
MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MODULE – 5

INTRODUCTION TO THE ARM INSTRUCTION SET

INTRODUCTION TO THE ARM INSTRUCTION SET
Different ARM architecture revisions support different instructions. However, new revisions usually add

instructions and remain backwardly compatible. Code you write for architecture ARMv4T should execute

on an ARMv5TE processor.

The following Table provides a complete list of ARM instructions available in the ARMv5E

instruction set architecture (ISA). This ISA includes all the core ARM instructions as well as some of the

newer features in the ARM instruction set.

Table: ARM Instruction Set

MAHESH PRASANNA K., VCET, PUTTUR

1

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

In the following sections, the hexadecimal numbers are represented with the prefix 0x and binary numbers

with the prefix 0b. The examples follow this format:

PRE <pre-conditions>

<instruction/s>

POST <post-conditions>

In the pre- and post-conditions, memory is denoted as

mem<data_size>[address]

This refers to data_size bits of memory starting at the given byte address. For example, mem32[1024] is

the 32-bit value starting at address 1 KB.

ARM instructions process data held in registers and memory is accessed only with load and store

instructions.

MAHESH PRASANNA K., VCET, PUTTUR

2

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

ARM instructions commonly take two or three operands. For instance, the ADD instruction

below adds the two values stored in registers r1 and r2 (the source registers). It writes the result to register

r3 (the destination register).

ARM instructions classified as—data processing instructions, branch instructions, load-store

instructions, software interrupt instruction, and program status register instructions.

DATA PROCESSING INSTRUCTIONS:

The data processing instructions manipulate data within registers. They are—

 move instructions, arithmetic instructions, logical instructions, comparison instructions, and

multiply instructions.

Most data processing instructions can process one of their operands using the barrel shifter.

If you use the S suffix on a data processing instruction, then it updates the flags in the cpsr.

Move and logical operations update the carry flag C, negative flag N, and zero flag Z.

o The C flag is set from the result of the barrel shift as the last bit shifted out.

o The N flag is set to bit 31 of the result.

o The Z flag is set if the result is zero.

MOVe Instructions:

Move instruction copies N into a destination register Rd, where N is a register or immediate value. This

instruction is useful for setting initial values and transferring data between registers.

Example: This example shows a simple move instruction. The MOV instruction takes the contents of

register r5 and copies them into register r7, in this case, taking the value 5, and overwriting the value 8 in

register r7.

PRE r5 = 5

r7 = 8

MOV r7, r5 ; let r7 = r5

POST r5 = 5

r7 = 5

MAHESH PRASANNA K., VCET, PUTTUR

3

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Barrel Shifter:

In above Example, we showed a MOV instruction where N is a simple register. But N can be more than

just a register or immediate value; it can also be a register Rm that has been preprocessed by the barrel

shifter prior to being used by a data processing instruction.

 Data processing instructions are processed within the arithmetic logic unit (ALU).

 A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary

pattern in one of the source registers left or right by a specific number of positions before it enters

the ALU.

 Pre-processing or shift occurs within the cycle time of the instruction.

o This shift increases the power and flexibility of many data processing operations.

o This is particularly useful for loading constants into a register and achieving fast

multiplies or division by a power of 2.

 There are data processing instructions that do not use the barrel shift, for example, the

MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)

instructions.

Figure: Barrel Shifter and ALU

 Figure shows the data flow between the ALU and the barrel shifter.

 Register Rn enters the ALU without any pre- processing of registers.

 We apply a logical shift left (LSL) to register Rm before moving it to the destination register. This

is the same as applying the standard C language shift operator « to the register.

 The MOV instruction copies the shift operator result N into register Rd. N represents the result of

the LSL operation described in the following Table.

MAHESH PRASANNA K., VCET, PUTTUR

4

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Table: Barrel Shifter Operations

 The five different shift operations that you can use within the barrel shifter are summarized in the

above Table.

PRE r5 = 5

r7 = 8

MOV r7, r5, LSL #2 ; let r7 = r5*4 = (r5 << 2)

POST r5 = 5

r7 = 20

 The above example multiplies register r5 by four and then places the result into register r7.

 The following Figure illustrates a logical shift left by one.

Figure: Logical Shift Left by One

 For example, the contents of bit 0 are shifted to bit 1. Bit 0 is cleared. The C flag is updated with

the last bit shifted out of the register. This is bit (32 - y) of the original value, where y is the shift

amount. When y is greater than one, then a shift by y positions is the same as a shift by one

position executed y times.

