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MODULE – 5 

INTRODUCTION TO THE ARM INSTRUCTION SET 

INTRODUCTION TO THE ARM INSTRUCTION SET 
Different ARM architecture revisions support different instructions. However, new revisions usually add 

instructions and remain backwardly compatible. Code you write for architecture ARMv4T should execute 

on an ARMv5TE processor.  

The following Table provides a complete list of ARM instructions available in the ARMv5E 

instruction set architecture (ISA). This ISA includes all the core ARM instructions as well as some of the 

newer features in the ARM instruction set.  

Table: ARM Instruction Set 
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In the following sections, the hexadecimal numbers are represented with the prefix 0x and binary numbers 

with the prefix 0b. The examples follow this format: 

PRE <pre-conditions> 

<instruction/s> 

POST <post-conditions> 

In the pre- and post-conditions, memory is denoted as 

mem<data_size>[address] 

This refers to data_size bits of memory starting at the given byte address. For example, mem32[1024] is 

the 32-bit value starting at address 1 KB. 

 

ARM instructions process data held in registers and memory is accessed only with load and store 

instructions.  
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ARM instructions commonly take two or three operands. For instance, the ADD instruction 

below adds the two values stored in registers r1 and r2 (the source registers). It writes the result to register 

r3 (the destination register). 

 
ARM instructions classified as—data processing instructions, branch instructions, load-store 

instructions, software interrupt instruction, and program status register instructions. 

 

DATA PROCESSING INSTRUCTIONS: 

The data processing instructions manipulate data within registers. They are— 

 move instructions, arithmetic instructions, logical instructions, comparison instructions, and 

multiply instructions.  

Most data processing instructions can process one of their operands using the barrel shifter.  

If you use the S suffix on a data processing instruction, then it updates the flags in the cpsr.  

Move and logical operations update the carry flag C, negative flag N, and zero flag Z.  

o The C flag is set from the result of the barrel shift as the last bit shifted out.  

o The N flag is set to bit 31 of the result.  

o The Z flag is set if the result is zero. 

 

MOVe Instructions: 

Move instruction copies N into a destination register Rd, where N is a register or immediate value. This 

instruction is useful for setting initial values and transferring data between registers. 

 
Example: This example shows a simple move instruction. The MOV instruction takes the contents of 

register r5 and copies them into register r7, in this case, taking the value 5, and overwriting the value 8 in 

register r7. 

PRE      r5 = 5   

r7 = 8   

MOV r7, r5 ; let r7 = r5 

POST    r5 = 5   

r7 = 5 
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Barrel Shifter: 

In above Example, we showed a MOV instruction where N is a simple register. But N can be more than 

just a register or immediate value; it can also be a register Rm that has been preprocessed by the barrel 

shifter prior to being used by a data processing instruction. 

 Data processing instructions are processed within the arithmetic logic unit (ALU).  

 A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary 

pattern in one of the source registers left or right by a specific number of positions before it enters 

the ALU.  

 Pre-processing or shift occurs within the cycle time of the instruction.  

o This shift increases the power and flexibility of many data processing operations.  

o This is particularly useful for loading constants into a register and achieving fast 

multiplies or division by a power of 2. 

 There are data processing  instructions  that  do  not  use  the  barrel  shift,  for  example, the 

MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add) 

instructions. 

 
Figure: Barrel Shifter and ALU 

 Figure shows the data flow between the ALU and the barrel shifter. 

 Register Rn enters the ALU without any pre- processing of registers. 

 We apply a logical shift left (LSL) to register Rm before moving it to the destination register. This 

is the same as applying the standard C language shift operator « to the register.  

 

 The MOV instruction copies the shift operator result N into register Rd. N represents the result of 

the LSL operation described in the following Table. 
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Table: Barrel Shifter Operations 

 
 The five different shift operations that you can use within the barrel shifter are summarized in the 

above Table. 

PRE r5 = 5   

r7 = 8   

MOV r7, r5, LSL #2 ; let r7 = r5*4 = (r5 << 2) 

POST r5 = 5   

r7 = 20 

 The above example multiplies register r5 by four and then places the result into register r7. 

 The following Figure illustrates a logical shift left by one.  

