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Module 1 : INTRODUCTION TO TURBOMACHINES 

1.1 Introduction: 

 The turbomachine is used in several applications, the primary ones being electrical power 

generation, aircraft propulsion and vehicular propulsion for civilian and military use. The units used in 

power generation are steam, gas and hydraulic turbines, ranging in capacity from a few kilowatts to 

several hundred and even thousands of megawatts, depending on the application. Here, the 

turbomachines drives the alternator at the appropriate speed to produce power of the right frequency. 

In aircraft and heavy vehicular propulsion for military use, the primary driving element has been the 

gas turbine. 

1.2 Turbomachines and its Principal Components: 

Question No 1.1: Define a turbomachine. With a neat sketch explain the parts of a turbomachine. 

(VTU, Jan-07, Dec-12, Jan-14, Jul-15) 

Answer: A turbomachine is a device in which energy transfer takes place between a flowing fluid and 

a rotating element due to the dynamic action, and results in the change of pressure and momentum of 

the fluid. 

 

Fig. 1.1 Principal components of turbomachine 

 The following are the principal components of turbomachine: (i) Rotor, (ii) Stator and (iii) 

Shaft. 

 Rotor is a rotating element carrying the rotor blades or vanes. Rotor is also known by the 

names runner, impellers etc. depending upon the particular machine. Here energy transfer occurs 

between the flowing fluid and the rotating element due to the momentum exchange between the two. 

 Stator is a stationary element carrying the guide vanes or stator blades. Stator blades are also 

known by guide blades or nozzle depending upon the particular machine. These blades usually control 

the direction of fluid flow during the energy conversion process. 
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 Shaft is transmitting power into or out of the machine depending upon the particular machine. 

For power generating machines, it may call as output shaft and for power absorbing machines; it may 

called as input shaft. 

1.3 Classification of Turbomachines: 

Question No 1.2: Explain how turbomachines are classified. Give at least one example of each. 

(VTU, Feb-06, Jul-13, Jun/Jul 14) 

Answer: Turbomachines are broadly classified into power generating, power absorbing and power 

transmitting turbomachines. 

 In power-generating turbomachines, fluid energy (decrease in enthalpy) is converted into 

mechanical energy which is obtained at the shaft output, whereas in power-absorbing turbomachines, 

mechanical energy which is supplied at the shaft input is converted to fluid energy (increase in 

enthalpy). The power-transmitting turbomachines are simply transmitting power from input shaft to an 

output shaft. That means, these devices act merely as an energy transmitter to change the speed and 

torque on the driven member as compared with the driver. 

 Again power-generating and power-absorbing turbomachines are classified by the direction of 

the fluid flow as: (i) axial flow, (ii) radial flow and (iii) mixed flow. In the axial flow and radial flow 

turbomachines, the major flow directions are approximately axial and radial respectively, while in the 

mixed flow machine, the flow enters axially and leaves radially or vice versa. A radial flow machine 

may also be classified into radial inward flow (centripetal) or radial outward flow (centrifugal) types 

depending on whether the flow is directed towards or away from the shaft axis. 

Question No 1.3: Explain with examples the power generating, power absorbing and power 

transmitting turbomachines. (VTU, Aug-02, Jul-13, Jul-14) 

Answer: Power generating turbomachine is one which converts fluid energy in the form of kinetic 

energy or pressure energy into mechanical energy in terms of rotating shaft. Turbines are the best 

example for this type. 

 Power absorbing turbomachine is one which converts mechanical energy into fluid energy. 

Compressors, fans, pumps and blowers are the best example for this type. 

 Power transmitting is one which is used to transmit power from driving shaft to driven shaft 

with the help of fluid. There is no mechanical connection between the two shafts. The best examples 

for this type are hydraulic coupling and hydraulic torque converter. 

 

 

 



Introduction to Turbomachines                                                                                         
 

Page | 3  
 

Question No 1.4: What is an axial flow turbomachine? How is it different from a radial flow 

turbomachine? Give one example each. 

Answer: In axial flow turbomachine, the major flow direction is approximately axial, example: 

Kaplan turbine. Whereas in radial flow turbomachine, the major flow direction is radial, example: 

Francis turbine.   

1.4 Positive-Displacement Devices and Turbomachines: 

Question No 1.5: Compare the turbomachines with positive displacement machines. (VTU, Feb-02, 

Feb-03, Feb-04, Jun-12, Dec-12, Jul-13, Jan-16, Jul-16, Jan-17, Jul-17) 

Answer: The differences between positive-displacement machines and turbomachines are given by 

comparing their modes of action, operation, energy transfer, mechanical features etc. in the following 

table. 

Modes Positive-displacement Machine Turbomachine 

Action 

(a) It creates thermodynamic and 

mechanical action between a nearly static 

fluid and a relatively slowly moving 

surface. 

(a) It creates thermodynamic and dynamic 

interaction between a flowing fluid and 

rotating element.  

(b) It involves a change in volume or a 

displacement of fluid. 

(b) It involves change in pressure and 

momentum of the fluid. 

(c) There is a positive confinement of the 

fluid in the system. 

(c) There is no positive confinement of the 

fluid at any point in the system. 

Operation 

(a) It involves a reciprocating motion of 

the mechanical element and unsteady 

flow of the fluid. But some rotary 

positive displacement machines are also 

built. Examples: Gear pump, vane pump 

(a) It involves a purely rotary motion of 

mechanical element and steady flow of the 

fluid. It may also involve unsteady flow for 

short periods of time, especially while 

starting, stopping or during changes of 

load. 

(b) Entrapped fluid state is different from 

the surroundings when the machine is 

stopped, if heat transfer and leakages are 

avoided. 

(b) The fluid state will be the same as that 

of the surroundings when the machine is 

stopped. 

  

Mechanical 

Features 

(a) Because of the reciprocating masses, 

vibrations are more. Hence low speeds 

are adopted. 

(a) Rotating masses can be completely 

balanced and vibrations eliminated. Hence 

high speeds can be adopted. 

(b) Heavy foundations are required. (b) Light foundations sufficient. 



Introduction to Turbomachines                                                                                         
 

Page | 4  
 

(c) Mechanical design is complex 

because of valves. 

(c) Design is simple. 

(d) Weight per unit output is more. (d) Weight per unit output is less. 

Efficiency 

of 

conversion 

process 

(a) High efficiency because of static 

energy transfer. 

(a) Efficiency is low because of dynamic 

energy transfer. 

(b) The efficiencies of the compression 

and expansion processes are almost the 

same. 