MAHESH PRASANNA K., VCET, PUTTUR

5

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Example: This example of a MOVS instruction shifts register r1 left by one bit. This multiplies register r1

by a value 21. As you can see, the C flag is updated in the cpsr because the S suffix is present in the

instruction mnemonic.

PRE cpsr = nzcvqiFt_USER

r0 = 0x00000000

r1 = 0x80000004

MOVS r0, r1, LSL #1

POST cpsr = nzCvqiFt_USER

r0 = 0x00000008

r1 = 0x80000004

The following Table lists the syntax for the different barrel shift operations available on data processing

instructions. The second operand N can be an immediate constant preceded by #, a register value Rm, or

the value of Rm processed by a shift.

Table: Barrel Shifter Operation Syntax for data Processing Instructions

Arithmetic Instructions:

The arithmetic instructions implement addition and subtraction of 32-bit signed and unsigned values.

MAHESH PRASANNA K., VCET, PUTTUR

6

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Example: The following simple subtract instruction subtracts a value stored in register r2 from a value

stored in register r1. The result is stored in register r0.

PRE r0 = 0x00000000

r1 = 0x00000002

r2 = 0x00000001

SUB r0, r1, r2

POST r0 = 0x00000001

Example: The following reverse subtract instruction (RSB) subtracts r1 from the constant value #0,

writing the result to r0. You can use this instruction to negate numbers.

PRE r0 = 0x00000000

r1 = 0x00000077

RSB r0, r1, #0 ; Rd = 0x0 - r1

POST r0 = -r1 = 0xffffff89

Example: The SUBS instruction is useful for decrementing loop counters. In this example, we subtract the

immediate value one from the value one stored in register r1. The result value zero is written to register

r1. The cpsr is updated with the ZC flags being set.

PRE cpsr = nzcvqiFt_USER

r1 = 0x00000001

SUBS r1, r1, #1

POST cpsr = nZCvqiFt_USER

r1 = 0x00000000

Using the Barrel Shifter with Arithmetic Instructions:

The wide range of second operand shifts available on arithmetic and logical instructions is a very

powerful feature of the ARM instruction set. The following Example illustrates the use of the inline barrel

shifter with an arithmetic instruction. The instruction multiplies the value stored in register r1 by three.

Example: Register r1 is first shifted one location to the left to give the value of twice r1. The ADD

instruction then adds the result of the barrel shift operation to register r1. The final result transferred into

register r0 is equal to three times the value stored in register r1.

PRE r0 = 0x00000000

r1 = 0x00000005

ADD r0, r1, r1, LSL #1

POST r0 = 0x0000000f

r1 = 0x00000005
MAHESH PRASANNA K., VCET, PUTTUR

7

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Logical Instructions:

Logical instructions perform bitwise logical operations on the two source registers.

Example: This example shows a logical OR operation between registers r1 and r2. Register r0 holds the

result.

PRE r0 = 0x00000000

r1 = 0x02040608

r2 = 0x10305070

 ORR r0, r1, r2

POST r0 = 0x12345678

Example: This example shows a more complicated logical instruction called BIC, which carries out a

logical bit clear.

PRE r1 = 0b1111

r2 = 0b0101

BIC r0, r1, r2

POST r0 = 0b1010

This is equivalent to – Rd = Rn AND NOT (N)

In this example, register r2 contains a binary pattern where every binary 1 in r2 clears a corresponding bit

location in register r1.

This instruction is particularly useful when clearing status bits and is frequently used to change interrupt

masks in the cpsr.

NOTE: The logical instructions update the cpsr flags only if the S suffix is present. These instructions

can use barrel-shifted second operands in the same way as the arithmetic instructions.

Comparison Instructions:

 The comparison instructions are used to compare or test a register with a 32-bit value.

 They update the cpsr flag bits according to the result, but do not affect other registers.

MAHESH PRASANNA K., VCET, PUTTUR

8

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 After the bits have been set, the information can then be used to change program flow by using

conditional execution.

 It is not required to apply the S suffix for comparison instructions to update the flags.

Example: This example shows a CMP comparison instruction. You can see that both registers, r0 and r9,

are equal before executing the instruction. The value of the Z flag prior to execution is 0 and is

represented by a lowercase z. After execution the Z flag changes to 1 or an uppercase Z. This change

indicates equality.

