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one of them which converts thermal energy of fossil fuels to power. It produces highly 

fluctuating torque. Even the machines having rotating parts are never completely 

balanced. From static and dynamic analysis of such machines, it is known that these 

machines transmit forces to the ground through structure. These forces are periodic in 

nature. 

You know that in a simple pendulum, bob starts to and fro motion or we can say 

oscillations when bob is disturbed from its equilibrium position. It executes oscillations 

at natural frequency. It keeps on oscillating until its motion dies out. If such a system is 

subjected to the periodic forces it responds to the impressed frequency which makes 

system to execute forced vibration at forcing frequency. If impressed frequency is equal 

to the natural frequency, resonance occurs which results in large oscillations and due to 

this it results in excessive dynamic stresses. 

This unit deals with oscillatory behaviour of the dynamic systems. All the bodies having 

mass and elasticity are capable of vibration. In studying mechanical vibrations, the 

bodies are treated as elastic bodies instead of rigid bodies. The bodies have mass also. 

Because of mass it they can possess kinetic energy by virtue of their velocity. They can 

possess elastic strain energy which is comparable to the potential energy. The change of 

potential energy into kinetic energy and vice-versa keeps the body vibrating without 

external excitation (force or disturbance). If the cause of vibration is known, the remedy 

to control it can be made. 

Vibration of a system is undesirable because of unwanted noise, high stresses, 

undesirable wear, etc. It is of great importance also in diagnostic maintenance. 

Objectives 

After studying this unit, you should be able to 

 analyse a system for mechanical vibration, 
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In earlier units, you have studied various mechanisms and machines. The IC engine is 
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determine degree of freedom of a system, 

 determine natural frequency of a system, 

 analyse and study dynamical behaviour of a system, and 

 control vibration in a system. 

Periodic Motion 

The motion which repeats after a regular interval of time is called periodic motion. 

Frequency 

The number of cycles completed in a unit time is called frequency. Its unit is 

cycles per second (cps) or Hertz (Hz). 

Time Period 

Time taken to complete one cycle is called periodic time. It is represented in 

seconds/cycle. 

Amplitude 

The maximum displacement of a vibrating system or body from the mean 

equilibrium position is called amplitude. 

Free Vibrations 

When a system is disturbed, it starts vibrating and keeps on vibrating thereafter 

without the action of external force. Such vibrations are called free vibrations. 

Natural Frequency 

When a system executes free vibrations which are undamped, the frequency of 

such a system is called natural frequency. 

Forced Vibrations 

The vibrations of the system under the influence of an external force are called 

forced vibrations. The frequency of forced vibrations is equal to the forcing 

frequency. 

Resonance 

When frequency of the exciting force is equal to the natural frequency of the 

system it is called resonance. Under such conditions the amplitude of vibration 

builds up dangerously. 

Degree of Freedom 

The degree of freedom of a vibrating body or system implies the number of 

independent coordinates which are required to define the motion of the body or 

system at given instant. 

Simple Harmonic Motion 

It is a to and fro periodic motion of a particle in which : 

(a) acceleration is proportional to the displacement from the mean 

position. 

(b) Acceleration is always directed towards a fixed point which is the 

mean equilibrium position. 

It can be represented by an expression having a periodic function like sine or 

cosine. 

 x = X sin t 

where X is the amplitude. 

4.2 DEFINITIONS



     

Diagramatically it can be represented as shown in Figure 7.1. 
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SAQ 1 

At which phase angle, amplitude occurs for a sinusoidal function? 

 

 

 

 

 

 

FREEDOM SYSTEMS FOR FREE VIBRATIONS 

A practical system is very complicated. Therefore, before proceeding to analyse the 

system it is desirable to simplify it by modeling the system. The modeling of the system 

is carried over in such a manner that the result is acceptable within the desirable 

accuracy. Instead of considering distributed mass, a lumped mass is easier to analyse, 

whose dynamic behaviour can be determined by one independent principal coordinate, in 

a single degree freedom system. It is important to study the single degree freedom 

system for a clear understanding of basic features of a vibration problem. 