(b) The efficiency of the compression 

process is low. 

Volumetric 

efficiency 

(a) Much below that of a turbomachine 

because of valves. 

(a) It is almost 100%. 

(b) Low fluid handling capacity per unit 

weight of machine. 

(b) High fluid handling capacity per unit 

weight of machine. 

Fluid 

phase 

change and 

surging 

No such serious problems are 

encountered. 

(a) Causes cavitation in pumps and 

turbines. Therefore leads to erosion of 

blades. 

(b) Surging or pulsation leads to unstable 

flow. And also causes vibrations and may 

destroy the machine. 

(c) These factors deteriorate the 

performance of the machine. 

 

Question No 1.6: Are vane compressors and gear pumps turbomachines? Why? (VTU, Dec-10) 

Answer: No, vane compressors and gear pumps are positive displacement machines and work by 

moving a fluid trapped in a specified volume (i.e., fluid confinement is positive). 

1.5 First and Second Laws of Thermodynamics Applied to Turbomachines: 

Question No 1.7: Explain the applications of first and second laws of thermodynamics to 

turbomachines. (VTU, Jul/Aug-02) Or, 

Starting from the first law, derive an expression for the work output of a turbomachine in terms of 

properties at inlet and outlet. Or, 

Deducing an expression, explain the significance of first and second law of thermodynamics applied 

to a turbomachine. (VTU, Dec-12, Dec 14/Jan 15) 

Answer: Consider single inlet and single output steady state turbomachine, across the sections of 

which the velocities, pressures, temperatures and other relevant properties are uniform.  
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Application of first law of thermodynamics: The steady flow equation of the first law of 

thermodynamics in the unit mass basis is: 

                    𝑞 + ℎ1 +
𝑉1

2

2
+ 𝑔𝑧1 = 𝑤 + ℎ2 +

𝑉2
2

2
+ 𝑔𝑧2                            (1.1) 

Here, q and w are heat transfer and work transfer per unit mass flow across the boundary of the control 

volume respectively.  

Since, the stagnation enthalpy: ℎ𝑜 = ℎ +
𝑉2

2
+ 𝑔𝑧. 

Then, equation (1.1) becomes: 𝑞 − 𝑤 = ℎ𝑜2 − ℎ𝑜1 = ∆ℎ𝑜                  (1.2) 

Generally, all turbomachines are well-insulated devices, therefore q=0. Then equation (1.2) can be 

written as:   ∆ℎ𝑜 =  −𝑤                        (1.3) 

The equation (1.3) represents that, the energy transfer as work is numerically equal to the change in 

stagnation enthalpy of the fluid between the inlet and outlet of the turbomachine. 

 In a power-generating turbomachine, w is positive as defined so that Δho is negative, i.e., the 

stagnation enthalpy at the exit of the machine is less than that at the inlet. The machine produces out 

work at the shaft. In a power-absorbing turbomachine, w is negative as defined so that Δho is positive. 

The stagnation enthalpy at the outlet will be greater than that at the inlet and work is done on the 

flowing fluid due to the rotation of the shaft. 

Application of second law of thermodynamics: The second law equation of states, applied to 

stagnation properties is: 

                                  𝑇𝑜𝑑𝑠𝑜 = 𝑑ℎ𝑜 − 𝑣𝑜𝑑𝑝𝑜                                          (1.4) 

But equation (1.3) in differential form is, 𝑑ℎ = −𝑑𝑤. 

Then equation (1.4) can be written as: 

   −𝑑𝑤 = 𝑣𝑜𝑑𝑝𝑜 + 𝑇𝑜𝑑𝑠𝑜                                                                       (1.5) 

 In a power-generating machine, dpo is negative since the flowing fluid undergoes a pressure 

drop when mechanical energy output is obtained. However, the Clausius inequality for a turbomachine 

is given that 𝑇𝑜𝑑𝑠𝑜 ≥ 0. The sign of equality applies only to a reversible process which has a work 

output  𝑑𝑤𝑟𝑒𝑣 = 𝑣𝑜𝑑𝑝𝑜 . In a real machine (irreversible machine),  𝑇𝑜𝑑𝑠𝑜 > 0 , which has a work 

output 𝑑𝑤𝑖𝑟𝑟 = 𝑣𝑜𝑑𝑝𝑜 − 𝑇𝑜𝑑𝑠𝑜. So that 𝑑𝑤𝑟𝑒𝑣 − 𝑑𝑤𝑖𝑟𝑟 = 𝑇𝑜𝑑𝑠𝑜 and represents the decrease in work 

output due to the irreversibilities in the machine. Therefore the reversible power-generating machine 

exhibits the highest mechanical output of all the machines undergoing a given stagnation pressure 

change. A similar argument may be used to prove that the reversible power-absorbing machine needs 

the minimum work input of all the machines for a given stagnation pressure rise (i.e., 𝑑𝑤𝑖𝑟𝑟 − 𝑑𝑤𝑟𝑒𝑣 =

𝑇𝑜𝑑𝑠𝑜). 
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1.6 Efficiency of Turbomachines: 

Question No 1.8: Define: (i) adiabatic efficiency and (ii) mechanical efficiency for power generating 

and power absorbing turbomachines. (VTU, Dec-12) 

Answer: The performance of a real machine is always inferior to that of a frictionless and loss-free 

ideal machine. A measure of its performance is the efficiency, defined differently for power-generating 

and power-absorbing machines. 

For power-generating machine, the efficiency is defined as:  

𝜂𝑝𝑔 =
𝐴𝑐𝑡𝑢𝑎𝑙 Shaft Work Output 

𝐼𝑑𝑒𝑎𝑙 𝑊𝑜𝑟𝑘 𝑂𝑢𝑡𝑝𝑢𝑡
=

𝑤𝑠𝑓𝑡

𝑤𝑖
 

𝑂𝑟,                           𝜂𝑝𝑔 =
𝐴𝑐𝑡𝑢𝑎𝑙 Shaft Work Output 

𝐻𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐹𝑙𝑢𝑖𝑑
=

𝑤𝑠𝑓𝑡

𝑤𝑖
 

For power-absorbing machine, the efficiency is defined as: 

𝜂𝑝𝑎 =
𝐼𝑑𝑒𝑎𝑙 𝑊𝑜𝑟𝑘 𝐼𝑛𝑝𝑢𝑡 

𝐴𝑐𝑡𝑢𝑎𝑙 Shaft Work Input
=

𝑤𝑖

𝑤𝑠𝑓𝑡
 

𝑂𝑟,                                     𝜂𝑝𝑎 =
𝐻𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝐹𝑙𝑢𝑖𝑑 