 
Figure: Logical Shift Left by One 

 For example, the contents of bit 0 are shifted to bit 1. Bit 0 is cleared. The C flag is updated with 

the last bit shifted out of the register. This is bit (32 - y) of the original value, where y is the shift 

amount. When y is greater than one, then a shift by y positions is the same as a shift by one 

position executed y times. 
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Example: This example of a MOVS instruction shifts register r1 left by one bit. This multiplies register r1 

by a value 21.  As you can see, the C flag is updated in the cpsr because the S suffix is present  in  the  

instruction  mnemonic. 

PRE cpsr = nzcvqiFt_USER  

r0 = 0x00000000 

r1 = 0x80000004 

MOVS r0,  r1,  LSL  #1 

POST cpsr = nzCvqiFt_USER 

r0 = 0x00000008 

r1 = 0x80000004 

 

The following Table lists the syntax for the different barrel shift operations available on data processing 

instructions. The second operand N can be an immediate constant preceded by #, a register value Rm, or 

the value of Rm processed by a shift. 

Table: Barrel Shifter Operation Syntax for data Processing Instructions 

 
Arithmetic Instructions: 

The arithmetic instructions implement addition and subtraction of 32-bit signed and unsigned values. 
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Example: The following simple subtract instruction subtracts a value stored in register r2 from a value 

stored in register r1. The result is stored in register r0. 

PRE r0  =  0x00000000 

r1 = 0x00000002  

r2 = 0x00000001 

SUB r0, r1, r2 

POST r0 =  0x00000001 

  

Example: The following reverse subtract instruction (RSB) subtracts r1 from the constant value #0, 

writing the result to r0. You can use this instruction to negate numbers. 

PRE r0 = 0x00000000 

r1 = 0x00000077 

RSB r0, r1, #0 ; Rd  =  0x0  - r1 

POST r0 = -r1 = 0xffffff89 

  

Example: The SUBS instruction is useful for decrementing loop counters. In this example, we subtract the 

immediate value one from the value one stored in register r1. The result value zero is written to register 

r1. The cpsr is updated with the ZC flags being set. 

PRE cpsr = nzcvqiFt_USER  

r1 = 0x00000001 

SUBS r1, r1, #1 

POST cpsr  =  nZCvqiFt_USER 

r1 = 0x00000000 

 

Using the Barrel Shifter with Arithmetic Instructions: 

The wide range of second operand shifts available on arithmetic and logical instructions is a very 

powerful feature of the ARM instruction set. The following Example illustrates the use of the inline barrel 

shifter with an arithmetic instruction. The instruction multiplies the value stored in register r1 by three. 

Example: Register r1 is first shifted one location to the left to give the value of twice r1. The ADD 

instruction then adds the result of the barrel shift operation to register r1. The final result transferred into 

register r0 is equal to three times the value stored in register r1. 

PRE r0 = 0x00000000 

r1 = 0x00000005 

ADD r0, r1, r1, LSL #1 

POST r0 = 0x0000000f 

r1 = 0x00000005 
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 Logical Instructions: 

Logical instructions perform bitwise logical operations on the two source registers. 

 
Example: This example shows a logical OR operation between registers r1 and r2. Register r0 holds the 

result. 

PRE r0 = 0x00000000 

r1 = 0x02040608  

r2 = 0x10305070 

 ORR r0, r1, r2 

POST r0 = 0x12345678 

 

Example: This example shows a more complicated logical instruction called BIC, which carries out a 

logical bit clear. 

PRE r1 = 0b1111  

r2 = 0b0101 

BIC r0, r1, r2 

POST r0 = 0b1010 

This is equivalent to –  Rd = Rn AND NOT (N) 

In this example, register r2 contains a binary pattern where every binary 1 in r2 clears a corresponding bit 

location in register r1.  

This instruction is particularly useful when clearing status bits and is frequently used to change interrupt 

masks in the cpsr. 

 

NOTE: The logical instructions update the cpsr flags only if the S suffix is present. These instructions 

can use barrel-shifted second operands in the same way as the arithmetic instructions. 

  

Comparison Instructions: 

 The comparison instructions are used to compare or test a register with a 32-bit value.  

 They update the cpsr flag bits according to the result, but do not affect other registers.  
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 After the bits have been set, the information can then be used to change program flow by using 

conditional execution.  

 It is not required to apply the S suffix for comparison instructions to update the flags. 

 
Example: This example shows a CMP comparison instruction. You can see that both registers, r0 and r9, 

are equal before executing the instruction. The value of the Z flag prior to execution is 0 and is 

represented by a lowercase z. After execution the Z flag changes to 1 or an uppercase Z. This change 

indicates equality. 