The elements constituting a lumped parameter vibratory system are : 

The Mass 

The mass is assumed to be rigid and concentrated at the centre of gravity. 

The Spring 

It is assumed that the elasticity is represented by a helical spring. When deformed 

it stores energy. The energy stored in the spring is given by 

  21

2
PE k x  

where k is stiffness of the spring. The force at the spring is given by 

  F k x  

The springs work as energy restoring element. They are treated massless. 
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Figure  : Simple Harmonic Motion

4.3.1 Elements of Lumped Parameter Vibratory System
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The Damper 

In a vibratory system the damper is an element which is responsible for loss of 

energy in the system. It converts energy into heat due to friction which may be 

either sliding friction or viscous friction. A vibratory system stops vibration 

because of energy conversion by damper. There are two types of dampers. 

Viscous Damper 

A viscous damper consists of viscous friction which converts energy into 

heat due to this. For this damper, force is proportional to the relative 

velocity. 

  relative velocity ( )dF v  

  dF cv  

where c is constant of proportionality and it is called coefficient of 

damping. 

The coefficient of viscous damping is defined as the force in ‘N’ when 

velocity is 1 m/s. 

Coulumb’s Damper 

The dry sliding friction acts as a damper. It is almost a constant force but 

direction is always opposite to the sliding velocity. Therefore, direction of 

friction changes due to change in direction of velocity. 

The Excitation Force 

It is a source of continuous supply of energy to the vibratory system. It is an 

external periodic force which acts on the vibratory system. 

It is important to study the single degree freedom system for a clear understanding 

of basic features of a vibration problem. 

There are several methods to analyse an undapmed system. 

Methodology 

Method Based on Newton’s II Law 

According to the Newton’s II law, the rate of change of linear momentum is 

proportional to the force impressed upon it 

  ( ) Net force in direction of the velocity
d

mv
dt

  

Using  
dx

v x
dt

   

  ( )  
dx

mx c F
dt

 

where c is constant of proportionality. 

or   mx c F  

For proper units in a system c = 1 

   mx F  

The direction of forces mx  and F  are same. A model which represents 

undamped single degree of freedom system shall have two elements, i.e. 

helical spring and mass. The mass is constrained to move only in one 

direction as shown in Figure 7.2. The mass is in static condition in  

Figure 7.2(a). The free body diagram of the mass is shown in 

4.3.2 Undamped Free Vibration



     

Figure 7.2(b). The body is in equilibrium under the action of the two forces. 

Here ‘’ is the extension of the spring after suspension of the mass on the 

spring. 

Therefore,  k mg              . . . (7.1) 

       (a) Spring Mass    (b) Static Condition  (c) Dynamic Condition 

body is moving down with acceleration ‘ x ’ also in downward direction, 

therefore, 

  mx F   in direction of x  

or  ( )mx mg k x             

Incorporating Eq. (7.1) in Eq. (7.2) 

  mx k x   

or  0mx k x            

Method Based on D’Alembert’s Principle 

The free body diagram of the mass in dynamic condition can be drawn as 

follows : 

 

 

 

 

 

 

 

The free body diagram of mass is shown in Figure 7.3. The force equation 

can be written as follows : 

  ( )mx mg k x             

Incorporating Eq. (7.1) in Eq. (7.4), the following relation is obtained. 

  0mx kx   

This equation is same as we got earlier. 

Energy Method 

This method is applicable to only the conservative systems. In conservative 

systems there is no loss of energy and therefore total energy remains 

constant. When a mechanical system is in motion, the total energy of the 

 
k k (+x) 

Unstretched 
position   

mg mg 

x 

k (+x) 

mg 

m x (Inertia force)  
..  

