

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 1

1. INTRODUCTION, SOFTWARE PROCESSES,

REQUIREMENTS ENGINEERING

INTRODUCTION

1.1 Software Crisis

 Software crisis is a term used in the early days of computing science for the difficulty

of writing useful and efficient computer programs in the required time.

 The software crisis was due to the rapid increases in computer power and the

complexity of the problems that could be tackled.

 With the increase in the complexity of the software, many software problems arose

because existing methods were neither sufficient nor up to the mark.

 The causes of the software crisis were linked to the overall complexity of hardware

and the software development process.

 The crisis manifested itself in several ways:

* Projects running over-budget

* Projects running over-time

* Software was very inefficient

* Software was of low quality

* Software often did not meet requirements

* Projects were unmanageable and code difficult to maintain

* Software was never delivered

1.2 Need for Software Engineering

 The need of software engineering arises because of higher rate of change in user

requirement and environment on which the software is working.

 The following factors contribute to the need of software engineering.

* Large Software: As the size of software becomes large, engineering has to

step to give it a scientific process.

* Scalability: If the software process were not based on scientific and

engineering concepts, it would be easier to re-create new software than to

scale an existing one.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 2

* Cost: As hardware industry has shown its skills and huge manufacturing has

lower down the price of computer and electronic hardware. But the cost of

software remains high if proper process is not adapted.

* Dynamic Nature: The always growing and adapting nature of software

hugely depends upon the environment in which user works. If the nature of

software is always changing, new enhancements need to be done in the

existing one. This is where software engineering plays a good role.

* Quality Management: Better process of software development provides

better and quality software product.

1.3 Professional Software Development

 Software engineering is intended to support professional software development, rather

than individual programming.

 It includes techniques that support program specification, design, and evolution, none

of which are normally relevant for personal software development.

 Software is not just the programs themselves but also all associated documentation

and configuration data that is required to make these programs operate correctly.

 A professionally developed software system is often more than a single program.

 The system usually consists of a number of separate programs and configuration files

that are used to set up these programs.

 It may include system documentation, which describes the structure of the system;

user documentation, which explains how to use the system, and websites for users to

download recent product information

 Fig 1.1 gives frequently asked questions about software.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 3

Fig 1.1: Frequently asked questions about software

 There are two fundamental types of software product:

1. Generic Products: These are stand-alone systems that are produced by a

development organization and sold on the open market to any customer who is

able to buy them. Examples of this type of product include software for PCs

such as databases, word processors, drawing packages and project

management tools.

2. Customized (or bespoke) Products: These are systems which are

commissioned by a particular customer. A software contractor develops the

software especially for that customer. Examples of this type of software

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 4

include control systems for electronic devices, systems written to support a

particular business process and air traffic control systems.

 Fig 1.2 gives the essential characteristics of a professional software system.

Fig 1.2: Essential attributes of good software

1.3.1 Software Engineering

 Software engineering is an engineering discipline that is concerned with all aspects of

software production from the early stages of system specification through to

maintaining the system after it has gone into use.

 In this definition, there are two key phrases:

1. Engineering discipline: Engineers make things work. They apply theories,

methods, and tools where these are appropriate. However, they use them

selectively and always try to discover solutions to problems even when there

are no applicable theories and methods

2. All aspects of software production: Software engineering is not just

concerned with the technical processes of software development. It also

includes activities such as software project management and the development

of tools, methods, and theories to support software production.

 Software engineering is important for two reasons:

1. More and more, individuals and society rely on advanced software systems. It

helps users to produce reliable and trustworthy systems economically and

quickly.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 5

2. It is usually cheaper, in the long run, to use software engineering methods and

techniques for software systems rather than just write the programs as if it was

a personal programming project.

 There are four fundamental activities that are common to all software processes.

These activities are:

1. Software Specification, where customers and engineers define the software

that is to be produced and the constraints on its operation.

2. Software Development, where the software is designed and programmed.

3. Software Validation, where the software is checked to ensure that it is what

the customer requires.

4. Software Evolution, where the software is modified to reflect changing

customer and market requirements.

 Software engineering is related to both computer science and systems engineering:

1. Computer Science is concerned with the theories and methods that underlie

computers and software systems, whereas software engineering is concerned

with the practical problems of producing software.

2. System Engineering is concerned with all aspects of the development and

evolution of complex systems where software plays a major role. System

engineering is therefore concerned with hardware development, policy and

process design and system deployment, as well as software engineering.

System engineers are involved in specifying the system, defining its overall

architecture, and then integrating the different parts to create the finished

system. They are less concerned with the engineering of the system

components (hardware, software, etc.)

 There are three general issues that affect many different types of software:

1. Heterogeneity: Here it becomes necessary to integrate new software with

older legacy systems written in different programming languages. The

challenge here is to develop techniques for building dependable software that

is flexible enough to cope with this heterogeneity.

2. Business and Social Change: Business and society are changing incredibly

quickly as emerging economies develop and new technologies become

available. They need to be able to change their existing software and to rapidly

develop new software.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 6

3. Security and Trust: As software is intertwined with all aspects of our lives, it

is essential that we can trust that software. This is especially true for remote

software systems accessed through a web page or web service interface.