PRE cpsr  =  nzcvqiFt_USER  

r0 = 4   

r9 = 4   

CMP r0, r9 

POST cpsr = nZcvqiFt_USER 

 

 The CMP is effectively a subtract instruction with the result discarded; similarly the TST 

instruction is a logical AND operation, and TEQ is a logical exclusive OR operation.  

 For each, the results are discarded but the condition bits are updated in the cpsr.  

 It is important to understand that comparison instructions only modify the condition flags of the 

cpsr and do not affect the registers being compared. 

 

Multiply Instructions: 

The multiply instructions multiply the contents of a pair of registers and, depending upon the instruction, 

accumulate the results in with another register.  

The long multiplies accumulate onto a pair of registers representing a 64-bit value. The final result is 

placed in a destination register or a pair of registers. 
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The number of cycles taken to execute a multiply instruction depends on the processor implementation. 

For some implementations the cycle timing also depends on the value in Rs.  

 

Example: This example shows a simple multiply instruction that multiplies registers r1 and r2 together 

and places the result into register r0. In this example, register r1 is equal to the value 2, and r2 is equal to 

2. The result, 4, is then placed into register r0. 

PRE r0 = 0x00000000 

r1 = 0x00000002 

r2 = 0x00000002 

MUL r0, r1, r2  ; r0 = r1*r2 

POST r0 = 0x00000004 

r1 = 0x00000002 

r2 = 0x00000002 

 

The long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64-bit result. The 

result is too large to fit a single 32-bit register so the result is placed in two registers labeled RdLo and 

RdHi. RdLo holds the lower 32 bits of the 64-bit result, and RdHi holds the higher 32 bits of the 64-bit 

result. The following shows an example of a long unsigned multiply instruction. 

 

Example: The instruction multiplies registers r2 and r3 and places the result into register r0 and r1. 

Register r0 contains the lower 32 bits, and register r1 contains the higher 32 bits of the 64-bit result. 

PRE r0 = 0x00000000 

r1 = 0x00000000 

r2 = 0xf0000002 

r3 = 0x00000002 

UMULL r0, r1, r2, r3   ; [r1,r0] = r2*r3 

POST r0 = 0xe0000004  ; = RdLo 

r1 = 0x00000001  ; = RdHi 
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BRANCH INSTRUCTIONS: 

A branch instruction changes the flow of execution or is used to call a routine. This type of instruction 

allows programs to have subroutines, if-then-else structures, and loops. 

The change of execution flow forces the program counter pc to point to a new address. The ARMv5E 

instruction set includes four different branch instructions. 

 
 The address label is stored in the instruction as a signed pc-relative offset and must be within 

approximately 32 MB of the branch instruction.  

 T refers to the Thumb bit in the cpsr. When instructions set T, the ARM switches to Thumb state. 

 

Example: This example shows a forward and backward branch. Because these loops are address specific, 

we do not include the pre- and post-conditions. The forward branch skips three instructions. The 

backward branch creates an infinite loop. 

B forward  

ADD r1, r2, #4 

ADD r0, r6, #2 

ADD r3, r7, #4 

forward 

SUB r1, r2, #4 

 --------------------------------------------------- 

backward 

ADD r1, r2, #4  

SUB r1, r2, #4  

ADD    r4, r6, r7 

B         backward 
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In this example, forward and backward are the labels. The branch labels are placed at the beginning of the 

line and are used to mark an address that can be used later by the assembler to calculate the branch offset. 

 

 The branch with link, or BL, instruction is similar to the B instruction but overwrites the link 

register lr with a return address. It performs a subroutine call. 

 

Example: This example shows a simple fragment of code that, branches to a subroutine using the BL 

instruction. To return from a subroutine, you copy the link register to the pc. 

BL subroutine ; branch to subroutine 

CMP r1, #5  ; compare r1 with 5 

MOVEQ r1, #0  ; if (r1==5) then r1 = 0 

:   

subroutine 

<subroutine code> 

MOV pc, lr  ; return by moving  pc = lr 

 The branch exchange (BX) and branch exchange with link (BLX) are the third type of branch 

instruction.  

 The BX instruction uses an absolute address stored in register Rm. It is primarily used to branch 

to and from Thumb code. The T bit in the cpsr is updated by the least significant bit of the branch 

register.  

 Similarly the BLX instruction updates the T bit of the cpsr with the least significant bit and 

additionally sets the link register with the return address. 