𝐴𝑐𝑡𝑢𝑎𝑙 Shaft Work Input
=

𝑤𝑖

𝑤𝑠𝑓𝑡
 

 Generally, losses occur in turbomachines are due to: (a) mechanical losses like bearing friction, 

windage, etc., (b) fluid-rotor losses like unsteady flow, friction between the blade and the fluid, 

leakage across blades etc. If the mechanical and fluid-rotor losses are separated, the efficiencies may 

be rewritten in the following forms: 

For power-generating turbomachine, 

𝜂𝑝𝑔 =
Mechanical Energy Supplied by the Rotor

𝐻𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐹𝑙𝑢𝑖𝑑
×

𝐴𝑐𝑡𝑢𝑎𝑙 Shaft Work Output 

Mechanical Energy Supplied by the Rotor
 

Or,         𝜂𝑝𝑔 = 𝜂𝑎 × 𝜂𝑚  

For power-absorbing turbomachines, 

𝜂𝑝𝑎 =
𝐻𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝐹𝑙𝑢𝑖𝑑 

Mechanical Energy Supplied to the Rotor
×

Mechanical Energy Supplied to the Rotor

𝐴𝑐𝑡𝑢𝑎𝑙 Shaft Work Input
 

Or,         𝜂𝑝𝑔 = 𝜂𝑎 × 𝜂𝑚 

where ηa and ηm are adiabatic and mechanical efficiencies respectively. 

For power-generating turbomachine, adiabatic or isentropic or hydraulic efficiency may be written as, 

𝜂𝑎 =
Mechanical Energy Supplied by the Rotor

𝐻𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐹𝑙𝑢𝑖𝑑
=

𝑤𝑟

𝑤𝑖
 

For power-absorbing turbomachine, adiabatic or isentropic or hydraulic efficiency may be written as, 

𝜂𝑎 =
𝐻𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝐹𝑙𝑢𝑖𝑑 

Mechanical Energy Supplied to the Rotor
=

𝑤𝑖

𝑤𝑟
 

Note: (i) Hydrodynamic energy is defined as the energy possessed by the fluid in motion. 
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(ii) Windage loss is caused by fluid friction as the turbine wheel and blades rotate through the surrounding fluid. 

(iii) Leakage loss is caused by the fluid when it passes over the blades tip without doing any useful work. 

1.7 Dimensional Analysis: 

 The dimensional analysis is a mathematical technique deals with the dimensions of the 

quantities involved in the process. Basically, dimensional analysis is a method for reducing the number 

and complexity of experimental variable that affect a given physical phenomenon, by using a sort of 

compacting technique. 

 The three primary purposes of dimensional analysis are: 

1. To generate non-dimensional parameters that help in the design of experiments and in the 

reporting of experimental results. 

2. To obtain scaling laws so that prototype performance can be predicted from model 

performance. 

3. To predict the relationship between the parameters. 

1.7.1 Fundamental Quantities:  Mass (M), length (L), time (T) and temperature (ɵ) are called 

fundamental quantities since there is no direct relation between these quantities. There are seven basic 

quantities in physics namely, mass, length, time, electric current, temperature, luminous intensity and 

amount of a substance. 

1.7.2 Secondary Quantities or Derived Quantities: The quantities derived from fundamental 

quantitie are called derived quantities or secondary quantities. Examples: area, volume, velocity, force, 

acceleration, etc. 

1.7.3 Dimensional Homogeneity: An equation is said to be dimensionally homogeneous if the 

fundamental dimensions have identical powers of M, L, T on both sides.  

For example:                                             𝑄 = 𝐴𝑉 

In dimensional form: 

𝐿3

𝑇
= 𝐿2 ×

𝐿

𝑇
=

𝐿3

𝑇
 

1.8 Buckingham’s π-Theorem: 

 The Buckingham’s π-theorem states that “if there are ‘n’ variables in a dimensionally 

homogeneous equation and if these variables contain ‘m’ fundamental dimensions such as M, L, T 

then they may be grouped into (n-m), non-dimensional independent π-terms”. 

 Let a variable X1 depends upon independent variables X2, X3,.....Xn. The functional equation 

may be written as: 

                                              𝑋1 = 𝑓(𝑋2, 𝑋3, … … 𝑋𝑛)                         (1.6) 

The above equation can also be written as: 

                                                   𝑓(𝑋1, 𝑋2, 𝑋3, … … 𝑋𝑛) = 𝐶                  (1.7) 
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Where, C is constant and f is some function. 

 In the above equation (1.7), there are ‘n’ variables. If these variables contain ‘m’ fundamental 

dimensions, then according to Buckingham’s π-theorem, 

                                                 𝑓1(𝜋1, 𝜋2, 𝜋3, … … 𝜋𝑛−𝑚) = 𝐶                  (1.8) 

1.9 Procedure for Applying Buckingham’s π-Theorem: 

1) With a given data, write the functional relationship. 

2) Write the equation in its general form. 

3) Choose repeating variables and write separate expressions for each π-term, every π-term must 

contain the repeating variables and one of the remaining variables. In selecting the repeating 

variable the following points must be considered: 

(a) Never pick the dependent variable. 

(b) The chosen repeating variables must not by themselves be able to form a dimensionless group. 

Example: V, L and t are not considered as a repeating variable, because  
𝑉𝑡

𝐿
  will be a non-

dimensional. 

(c) The chosen repeating variables must represent all the primary dimensions in the problem. 

(d) Never pick the variables that are already dimensionless. These are π’s already, all by 

themselves. 

(e) Never pick two variables with the same dimensions or with dimensions that differ by only an 

exponent. That is one variable contains geometric property, second variable contains flow property 

and third containing fluid property.  

(f) Pick simple variables over complex variables whenever possible. 

(g) Pick popular parameters since they may appear in each of the π’s. 

4) The repeating variables are written in exponential form. 

5) With the help of dimensional homogeneity, find the values of exponents by obtaining simultaneous 

equations. 

6) Now, substitute the values of these exponents in the π terms. 

7) Write the functional relation in the required form. 

1.8.1 Geometric Variables: The variables with geometric property in turbomachines are length, 

diameter, thickness, height etc. 

1.8.2 Kinematic Variables: The variables with flow property in turbomachines are velocity, speed, 

volume flow rate, acceleration, angular velocity etc. 