PRE cpsr = nzcvqiFt_USER

r0 = 4

r9 = 4

CMP r0, r9

POST cpsr = nZcvqiFt_USER

 The CMP is effectively a subtract instruction with the result discarded; similarly the TST

instruction is a logical AND operation, and TEQ is a logical exclusive OR operation.

 For each, the results are discarded but the condition bits are updated in the cpsr.

 It is important to understand that comparison instructions only modify the condition flags of the

cpsr and do not affect the registers being compared.

Multiply Instructions:

The multiply instructions multiply the contents of a pair of registers and, depending upon the instruction,

accumulate the results in with another register.

The long multiplies accumulate onto a pair of registers representing a 64-bit value. The final result is

placed in a destination register or a pair of registers.

MAHESH PRASANNA K., VCET, PUTTUR

9

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

The number of cycles taken to execute a multiply instruction depends on the processor implementation.

For some implementations the cycle timing also depends on the value in Rs.

Example: This example shows a simple multiply instruction that multiplies registers r1 and r2 together

and places the result into register r0. In this example, register r1 is equal to the value 2, and r2 is equal to

2. The result, 4, is then placed into register r0.

PRE r0 = 0x00000000

r1 = 0x00000002

r2 = 0x00000002

MUL r0, r1, r2 ; r0 = r1*r2

POST r0 = 0x00000004

r1 = 0x00000002

r2 = 0x00000002

The long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64-bit result. The

result is too large to fit a single 32-bit register so the result is placed in two registers labeled RdLo and

RdHi. RdLo holds the lower 32 bits of the 64-bit result, and RdHi holds the higher 32 bits of the 64-bit

result. The following shows an example of a long unsigned multiply instruction.

Example: The instruction multiplies registers r2 and r3 and places the result into register r0 and r1.

Register r0 contains the lower 32 bits, and register r1 contains the higher 32 bits of the 64-bit result.

PRE r0 = 0x00000000

r1 = 0x00000000

r2 = 0xf0000002

r3 = 0x00000002

UMULL r0, r1, r2, r3 ; [r1,r0] = r2*r3

POST r0 = 0xe0000004 ; = RdLo

r1 = 0x00000001 ; = RdHi

MAHESH PRASANNA K., VCET, PUTTUR

10

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
BRANCH INSTRUCTIONS:

A branch instruction changes the flow of execution or is used to call a routine. This type of instruction

allows programs to have subroutines, if-then-else structures, and loops.

The change of execution flow forces the program counter pc to point to a new address. The ARMv5E

instruction set includes four different branch instructions.

 The address label is stored in the instruction as a signed pc-relative offset and must be within

approximately 32 MB of the branch instruction.

 T refers to the Thumb bit in the cpsr. When instructions set T, the ARM switches to Thumb state.

Example: This example shows a forward and backward branch. Because these loops are address specific,

we do not include the pre- and post-conditions. The forward branch skips three instructions. The

backward branch creates an infinite loop.

B forward

ADD r1, r2, #4

ADD r0, r6, #2

ADD r3, r7, #4

forward

SUB r1, r2, #4

backward

ADD r1, r2, #4

SUB r1, r2, #4

ADD r4, r6, r7

B backward

MAHESH PRASANNA K., VCET, PUTTUR

11

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
In this example, forward and backward are the labels. The branch labels are placed at the beginning of the

line and are used to mark an address that can be used later by the assembler to calculate the branch offset.

 The branch with link, or BL, instruction is similar to the B instruction but overwrites the link

register lr with a return address. It performs a subroutine call.

Example: This example shows a simple fragment of code that, branches to a subroutine using the BL

instruction. To return from a subroutine, you copy the link register to the pc.

BL subroutine ; branch to subroutine

CMP r1, #5 ; compare r1 with 5

MOVEQ r1, #0 ; if (r1==5) then r1 = 0

:

subroutine

<subroutine code>

MOV pc, lr ; return by moving pc = lr

 The branch exchange (BX) and branch exchange with link (BLX) are the third type of branch

instruction.

 The BX instruction uses an absolute address stored in register Rm. It is primarily used to branch

to and from Thumb code. The T bit in the cpsr is updated by the least significant bit of the branch

register.