Figure : Undamped Free Vibration

Figure  : Free Body Diagram

figure  represents the dynamic condition of the body. In this case, the 



 

 

 
system is partly kinetic and partly potential (elastic strain energy). The 

kinetic energy is due to the mass (m) and velocity ( x ). The potential energy 

is due to spring stiffness and relative movement between the two ends of the 

spring. 

  Energy (E) = T + U = constant (C) 

where   T = Kinetic energy of the system, and’ 

   U = Elastic strain energy. 

Since total energy remains constant 

  0 or ( ) 0
dE d

T U
dt dt

    

  21
( )

2
T m x  

 Deflection Diagram 

The potential energy of the system consists of two points : 

(a) loss/gain in PE of mass, and 

(b) strain energy of spring. 

Consider an infinitesimal element du at x = u. 

From Figure 7.4 

  Spring force ( ) ( )uF k u    

  Work done ( )dW k u du     

  

0

x

U dW   loss of PE of mass 

      

0

( )

x

k u du mg x     

  

0

( ) [ ]

x

U ku mg du mg x k mg      

or  21
( )

2
U kx mg x mg x    

or  21

2
U kx              

 
x 

S
p
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Figure : Spring Force 
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  21 1
0

2 2

d
mx kx

dt

 
  

 
 

  
1 1

2 2 0
2 2

m x x k x x       

or  0mx kx   

This is the same equation as we got earlier. 

Rayleigh’s Method 

It is a modified energy method. It may be noted that in a conservative 

system potential energy is maximum when kinetic energy is minimum and 

vice-versa. Therefore, equating maximum kinetic energy with maximum 

potential energy. 

  2 2
max max

1 1
( ) ( )

2 2
m x k x  

and  maxx X  

  2 21 1
( )

2 2
 m X k X  

or   
k

m
           

Solution of Differential Equation 

The differential equation of single degree freedom undamped system is given by 

   0mx kx   

or   0
 

  
 

k
x x

m
          

when coefficient of acceleration term is unity, the underroot of coefficient of x is 

equal to the natural circular frequency, i.e. ‘n’ 

    n

k

m
           

Therefore, Eq. (7.7) becomes 

   2 0  nx x           

The equation is satisfied by functions sin n t and cos n t. Therefore, solution of 

Eq. (7.9) can be written as 

   sin cos   n nx A t B t         

where A and B are constants. These constants can be determined from initial 

(a) by pulling mass by distance ‘X’, and 

(b) by hitting mass by means of a fast moving object with a velocity \ 

say ‘V’. 

Considering case (a) 

  0, and 0t x X x    

  and 0X B A   

  cos nx X t            

onditions. The system shown in Figure can be disturbed in two ways :



 

 

Theory of Machines 

 
Considering case (b) 

  0, 0 andt x x V    

  0 and 
n

V
B A  

  sin 


n
n

V
x t          

Behaviour of Undamped System 

pulling the mass by distance ‘X’. The solution of the system in this case is given 

by Eq. (7.11) which is 

  cos nx X t  

  sin cos
2

 
        

 
n n n nx X t X t  

and  2 2cos cos ( )        n n n nx X t X t  

These expressions indicate that velocity vector leads displacement by 
2


 and 

acceleration leads displacement by ‘’. The maximum velocity is (X n) and 

maximum acceleration is 2( )nX . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 shows the plots of displacement, velocity and acceleration, with respect 

to time. The following observations can be made from these diagrams : 

(a) A body, if disturbed, will never stop vibrating. 

x 
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Figure  : Plots of Displacement, Velocity and Acceleration

onsider the system shown in Figure . The system has been disturbed by 



     

(b) When displacement is maximum, velocity is zero and acceleration is 

maximum in direction opposite to displacement. 

(c) When displacement is zero, velocity is maximum and acceleration is 

zero. 