1.3.2 Software Engineering Diversity

 There are many different types of application including:

1. Stand-alone applications: These are application systems that run on a local

computer, such as a PC. They include all necessary functionality and do not

need to be connected to a network. Examples of such applications are office

applications on a PC, CAD programs, photo manipulation software, etc.

2. Interactive transaction-based applications: These are applications that

execute on a remote computer and that are accessed by users from their own

PCs or terminals. These include web applications such as e-commerce

applications where users can interact with a remote system to buy goods and

services.

3. Embedded control systems: These are software control systems that control

and manage hardware devices. Examples of embedded systems include the

software in a mobile (cell) phone, software that controls anti-lock braking in a

car, and software in a microwave oven to control the cooking process.

4. Batch processing systems: These are business systems that are designed to

process data in large batches. They process large numbers of individual inputs

to create corresponding outputs. Examples of batch systems include periodic

billing systems, such as phone billing systems, and salary payment systems.

5. Entertainment systems: These are systems that are primarily for personal use

and which are intended to entertain the user. Most of these systems are games

of one kind or another. The quality of the user interaction offered is the most

important distinguishing characteristic of entertainment systems.

6. Systems for modeling and simulation: These are systems that are developed

by scientists and engineers to model physical processes or situations, which

include many, separate, interacting objects. These are often computationally

intensive and require high-performance parallel systems for execution.

7. Data collection systems: These are systems that collect data from their

environment using a set of sensors and send that data to other systems for

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 7

processing. The software has to interact with sensors and often is installed in a

hostile environment such as inside an engine or in a remote location.

8. Systems of systems: These are systems that are composed of a number of

other software systems. Some of these may be generic software products, such

as a spreadsheet program. Other systems in the assembly may be specially

written for that environment.

 There are software engineering fundamentals that apply to all types of software

system:

* They should be developed using a managed and understood development

process. The organization developing the software should plan the

development process and have clear ideas of what will be produced and when

it will be completed.

* Dependability and performance are important for all types of systems.

Software should behave as expected, without failures and should be available

for use when it is required. It should be safe in its operation and, as far as

possible, should be secure against external attack. The system should perform

efficiently and should not waste resources.

* Understanding and managing the software specification and requirements are

important. It is important to understand what different customers and users of

the system expect from it and then it is needed to manage their expectations so

that a useful system can be delivered within budget and to schedule.

* Existing resources must be used efficiently. This means that, where

appropriate, you should reuse software that has already been developed rather

than write new software.

1.3.3 Software engineering and the Web

 The next stage in the development of web-based systems was the notion of web

services.

 Web services are software components that deliver specific, useful functionality and

which are accessed over the Web. - Applications are constructed by integrating these

web services, which may be provided by different companies.

 In principle, this linking can be dynamic so that an application may use different web

services each time that it is executed.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 8

 Changes in the software organization, led to changes in the ways that web-based

systems are engineered. For example:

* Software reuse has become the dominant approach for constructing web-based

systems. When building these systems, you think about how you can assemble

them from pre-existing software components and systems.

* It is now generally recognized that it is impractical to specify all the

requirements for such systems in advance. Web-based systems should be

developed and delivered incrementally.

* User interfaces are constrained by the capabilities of web browsers. Web

forms with local scripting are more commonly used. Application interfaces on

web-based systems are often poorer than the specially designed user interfaces

on PC system products.

1.4 Software Engineering Ethics

 Some professional responsibilities includes:

 Confidentiality: You should normally respect the confidentiality of your

employers or clients irrespective of whether or not a formal confidentiality

agreement has been signed.

 Competence: You should not misrepresent your level of competence. You

should not knowingly accept work that is outside your competence.

 Intellectual Property Rights: You should be aware of local laws governing

the use of intellectual property such as patents and copyright. You should be

careful to ensure that the intellectual property of employers and clients is

protected.

 Computer Misuse: You should not use your technical skills to misuse other

people’s computers.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 9

Fig 1.3: ACM/IEEE Code of Ethics

1.5 Case Studies

 3 types of systems used as case studies are:

1. An Embedded System:

* This is a system where the software controls a hardware device and is

embedded in that device.

* Issues in embedded systems typically include physical size,

responsiveness, power management, etc.

* The example of an embedded system used here is a software system to

control a medical device.

2. An Information System:

* This is a system whose primary purpose is to manage and provide

access to a database of information.

* Issues in information systems include security, usability, privacy, and

maintaining data integrity.

* The example of an information system t used here is a medical records

system.

3. A Sensor-based Data Collection System:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 10

* This is a system whose primary purpose is to collect data from a set of

sensors and process that data in some way.

* The key requirements of such systems are reliability, even in hostile

environmental conditions, and maintainability.

* The example of a data collection system used here is a wilderness

weather station.

1.5.1 An insulin pump control system

 An insulin pump is a medical system that simulates the operation of the pancreas.

 The software controlling this system is an embedded system, which collects

information from a sensor and controls a pump that delivers a controlled dose of

insulin to a user.

 Diabetes is a relatively common condition where the human pancreas is unable to

produce sufficient quantities of a hormone called insulin.

 Insulin metabolises glucose (sugar) in the blood.