 Similarly the BLX instruction updates the T bit of the cpsr with the least significant bit and

additionally sets the link register with the return address.

LOAD-STORE INSTRUCTIONS:

Load-store instructions transfer data between memory and processor registers. There are three types of

load-store instructions: single-register transfer, multiple-register transfer, and swap.

Single-Register Transfer:

 These instructions are used for moving a single data item in and out of a register.

 The data types supported are signed and unsigned words (32-bit), half-words (16-bit), and bytes.

Here are the various load-store single-register transfer instructions.

MAHESH PRASANNA K., VCET, PUTTUR

12

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 LDR and STR instructions can load and store data on a boundary alignment that is the same as

the data type size being loaded or stored.

o For example, LDR can only load 32-bit words on a memory address that is a multiple of

four bytes—0, 4, 8, and so on.

Example: This example shows a load from a memory address contained in register r1, followed by a store

back to the same address in memory.

;

; load register r0 with the contents of

; the memory address pointed to by register

; r1.

;

 LDR r0, [r1] ; = LDR r0, [r1, #0]

;

; store the contents of register r0 to

; the memory address pointed to by

; register r1.

;

STR r0, [r1] ; = STR r0, [r1, #0]

The first instruction loads a word from the address stored in register r1 and places it into register r0. The

second instruction goes the other way by storing the contents of register r0 to the address contained in

register r1. The offset from register r1 is zero. Register r1 is called the base address register.

MAHESH PRASANNA K., VCET, PUTTUR

13

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Single-Register Load-Store Addressing Modes:

The ARM instruction set provides different modes for addressing memory. These modes incorporate one

of the indexing methods: preindex with writeback, preindex, and postindex.

Table: Index Methods

 Preindex with writeback calculates an address from a base register plus address offset and then

updates that address base register with the new address.

 Preindex offset is the same as the preindex with writeback but does not update the address base

register.

o The preindex mode is useful for accessing an element in a data structure.

 Postindex only updates the address base register after the address is used.

o The postindex and preindex with writeback modes are useful for traversing an array.

Example:

PRE r0 = 0x00000000

r1 = 0x00090000

mem32[0x00009000] = 0x01010101

mem32[0x00009004] = 0x02020202

LDR r0, [r1, #4]!

Preindexing with writeback:

POST(1) r0 = 0x02020202

r1 = 0x00009004

LDR r0, [r1, #4]

Preindexing:

POST(2) r0 = 0x02020202

r1 = 0x00009000

LDR r0, [r1], #4

Postindexing:

POST(3) r0 = 0x01010101

r1 = 0x00009004

 The above Example used a preindex method. This example shows how each indexing method

affects the address held in register r1, as well as the data loaded into register r0.
MAHESH PRASANNA K., VCET, PUTTUR

14

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The addressing modes available with a particular load or store instruction depend on the instruction class.

The following Table shows the addressing modes available for load and store of a 32-bit word or an

unsigned byte.

Table: Single-Register Load-Store Addressing, Word or Unsigned Byte

 A signed offset or register is denoted by “+/-”, identifying that it is either a positive or negative

offset from the base address register Rn. The base address register is a pointer to a byte in

memory, and the offset specifies a number of bytes.

 Immediate means the address is calculated using the base address register and a 12-bit offset

encoded in the instruction.

 Register means the address is calculated using the base address register and a specific register’s

contents.

 Scaled means the address is calculated using the base address register and a barrel shift operation.

The following Table provides an example of the different variations of the LDR instruction.

Table: Examples of LDR Instructions using Different Addressing Modes

MAHESH PRASANNA K., VCET, PUTTUR

15

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The following Table shows the addressing modes available on load and store instructions using 16-bit

halfword or signed byte data.

Table: Single-Register Load-Store Addressing, Halfword, Signed Halfword, Signed Byte and Doubleword

These operations cannot use the barrel shifter. There are no STRSB or STRSH instructions since STRH

stores both a signed and unsigned halfword; similarly STRB stores signed and unsigned bytes.

The following Table shows the variations for STRH instructions.

Table: Variations of STRH Instructions

Multiple-Register Transfer:

 Load-store multiple instructions can transfer multiple registers between memory and the

processor in a single instruction.

 The transfer occurs from a base address register Rn pointing into memory.

o Multiple-register transfer instructions are more efficient from single-register transfers for

 moving blocks of data around memory and

 saving and restoring context and stacks.