 

LOAD-STORE INSTRUCTIONS: 

Load-store instructions transfer data between memory and processor registers. There are three types of 

load-store instructions: single-register transfer, multiple-register transfer, and swap. 

 

Single-Register Transfer: 

 These instructions are used for moving a single data item in and out of a register.  

 The data types supported are signed and unsigned words (32-bit), half-words (16-bit), and bytes. 

 

Here are the various load-store single-register transfer instructions. 

 

MAHESH PRASANNA K., VCET, PUTTUR 

12 



MICROPROCESSORS AND MICROCONTROLLERS 
 15CS44 

 

 
 LDR and STR instructions can load and store data on a boundary alignment that is the same as 

the data type size being loaded or stored.  

o For example, LDR can only load 32-bit words on a memory address that is a multiple of 

four bytes—0, 4, 8, and so on.  

 

Example: This example shows a load from a memory address contained in register r1, followed by a store 

back to the same address in memory. 

; 

; load register r0 with the contents of 

; the memory address pointed to by register 

; r1. 

; 

  LDR r0, [r1]  ; = LDR r0, [r1, #0] 

; 

; store the contents of register r0 to 

; the memory address  pointed  to by 

; register r1. 

; 

STR r0, [r1]  ; = STR r0, [r1, #0] 

The first instruction loads a word from the address stored in register r1 and places it into register r0. The 

second instruction goes the other way by storing the contents of register r0 to the address contained in 

register r1. The offset from register r1 is zero. Register r1 is called the base address register. 
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Single-Register Load-Store Addressing Modes: 

The ARM instruction set provides different modes for addressing memory. These modes incorporate one 

of the indexing methods: preindex with writeback, preindex, and postindex. 

Table: Index Methods 

 
 Preindex with writeback calculates an address from a base register plus address offset and then 

updates that address base register with the new address.  

 Preindex offset is the same as the preindex with writeback but does not update the address base 

register.  

o The preindex mode is useful for accessing an element in a data structure. 

 Postindex only updates the address base register after the address is used.  

o The postindex and preindex with writeback modes are useful for traversing an array. 

Example:  

PRE  r0 = 0x00000000  

r1 = 0x00090000 

mem32[0x00009000] = 0x01010101  

mem32[0x00009004] = 0x02020202 

LDR r0, [r1, #4]! 

Preindexing with writeback: 

POST(1) r0 = 0x02020202 

r1 = 0x00009004 

LDR r0, [r1, #4] 

Preindexing: 

POST(2) r0 = 0x02020202 

r1 = 0x00009000 

LDR r0, [r1], #4 

Postindexing: 

POST(3)   r0 = 0x01010101 

r1 = 0x00009004 

 The above Example used a preindex method. This example shows how each indexing method 

affects the address held in register r1, as well as the data loaded into register r0.  
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The addressing modes available with a particular load or store instruction depend on the instruction class. 

The following Table shows the addressing modes available for load and store of a 32-bit word or an 

unsigned byte. 

Table: Single-Register Load-Store Addressing, Word or Unsigned Byte 

 
 A signed offset or register is denoted by “+/-”, identifying that it is either a positive or negative 

offset from the base address register Rn. The base address register is a pointer to a byte in 

memory, and the offset specifies a number of bytes. 

 Immediate means the address is calculated using the base address register and a 12-bit offset 

encoded in the instruction.  

 Register means the address is calculated using the base address register and a specific register’s 

contents.  

 Scaled means the address is calculated using the base address register and a barrel shift operation. 

 

The following Table provides an example of the different variations of the LDR instruction.  

Table: Examples of LDR Instructions using Different Addressing Modes 
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The following Table shows the addressing modes available on load and store instructions using 16-bit 

halfword or signed byte data. 

Table: Single-Register Load-Store Addressing, Halfword, Signed Halfword, Signed Byte and Doubleword 

 
These operations cannot use the barrel shifter. There are no STRSB or STRSH instructions since STRH 

stores both a signed and unsigned halfword; similarly STRB stores signed and unsigned bytes.  

The following Table shows the variations for STRH instructions. 

Table: Variations of STRH Instructions 

 
 

Multiple-Register Transfer: 

 Load-store multiple instructions can transfer multiple registers between memory and the 

processor in a single instruction.  

 The transfer occurs from a base address register Rn pointing into memory.  

o Multiple-register transfer instructions are more efficient from single-register transfers for  

 moving blocks of data around memory and  

 saving and restoring context and stacks. 

 Load-store multiple instructions can increase interrupt latency.  