 A software-controlled insulin delivery system might work by using a micro sensor

embedded in the patient to measure some blood parameter that is proportional to the

sugar level.

 This is then sent to the pump controller.

 This controller computes the sugar level and the amount of insulin that is needed. It

then sends signals to a miniaturized pump to deliver the insulin via a permanently

attached needle.

 Fig 1.4 shows the insulin pump hardware.

 Fig 1.5 is a UML activity model that illustrates how the software transforms an input

blood sugar level to a sequence of commands that drive the insulin pump.

 Two essential high-level requirements that this system must meet includes:

* The system shall be available to deliver insulin when required.

* The system shall perform reliably and deliver the correct amount of insulin to

counteract the current level of blood sugar

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 11

Fig 1.4: Insulin pump hardware

Fig 1.5: Activity model of the insulin pump

1.5.2 A patient information system for mental health care

 A patient information system to support mental health care is a medical information

system that maintains information about patients suffering from mental health

problems and the treatments that they have received.

 Most mental health patients do not require dedicated hospital treatment but need to

attend specialist clinics regularly where they can meet a doctor who has detailed

knowledge of their problems.

 To make it easier for patients to attend, these clinics are not just run in hospitals.

 They may also be held in local medical practices or community centers.

 The MHC-PMS (Mental Health Care-Patient Management System) is an information

system that is intended for use in clinics. It makes use of a centralized database of

patient information but has also been designed to run on a PC, so that it may be

accessed and used from sites that do not have secure network connectivity.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 12

 When the local systems have secure network access, they use patient information in

the database but they can download and use local copies of patient records when they

are disconnected.

 The system is not a complete medical records system so does not maintain

information about other medical conditions.

Fig 1.6: The organization of the MHC-PMS

 The MHC-PMS has two overall goals:

* To generate management information that allows health service managers to

assess performance against local and government targets.

* To provide medical staff with timely information to support the treatment of

patients.

 The system is used to record information about patients (name, address, age, next of

kin, etc.), consultations (date, doctor seen, subjective impressions of the patient, etc.),

conditions, and treatments.

 Reports are generated at regular intervals for medical staff and health authority

managers

 The key features of the system are:

1. Individual care Management: Clinicians can create records for patients, edit

the information in the system, view patient history, etc.

2. Patient Monitoring: The system regularly monitors the records of patients

that are involved in treatment and issues warnings if possible problems are

detected.

3. Administrative Reporting: The system generates monthly management

reports showing the number of patients treated at each clinic, the number of

patients who have entered and left the care system, number of patients

sectioned, the drugs prescribed and their costs, etc.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 13

1.5.3 A wilderness weather station

 Wilderness weather stations are part of a larger system (Figure 1.5.4), which is a

weather information system that collects data from weather stations and makes it

available to other systems for processing.

 The systems in Fig 1.7 are:

1. The weather station system: This is responsible for collecting weather data,

carrying out some initial data processing, and transmitting it to the data

management system.

2. The data management and archiving system: This system collects the data

from all of the wilderness weather stations, carries out data processing and

analysis, and archives the data in a form that can be retrieved by other

systems, such as weather forecasting systems.

3. The station maintenance system: This system can communicate by satellite

with all wilderness weather stations to monitor the health of these systems and

provide reports of problems. It can update the embedded software in these

systems. In the event of system problems, this system can also be used to

remotely control a wilderness weather system

 Each weather station is battery-powered and must be entirely self-contained—there

are no external power or network cables available.

 All communications are through a relatively slow-speed satellite link and the weather

station must include some mechanism (solar or wind power) to charge its batteries.

 As they are deployed in wilderness areas, they are exposed to severe environmental

conditions and may be damaged by animals.

 The station software is therefore not just concerned with data collection.

 It must also:

* Monitor the instruments, power, and communication hardware and report

faults to the management system.

* Manage the system power, ensuring that batteries are charged whenever the

environmental conditions permit but also that generators are shut down in

potentially damaging weather conditions, such as high wind.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 14

* Allow for dynamic reconfiguration where parts of the software are replaced

with new versions and where backup instruments are switched into the system

in the event of system failure.

Fig 1.7: The weather station’s environment

SOFTWARE PROCESSES

 A software process is a set of related activities that leads to the production of a

software product.

 These activities may involve the development of software from scratch in a standard

programming language like Java or C.

 4 activities that are fundamental to software engineering:

1. Software Specification: The functionality of the software and constraints on

its operation must be defined.

2. Software Design and Implementation: The software to meet the

specification must be produced

3. Software Validation: The software must be validated to ensure that it does

what the customer wants.

4. Software Evolution: The software must evolve to meet changing customer

needs.

 Process descriptions may also include:

1. Products, which are the outcomes of a process activity. For example, the

outcome of the activity of architectural design may be a model of the software

architecture.

2. Roles, which reflect the responsibilities of the people involved in the process.

Examples of roles are project manager, configuration manager, programmer,

etc.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 15

3. Pre and post-conditions, which are statements that are true before and after a

process activity has been enacted or a product produced. For example, before

architectural design begins, a pre-condition may be that all requirements have

been approved by the customer; after this activity is finished, a post-condition

might be that the UML models describing the architecture have been reviewed

1.6 Models

 A software process model is a simplified representation of a software process.