 Load-store multiple instructions can increase interrupt latency.

 ARM implementations do not usually interrupt instructions while they are executing.

o For example, on an ARM7 a load multiple instruction takes 2 + Nt cycles, where N is the

number of registers to load and t is the number of cycles required for each sequential

access to memory.

 If an interrupt has been raised, then it has no effect until the load-store multiple instruction is

complete.

MAHESH PRASANNA K., VCET, PUTTUR

16

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Compilers, such as armcc, provide a switch to control the maximum number of registers being

transferred on a load-store, which limits the maximum interrupt latency.

The following Table shows the different addressing modes for the load-store multiple instructions. Here N

is the number of registers in the list of registers.

Table: Addressing Mode for Load-Store Multiple Instructions

 Any subset of the current bank of registers can be transferred to memory or fetched from

memory.

 The base register Rn determines the source or destination address for a load-store multiple

instruction. This register can be optionally updated following the transfer. This occurs when

register Rn is followed by the ! character, similar to the single-register load-store using preindex

with writeback.

Example: In this example, register r0 is the base register Rn and is followed by !, indicating that the

register is updated after the instruction is executed. You will notice within the load multiple instruction

that the registers are not individually listed. Instead the “-” character is used to identify a range of

registers. In this case the range is from register r1 to r3 inclusive.

Each register can also be listed, using a comma to separate each register within “{” and “}” brackets.

PRE mem32[0x80018] = 0x03

mem32[0x80014] = 0x02

 mem32[0x80010] = 0x01

r0 = 0x00080010

r1 = 0x00000000

r2 = 0x00000000

r3 = 0x00000000

LDMIA r0!, {r1–r3}

POST r0 = 0x0008001c

MAHESH PRASANNA K., VCET, PUTTUR

17

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

r1 = 0x00000001

r2 = 0x00000002

r3 = 0x00000003

The following Figure shows a graphical representation.

Figure: Pre-condition for LDMIA Instruction

 The base register r0 points to memory address 0x80010 in the PRE condition.

 Memory addresses 0x80010, 0x80014, and 0x80018 contain the values 1, 2, and 3 respectively.

 After the load multiple instruction executes, registers r1, r2, and r3 contain these values as shown

in the following Figure.

Figure: Post Condition for LDMIA Instruction

 The base register r0 now points to memory address 0x8001c after the last loaded word.

 Now replace the LDMIA instruction with a load multiple and increment before LDMIB

instruction and use the same PRE conditions.

 The first word pointed to by register r0 is ignored and register r1 is loaded from the next memory

location as shown in the following Figure.

MAHESH PRASANNA K., VCET, PUTTUR

18

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Figure: Post Condition for LDMIB Instruction

 After execution, register r0 now points to the last loaded memory location. This is in contrast

with the LDMIA example, which pointed to the next memory location.

• The decrement versions DA and DB of the load-store multiple instructions decrement the start

address and then store to ascending memory locations.

• This is equivalent to descending memory but accessing the register list in reverse order.

• With the increment and decrement load multiples; you can access arrays forwards or backwards.

• They also allow for stack push and pull operations.

The following Table shows a list of load-store multiple instruction pairs.

Table: Load-Store Multiple Pairs when Base Update used

Store Multiple Load Multiple

STMIA LDMDB

STMIB LDMDA

STMDA LDMIB

STMDB LDMIA

• If you use a store with base update, then the paired load instruction of the same number of

registers will reload the data and restore the base address pointer.

• This is useful when you need to temporarily save a group of registers and restore them later.

Example: This example shows an STM increment before instruction followed by an LDM decrement

after instruction.

PRE r0 = 0x00009000

r1 = 0x00000009

r2 = 0x00000008

r3 = 0x00000007

STMIB r0!, {r1–r3}

MOV r1, #1

MOV r2, #2

MAHESH PRASANNA K., VCET, PUTTUR

19

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
MOV r3, #3

PRE(2) r0 = 0x0000900c

r1 = 0x00000001

r2 = 0x00000002

r3 = 0x00000003

LDMDA r0!, {r1–r3}

POST r0 = 0x00009000

r1 = 0x00000009

r2 = 0x00000008

r3 = 0x00000007

The STMIB instruction stores the values 7, 8, 9 to memory. We then corrupt register r1 to r3. The

LDMDA reloads the original values and restores the base pointer r0.