1.8.3 Dynamic Variables: The variables with fluid property in turbomachines are mass flow rate, gas 

density, dynamic viscosity, bulk modulus, pressure difference, force, power, elasticity, surface tension, 

specific weight, stress, resistance etc. 
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Note: (1) For power generating turbomachines, the performance of a machine is referred to the power 

developed (P), workdone (W), pressure ratio (P1/P2) or efficiency (η) which depend on independent 

variables. 

(2) For power absorbing turbomachines, the performance is referred to the discharge (Q), enthalpy rise 

(Δh), pressure ratio (P2/P1) or efficiency (η) which depend on independent variables. 

Question No 1.9: Performance of a turbomachine depends on the variables discharge (Q), speed 

(N), rotar diameter (D), energy per unit mass flow (gH), power (P), density of fluid (ρ), dynamic 

viscosity of fluid (μ). Using the dimensional analysis obtain the π-terms. (VTU, Jul/Aug-02) 

Answer: General relationship is: 

𝑓(𝑄, 𝑁, 𝐷, 𝑔𝐻, 𝑃, 𝜌, 𝜇) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Dimensions: 𝑄 = 𝐿3𝑇−1, 𝑁 = 𝑇−1, 𝐷 = 𝐿, 𝑔𝐻 = 𝐿2𝑇−2, 𝑃 = 𝑀𝐿2𝑇−3, 𝜌 = 𝑀𝐿−3, 𝜇 = 𝑀𝐿−1𝑇−1 

Number of variables, n = 7 

Number of fundamental variables, m = 3 

Number of π-terms required, (n-m) = 4 

Repeating variables are: D,N,ρ 

π1-term: 𝝅𝟏 = 𝑫𝒂𝑵𝒃𝝆𝒄𝑸 

In dimensional form: 𝑀0𝐿0𝑇0 = 𝐿𝑎(𝑇−1)𝑏(𝑀𝐿−3)𝑐𝐿3𝑇−1 

Equating the powers of M L T on both sides:  

For M, 0 = 𝑐 

For L, 0 = 𝑎 − 3𝑐 + 3 ⟹ 𝑎 = −3 

For T, 0 = −𝑏 − 1 ⟹ 𝑏 = −1 

Then, 𝜋1 = 𝐷−3𝑁−1𝜌0𝑄 

𝝅𝟏 =
𝑸

𝑵𝑫𝟑
 

π2-term: 𝝅𝟐 = 𝑫𝒂𝑵𝒃𝝆𝒄𝒈𝑯 

In dimensional form: 𝑀0𝐿0𝑇0 = 𝐿𝑎(𝑇−1)𝑏(𝑀𝐿−3)𝑐𝐿2𝑇−2 

Equating the powers of M L T on both sides:  

For M, 0 = 𝑐 

For L, 0 = 𝑎 − 3𝑐 + 2 ⟹ 𝑎 = −2 

For T, 0 = −𝑏 − 2 ⟹ 𝑏 = −2 

Then, 𝜋1 = 𝐷−2𝑁−2𝜌0𝑔𝐻        

𝝅𝟐 =
𝒈𝑯

𝑵𝟐𝑫𝟐
 

π3-term: 𝝅𝟑 = 𝑫𝒂𝑵𝒃𝝆𝒄𝑷 

In dimensional form: 𝑀0𝐿0𝑇0 = 𝐿𝑎(𝑇−1)𝑏(𝑀𝐿−3)𝑐𝑀𝐿2𝑇−3 
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Equating the powers of M L T on both sides:  

For M, 0 = 𝑐 + 1 ⟹ 𝑐 = −1 

For L, 0 = 𝑎 − 3𝑐 + 2 ⟹ 𝑎 = −5  

For T, 0 = −𝑏 − 3 ⟹ 𝑏 = −3 

 Then, 𝜋3 = 𝐷−5𝑁−3𝜌−1𝑃        

𝝅𝟑 =
𝑷

𝝆𝑵𝟑𝑫𝟓
 

π3-term: 𝝅𝟒 = 𝑫𝒂𝑵𝒃𝝆𝒄𝝁 

In dimensional form: 𝑀0𝐿0𝑇0 = 𝐿𝑎(𝑇−1)𝑏(𝑀𝐿−3)𝑐𝑀𝐿−1𝑇−1 

Equating the powers of M L T on both sides:  

For M, 0 = 𝑐 + 1 ⟹ 𝑐 = −1 

For L, 0 = 𝑎 − 3𝑐 − 1 ⟹ 𝑎 = −2 

For T, 0 = −𝑏 − 1 ⟹ 𝑏 = −1 

Then, 𝜋4 = 𝐷−2𝑁−1𝜌−1𝜇        

𝝅𝟒 =
𝝁

𝝆𝑵𝑫𝟐
 

 

Question No 1.10: Give the significance of the dimensionless terms (i) Flow coefficient (ii) Head 

coefficient (iii) Power coefficient with respect to turbomachines. (VTU, Jan-07) Or,  

Explain capacity coefficient, head coefficient and power coefficient referring to a turbomachines.  

(VTU, Feb-02, Feb-03, Feb-04, Jan-16, Jul-17)  

Answer: The various π-terms have the very significant role in a turbomachine as explained below. 

(i) Flow Coefficient: It is also called as capacity coefficient or specific capacity. The term 
𝑄

𝑁𝐷3
 is the 

capacity coefficient, which signifies the volume flow rate of fluid through a turbomachine of unit 

diameter of runner operating at unit speed. The specific capacity is constant for dynamically similar 

conditions. Hence for a fan or pump of certain diameter running at various speeds, the discharge is 

proportional to the speed. This is the First fan law. 

Speed ratio: The specific capacity is related to another quantity called speed ratio and is obtained as 

follows:  
𝑄

𝑁𝐷3
∝

𝐷2𝑉

𝑁𝐷3
∝

𝑉

𝑁𝐷
∝

𝑉

𝑈
=

1

𝜑
   (𝐵𝑒𝑐𝑎𝑢𝑠𝑒 𝑄 = 𝐴𝑉 =

𝜋𝐷2𝑉

4
∝ 𝐷2𝑉 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑈 ∝ 𝑁𝐷) 

 Where 𝜑 =
𝑈

𝑉
 is called the speed ratio, which is defined as the ratio of tangential velocity of 

runner to the theoretical jet velocity of fluid. For the given machine, the speed ratio is fixed. 
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(ii) Head Coefficient: The term 
𝑔𝐻

𝑁2𝐷2 is called the head coefficient or specific head. It is a measure of 

the ratio of the fluid potential energy (column height H) and the fluid kinetic energy while moving at 

the rotational speed of the wheel U. The term can be interpreted by noting that: 
𝑔𝐻

𝑁2𝐷2
∝

𝑔𝐻

𝑈2
  

 The head coefficient is constant for dynamically similar machines. For a machine of specified 

diameter, the head varies directly as the square of the tangential speed of wheel. This is the Second fan 

law. 