 Each process model represents a process from a particular perspective, and thus

provides only partial information about that process.

1.6.1 The Waterfall Model

 Because of the cascade from one phase to another, this model is known as the

‘waterfall model’ or software life cycle.

 The waterfall model is an example of a plan- driven process.

 The principal stages of the waterfall model [Fig 1.8] directly reflect the fundamental

development activities:

1. Requirements analysis and definition: The system’s services, constraints,

and goals are established by consultation with system users. They are then

defined in detail and serve as a system specification.

2. System and software design: The systems design process allocates the

requirements to either hardware or software systems by establishing an overall

system architecture. Software design involves identifying and describing the

fundamental software system abstractions and their relationships.

3. Implementation and unit testing: During this stage, the software design is

realized as a set of programs or program units. Unit testing involves verifying

that each unit meets its specification.

4. Integration and system testing: The individual program units or programs

are integrated and tested as a complete system to ensure that the software

requirements have been met. After testing, the software system is delivered to

the customer.

5. Operation and maintenance: This is the longest life cycle phase. The system

is installed and put into practical use. Maintenance involves correcting errors

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 16

which were not discovered in earlier stages of the life cycle, improving the

implementation of system units and enhancing the system’s services as new

requirements are discovered.

Fig 1.8: The Waterfall Model

 The waterfall model is consistent with other engineering process models and

documentation is produced at each phase.

 This makes the process visible so managers can monitor progress against the

development plan.

 Its major problem is the inflexible partitioning of the project into distinct stages.

 Commitments must be made at an early stage in the process, which makes it difficult

to respond to changing customer requirements

1.6.2 Incremental Development

 Incremental development is based on the idea of developing an initial implementation,

exposing this to user comment and evolving it through several versions until an

adequate system has been developed [Fig 1.9].

 Incremental development has three important benefits, compared to the waterfall

model:

* The cost of accommodating changing customer requirements is reduced. The

amount of analysis and documentation that has to be redone is much less than

is required with the waterfall model.

* It is easier to get customer feedback on the development work that has been

done.

* More rapid delivery and deployment of useful software to the customer is

possible, even if all of the functionality has not been included.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 17

 From a management perspective, the incremental approach has two problems:

* The process is not visible. Managers need regular deliverables to measure

progress. If systems are developed quickly, it is not cost-effective to produce

documents that reflect every version of the system.

* System structure tends to degrade as new increments are added. Unless time

and money is spent on refactoring to improve the software, regular change

tends to corrupt its structure. Incorporating further software changes becomes

increasingly difficult and costly.

Fig 1.9: Incremental Development

1.6.3 Boehm’s Spiral Model

 Here, the software process is represented as a spiral, rather than a sequence of

activities with some backtracking from one activity to another [Fig 1.10].

 Each loop in the spiral represents a phase of the software process.

 Thus, the innermost loop might be concerned with system feasibility, the next loop

with requirements definition, the next loop with system design, and so on.

 Each loop in the spiral is split into four sectors:

1. Objective Setting: Specific objectives for that phase of the project are

defined. Constraints on the process and the product are identified and a

detailed management plan is drawn up. Project risks are identified.

2. Risk Assessment and Reduction: For each of the identified project risks, a

detailed analysis is carried out. Steps are taken to reduce the risk. For example,

if there is a risk that the requirements are inappropriate, a prototype system

may be developed.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 18

3. Development and Validation: After risk evaluation, a development model for

the system is chosen. For example, throwaway prototyping may be the best

development approach if user interface risks are dominant.

4. Planning: The project is reviewed and a decision made whether to continue

with a further loop of the spiral. If it is decided to continue, plans are drawn up

for the next phase of the project.

Fig 1.10: Boehm’s spiral model of the software process

1.7 Process Activities

 The four basic process activities of specification, development, validation, and

evolution are organized differently in different development processes

1.7.1 Software Specification

 It is the process of understanding and defining what services are required from the

system and identifying the constraints on the system’s operation and development.

 The requirements engineering process aims (Fig 1.11) to produce an agreed

requirements document that specifies a system satisfying stakeholder requirements.

 Requirements are usually presented at two levels of detail.

 End-users and customers need a high-level statement of the requirements; system

developers need a more detailed system specification.

 There are four main activities in the requirements engineering process:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 19

1. Feasibility Study:

* An estimate is made of whether the identified user needs may be

satisfied using current software and hardware technologies.

* The study considers whether the proposed system will be cost-effective

from a business point of view and if it can be developed within

existing budgetary constraints.

2. Requirements Elicitation and Analysis:

* Process of deriving the system requirements through observation of

existing systems, discussions with potential users and procurers, task

analysis, and so on.

* May involve the development of one or more system models and

prototypes.

3. Requirements Specification:

* It is the activity of translating the information gathered during the

analysis activity into a document that defines a set of requirements.

* Two types of requirements may be included in this document.

* User requirements are abstract statements of the system requirements

for the customer and end-user of the system; system requirements are a

more detailed description of the functionality to be provided.

4. Requirements Validation:

* This activity checks the requirements for realism, consistency, and

completeness.

* During this process, errors in the requirements document are inevitably

discovered. It must then be modified to correct these problems.

