed by standards.

1.10.1 Functional Requirements

%

%

—>

—>

The functional requirements for a system describe what the system should do.
These requirements depend on the type of software being developed, the expected
users of the software, and the general approach taken by the organization when
writing requirements.
When expressed as user requirements; functional requirements .are usually described
in an abstract way that can be understood by system users.
Functional system requirements vary from general requirements covering what the
system should do to very specific requirements reflecting local ways of working or an
organization’s existing systems.
Examples for functional requirements for MHC-PMS system includes:
A user shall be able to search the appointments lists for all clinics.
The system shall generate each day, for each clinic, a list of patients who are
expected to attend appointments that day.
Each staff member using the system shall be uniquely identified by his or her
eight- digit employee number.
The functional requirements specification of a system should be both complete and
consistent.
Completeness means that all services required by the user should be defined.

Consistency means that requirements should not have contradictory definitions.

1.10.2 Non-Functional Requirements

%

%

They are requirements that are not directly concerned with the specific services
delivered by the system to its users.
They may relate to emergent system properties such as reliability, response time, and

store occupancy.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 30

Software Engineering [15CS42]

— Non-functional requirements, such as performance, security, or availability, usually
specify or constrain characteristics of the system as a whole.
— Non-functional requirements are often more critical than individual functional
requirements
— The implementation of these requirements may be diffused throughout the system.
There are two reasons for this:
1. Non-functional requirements may affect the overall architecture of a system
rather than the individual components.
2. A single non-functional requirement, such<as a security requirement, may
generate a number of related functional requirements that define new system
services that are required. The figure below shows the classification of non-

functional requirements

Pl £y LI O

Fetey uiremienis
Product D 2 ML T Extema
F i esT BT S o uirasmiEsnis Resquisrsm anis
Bl denoy Dependakbdiny Senwity Regulatoey 2 hical
Requirem ents Requirem ents Requirements Regquirem an s Regquirem ants
Lisaibdiny En vinnim ent A Opeations Dveedopa enit Legelatve
R iresm eanits Fetey i esmienits Feeey uiremienis Feeey uiremienis Requirsments
P erfoeman e Spac ACouniing Salety Seaniy
Feeey uiresmients Feee uirements Requirem ents Requirsments

Fig 1.20: Types of Non-Functional Requirement
— Fig 1.20 is a classification of non-functional requirements.

— The various types includes:
1. Product Requirements:
= These requirements specify or constrain the behavior of the software.
= Examples include performance requirements on how fast the system
must execute and how much memory it requires, reliability
requirements that set out the acceptable failure rate, security

requirements, and usability requirements.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 31

Software Engineering [15CS42]

2. Organizational Requirements:
= These requirements are broad system requirements derived from
policies and procedures in the customer’s and developer’s
organization.
= Examples include operational process requirements that define how the
system will be used, development process requirements that specify the
programming language, the development environment or process
standards to be used, and environmental requirements that specify the
operating environment of the system.
3. External requirements:
= This broad heading covers.all requirements that are derived from
factors external to the system and its development process.
= These may include regulatory requirements that set out what must be
done for the system to be approved for use by a regulator, such as a
central bank:

— The fig 1.21 below shows the metric used for specifying non-functional requirements

Speed ProCess eell trans.a080ns,/5200nd
Lisar fevent respOmnss Bme
Soresn refresh time

Sie Miytes
Mumber of ROM Chips

Emaof me Trasining §ma
Mumber of halp hames

Relhsbility Maan tame 10 falure
Probalality of un.availsbility
Rate of fallure DOurmence
Awailabaity

Robausines TWme tD restant after iadhune

Pementage of events Canming fathwre
Probalality of data corupSon On taluna

Portability Pementage of targst depandant dstements
Mumber of target systems

Fig 1.21: Metrics for specifying non functional requirements

1.11 The Software Requirements Document

— The software requirements document (sometimes called the software requirements
specification or SRS) is an official statement of what the system developers should
— It should include both the user requirements for a system and a detailed specification

of the system requirements.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 32

Software Engineering [15CS42]

— The requirements document has a diverse set of users, ranging from the senior
management of the organization that is paying for the system to the engineers
responsible for developing the software.

— The users of requirements document is as shown below in fig 1.22.