In undamped free vibrations, two elements (spring and mass) were used but in damped 

third element which is damper in addition to these are used. The three element model is 

shown in Figure 7.7. In static equilibrium 

   k mg   

   ( )mx mg k x cx      

   mx kx cx    

or   0mx cx kx              

Let   stx X e  

   2 0  ms cs k  

or   2 0
c k

s s
m m

              

   

2

1,2

1
4

2 2

     
        

     

c c k
s

m m m
        

        (a)                 (b)      (c) 

 

2 2
1 1

4 4
2 2 2 2

1 2

c c k c c k
t t

m m m m m m

x X e X e

   
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      
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The nature of this solution depends on the term in the square root. There are three 

possible cases : 

(a) 

2

4
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m m

   
    

   
 Overdamped case 
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Figure : Damped Free Vibration

4.3.3 Damped Free Vibration



 

 

 (b) 

2

4
c k

m m

   
    

   
 Critically damped case 

(c) 

2

4
c k

m m

   
    

   
 Underdamped case 

Let the critical damping coefficient be Cc, therefore, 

   

2

4cC k

m m

   
   

  
 

or   2 22 2 2 2    c n

k k
C km m m m m

m m
 

or   2 2  c nC km m  

Almost all the systems are underdamped in practice. 

Therefore,  

2 2

4 4
c k k c

i
m m m m

       
         

       
 

The ratio of damping coefficient (c) to the critical damping coefficient is called damping 

factor ‘’. 

    
c

C

C
          

  

2 2
2 2 2 2

4 4 4c n
n n

c

C mc

C m m

   
          

  
 

         22 1n     

  
2 2( 1 ) ( 1 )2

1 2
n n

c
t

i t i tmx e X e X e


       
  

 
 

Let  21n d      (say)         

where d is natural frequency of the damped free vibrations. 

Therefore, for under-damped case 

  2
1 2

d d

c
i t i tmx e X e X e


    

 
       

For critically damped system 

  2
1 2( )

c
t

mx X X t e


           

For overdamped system 

  2

c
t

mx e


 

  
2

2 2 2

c n
n

c

C mC C

m C m m


         

  n t
x e

  

 



     

 

 

 

 

 

 

 

 

The Eq. (7.19) can also be written as 

  cos ( )n t
dx X e t

  
              

where X and  are constants. X represents amplitude and  phase angle. 

Let at  t = t,  x = x0. 

  0 cos ( )n t
dx X e t

  
              

After one time period 

  1andpt t t x x    

  
( )

1 cos { ( ) }n pt t

d px X e t t
   

             

Dividing Eq. (7.24) by Eq. (7.25) 

  

( )

0

( )
1

cos

cos { ( ) }

n p

n p

t t

d

t t

d p

x X e t

x X e t t

   

   

  


  
 

Since  
1 2

p
p d

t
f


 


 

or  2d pt    

  0

1

cos ( )

cos { 2 }

n pt d

d

x t
e

x t

    


    
 

Since  cos cos (2 )      

  cos ( ) cos { 2 }d dt t          

  0

1

n ptx
e

x

 
  

or  0

2
1

22

1

    
       

    

n
n n p n

d n

x
L t

x
 

or  0

2
1

2

1

   
 

   
n

x
L

x
           . . . (7.26) 

2

2

1

 

 
 is called logarithmic decrement. 

If at  pt t n t   

x 
X cos  

Under damped System    

Over damped System     

   Critically damped System     

Xc  

Figure 



 

 

 
It can be proved that 

  0

2

2

1

 


 
n

n

x n
L

x
          

If  0

1

0.3 2n

x
L

x
     

Figure 7.8 represents displacement time diagram for the above mentioned three cases. 

For over-damped and critically damped system mass returns to its original position 

slowly and there is no vibration. Vibration is possible only in the under-damped system 

because the roots of Eq. (7.14) are complex and solution consists of periodic functions 

(Eq. (7.22)). 