(iii) Power Coefficient: The term 
𝑃

𝜌𝑁3𝐷5 is called the power coefficient or specific power. It represents 

the relation between the power, fluid density, speed and wheel diameter. For a given machine, the 

power is directly proportional to the cube of the tangential speed of wheel. This is the Third fan law. 

Question No 1.11: Discuss the effect of Reynolds number on turbomachine. (VTU, Jun/Jul-08) 

Answer: The Reynolds number defined as the ratio of the inertial force to the viscous force. It is an 

important parameter, which represents the nature of flow. If the Reynolds number is greater than 4000, 

the flow is termed as turbulent, in which the inertia effect is more than the viscous effects. And, if 

Reynolds number is less than 2000, then flow is laminar in which viscous effects are more than the 

inertia effect. 

 The values of Reynolds number in turbines are much higher than the critical values. Most of 

the turbines use relatively low viscosity fluids like air, water and light oil. Therefore, the Reynolds 

number has very little effect on the power output of the machine. But, Reynolds number is an 

important parameter for small pumps, compressors, fans and blowers. Their performance improves 

with an increase in Reynolds number.  

 The Reynolds number for the pipe flow is expressed as 𝑅𝑒 =
𝜌𝑉𝐷

𝜇
  

1.10 Specific Speed:  

 The specific speed is the dimensionless term and is the parameter of greatest importance in 

incompressible flow machines. The specific speed is only the parameter that doesn’t contain the linear 

dimension of the runner. Hence, while operating under the same conditions of flow and head, all 

geometrically similar machines have the same specific speed, irrespective of their sizes.  

 The specific speed can be expressed in terms of discharge (Q) for power absorbing machine or 

the power (P) for power generating machine. 

Specific power is referred as the ratio of Power in or out of turbomachine to its weight/Unit Mass/ 

Unit Volume. 

1.10.1 Specific Speed of a Pump: 

Question No 1.12: Define specific speed of a pump. Derive an expression for specific speed of a 

pump from fundamentals. (VTU, Aug-05, Jun-12, Jan 15, Jul-15) 
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Answer: Specific speed can be defined as “a speed of geometrically similar machines discharging one 

cubic meter per second of water under head of one meter”. 

Head coefficient is given by                                       
𝑔𝐻

𝑁2𝐷2 

𝑁2𝐷2 ∝ 𝑔𝐻 

or                                                                     𝐷 ∝
(𝑔𝐻)1 2⁄

𝑁
                                  (1.9) 

Flow coefficient is given by                                
𝑄

𝑁𝐷3
 

 or                                                                           𝑄 ∝ 𝑁𝐷3 

From equation (1.9)                                            𝑄 ∝
(𝑔𝐻)3 2⁄

𝑁2  

or                                                                   𝑄 = 𝐶
(𝑔𝐻)3 2⁄

𝑁2
                                                               (1.10) 

Where C is proportionality constant, from the definition of specific speed of pump:  

𝐼𝑓 𝑄 = 1 𝑚3 𝑠, 𝑎𝑛𝑑  𝐻 = 1𝑚⁄ , 𝑡ℎ𝑒𝑛 𝑁 = 𝑁𝑠 

Then equation (1.10) can be written as, 𝐶 =
𝑁𝑠

2

𝑔3 2⁄                                                                               (1.11) 

Substitute equation (1.11) in equation (1.10), then 𝑵𝒔 =
𝑵𝑸𝟏 𝟐⁄

𝑯𝟑 𝟒⁄                                                         (1.12) 

The equation (1.12) gives the specific speed of a pump. 

1.10.2 Specific Speed of a Turbine: 

Question No 1.13: Define specific speed of a turbine. Obtain an expression for the same in terms of 

shaft power, speed and head. (VTU, Jul-08, Jul-13, Dec 14/ Jan 1, Jan-175) 

Answer: Specific speed of a turbine is defined as “a speed of a geometrically similar machine which 

produces one kilowatt power under a head of one meter”. 

Power coefficient is given by                       
𝑃

𝜌𝑁3𝐷5                                                                            (1.13) 

From equation (1.9) 𝐷 ∝
(𝑔𝐻)1 2⁄

𝑁
 , then equation (1.13) can be written as, 𝑃 ∝

𝜌(𝑔𝐻)5 2⁄

𝑁2  

or                                                             𝑃 = 𝐶
𝜌(𝑔𝐻)5 2⁄

𝑁2                                                                    (1.14) 

Where C is proportionality constant, from the definition of specific speed of turbine: 

𝐼𝑓 𝑃 = 1𝑘𝑊 𝑎𝑛𝑑 𝐻 = 1𝑚, 𝑡ℎ𝑒𝑛 𝑁 = 𝑁𝑠 

Then, equation (1.14) becomes                       𝐶 =
𝑁𝑠

2

𝜌𝑔5 2⁄                                                                    (1.15) 

Substitute equation (1.15) in equation (1.14), then 𝑵𝒔 =
𝑵𝑷𝟏 𝟐⁄

𝑯𝟓 𝟒⁄                                                         (1.16) 

The equation (1.16) gives the specific speed of a turbine. 
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1.10.3 Significance of Specific Speed: 

Question No 1.14: Briefly explain the significance of specific speed related to turbomachines.  

(VTU, Jul-06, Jan-14) 

Answer: In incompressible flow pumps, it possible to guess the approximate rotor shape from the 

specific speed. Small specific speed impellers have narrow and small openings whereas large specific 

speed impellers have wide openings and are expected to have large flow rates. Thus, a centrifugal 

pump has a nearly pure radial outward flow has the small inlet area. The flow rate is small because of 

the small inlet area but the head against which it works is high. So for the centrifugal pumps specific 

speed is small. Thus, to accommodate the large flow a relatively large impeller is needed for 

centrifugal pumps (𝐻 ∝ 𝐷2). A volute or mixed-flow pump has a bigger opening because of its mixed-

flow characteristic though the head developed is not as large as that of the centrifugal pump. Its 

specific speed is higher than that of the centrifugal pump. At the extreme end is the axial-flow pump, 

which has a relatively large flow area and therefore a considerable volume flow rate. The head it 

develops is therefore small compared with that of radial-flow pumps. Its specific speed is very large. 