Spedily the requirsmenits and
read them 1o ched that they
| meet thasr needs. CustDnmdrs

spafty changes 10 the
f=h T =) L

Sstem
Cu=homars

L2 the requanemenis
dooument 0 plan & bed for
the system and 10 plan the
system devalopm ent proces.

blanagprs —

Lk tha reguirements 10
L-|51'F1E:mea: ——=| wunderdand what spstem s
& tD be developed.
Lk tha reguirements 10
IEEE"E.""E [.| develop walidation tests tor
ak the sytom.
Lk tha reguirements 10
S??E?;EE underdand the spsiem and
""';". ol "| tha relsfonships betwaen
& s park.

Fig 1.22: Users of a Requirement Document

— Figure 1.23 shows one possible organization for a requirements document that is

based on an IEEE standard for requirements documents

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 33

Software Engineering [15CS42]

Pretace This should define the expecied readership of the document and descibe its
vesion histary, nduding a rationale for the oreation of a new verssin and a
summary of the Changes made in 2ach warson.

Introduction Ths should desaribe the need for the system. k should béefly descdbe the
system’s funcions and explain how it wall wiodk with other systems. i should
akn desoribe how the system fis mio the oversll business or Srategic
ghjedives Of the Drganizstion commissioning the s hweare.

Gloss ary The should deting the tethnical tenms vded n the doument. You should niot
make ssum pions sbout the sxpedence Or eupariea Oof the reader.

Lsier mequirements Herg, you desoribe the sendoes provided for the uses. The non-fundsonal

dalinition system requirements should sko be desofbed in this sedion. The

desription may use natural language, diagrams, or other notations that are
undergandable 10 ostomes. Produd and process standasds that must be
tollweeed should be specified.

System architedure Thes chapier shoull present & high-devel oveniew of the antidpated system
anthneturs, showing the distabutsin Of fun@ins SO0 Systam modul es.
Aschiteoussl components that are rewsad should be highlighted.

System requirsments Thes should desaribe the fun oional and nondunDional requinsments n mbne
Speriicsion distail B neesary, futher detal may sk be sdded to the non-$unics onal
requirements. Intertanss 10 ather sytems may be defined.

Syatem modals This mig ht inClude graphical system modas showing the relationships batwean
$ha dystam Com ponents, the system, and it envirnm ent. Bamples of posilile
midd ek are obgant modek, datadiow models, or $emansic data modelks.

System evolusion Ths should desaribe the fundamental ssumption on which the spstem s
based, and any anticipated changes due b0 hardesare evoluion, changing
wser needs, and 50 on. This secion & usahul for spstem designens & i/ may
help them semid desgn deciaons that would consrain ey fuume changes
10 the system.

Appendices Thesa should provide detsile, spaficindormation that is relsted 10 the
applitation being d evalop ad: tor example, hardwena and detabes descripSons.
Hard are resuiremients dofina the minimal and opSmal conBgusstions for the
system. Databasa raquiraments deling the Mgical Org anizstion 0f $hedata wad
by thesystem and the relstionships batween data,

ndex Severml indexes 0 the dowment may be induded . As well & 5 nomal
alphabescindes, there may be an indes of diagrams, an index of funciions,
and 50 on_

Fig 1.23: The Structure of a Requirements Document

1.12 Requirements Specification

— Requirements specification is the process of writing down the user and system
requirements.in a requirements document.

— System requirements are expanded versions of the user requirements that are used by
software engineers as the starting point for the system design.

— They add detail and explain how the user requirements should be provided by the
system.

— It is practically impossible to exclude all design information. There are several
reasons for this:

— You may have to design an initial architecture of the system to help structure the

requirements specification.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 34

Software Engineering [15CS42]

— The system requirements are organized according to the different sub-systems that

make up the system

— In most cases, systems must interoperate with existing systems, which constrain the

design and impose requirements on the new system.

— The use of a specific architecture to satisfy non-functional requirements may be

necessary.

— The fig 1.24 below shows the different ways of writing system requirement

specification.

Natural langus gB senton oS

Studured natumal language

Diesagn desoripion languages

Gaphical nota S0ns

Mathamatical specifications

The requanéments aré wiitten usng numbered sentonces m na kil
language Each sentence should expree Dne requinsment.

The requirements ane wistten in natural languags on & stands s fomm or
tomplste. Each Gold provides information sbout an spent of the
raguirement.