Fig 1.11: The Requirements Engineering Process

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 20

1.7.2 Software Design and Implementation

 The implementation stage of software development is the process of converting a

system specification into an executable system.

 A software design is a description of the structure of the software to be implemented,

the data models and structures used by the system, the interfaces between system

components and, sometimes, the algorithms used .

 Fig 1.12 shows an abstract model of this process showing the inputs to the design

process, process activities, and the documents produced as outputs from this process.

 It shows four activities that may be part of the design process for information systems:

1. Architectural design, where you identify the overall structure of the system,

the principal components (sometimes called sub-systems or modules), their

relationships, and how they are distributed.

2. Interface design, where you define the interfaces between system

components. This interface specification must be unambiguous. With a precise

interface, a component can be used without other components having to know

how it is implemented. Once interface specifications are agreed, the

components can be designed and developed concurrently.

3. Component design, where you take each system component and design how

it will operate. This may be a simple statement of the expected functionality to

be implemented, with the specific design left to the programmer. The design

model may be used to automatically generate an implementation.

4. Database design, where you design the system data structures and how these

are to be represented in a database. Again, the work here depends on whether

an existing database is to be reused or a new database is to be created

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 21

Fig 1.12: A general model of the design process

1.6.3 Software Validation

 Software validation or, more generally, verification and validation (V&V) is intended

to show that a system both conforms to its specification and that it meets the

expectations of the system customer.

 Program testing, where the system is executed using simulated test data, is the

principal validation technique.

 Validation may also involve checking processes, such as inspections and reviews, at

each stage of the software process from user requirements definition to program

development.

 Fig 1.13 shows a three-stage testing process in which system components are tested

then the integrated system is tested and, finally, the system is tested with the

customer’s data.

 The stages in the testing process are:

1. Development Testing:

* The components making up the system are tested by the people

developing the system.

* Each component is tested independently, without other system

components.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 22

* Components may be simple entities such as functions or object classes,

or may be coherent groupings of these entities.

2. System Testing:

* System components are integrated to create a complete system.

* This process is concerned with finding errors that result from

unanticipated interactions between components and component

interface problems.

* It is also concerned with showing that the system meets its functional

and non-functional requirements, and testing the emergent system

properties.

3. Acceptance Testing:

* This is the final stage in the testing process before the system is

accepted for operational use.

* The system is tested with data supplied by the system customer rather

than with simulated test data. Acceptance testing may reveal errors and

omissions in the system requirements definition, because the real data

exercise the system in different ways from the test data.

 Fig 1.14 illustrates how test plans are the link between testing and development

activities. This is sometimes called the V-model of development.

 Acceptance testing is sometimes called ‘alpha testing’.

 Custom systems are developed for a single client.

 The alpha testing process continues until the system developer and the client agree

that the delivered system is an acceptable implementation of the requirements.

 When a system is to be marketed as a software product, a testing process called ‘beta

testing’ is often used.

 Beta testing involves delivering a system to a number of potential customers who

agree to use that system. They report problems to the system developers.

Fig 1.13: Stages of testing

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 23

Fig 1.14: Testing phases in a plan-driven software process

1.6.4 Software Evolution

 The flexibility of software systems is one of the main reasons why more and more

software is being incorporated in large, complex systems.

 Once a decision has been made to manufacture hardware, it is very expensive to make

changes to the hardware design.

 However, changes can be made to software at any time during or after the system

development.

 Even extensive changes are still much cheaper than corresponding changes to system

hardware.

 The fig 1.15 shows that software is continually changed over its lifetime in response

to changing requirements and customer needs

Fig 1.15: System Evolution

REQUIREMENTS ENGINEERING

1.8 Requirements Engineering Processes

 Requirements engineering processes may include four high-level activities.

 These focus on assessing if the system is useful to the business (feasibility study),

discovering requirements (elicitation and analysis), converting these requirements into

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 24

some standard form (specification), and checking that the requirements actually

define the system that the customer wants (validation).

 Fig 1.16 below shows this interleaving. The activities are organized as an iterative

process around a spiral, with the output being a system requirements document.

Fig 1.16: A spiral view of the requirements engineering process.

 The amount of time and effort devoted to each activity in each iteration depends on

the stage of the overall process and the type of system being developed.

 This spiral model accommodates approaches to development where the requirements

are developed to different levels of detail.

 The number of iterations around the spiral can vary so the spiral can be exited after

some or all of the user requirements have been elicited

 1.9 Requirements Elicitation and Analysis

 After an initial feasibility study, the next stage of the requirements engineering

process is requirements elicitation and analysis.

 In this activity, software engineers work with customers and system end-users to find

out about the application domain, what services the system should provide, the

required performance of the system, hardware constraints, and so on.

 A process model of the elicitation and analysis process is shown in fig 1.17.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 25

Fig 1.17: The requirements elicitation and analysis process

 The process activities are:

1. Requirements discovery: This is the process of interacting with stakeholders

of the system to discover their requirements. Domain requirements from

stakeholders and documentation are also discovered during this activity.

2. Requirements classification and organization: This activity takes the

unstructured collection of requirements, groups related requirements, and

organizes them into coherent clusters. The most common way of grouping

requirements is to use a model of the system architecture to identify sub-

systems and to associate requirements with each sub-system.