 ARM implementations do not usually interrupt instructions while they are executing.  

o For example, on an ARM7 a load multiple instruction takes 2 + Nt cycles, where N is the 

number of registers to load and t is the number of cycles required for each sequential 

access to memory.  

 If an interrupt has been raised, then it has no effect until the load-store multiple instruction is 

complete. 
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 Compilers, such as armcc, provide a switch to control the maximum number of registers being 

transferred on a load-store, which limits the maximum interrupt latency. 

 
The following Table shows the different addressing modes for the load-store multiple instructions. Here N 

is the number of registers in the list of registers. 

Table: Addressing Mode for Load-Store Multiple Instructions 

 
 Any subset of the current bank of registers can be transferred to memory or fetched from 

memory.  

 The base register Rn determines the source or destination address for a load-store multiple 

instruction. This register can be optionally updated following the transfer. This occurs when 

register Rn is followed by the ! character, similar to the single-register load-store using preindex 

with writeback. 

Example: In this example, register r0 is the base register Rn and is followed by !, indicating that the 

register is updated after the instruction is executed. You will notice within the load multiple instruction 

that the registers are not individually listed. Instead the “-” character is used to identify a range of 

registers. In this case the range is from register r1 to r3 inclusive. 

Each register can also be listed, using a comma to separate each register within “{” and “}” brackets. 

PRE mem32[0x80018] = 0x03 

mem32[0x80014] = 0x02 

  mem32[0x80010] = 0x01  

r0 = 0x00080010 

r1 = 0x00000000  

r2 = 0x00000000  

r3 = 0x00000000 

LDMIA r0!, {r1–r3} 

POST r0  =  0x0008001c 
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r1 = 0x00000001  

r2 = 0x00000002  

r3 = 0x00000003 

The following Figure shows a graphical representation. 

 
Figure: Pre-condition for LDMIA Instruction 

 The base register r0 points to memory address 0x80010 in the PRE condition.  

 Memory addresses 0x80010, 0x80014, and 0x80018 contain the values 1, 2, and 3 respectively.  

 After the load multiple instruction executes, registers r1, r2, and r3 contain these values as shown 

in the following Figure.  

 
Figure: Post Condition for LDMIA Instruction 

 The base register r0 now points to memory address 0x8001c after the last loaded word. 

 Now replace the LDMIA instruction with a load multiple and increment before LDMIB 

instruction and use the same PRE conditions.  

 The first word pointed to by register r0 is ignored and register r1 is loaded from the next memory 

location as shown in the following Figure. 
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Figure: Post Condition for LDMIB Instruction 

 After execution, register r0 now points to the last loaded memory location. This is in contrast 

with the LDMIA example, which pointed to the next memory location. 

 

• The decrement versions DA and DB of the load-store multiple instructions decrement the start 

address and then store to ascending memory locations.  

• This is equivalent to descending memory but accessing the register list in reverse order.  

• With the increment and decrement load multiples; you can access arrays forwards or backwards.  

• They also allow for stack push and pull operations. 

The following Table shows a list of load-store multiple instruction pairs.  

Table: Load-Store Multiple Pairs when Base Update used 

Store Multiple Load Multiple 

STMIA LDMDB 

STMIB LDMDA 

STMDA LDMIB 

STMDB LDMIA 

• If you use a store with base update, then the paired load instruction of the same number of 

registers will reload the data and restore the base address pointer.  

• This is useful when you need to temporarily save a group of registers and restore them later. 

Example: This example shows an STM increment before instruction followed by an LDM decrement 

after instruction. 

PRE r0 = 0x00009000 

r1 = 0x00000009 

r2 = 0x00000008 

r3 = 0x00000007 

STMIB r0!, {r1–r3}  

MOV r1, #1 

MOV r2, #2 
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MOV r3, #3 

PRE(2) r0  =  0x0000900c 

r1 = 0x00000001  

r2 = 0x00000002  

r3 = 0x00000003 

LDMDA r0!, {r1–r3} 

POST r0 = 0x00009000 

r1 = 0x00000009  

r2 = 0x00000008  

r3 = 0x00000007 

The STMIB instruction stores the values 7, 8, 9 to memory. We then corrupt register r1 to r3. The 

LDMDA reloads the original values and restores the base pointer r0. 

  

Example: We illustrate the use of the load-store multiple instructions with a block memory copy example. 

This example is a simple routine that copies blocks of 32 bytes from a source address location to a 

destination address location.  