 

Fig. 1.2 Impeller shape variation with specific speed in pumps. 

 

Fig. 1.3 Efficiency variation with specific speed in turbines. 
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 Similarly, the specific speed determines the approximate shapes of the rotors as well. Consider 

for example the Pelton wheel which is a low specific speed, high head turbine. The volumetric flow 

rate is small since the turbine utilizes one or more nozzles from which the fluid emerges as jets. The 

Francis turbine covers a wide range of specific speeds and is suitable for intermediate   heads. The 

Kaplan turbine operates at low heads and need large fluid flow rates to produce reasonable amounts of 

power. Their specific speeds are therefore high. Generally, specific speed is used as a guide to select a 

type of turbine under given condition of head and flow (i.e. site conditions). Therefore, such a thumb 

rule gives rise to a maximum efficiency. Thus, when specific speed is very high, Kaplan turbine is best 

selection to give rise to very high efficiency. When specific speed is very low, higher efficiencies are 

possible only if Pelton wheel is selected. 

1.10.4 Range of Specific Speed of Various Turbomachines: 

Specific speed in SI units 

1 Pelton wheel 

 Single jet 3 to 30 

 Double jet 31 to 43 

 Four jet 44 to 60 

2 Francis turbine 

 Radial 61 to 102 

 Mixed (Medium speed) 103 to 188 

 Mixed (Fast speed) 189 to 368 

3 Kaplan (Propeller) turbine 369 to 856 

4 Centrifugal pumps 

 Turbine pump 12 to 25 

 Volute pump 26 to 95 

5 Mixed flow pump 96 to 210 

6 Axial flow pump 211 to 320 

7 Centrifugal compressor 32 to 74 

8 Axial compressor 75 to 120 

9 Blowers 121 to 1050 

 

1.11 Unit Quantities: 

Question No 1.15: Define unit quantities. Derive expressions to each of them. (VTU, Jan-08, Jul-16) 

Answer: In hydraulic turbines, it is usual to define quantities as unit flow, unit speed and unit power, 

which are the values of the quantities under consideration per unit head. 
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Unit flow (Qu): Unit flow is the flow that occurs through the turbine while working under unit head. 

Flow of fluid is given by,     𝑄 = 𝐴𝐶𝑣√2𝑔𝐻                 (1.17) 

Where A is area of nozzle and Cv is coefficient of velocity. 

or            𝑄 = 𝐾√𝐻               (1.18) 

Where 𝐾 = 𝐴𝐶𝑣√2𝑔 proportionality constant. 

But, from definition,      𝐻 = 1𝑚, 𝑄 = 𝑄𝑢 

Substitute in equation (1.18),     𝑄𝑢 = 𝐾  

Then, equation (1.18) can be written as,   𝑄 = 𝑄𝑢√𝐻 

or          𝑸𝒖 =
𝑸

√𝑯
 

Unit speed (Nu): Unit speed is the speed at which the machine runs under unit head. 

Head coefficient is given by                                              𝜋2 =
𝑔𝐻

𝑁2𝐷2
 

or         𝑁2 = 𝐾𝐻                (1.19) 

Where 𝐾 =
𝑔𝐻

𝐷2𝜋2
 proportionality constant. 

From definition,      𝑁 = 𝑁𝑢, 𝐻 = 1𝑚 

Substitute in equation (1.19),     𝑁𝑢
2 = 𝐾 

Then, equation (1.19) can be written as,   𝑁2 = 𝑁𝑢
2𝐻 

or        𝑵𝒖 =
𝑵

√𝑯
 

Unit power (Pu): Unit power is the power developed by the hydraulic machine while working under a 

unit head. 

Power developed by hydraulic machine is given by   𝑃 = 𝜌𝑔𝑄𝐻 

But, from equation (1.18),     𝑄 = 𝐾√𝐻 

Then,        𝑃 = 𝐾𝜌𝑔𝐻3 2⁄  

or         𝑃 = 𝐶𝐻3 2⁄                 (1.20) 

Where 𝐶 = 𝐾𝜌𝑔 proportionality constant. 

From definition,      𝑃 = 𝑃𝑢, 𝐻 = 1𝑚 

Substitute in equation (1.20),     𝑃𝑢 = 𝐶 

Then, equation (1.20) can be written as,   𝑃 = 𝑃𝑢𝐻3 2⁄  

or         𝑷𝒖 =
𝑷

𝑯𝟑 𝟐⁄  

1.12 Model Studies: 

 The principal of all model designs is to prepare a model, from its behaviour can produce a 

trustworthy, consistent and accurate prediction of the prototype performance. For this prediction the 
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model and prototype should be geometrically, kinematically and dynamically similar. Model is a small 

scale replica of the actual machine and the actual machine is called prototype. 

1.12.1 Geometric Similarity: It is the similarity of form or shape. Two systems, the model and 

prototype are said to be geometrically similar if the ratios of all corresponding linear dimensions of the 

systems are equal or homologous at all points. 

For geometric similarity: 
𝑙𝑚

𝑙𝑝
=

𝑏𝑚

𝑏𝑝
=

𝑑𝑚

𝑑𝑝
 

Where l, b and d are the length, width and depth respectively and m and p are the suffixes that indicate 

model and prototype. 

1.12.2 Kinematic Similarity: It is the similarity of motion. Two systems are considered to be 

kinematically similar if they are geometrically similar and ratios of components of velocity at all 

homologous points are equal. 

For kinematic similarity:
(𝑉1)𝑚

(𝑉1)𝑝
=

(𝑉2)𝑚

(𝑉2)𝑝
=

(𝑉3)𝑚

(𝑉3)𝑝
= ⋯ 

Where (𝑉1)𝑚, (𝑉2)𝑚, (𝑉3)𝑚  are resultant velocities at points 1, 2, and 3 in the model and 

(𝑉1)𝑝, (𝑉2)𝑝, (𝑉3)𝑝 are resultant velocities at the corresponding points in the prototype. 

1.12.3 Dynamic Similarity: Two systems are considered to be dynamically similar if they are 

geometrically and kinematically similar and the ratios of the corresponding forces acting at the 

corresponding points are equal. 

For dynamic similarity:
(𝐹1)𝑚

(𝐹1)𝑝
=

(𝐹2)𝑚

(𝐹2)𝑝
=

(𝐹3)𝑚

(𝐹3)𝑝
= ⋯ 

Where (𝐹1)𝑚, (𝐹2)𝑚, (𝐹3)𝑚 are forces acting at points 1, 2, and 3 in the model and (𝐹1)𝑝, (𝐹2)𝑝, (𝐹3)𝑝 

are forces acting at the corresponding points in the prototype. 