This apprieth =es a lnguage ke & prog@ammng language, but with
mione alstrac festures 10 spedly the requanements by defining an
Dperational modd of the system. This approach i now mnely used
athough it Can be watul for interfasce specficsions.

Goaphical modes, supplemented by text anniations, ame used 10 dafme
the lunoBonal requinsments for the sysam; UML use Case and sequence
disgrams ame Commbnly usad.

Thess nodations are based on mathematical concepts such & fime-state
machines or 3255, Althoug h thess unambeguous specilicat ons Can reduce
thie ambiguity in a regquinsments doDument, mis Dstomes donk
undestand & formal specficstion. They cannot check that it reprassnts
wihat thesy want and areé reludant 10 A008pt it &5 & sy<iem Confracl.

Fig 1.24 Ways of writing a system Requirements specification

1.12.1 Natural Language Specification

— To minimize misunderstandings when writing natural language requirements, there

are some simple guidelines to be followed:

1.

Invent a standard format and ensure that all requirement definitions adhere to

that format.

Use language consistently to distinguish between mandatory and desirable

requirements.

Use text highlighting (bold, italic, or color) to pick

requirement.

Do not assume that readers understand technical
language. It is easy for words like ‘architecture’

misunderstood. You should, therefore, avoid the use

acronyms.

and ‘module’

out key parts of the

software engineering

to be

of abbreviations, and

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru

Page 35

Software Engineering [15CS42]

5. Whenever possible, you should try to associate a rationale with each user
requirement.
— Fig 1.25 illustrates how these guidelines may be used. It includes two requirements

for the embedded software for the automated insulin pump

1.2 The item shall messure the blood sugar and dedeser msuling f required, every 10 mnubes. (Changes i
blood sugar are rela lhely show 50 move fraguent mreaiarem enl (5 unnecessay; 18ss equent measurament
Could lead 10 unnetassanily high sugar |ewals)

1.6 The zpstem shall run & saif-bast rouing avery minute with the OndiSons t0 be tested and the smsphisted
a0#ns defined in Tabde 1. (A salf-lest nouline Con distower haehwang and Soffware probrlems and alerl the wser
o the fadt the normal gperalon may be imp ossibia)

Fig 1.25: Example requirements for the insulin pump-oftware system
1.12.2 Structured Specifications
— Structured natural language is a way of writing system requirements where the
freedom of the requirements writer is-limited and all requirements are written in a
standard way.
— Structured language notations use templates to specify system requirements.
— An example of a form-based specification, that defines how to calculate the dose of
insulin to be delivered when the blood sugar is within a safe band, as shown in fig

1.26.

Insarlin Pump /Control Software SRE/5.5.2

Fundtion Compute msuln dose Sale sugar level

IDesori pitn Computes the dose of insulin 10 be delvensd when the turment messared sugar lesel 5 n
the safe rone betwreen 3 and 7 units.

Inputs Current sugar réadmg (12), the prewous twi readngs (rD and r1).

S e urrent sugar réading from sensor. ther readings iom memiosy.

Outputs CormpDas-e—the dose n msuln 10 be defvered.

D2t e it O Mam Ccontnod Ioop.

Acion CompDiose i 2ero i the sugar level B stabie or falling or i the lewel B noressng but the

rate of inCrease & decresasing . B the level & inoressing and the mie of inorease &
mrassing, then CompDose s 0omputed by drding the difterence batwesn the cunnent
sugar leye] and the presious lew el by 4 and rounding the result. i the result, B nounded to
z8rD then CompDose & 528 10 the mmimum dos2 that can be delivered.

Requirem ents TwD préssius réademgs 50 that the @i 0f thange of sugar l=wal can be oomputed.

Pre-condifion The msulin reseseDir Contains atlesst the maamum sllowed ﬂﬂE dose of nsulin.
Post-mondition rD i replaced by r1 #hen 1 & replacad by r2.
Side afects Hone.

Fig 1.26: A structured specification of a requirement for an insulin pump

— When a standard form is used for specifying functional requirements, the following
information should be included:
» A description of the function or entity being specified.
~ A description of its inputs and where these come from.

» A description of its outputs and where these go to.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 36

Software Engineering [15CS42]

Information about the information that is needed for the computation or other
entities in the system that are used (the ‘requires’ part).

A description of the action to be taken.