The example has two load-store multiple instructions, which use the same increment after addressing 

mode. 

; r9 points to start of source data 

; r10 points to start of destination data 

; r11 points to end of the source 

loop 

; load 32 bytes from source and update r9 pointer  

LDMIA r9!, {r0–r7} 

; store 32 bytes to destination and update r10 pointer  

STMIA r10!, {r0–r7}  ; and store them 

; have we reached the end  

CMP r9, r11 

BNE loop 

 This routine relies on registers r9, r10, and r11 being set up before the code is executed.  

 Registers r9 and r11 determine the data to be copied, and register r10 points to the destination in 

memory for the data.  

 LDMIA loads the data pointed to by register r9 into registers r0 to r7. It also updates r9 to point 

to the next block of data to be copied.  

 STMIA copies the contents of registers r0 to r7 to the destination memory address pointed to by 

register r10. It also updates r10 to point to the next destination location.  
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 CMP and BNE compare pointers r9 and r11 to check whether the end of the block copy has been 

reached.  

 If the block copy is complete, then the routine finishes; otherwise the loop repeats with the 

updated values of register r9 and r10. 

• The BNE is the branch instruction B with a condition mnemonic NE (not equal). If the previous 

compare instruction sets the condition flags to not equal, the branch instruction is executed. 

 

The following Figure shows the memory map of the block memory copy and how the routine moves 

through memory.  

 
Figure: Block Memory Copy in the Memory map 

Theoretically this loop can transfer 32 bytes (8 words) in two instructions, for a maximum possible 

throughput of 46 MB/second being transferred at 33 MHz. These numbers assume a perfect memory 

system with fast memory. 

 

Stock Operation: The ARM architecture uses the load-store multiple instructions to carry out stack 

operations.  

• The pop operation (removing data from a stack) uses a load multiple instruction. 

• The push operation (placing data onto the stack) uses a store multiple instruction. 

 

 When using a stack you have to decide whether the stack will grow up or down in memory.  

o A stack is either –  

 ascending (A) – stacks grow towards higher memory addresses or 

 descending (D) – stacks grow towards lower memory addresses. 

 When you use a full stack (F), the stack pointer sp points to an address that is the last used or full 

location (i.e., sp points to the last item on the stack).  
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 If you use an empty stack (E) the sp points to an address that is the first unused or empty location 

(i.e., it points after the last item on the stack). 

 

• There are number of load-store multiple addressing mode aliases available to support stack 

operations (see the following Table). 

Table: Addressing Methods for Stack Operations 

 
• Next to the pop column is the actual load multiple instruction equivalent.  

o For example, a full ascending stack would have the notation FA appended to the load 

multiple instruction—LDMFA. This would be translated into an LDMDA instruction. 

• ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how routines 

are called and how registers are allocated. In the ATPCS, stacks are defined as being full 

descending stacks. Thus, the LDMFD and STMFD instructions provide the pop and push 

functions, respectively. 

 

Example: The STMFD instruction pushes registers onto the stack, updating the sp. The following Figure 

shows a push onto a full descending stack.  

 
Figure: STMFD Instruction – Full Stack push Operation 

You can see that when the stack grows the stack pointer points to the last full entry in the stack. 

PRE r1 = 0x00000002 

r4 = 0x00000003  

sp = 0x00080014 

STMFD sp!, {r1, r4} 

POST r1 = 0x00000002 

r4 = 0x00000003 

sp = 0x0008000c 
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Example: The following Figure shows a push operation on an empty stack using the STMED instruction.  

 
Figure: STMED Instruction – Empty Stack push Operation 

The STMED instruction pushes the registers onto the stack but updates register sp to point to the next 

empty location. 

PRE r1 = 0x00000002 

r4 = 0x00000003  

sp = 0x00080010 

STMED sp!, {r1, r4} 

POST r1 = 0x00000002 

r4 = 0x00000003 

sp = 0x00080008 

 

 When handling a checked stack there are three attributes that need to be preserved: the stack base, 

the stack pointer, and the stack limit.  

 The stack base is the starting address of the stack in memory.  

 The stack pointer initially points to the stack base; as data is pushed onto the stack, the stack 

pointer descends memory and continuously points to the top of stack. If the stack pointer passes 

the stack limit, then a stack overflow error has occurred.  