3. Requirements prioritization and negotiation: This activity is concerned

with prioritizing requirements and finding and resolving requirements

conflicts through negotiation. Usually, stakeholders have to meet to resolve

differences and agree on compromise requirements.

4. Requirements specification: The requirements are documented and input into

the next round of the spiral. Formal or informal requirements documents may

be produced.

 Eliciting and understanding requirements from system stakeholders is a difficult

process for several reasons:

* Stakeholders often don’t know what they want from a computer system except

in the most general terms; they may find it difficult to articulate what they

want the system to do; they may make unrealistic demands because they don’t

know what is and isn’t feasible.

* Stakeholders in a system naturally express requirements in their own terms

and with implicit knowledge of their own work. Requirements engineers,

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 26

without experience in the customer’s domain, may not understand these

requirements.

* Different stakeholders have different requirements and they may express these

in different ways. Requirements engineers have to discover all potential

sources of requirements and discover commonalities and conflict.

* Political factors may influence the requirements of a system. Managers may

demand specific system requirements because these will allow them to

increase their influence in the organization.

* The economic and business environment in which the analysis takes place is

dynamic. It inevitably changes during the analysis process. The importance of

particular requirements may change. New requirements may emerge from new

stakeholders who were not originally consulted.

1.9.1 Requirements Discovery

 Requirements discovery (sometime called requirements elicitation) is the process of

gathering information about the required system and existing systems, and distilling

the user and system requirements from this information.

 For example, system stakeholders for the mental healthcare patient information

system include:

* Patients whose information is recorded in the system.

* Doctors who are responsible for assessing and treating patients.

* Nurses who coordinate the consultations with doctors and administer some

treatments.

* Medical receptionists who manage patients’ appointments.

* IT staff who are responsible for installing and maintaining the system. These

different requirements sources (stakeholders, domain, systems) can all be

represented as system viewpoints with each viewpoint showing a subset of the

requirements for the system.

1.9.2 Interviewing

 In these interviews, the requirements engineering team puts questions to stakeholders

about the system that they currently use and the system to be developed.

 Interviews may be of two types:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 27

1. Closed interviews, where the stakeholder answers a pre-defined set of

questions.

2. Open interviews, in which there is no pre-defined agenda. The requirements

engineering team explores a range of issues with system stakeholders and

hence develop a better understanding of their needs.

 It can be difficult to elicit domain knowledge through interviews for two reasons:

1. All application specialists use terminology and jargon that are specific to a

domain. It is impossible for them to discuss domain requirements without

using this terminology.

2. Some domain knowledge is so familiar to stakeholders that they either find it

difficult to explain or they think it is so fundamental that it isn’t worth

mentioning. For example, for a librarian, it goes without saying that all

acquisitions are catalogued before they are added to the library. However, this

may not be obvious to the interviewer, and so it isn’t taken into account in the

requirements.

 Effective interviewers have two characteristics:

1. They are open-minded, avoid pre-conceived ideas about the requirements, and

are willing to listen to stakeholders. If the stakeholder comes up with

surprising requirements, then they are willing to change their mind about the

system.

2. They prompt the interviewee to get discussions going using a springboard

question, a requirements proposal, or by working together on a prototype

system. They find it much easier to talk in a defined context rather than in

general terms

1.9.3 Scenarios

 They are descriptions of example interaction sessions.

 Each scenario usually covers one or a small number of possible interactions.

 Different forms of scenarios are developed and they provide different types of

information at different levels of detail about the system.

 At its most general, a scenario may include:

* A description of what the system and users expects when the scenario starts.

* A description of the normal flow of events in the scenario.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 28

* A description of what can go wrong and how this is handled.

* Information about other activities that might be going on at the same time.

* A description of the system state when the scenario finishes.

1.9.4 Use Cases

 A use case identifies the actors involved in an interaction and names the type of

interaction.

 Use cases are documented using a high-level use case diagram.

 The set of use cases represents all of the possible interactions that will be described in

the system requirements.

 Actors in the process, who may be human or other systems, are represented as stick

figures.

 Each class of interaction is represented as a named ellipse.

 Lines link the actors with the interaction.

 Arrowheads may be added to lines to show how the interaction is initiated.

 Each use case should be documented with a textual description. These can then be

linked to other models in the UML that will develop the scenario in more detail.

 For example, a brief description of the Setup Consultation use case from fig 1.18

below might be:

Setup consultation allows two or more doctors, working in different offices, to view

the same record at the same time. One doctor initiates the consultation by choosing

the people involved from a drop-down menu of doctors who are online.

The patient record is then displayed on their screens but only the initiating doctor

can edit the record. In addition, a text chat window is created to help coordinate

actions. It is assumed that a phone conference for voice communication will be

separately set up.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 29

Fig 1.18 Use cases for the MHC-PMS

1.9.5 Ethnography

 Ethnography is an observational technique that can be used to understand operational

processes and help derive support requirements for these processes.

 The value of ethnography is that it helps discover implicit system requirements that

reflect the actual ways that people work, rather than the formal processes defined by

the organization.