Example: We illustrate the use of the load-store multiple instructions with a block memory copy example.

This example is a simple routine that copies blocks of 32 bytes from a source address location to a

destination address location.

The example has two load-store multiple instructions, which use the same increment after addressing

mode.

; r9 points to start of source data

; r10 points to start of destination data

; r11 points to end of the source

loop

; load 32 bytes from source and update r9 pointer

LDMIA r9!, {r0–r7}

; store 32 bytes to destination and update r10 pointer

STMIA r10!, {r0–r7} ; and store them

; have we reached the end

CMP r9, r11

BNE loop

 This routine relies on registers r9, r10, and r11 being set up before the code is executed.

 Registers r9 and r11 determine the data to be copied, and register r10 points to the destination in

memory for the data.

 LDMIA loads the data pointed to by register r9 into registers r0 to r7. It also updates r9 to point

to the next block of data to be copied.

 STMIA copies the contents of registers r0 to r7 to the destination memory address pointed to by

register r10. It also updates r10 to point to the next destination location.
MAHESH PRASANNA K., VCET, PUTTUR

20

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 CMP and BNE compare pointers r9 and r11 to check whether the end of the block copy has been

reached.

 If the block copy is complete, then the routine finishes; otherwise the loop repeats with the

updated values of register r9 and r10.

• The BNE is the branch instruction B with a condition mnemonic NE (not equal). If the previous

compare instruction sets the condition flags to not equal, the branch instruction is executed.

The following Figure shows the memory map of the block memory copy and how the routine moves

through memory.

Figure: Block Memory Copy in the Memory map

Theoretically this loop can transfer 32 bytes (8 words) in two instructions, for a maximum possible

throughput of 46 MB/second being transferred at 33 MHz. These numbers assume a perfect memory

system with fast memory.

Stock Operation: The ARM architecture uses the load-store multiple instructions to carry out stack

operations.

• The pop operation (removing data from a stack) uses a load multiple instruction.

• The push operation (placing data onto the stack) uses a store multiple instruction.

 When using a stack you have to decide whether the stack will grow up or down in memory.

o A stack is either –

 ascending (A) – stacks grow towards higher memory addresses or

 descending (D) – stacks grow towards lower memory addresses.

 When you use a full stack (F), the stack pointer sp points to an address that is the last used or full

location (i.e., sp points to the last item on the stack).

MAHESH PRASANNA K., VCET, PUTTUR

21

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 If you use an empty stack (E) the sp points to an address that is the first unused or empty location

(i.e., it points after the last item on the stack).

• There are number of load-store multiple addressing mode aliases available to support stack

operations (see the following Table).

Table: Addressing Methods for Stack Operations

• Next to the pop column is the actual load multiple instruction equivalent.

o For example, a full ascending stack would have the notation FA appended to the load

multiple instruction—LDMFA. This would be translated into an LDMDA instruction.

• ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how routines

are called and how registers are allocated. In the ATPCS, stacks are defined as being full

descending stacks. Thus, the LDMFD and STMFD instructions provide the pop and push

functions, respectively.

Example: The STMFD instruction pushes registers onto the stack, updating the sp. The following Figure

shows a push onto a full descending stack.

Figure: STMFD Instruction – Full Stack push Operation

You can see that when the stack grows the stack pointer points to the last full entry in the stack.

PRE r1 = 0x00000002

r4 = 0x00000003

sp = 0x00080014

STMFD sp!, {r1, r4}

POST r1 = 0x00000002

r4 = 0x00000003

sp = 0x0008000c

MAHESH PRASANNA K., VCET, PUTTUR

22

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Example: The following Figure shows a push operation on an empty stack using the STMED instruction.

Figure: STMED Instruction – Empty Stack push Operation

The STMED instruction pushes the registers onto the stack but updates register sp to point to the next

empty location.

PRE r1 = 0x00000002

r4 = 0x00000003

sp = 0x00080010

STMED sp!, {r1, r4}

POST r1 = 0x00000002

r4 = 0x00000003

sp = 0x00080008

 When handling a checked stack there are three attributes that need to be preserved: the stack base,

the stack pointer, and the stack limit.

 The stack base is the starting address of the stack in memory.

 The stack pointer initially points to the stack base; as data is pushed onto the stack, the stack

pointer descends memory and continuously points to the top of stack. If the stack pointer passes

the stack limit, then a stack overflow error has occurred.