 Here is a small piece of code that checks for stack overflow errors for a descending stack: 

; check for stack overflow  

SUB sp, sp, #size 

CMP sp, r10 

BLLO  _stack_overflow   ; condition 

• ATPCS defines register r10 as the stack limit or sl. This is optional since it is only used when 

stack checking is enabled.  

• The BLLO instruction is a branch with link instruction plus the condition mnemonic LO.  

o If sp is less than register r10 after the new items are pushed onto the stack, then stack 

overflow error has occurred.  

o If the stack pointer goes back past the stack base, then a stack underflow error has 

occurred. 
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Swap Instruction: 

The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with 

the contents of a register.  

This instruction is an atomic operation—it reads and writes a location in the same bus operation, 

preventing any other instruction from reading or writing to that location until it completes. 

 
Swap cannot be interrupted by any other instruction or any other bus access. We say the system “holds 

the bus” until the transaction is complete. Also, swap instruction allows for both a word and a byte swap. 

 

Example: The swap instruction loads a word from memory into register r0 and overwrites the memory 

with register r1. 

 PRE mem32[0x9000] = 0x12345678  

r0  =  0x00000000 

r1 = 0x11112222  

r2 = 0x00009000 

SWP r0, r1, [r2] 

POST mem32[0x9000] = 0x11112222 

r0 = 0x12345678  

r1 = 0x11112222  

r2 = 0x00009000 

 

Example: This example shows a simple data guard that can be used to protect data from being written by 

another task. The SWP instruction “holds the bus” until the transaction is complete. 

 spin 

  MOV r1, =semaphore  

MOV r2, #1 

SWP r3, r2, [r1]  ; hold the bus until complete  

CMP r3, #1 

BEQ spin 
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The address pointed to by the semaphore either contains the value 0 or 1. When the semaphore equals 1, 

then the service in question is being used by another process. The routine will continue to loop around 

until the service is released by the other process—in other words, when the semaphore address location 

contains the value 0.                         ¦ 

 

SOFTWARE INTERRUPT INSTRUCTION: 

A software interrupt instruction (SWI) causes a software interrupt exception, which provides a 

mechanism for applications to call operating system routines. 

 
When the processor executes an SWI instruction, it sets the program counter pc to the offset 0x8 in the 

vector table. The instruction also forces the processor mode to SVC, which allows an operating system 

routine to be called in a privileged mode. 

Each  SWI  instruction  has  an  associated  SWI  number,  which  is  used  to  represent a particular 

function call or feature. 

 

Example: Here we have a simple example of an SWI call with SWI number 0x123456, used by ARM 

toolkits as a debugging SWI. Typically the SWI instruction is executed in user mode. 

PRE cpsr  =  nzcVqift_USER  

pc  =  0x00008000 

lr = 0x003fffff  ;lr = r14  

r0 = 0x12 

0x00008000 SWI 0x123456 

POST cpsr  =  nzcVqIft_SVC 

spsr  =  nzcVqift_USER  

pc = 0x00000008 

lr = 0x00008004 

r0 = 0x12 

Since SWI instructions are used to call operating system routines, you need some form of parameter 

passing. This is achieved using registers. In this example, register r0 is used to pass the parameter 0x12. 

The return values are also passed back via registers. 
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Code called the SWI handler is required to process the SWI call. The handler obtains the SWI number 

using the address of the executed instruction, which is calculated from the link register lr. 

The SWI number is determined by 

SWI_Number = <SWI instruction> AND NOT (0xff000000) 

Here the SWI instruction is the actual 32-bit SWI instruction executed by the processor. 

  

Example: This example shows the start of an SWI handler implementation. The code fragment determines 

what SWI number is being called and places that number into register r10.  

You can see from this example that the load instruction first copies the complete SWI instruction into 

register r10. The BIC instruction masks off the top bits of the instruction, leaving the SWI number. We 

assume the SWI has been called from ARM state. 

SWI_handler 

; Store registers r0-r12 and the link register 

 STMFD sp!, {r0–r12, lr} 

; Read the SWI instruction  

LDR r10, [lr, #–4] 

; Mask off top 8 bits 

BIC r10, r10, #0xff000000 

; r10 - contains the SWI number  

BL service_routine 

; return from SWI handler  

LDMFD sp!, {r0–r12, pc}ˆ 

The number in register r10 is then used by the SWI handler to call the appropriate SWI service routine. 

 

PROGRAM STATUS REGISTER INSTRUCTIONS: 

The ARM instruction set provides two instructions to directly control a program status register (psr).   

 The MRS instruction transfers the contents of either the cpsr or spsr into a register.  