Fig 1.19: Ethnography and Prototyping for Requirements Analysis

 Ethnography is particularly effective for discovering two types of requirements:

1. Requirements that are derived from the way in which people actually work,

rather than the way in which process definitions say they ought to work

2. Requirements that are derived from cooperation and awareness of other

people’s activities.

 Ethnography can be combined with prototyping as shown in fig 1.19.

1.10 Functional and Non functional Requirements

 Software system requirements are often classified as functional requirements or non-

functional requirements:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 30

1. Functional requirements: These are statements of services the system should

provide, how the system should react to particular inputs, and how the system

should behave in particular situations.

2. Non-functional requirements: These are constraints on the services or

functions offered by the system. They include timing constraints, constraints

on the development process, and constraints imposed by standards.

1.10.1 Functional Requirements

 The functional requirements for a system describe what the system should do.

 These requirements depend on the type of software being developed, the expected

users of the software, and the general approach taken by the organization when

writing requirements.

 When expressed as user requirements, functional requirements are usually described

in an abstract way that can be understood by system users.

 Functional system requirements vary from general requirements covering what the

system should do to very specific requirements reflecting local ways of working or an

organization’s existing systems.

 Examples for functional requirements for MHC-PMS system includes:

* A user shall be able to search the appointments lists for all clinics.

* The system shall generate each day, for each clinic, a list of patients who are

expected to attend appointments that day.

* Each staff member using the system shall be uniquely identified by his or her

eight- digit employee number.

 The functional requirements specification of a system should be both complete and

consistent.

 Completeness means that all services required by the user should be defined.

 Consistency means that requirements should not have contradictory definitions.

1.10.2 Non-Functional Requirements

 They are requirements that are not directly concerned with the specific services

delivered by the system to its users.

 They may relate to emergent system properties such as reliability, response time, and

store occupancy.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 31

 Non-functional requirements, such as performance, security, or availability, usually

specify or constrain characteristics of the system as a whole.

 Non-functional requirements are often more critical than individual functional

requirements

 The implementation of these requirements may be diffused throughout the system.

There are two reasons for this:

1. Non-functional requirements may affect the overall architecture of a system

rather than the individual components.

2. A single non-functional requirement, such as a security requirement, may

generate a number of related functional requirements that define new system

services that are required. The figure below shows the classification of non-

functional requirements

Fig 1.20: Types of Non-Functional Requirement

 Fig 1.20 is a classification of non-functional requirements.

 The various types includes:

1. Product Requirements:

* These requirements specify or constrain the behavior of the software.

* Examples include performance requirements on how fast the system

must execute and how much memory it requires, reliability

requirements that set out the acceptable failure rate, security

requirements, and usability requirements.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 32

2. Organizational Requirements:

* These requirements are broad system requirements derived from

policies and procedures in the customer’s and developer’s

organization.

* Examples include operational process requirements that define how the

system will be used, development process requirements that specify the

programming language, the development environment or process

standards to be used, and environmental requirements that specify the

operating environment of the system.

3. External requirements:

* This broad heading covers all requirements that are derived from

factors external to the system and its development process.

* These may include regulatory requirements that set out what must be

done for the system to be approved for use by a regulator, such as a

central bank.

 The fig 1.21 below shows the metric used for specifying non-functional requirements

Fig 1.21: Metrics for specifying non functional requirements

1.11 The Software Requirements Document

 The software requirements document (sometimes called the software requirements

specification or SRS) is an official statement of what the system developers should

 It should include both the user requirements for a system and a detailed specification

of the system requirements.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 33

 The requirements document has a diverse set of users, ranging from the senior

management of the organization that is paying for the system to the engineers

responsible for developing the software.

 The users of requirements document is as shown below in fig 1.22.

Fig 1.22: Users of a Requirement Document

 Figure 1.23 shows one possible organization for a requirements document that is

based on an IEEE standard for requirements documents

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 34

Fig 1.23: The Structure of a Requirements Document

1.12 Requirements Specification

 Requirements specification is the process of writing down the user and system

requirements in a requirements document.

 System requirements are expanded versions of the user requirements that are used by

software engineers as the starting point for the system design.

 They add detail and explain how the user requirements should be provided by the

system.

 It is practically impossible to exclude all design information. There are several

reasons for this:

 You may have to design an initial architecture of the system to help structure the

requirements specification.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 35

 The system requirements are organized according to the different sub-systems that

make up the system

 In most cases, systems must interoperate with existing systems, which constrain the

design and impose requirements on the new system.

 The use of a specific architecture to satisfy non-functional requirements may be

necessary.

 The fig 1.24 below shows the different ways of writing system requirement

specification.

Fig 1.24 Ways of writing a system Requirements specification

1.12.1 Natural Language Specification

 To minimize misunderstandings when writing natural language requirements, there

are some simple guidelines to be followed:

1. Invent a standard format and ensure that all requirement definitions adhere to

that format.

2. Use language consistently to distinguish between mandatory and desirable

requirements.

3. Use text highlighting (bold, italic, or color) to pick out key parts of the

requirement.

4. Do not assume that readers understand technical software engineering

language. It is easy for words like ‘architecture’ and ‘module’ to be

misunderstood. You should, therefore, avoid the use of abbreviations, and

acronyms.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 36

5. Whenever possible, you should try to associate a rationale with each user

requirement.