 Here is a small piece of code that checks for stack overflow errors for a descending stack:

; check for stack overflow

SUB sp, sp, #size

CMP sp, r10

BLLO _stack_overflow ; condition

• ATPCS defines register r10 as the stack limit or sl. This is optional since it is only used when

stack checking is enabled.

• The BLLO instruction is a branch with link instruction plus the condition mnemonic LO.

o If sp is less than register r10 after the new items are pushed onto the stack, then stack

overflow error has occurred.

o If the stack pointer goes back past the stack base, then a stack underflow error has

occurred.

MAHESH PRASANNA K., VCET, PUTTUR

23

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Swap Instruction:

The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with

the contents of a register.

This instruction is an atomic operation—it reads and writes a location in the same bus operation,

preventing any other instruction from reading or writing to that location until it completes.

Swap cannot be interrupted by any other instruction or any other bus access. We say the system “holds

the bus” until the transaction is complete. Also, swap instruction allows for both a word and a byte swap.

Example: The swap instruction loads a word from memory into register r0 and overwrites the memory

with register r1.

 PRE mem32[0x9000] = 0x12345678

r0 = 0x00000000

r1 = 0x11112222

r2 = 0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222

r0 = 0x12345678

r1 = 0x11112222

r2 = 0x00009000

Example: This example shows a simple data guard that can be used to protect data from being written by

another task. The SWP instruction “holds the bus” until the transaction is complete.

 spin

 MOV r1, =semaphore

MOV r2, #1

SWP r3, r2, [r1] ; hold the bus until complete

CMP r3, #1

BEQ spin

MAHESH PRASANNA K., VCET, PUTTUR

24

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The address pointed to by the semaphore either contains the value 0 or 1. When the semaphore equals 1,

then the service in question is being used by another process. The routine will continue to loop around

until the service is released by the other process—in other words, when the semaphore address location

contains the value 0. ¦

SOFTWARE INTERRUPT INSTRUCTION:

A software interrupt instruction (SWI) causes a software interrupt exception, which provides a

mechanism for applications to call operating system routines.

When the processor executes an SWI instruction, it sets the program counter pc to the offset 0x8 in the

vector table. The instruction also forces the processor mode to SVC, which allows an operating system

routine to be called in a privileged mode.

Each SWI instruction has an associated SWI number, which is used to represent a particular

function call or feature.

Example: Here we have a simple example of an SWI call with SWI number 0x123456, used by ARM

toolkits as a debugging SWI. Typically the SWI instruction is executed in user mode.

PRE cpsr = nzcVqift_USER

pc = 0x00008000

lr = 0x003fffff ;lr = r14

r0 = 0x12

0x00008000 SWI 0x123456

POST cpsr = nzcVqIft_SVC

spsr = nzcVqift_USER

pc = 0x00000008

lr = 0x00008004

r0 = 0x12

Since SWI instructions are used to call operating system routines, you need some form of parameter

passing. This is achieved using registers. In this example, register r0 is used to pass the parameter 0x12.

The return values are also passed back via registers.

MAHESH PRASANNA K., VCET, PUTTUR

25

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Code called the SWI handler is required to process the SWI call. The handler obtains the SWI number

using the address of the executed instruction, which is calculated from the link register lr.

The SWI number is determined by

SWI_Number = <SWI instruction> AND NOT (0xff000000)

Here the SWI instruction is the actual 32-bit SWI instruction executed by the processor.

Example: This example shows the start of an SWI handler implementation. The code fragment determines

what SWI number is being called and places that number into register r10.

You can see from this example that the load instruction first copies the complete SWI instruction into

register r10. The BIC instruction masks off the top bits of the instruction, leaving the SWI number. We

assume the SWI has been called from ARM state.

SWI_handler

; Store registers r0-r12 and the link register

 STMFD sp!, {r0–r12, lr}

; Read the SWI instruction

LDR r10, [lr, #–4]

; Mask off top 8 bits

BIC r10, r10, #0xff000000

; r10 - contains the SWI number

BL service_routine

; return from SWI handler

LDMFD sp!, {r0–r12, pc}ˆ

The number in register r10 is then used by the SWI handler to call the appropriate SWI service routine.

PROGRAM STATUS REGISTER INSTRUCTIONS:

The ARM instruction set provides two instructions to directly control a program status register (psr).