1.13 Moody’s Formula: 

 Machines of different sizes handling oils and other viscous fluids undergo efficiency changes 

under varying load conditions. For this reason, Moody has suggested an equation to determine turbine 

efficiencies from experiments on a geometrically similar model. 

 For heads smaller than 150 m, the efficiencies of model and prototype are related by the 

equation: 

𝜂𝑝 = 1 − (1 − 𝜂𝑚) (
𝐷𝑚

𝐷𝑝
)

0.2

 

For heads larger than 150 m, the efficiencies of model and prototype are related by the 

equation: 

𝜂𝑝 = 1 − (1 − 𝜂𝑚) (
𝐷𝑚

𝐷𝑝
)

0.25

(
𝐻𝑚

𝐻𝑝
)

0.1
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 Since the power outputs for the prototype and model hydraulic turbines are 𝑃𝑝 = 𝜂𝑝𝜌𝑄𝑝𝑔𝐻𝑝 

and 𝑃𝑚 = 𝜂𝑚𝜌𝑄𝑚𝑔𝐻𝑚, the power-ratio may be written as: 

𝑃𝑝

𝑃𝑚
= (

𝜂𝑝

𝜂𝑚
) (

𝑄𝑝

𝑄𝑚
) (

𝐻𝑝

𝐻𝑚
) 

It has been assumed here that similarity equations may be applied and the power incremented in 

proportion to the machine efficiency. 

From the flow coefficient, 

𝑄𝑝

𝑄𝑚
= (

𝑁𝑝

𝑁𝑚
) (

𝐷𝑝

𝐷𝑚
)

3

 

But, from the head coefficient, 

𝑁𝑝

𝑁𝑚
= (

𝐷𝑚

𝐷𝑝
) (

𝐻𝑝

𝐻𝑚
)

1
2

 

Then flow–ratio may be written as, 

𝑄𝑝

𝑄𝑚
= (

𝐻𝑝

𝐻𝑚
)

1
2

(
𝐷𝑝

𝐷𝑚
)

2

 

Finally the power-ratio may be written as, 

𝑃𝑝

𝑃𝑚
= (

𝜂𝑝

𝜂𝑚
) (

𝐷𝑝

𝐷𝑚
)

2

(
𝐻𝑝

𝐻𝑚
)

3
2

 

 From the above relation the power output-ratio can be calculated using geometric ratio, head-

ratio and efficiency-ratio. 

1.14 Important Dimensionless Numbers: 

Question No 1.16: Explain the following dimensionless numbers: (i) Froude’s number, (ii) Weber’s 

number, (iii) Mach’s number and (iv) Euler’s number. (VTU, Dec-07/Jan-08) 

Answer:  

(i) Froude’s number: It is defined as the ratio of inertia force to gravity force. Froude’s number has 

considerable practical significance in free surface flow problems, like flow in orifices, flow over 

notches, flow over the spillways etc. The flow in these problems has predominant gravitational forces. 

The Froude’s number is given by  
𝑉2

𝑔𝐿
 . 

(ii) Weber’s number: It is defined as the ratio of inertia force to the surface tension force. Weber’s 

number has considerable practical significance in problems influenced by surface tension, like gas-

liquid and liquid-liquid interfaces and contact of such interfaces with a solid boundary. These 

problems have predominant surface tension force. 

The Weber’s number is given by
𝜌𝐿𝑉2

𝜎
. 
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(iii) Mach’s number: It is defined as the ratio of inertia force to elastic force. Mach’s number has 

considerable practical significance in compressible flow problems, like shells, bullets, missiles and 

rockets fired into air. These problems have predominant elastic force. 

The Mach’s number is given by 
𝑉

√𝐾 𝜌⁄
 

(iv) Euler’s number: It is defined as the ratio of pressure force to inertia force. Euler’s number has 

considerable practical significance in modelling of hydraulic turbines and pumps. The flow in these 

machines has predominant pressure forces. 

The Euler’s number is given by
𝑃

𝜌𝑉2
. 
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Module 1 : THERMODYNAMICS OF FLUID FLOW 

 This chapter deals with the some basic definitions of thermodynamics applies to the 

turbomacines and the discussions on the thermodynamics of the fluid flow through turbomachines.  

3.1 Sonic Velocity and Mach Number: 

Question No 3.1: Define Mach number and hence explain subsonic flow, sonic flow and supersonic 

flow. Or, write a note on Mach number. (VTU, Dec-09/Jan-10) Or, 

Give classification of fluid flow based on Mach number and explain in brief. (VTU, Dec-12) 

Answer: Sonic velocity (velocity of the sound) is referred to the speed of propagation of pressure 

wave in the medium. The velocity of the sound in a fluid at a local temperature T for an isentropic flow 

is given by 

       𝑐 = √𝛾𝑅𝑇. 

 Where γ, R and T are the ratio of specific heats, characteristic gas constant and the local temperature 

of the fluid respectively. At sea level the velocity of sound in air is given as 340 m/s. 

 Mach number is defined as the ratio of local velocity of fluid (V) to the sonic velocity (c) in 

that fluid. Thus  

𝑀 =
𝑉

𝑐
=

𝑉

√𝛾𝑅𝑇
 

 The fluid flow can be generally classified into subsonic flow, sonic flow and supersonic flow 

based on the value of Mach number. 

Subsonic flow: If the Mach number is less than 1, then that type of flow is called subsonic flow, in 

which the velocity of the fluid is less than the velocity of the sound in that medium. 

Sonic flow: If the Mach number is equal to 1, then that type of flow is called sonic flow, in which the 

velocity of the fluid is same as the velocity of the sound in that medium. 

Supersonic flow: If the Mach number is greater than 1, then that type of flow is called supersonic 

flow, in which the velocity of the fluid is greater than the velocity of the sound in that medium. 