 Fig 1.25 illustrates how these guidelines may be used. It includes two requirements

for the embedded software for the automated insulin pump

Fig 1.25: Example requirements for the insulin pump software system

1.12.2 Structured Specifications

 Structured natural language is a way of writing system requirements where the

freedom of the requirements writer is limited and all requirements are written in a

standard way.

 Structured language notations use templates to specify system requirements.

 An example of a form-based specification, that defines how to calculate the dose of

insulin to be delivered when the blood sugar is within a safe band, as shown in fig

1.26.

Fig 1.26: A structured specification of a requirement for an insulin pump

 When a standard form is used for specifying functional requirements, the following

information should be included:

* A description of the function or entity being specified.

* A description of its inputs and where these come from.

* A description of its outputs and where these go to.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 37

* Information about the information that is needed for the computation or other

entities in the system that are used (the ‘requires’ part).

* A description of the action to be taken.

* If a functional approach is used, a pre-condition setting out what must be true

before the function is called, and a post-condition specifying what is true after

the function is called.

* A description of the side effects (if any) of the operation.

1.13 Requirements Validation

 Requirements validation is the process of checking that requirements actually define

the system that the customer really wants.

 It overlaps with analysis as it is concerned with finding problems with the

requirements.

 During the requirements validation process, different types of checks should be

carried out on the requirements in the requirements document.

 These checks include:

1. Validity Checks: A user may think that a system is needed to perform certain

functions.

2. Consistency Checks: Requirements in the document should not conflict. That

is, there should not be contradictory constraints or different descriptions of the

same system function.

3. Completeness Checks: The requirements document should include

requirements that define all functions and the constraints intended by the

system user.

4. Realism Checks: Using knowledge of existing technology, the requirements

should be checked to ensure that they can actually be implemented.

5. Verifiability: To reduce the potential for dispute between customer and

contractor, system requirements should always be written so that they are

verifiable. This means that you should be able to write a set of tests that can

demonstrate that the delivered system meets each specified requirement.

 There are a number of requirements validation techniques that can be used

individually or in conjunction with one another:

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 38

1. Requirements Reviews: The requirements are analyzed systematically by a

team of reviewers who check for errors and inconsistencies.

2. Prototyping: In this approach to validation, an executable model of the

system in question is demonstrated to end-users and customers. They can

experiment with this model to see if it meets their real needs.

3. Test-Case Generation: Requirements should be testable. If the tests for the

requirements are devised as part of the validation process, this often reveals

requirements problems.

1.14 Requirements Management

 The requirements for large software systems are always changing.

 Once a system has been installed and is regularly used, new requirements inevitably

emerge.

 There are several reasons why change is inevitable:

* The business and technical environment of the system always changes after

installation. New hardware may be introduced, it may be necessary to

interface the system with other systems, business priorities may change

* The people who pay for a system and the users of that system are rarely the

same people. System customers impose requirements because of

organizational and budgetary constraints. These may conflict with end-user

requirements and, after delivery, new features may have to be added for user

support if the system is to meet its goals.

* Large systems usually have a diverse user community, with many users having

different requirements and priorities that may be conflicting or contradictory.

1.12.1 Requirements Management Planning

 Planning is an essential first stage in the requirements management process. The

planning stage establishes the level of requirements management detail that is

required.

 During the requirements management stage, a decision is to be taken on:

1. Requirements Identification:

* Each requirement must be uniquely identified so that it can be cross-

referenced with other requirements & used in traceability assessments.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 39

2. A Change Management Process:

* This is the set of activities that assess the impact and cost of changes.

3. Traceability Policies:

* These policies define the relationships between each requirement and

between the requirements and the system design that should be

recorded.

* The traceability policy should also define how these records should be

maintained.

4. Tool Support:

* Requirements management involves the processing of large amounts of

information about the requirements.

* Tools that may be used range from specialist requirements

management systems to spreadsheets and simple database systems.

* Tool supports might be needed for:

a. Requirements Storage: The requirements should be maintained

in a secure, managed data store that is accessible to everyone

involved in the requirements engineering process.

b. Change Management: The process of change management is

simplified if active tool support is available as shown in fig

1.27.

Fig 1.27: Requirements Change Management

c. Traceability Management: Tool support for traceability allows

related requirements to be discovered. Some tools are available

which use natural language processing techniques to help

discover possible relationships between requirements.

 There are three principal stages to a change management process:

1. Problem Analysis and Change Specification:

* The process starts with an identified requirements problem or,

sometimes, with a specific change proposal.

* During this stage, the problem or the change proposal is analyzed to

check that it is valid.

Software Engineering [15CS42]

Prof. Mamatha E, Asst. Prof., Dept. of ISE, SVIT, Bengaluru Page 40

* This analysis is fed back to the change requestor who may respond

with a more specific requirements change proposal, or decide to

withdraw the request.

2. Change Analysis and Costing:

* The effect of the proposed change is assessed using traceability

information and general knowledge of the system requirements.

3. Change Implementation:

* The requirements document and, where necessary, the system design

and implementation, are modified.

* Requirements document will have to be organized so that changes can

be made to it without extensive rewriting or reorganization.