 The MRS instruction transfers the contents of either the cpsr or spsr into a register.

 The MSR instruction transfers the contents of a register into the cpsr or spsr.

Together these instructions are used to read and write the cpsr and spsr.

In the syntax we can see a label called fields. This can be any combination of control (c), extension (x),

status (s), and flags (f).

MAHESH PRASANNA K., VCET, PUTTUR

26

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

These fields relate to particular byte regions in a psr, as shown in the following Figure.

Figure: psr Byte Fields

The c field controls the interrupt masks, Thumb state, and processor mode.

The following Example shows how to enable IRQ interrupts by clearing the I mask. This operation

involves using both the MRS and MSR instructions to read from and then write to the cpsr.

Example: The MSR first copies the cpsr into register r1. The BIC instruction clears bit 7 of r1. Register

r1 is then copied back into the cpsr, which enables IRQ interrupts. You can see from this example that

this code preserves all the other settings in the cpsr and only modifies the I bit in the control field.

PRE cpsr = nzcvqIFt_SVC

MRS r1, cpsr

BIC r1, r1, #0x80 ; 0b01000000

MSR cpsr_c, r1

POST cpsr = nzcvqiFt_SVC

This example is in SVC mode. In user mode you can read all cpsr bits, but you can only update the

condition flag field f.

Coprocessor Instructions:

Coprocessor instructions are used to extend the instruction set.

 A coprocessor can either provide additional computation capability or be used to control the

memory subsystem including caches and memory management.

 The coprocessor instructions include data processing, register transfer, and memory transfer

instructions.

 Note that these instructions are only used by cores with a coprocessor.

MAHESH PRASANNA K., VCET, PUTTUR

27

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

 In the syntax of the coprocessor instructions,

o The cp field represents the coprocessor number between p0 and p15

o The opcode fields describe the operation to take place on the coprocessor.

o The Cn, Cm, and Cd fields describe registers within the coprocessor.

 The coprocessor operations and registers depend on the specific coprocessor you are using.

 Coprocessor 15 (CP15) is reserved for system control purposes, such as memory management,

write buffer control, cache control, and identification registers.

Example: This example shows a CP15 register being copied into a general-purpose register.

; transferring the contents of CP15 register c0 to register r10

MRC p15, 0, r10, c0, c0, 0

Here CP15 register-0 contains the processor identification number. This register is copied into the

general-purpose register r10.

LOADING CONSTANTS:

You might have noticed that there is no ARM instruction to move a 32-bit constant into a register. Since

ARM instructions are 32 bits in size, they obviously cannot specify a general 32-bit constant.

To aid programming there are two pseudo-instructions to move a 32-bit value into a register.

• The first pseudo-instruction writes a 32-bit constant to a register using whatever instructions are

available. It defaults to a memory read if the constant cannot be encoded using other instructions.

• The second pseudo-instruction writes a relative address into a register, which will be encoded

using a pc-relative expression.

MAHESH PRASANNA K., VCET, PUTTUR

28

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Example: This example shows an LDR instruction loading a 32-bit constant 0xff00ffff into register

r0.

LDR r0, [pc, #constant_number-8-{PC}]

:

constant_number

DCD 0xff00ffff

This example involves a memory access to load the constant, which can be expensive for time-critical

routines.

The following Example shows an alternative method to load the same constant into register r0 by using

an MVN instruction.

Example: Loading the constant 0xff00ffff using an MVN.

PRE none...

MVN r0, #0x00ff0000

POST r0 = 0xff00ffff

As you can see, there are alternatives to accessing memory, but they depend upon the constant you are

trying to load.

The LDR pseudo-instruction either inserts an MOV or MVN instruction to generate a value (if possible)

or generates an LDR instruction with a pc-relative address to read the constant from a literal pool—a data

area embedded within the code.

The following Table shows two pseudo-code conversions.

Table: LDR pseudo-instruction Conversion

The first conversion produces a simple MOV instruction; the second conversion produces a pc-relative

load.

Another useful pseudo-instruction is the ADR instruction, or address relative. This instruction places the

address of the given label into register Rd, using a pc-relative add or subtract.

By: Mahesh Prasanna K.,

DePt. of Cse, VCet.

____________*********____________

MAHESH PRASANNA K., VCET, PUTTUR

29

	MODULE – 5
	INTRODUCTION TO THE ARM INSTRUCTION SET