 The MSR instruction transfers the contents of a register into the cpsr or spsr.  

Together these instructions are used to read and write the cpsr and spsr. 

 

In the syntax we can see a label called fields. This can be any combination of control (c), extension (x), 

status (s), and flags (f).  
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These fields relate to particular byte regions in a psr, as shown in the following Figure. 

 
Figure: psr Byte Fields 

The  c field  controls  the  interrupt  masks,  Thumb  state,  and  processor  mode.  

 

The following Example shows how to enable IRQ interrupts by clearing the I mask. This operation 

involves using both the MRS and MSR instructions to read from and then write to the cpsr. 

 

Example: The MSR first copies the cpsr into register r1. The BIC instruction clears bit 7 of r1. Register 

r1 is then copied back into the cpsr, which enables IRQ interrupts. You can see from this example that 

this code preserves all the other settings in the cpsr and only modifies the I bit in the control field. 

PRE cpsr = nzcvqIFt_SVC  

MRS r1,   cpsr 

BIC r1, r1, #0x80  ; 0b01000000 

MSR cpsr_c, r1 

POST cpsr = nzcvqiFt_SVC 

This example is in SVC mode. In user mode you can read all cpsr bits, but you can only update the 

condition flag field f. 

  

Coprocessor Instructions: 

Coprocessor instructions are used to extend the instruction set.  

 A coprocessor can either provide additional computation capability or be used to control the 

memory subsystem including caches and memory management.  

 The coprocessor instructions include data processing, register transfer, and memory transfer 

instructions.  

 Note that these instructions are only used by cores with a coprocessor. 
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 In the syntax of the coprocessor instructions,  

o The cp field represents the coprocessor number between p0 and p15 

o The opcode fields describe the operation to take place on the coprocessor.  

o The Cn, Cm, and Cd fields describe registers within the coprocessor.  

 The coprocessor operations and registers depend on the specific coprocessor you are using.  

 Coprocessor 15 (CP15) is reserved for system control purposes, such as memory management, 

write buffer control, cache control, and identification registers. 

 

Example: This example shows a CP15 register being copied into a general-purpose register. 

; transferring the contents of CP15 register c0 to register r10 

MRC p15, 0, r10, c0, c0, 0 

Here CP15 register-0 contains the processor identification number. This register is copied into the 

general-purpose register r10. 

  

LOADING CONSTANTS: 

You might have noticed that there is no ARM instruction to move a 32-bit constant into a register. Since 

ARM instructions are 32 bits in size, they obviously cannot specify a general 32-bit constant. 

To aid programming there are two pseudo-instructions to move a 32-bit value into a register. 

 
• The first pseudo-instruction writes a 32-bit constant to a register using whatever instructions are 

available. It defaults to a memory read if the constant cannot be encoded using other instructions. 

• The second pseudo-instruction writes a relative address into a register, which will be encoded 

using a pc-relative expression. 
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Example: This  example  shows  an  LDR instruction  loading  a  32-bit  constant  0xff00ffff into register 

r0. 

LDR r0, [pc, #constant_number-8-{PC}] 

: 

constant_number 

DCD 0xff00ffff 

This example involves a memory access to load the constant, which can be expensive for time-critical 

routines. 

 

The following Example shows an alternative method to load the same constant into register r0 by using 

an MVN instruction. 

Example: Loading the constant 0xff00ffff using an MVN. 

PRE none... 

MVN r0, #0x00ff0000 

POST r0 = 0xff00ffff 

As you can see, there are alternatives to accessing memory, but they depend upon the constant you are 

trying to load.  

The LDR pseudo-instruction either inserts an MOV or MVN instruction to generate a value (if possible) 

or generates an LDR instruction with a pc-relative address to read the constant from a literal pool—a data 

area embedded within the code. 

 

The following Table shows two pseudo-code conversions.  

Table: LDR pseudo-instruction Conversion 

 
The first conversion produces a simple MOV instruction; the second conversion produces a pc-relative 

load.  

Another useful pseudo-instruction is the ADR instruction, or address relative. This instruction  places  the  

address  of  the  given  label  into  register  Rd,  using  a  pc-relative  add  or subtract. 

 

By: Mahesh Prasanna K., 

DePt. of Cse, VCet. 

____________*********____________ 

********* 
MAHESH PRASANNA K., VCET, PUTTUR 

29 


	MODULE – 5
	INTRODUCTION TO THE ARM INSTRUCTION SET