If a functional approach is used, a pre-condition setting out what must be true
before the function is called, and a post-condition specifying what is true after
the function is called.

A description of the side effects (if any) of the operation.

1.13 Requirements Validation

— Requirements validation is the process of checking that requirements actually define

the system that the customer really wants.

— It overlaps with analysis as it is<concerned with finding problems with the

requirements.

— During the requirements validation process, different types of checks should be

carried out on the requirements in the requirements document.

— These checks include:

1.

ValidityChecks: A user may think that a system is needed to perform certain
functions.

Consistency Checks: Requirements in the document should not conflict. That
is, there should not be contradictory constraints or different descriptions of the
same system function.

Completeness Checks: The requirements document should include
requirements that define all functions and the constraints intended by the
system user.

Realism Checks: Using knowledge of existing technology, the requirements
should be checked to ensure that they can actually be implemented.
Verifiability: To reduce the potential for dispute between customer and
contractor, system requirements should always be written so that they are
verifiable. This means that you should be able to write a set of tests that can

demonstrate that the delivered system meets each specified requirement.

— There are a number of requirements validation techniques that can be used

individually or in conjunction with one another:

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 37

Software Engineering [15CS42]

1. Requirements Reviews: The requirements are analyzed systematically by a
team of reviewers who check for errors and inconsistencies.

2. Prototyping: In this approach to validation, an executable model of the
system in question is demonstrated to end-users and customers. They can
experiment with this model to see if it meets their real needs.

3. Test-Case Generation: Requirements should be testable. If the tests for the
requirements are devised as part of the validation process, this often reveals

requirements problems.

1.14 Requirements Management

— The requirements for large software systems are always changing.
— Once a system has been installed and-is regularly used, new requirements inevitably
emerge.
— There are several reasons why change is inevitable:
The business and technical environment of the system always changes after
installation. New hardware may be introduced, it may be necessary to
interface the system with other systems, business priorities may change
The people who pay for a system and the users of that system are rarely the
same people. System customers impose requirements because of
organizational and budgetary constraints. These may conflict with end-user
requirements and, after delivery, new features may have to be added for user
support if the system is to meet its goals.
Large systems usually have a diverse user community, with many users having
different requirements and priorities that may be conflicting or contradictory.
1.12.1 Requirements Management Planning
— Planning is an essential first stage in the requirements management process. The
planning stage establishes the level of requirements management detail that is
required.
— During the requirements management stage, a decision is to be taken on:
1. Requirements Identification:
= Each requirement must be uniquely identified so that it can be cross-

referenced with other requirements & used in traceability assessments.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 38

Software Engineering [15CS42]

2. A Change Management Process:
= This is the set of activities that assess the impact and cost of changes.
3. Traceability Policies:
= These policies define the relationships between each requirement and
between the requirements and the system design that should be
recorded.
= The traceability policy should also define how these records should be
maintained.
4. Tool Support:
= Requirements management involves the processing of large amounts of
information about the requirements.
= Tools that may be .used range from specialist requirements
management systems to spreadsheets and simple database systems.
= Tool supports might be needed for:

a. Requirements Storage: The requirements should be maintained
in a secure, managed data store that is accessible to everyone
involved in the requirements engineering process.

b. Change Management: The process of change management is

simplified. if active tool support is available as shown in fig

1.27.
ldenishiad Fewmad
Prioblem Problem Ansheas and Chang 8 Analyes Change Raquirements
Change 5pecficaion and Cosfing mplementsson [

Fig 1.27: Requirements Change Management
c. Traceability Management: Tool support for traceability allows

related requirements to be discovered. Some tools are available
which use natural language processing techniques to help
discover possible relationships between requirements.
— There are three principal stages to a change management process:
1. Problem Analysis and Change Specification:

The process starts with an identified requirements problem or,

sometimes, with a specific change proposal.

During this stage, the problem or the change proposal is analyzed to

check that it is valid.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 39

Software Engineering [15CS42]

= This analysis is fed back to the change requestor who may respond
with a more specific requirements change proposal, or decide to
withdraw the request.
2. Change Analysis and Costing:
= The effect of the proposed change is assessed using traceability
information and general knowledge of the system requirements.
3. Change Implementation:
= The requirements document and, where necessary, the system design
and implementation, are modified.
= Requirements document will have to be organized so that changes can

be made to it without extensive rewriting or reorganization.

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 40