Supported Shaft 

In this type of vibration, all the particles vibrate along paths perpendicular to the shaft 

axis. The shaft may be having single to several supports. It may be carrying its own load, 

a single point load or several point loads come in this category. Now these cases are to 

be dealt with separately. 

Consider a very light shaft AB of length ‘l’ carrying a point load ‘W’ at a distance ‘a’ 

from the support A and at a distance ‘b’ from the support B. 

   a b l            

and the deflection 

   
2 2

3

W a b

E I l
           

The natural circular frequency for the system is given by 

    
 
 
 

n

k

W

g

 

or     
 
 
 

n

kg g

WW

k

 

or    


n

g
 

where   
W

k
            

   
1 4.985

Hz
2 2


  

   

n
n

g
f       

The mass of the beam was neglected for determination of the above mentioned natural 

frequency. 

B A 

W 

a b 

l 

Figure  : Free Transverse Vibration

4.3.4 Free Transverse Vibration due to a Point Load on a Simply 



     

In torsional vibration, all the particles of the system vibrate along circular arcs having 

their centers along the axis of rotation. Figure 7.10 represents a single rotor systems. In 

both the cases (a) and (b), there is only one inertia ‘I’. 

(a)       (b) 

In part (a) it is supported by one shaft segment and in part (b) it is supported by the two 

shaft segments. 

The differential equation for the rotor shown in Figure 7.10(a) can be obtained by 

considering two couples, i.e. inertia couple and torsional elastic couple. If shaft is 

twisted slightly say by angle ‘’, the couple is given by 

   ( )tk    

where kt is torsional stiffness which is given by 

   t

T G J
k

l
 


 

where    G is modulus of rigidity, 

     J is polar moment of inertia, and 

     l is length of shaft. 

The differential equation for the rotor given in Figure 7.10(a) is 

   0   tI k            

or   0   
G J

l
 

    n

G J

l
            

For the shaft shown in Figure 7.10(b), the two segments are acting like parallel springs. 

Therefore, the differential equation for this will be 
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SAQ 2 

(a) What is the difference between energy method and Rayleigh’s method? 

(b) By how much angle acceleration and velocity lead displacement? 

(c) Along which curve amplitude decays in under-damped system? 

d1 d2

2 

l1 l2 

I 

Figure  : Free Torsional Vibration

4.3.5 Free Torsional Vibration of a Single Rotor System



 

 

 

There are various sources of vibration in an industrial environment : 

(a) Impact processes such as pile driving and blasting. 

(b) Rotating or reciprocating machinery such as engines, compressors and 

motors. 

(c) Transportation vehicles such as trucks, trains and aircraft. 

(d) Flow of fluids through pipes and without pipes. 

(e) Natural calamities such as earthquakes. 

There are various harmful effects of vibration : 

(a) Excessive wear of bearings. 

(b) Formation of cracks in machines, buildings and structure, etc. 

(c) Loosening of fasteners in mechanical systems. 

(d) Structural and mechanical failures in machines and buildings. 

(e) Frequent and costly maintenance of machines. 

(f) Electronic malfunctions through failure of solder joints. 

(g) Abrasion of insulation around electric conductors, causing soots. 

(h) The occupational exposure of humans to vibration leads to pain, discomfort 

and reduction in working efficiency. 

The vibration can sometimes be eliminated on the basis of theoretical analysis. However, 

in eliminating the vibration may be too high. Therefore, a designer must compromise the 

manufacturing costs involved between an acceptable amount of vibration and a 

reasonable manufacturing cost. The following steps may be taken to control vibrations : 

(a) The first group of methods attempts to reduce the excitation level at the 

source. The balancing of inertial forces, smoothening of fluid flows and 

proper lubrication at joints are effective methods and should be applied 

whenever possible. 

(b) A suitable modification of parameters may also reduce the excitation level. 

The system parameters namely inertia, stiffness and damping are suitably 

chosen or modified to reduce the response to a given excitation. 

(c) In this method, transmission of path of vibration is modified. It is popularly 

known as vibration isolation. 

As mentioned above, the first attempt is made to reduce vibration at the source. In some 

cases, this can be easily achieved by either balancing or an increase in the precision of 

machine element. The use of close tolerances and better surface finish for machine parts 

make the machine less susceptible to vibration. This method may not be feasible in some 

cases like earthquake excitation, atmospheric turbulence, road roughness, engine 

combustion instability. 

After reduction of excitation at the source, we need to look for a method to further 

control the vibration. Such a selection is guided by the factors predominantly governing 

the vibration level. 

4.4 CAUSES OF VIBRATION IN MACHINES

4.5 THE HARMFUL EFFECTS OF VIBRATIONS

4.6 VIBRATION CONTROL



     

Vibration of 

Mechanical Systems 

Determine the natural frequency of spring mass pulley system shown in 

Solution 

By Energy Method 
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By D’Alembert’s Principle 
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Example 4.1
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Determine the effect of mass of the spring on the natural frequency of spring mass 

system. 

Solution 

Let ms be the mass in kg per unit length. 

Figure 7.12 shows a spring mass system. Let the velocity distribution be linear 

therefore, the total energy ‘E’ is given by 
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Example 



     

Figure 7.13 shows an indicator mechanisms. The bell crank arm is pivoted at O 

and has mass moment of inertia I. Find natural frequency of the system. 

 

 

 

 

 

 

 

 

 

Solution 

Let  be the angular displacement of bell crank arm. 
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A damped system has following elements : 

 Mass = 4 kg; k = 1 kN/m;  C = 40 N-sec/m 

Determine : 

(a) damping factor, 

(b) natural frequency of damped oscillation, 

(c) logarithmic decrement, and 

(d) number of cycles after which the original amplitude is reduced to 

20%. 

Solution 

Given data : 

 m = 4 kg;  k = 1 kN/m;  C = 40 N-sec/m 
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(a) Damping factor 
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A system which has mass and elasticity can start vibrating if it is disturbed. The natural 

frequencies of a system depend on the degrees of freedom of a system. For a 

multi-degree of freedom system, there will be several natural frequencies. For a 

two-degree of freedom system, there will be two natural frequencies. 

The vibration can be linear, transverse or rotational depending on the type of the system. 

The methods of analysis constitutes applications of Newton’s law, D’Alembert’s 

principle, energy method and Rayleigh’s method. All the methods can in general be used 

to analyse the system but it can be easily analysed by using a particular method. 

Therefore, selection of a particular method is always desirable for a given system. The 

energy method and Rayleigh’s method can be used for a conservative system where there 

is no energy loss but a practical system cannot be conservative in ideal sense. The cause 

of vibration, their harmful effects and remedies have also been mentioned for practical 

utility to control vibrations. 

Periodic Motion : It is the motion which repeats after a regular 

interval of time. 

Frequency : It is the number of cycles completed in a unit time. 

Time Period : It is the time taken to complete one cycle. 

Amplitude : It is maximum displacement of a vibrating system 

from the position of mean equilibrium position. 

Free Vibration : It is the vibration of the system which takes place 

without any external force after the disturbance. 

4.7 SUMMARY

4.8 KEY WORDS



     

: It is the frequency of vibration of a system which 

is undamped and without external excitation when 

it is disturbed. 

Forced Vibration : It is the vibration of a system which is due to 

external excitation. 

Resonance : When forcing frequency is equal to the natural 

frequency, resonance takes place. 

Degree of Freedom : It is equal to the number of independent 

coordinates which are required to define the 

motion of the system. 

Mode of Vibration : It is the way, the system vibrates in the free 

vibrations. 

Conservative System : It is the system for which total energy remains 

constant. 

Damper : It is the element which is responsible for decay in 

energy. 
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