3.2 Isentropic Flow for a Varying Flow Area: 

Question No 3.2: For the isentropic flow through varying flow area, show that 
𝒅𝑨

𝑨
=

𝒅𝒑

𝒑
(
𝟏−𝑴𝟐

𝜸𝑴𝟐
) and 

discuss the physical significance. Or, derive an expression for area ratio for isentropic flow through 

a passage of varying cross sectional area and discuss the significance of the expression. (VTU, 

Jun/Jul-13) 

Answer: The Continuity equation is given by, 

𝑑𝐴

𝐴
+

𝑑𝑉

𝑉
+

𝑑𝜌

𝜌
= 0 

Or, 
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𝒅𝑨

𝑨
= −(

𝒅𝑽

𝑽
+

𝒅𝝆

𝝆
) 

But isentropic equation is, 

𝑑𝑝

𝑝
= 𝛾

𝑑𝜌

𝜌
⟹

𝒅𝒑

𝜸𝒑
=

𝒅𝝆

𝝆
 

But Euler’s equation is,  

𝑑𝑝

𝜌
+ 𝑉𝑑𝑉 = 0 ⟹

𝑑𝑝

𝜌𝑉2
+

𝑑𝑉

𝑉
 

𝑑𝑉

𝑉
= −

𝑑𝑝

𝜌𝑉2
 

From Mach number, 

𝑉2 = 𝑀2𝛾𝑅𝑇 = 𝑀2𝛾 (
𝑝

𝜌
) 

𝜌𝑉2 = 𝑀2𝛾𝑝 

Then, 

                                       
𝒅𝑽

𝑽
= −

𝒅𝒑

𝑴𝟐𝜸𝒑
                                                                                           (3.1) 

Therefore, 

𝑑𝐴

𝐴
= −(−

𝑑𝑝

𝑀2𝛾𝑝
+

𝑑𝑝

𝛾𝑝
) 

𝑑𝐴

𝐴
=

𝑑𝑝

𝑀2𝛾𝑝
−

𝑑𝑝

𝛾𝑝
=

𝑑𝑝

𝑝
(

1

𝑀2𝛾
−

1

𝛾
) 

𝒅𝑨

𝑨
=

𝒅𝒑

𝒑
(
𝟏 − 𝑴𝟐

𝜸𝑴𝟐
)                                                                                     (3.2) 

The significance of the equations (3.1) and (3.2) is discussed below: 

 The equation (3.1) shows that for nozzle pressure decreases as velocity increases and for 

diffuser velocity decreases as pressure increases. 

For subsonic flow (M<1) the quantity (
1−𝑀2

𝛾𝑀2 ) is positive. In the nozzle pressure decreases, so the 

quantity 
𝑑𝑝

𝑝
 is negative; therefore from equation (3.2) the quantity 

𝑑𝐴

𝐴
 is also negative and hence area 

must decrease for subsonic nozzle in the direction of fluid flow. The shape of the subsonic nozzle 

(convergent nozzle) is as shown in figure 3.1. 

.  In the diffuser pressure increases, so the quantity 
𝑑𝑝

𝑝
 is positive; therefore from equation (3.2) 

the quantity 
𝑑𝐴

𝐴
 is also positive and hence area must increase for subsonic diffuser in the direction of 

fluid flow. The shape of the subsonic diffuser (divergent diffuser) is as shown in figure 3.1. 
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For supersonic flow (M>1) the quantity (
1−𝑀2

𝛾𝑀2 ) is negative. In the nozzle pressure decreases, so the 

quantity 
𝑑𝑝

𝑝
 is negative; therefore from equation (3.2) the quantity 

𝑑𝐴

𝐴
 is positive and hence area must 

increase for supersonic nozzle in the direction of fluid flow. The shape of the supersonic nozzle 

(divergent nozzle) is as shown in figure 3.2. 

 

Fig. 3.1 Subsonic nozzle and diffuser 

.  In the diffuser pressure increases, so the quantity 
𝑑𝑝

𝑝
 is positive; therefore from equation (3.2) 

the quantity 
𝑑𝐴

𝐴
 is negative and hence area must decrease for supersonic diffuser in the direction of 

fluid flow. The shape of the supersonic diffuser (convergent diffuser) is as shown in figure 3.2. 

 

Fig. 3.2 Supersonic nozzle and diffuser 

For sonic flow (M=1) the quantity (
1−𝑀2

𝛾𝑀2 ) is zero, from equation (3.2) the quantity 
𝑑𝐴

𝐴
 is also zero, i.e., 

area must be constant. This is the situation occurs at the throat portion of the convergent-divergent 

nozzle. 

Note: The subsonic diffuser, subsonic nozzle and the supersonic nozzle are all of practical importance as for as the 

turbomachines are concerned, while the supersonic diffuser is of interest for wind tunnel and ram jet.  
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3.3 Static and Stagnation States: 

Question No 3.3: Define static state and stagnation state for a fluid.  

(VTU, Dec-11, Dec-12, Dec-14/Jan-15) 

Answer: There are two kinds of state for the flowing fluid, namely static state and stagnation state. 

(i) Static state: It is the state refers to those properties like pressure, temperature, density etc. which 

are measured when the measuring instruments are at rest relative to the flow of fluid. 

(ii) Stagnation state: It is the final state of a fictitious, isentropic and work free process during which 

the final kinetic and potential energies of the fluid reduces to zero in a steady flow.  

Question No 3.4: Write expressions for (i) stagnation enthalpy, (ii) stagnation temperature, (iii) 

stagnation pressure and (iv) stagnation density. 

Answer: For a fictitious, isentropic and work free process the initial state is always the static state and 

final state is stagnation state. A steady flow energy equation (SFEE) for this fictitious process can be 

written as: 

ℎ𝑜 +
1

2
𝑉𝑜

2 + 𝑔𝑍𝑜 + 𝑤 = ℎ +
1

2
𝑉2 + 𝑔𝑍 + 𝑞 

For isentropic and work free process, q=0 and w=0 and at the final state (stagnation state) of this 

process, ke=0 and pe=0. Thus steady flow energy equation is: 

ℎ𝑜 = ℎ +
1

2
𝑉2 + 𝑔𝑍 

(i) Stagnation Enthalpy: It is defined as the enthalpy of a fluid when it is adiabatically decelerated to 

zero velocity. The stagnation enthalpy can be written as: 

𝒉𝒐 = 𝒉 +
𝟏

𝟐
𝑽𝟐 + 𝒈𝒁 

Or, 

𝒉𝒐 = 𝒉 +
𝟏

𝟐
𝑽𝟐 

(ii) Stagnation Temperature: It is defined as the temperature of a fluid when it is adiabatically 

decelerated to zero velocity. The stagnation temperature defined through stagnation enthalpy as: 

𝑐𝑝𝑇𝑜 = 𝑐𝑝𝑇 +
1

2
𝑉2 

𝑻𝒐 = 𝑻 +
𝑽𝟐

𝟐𝒄𝒑
 

Or, 

𝑇𝑜

𝑇
= 1 +

𝑉2

2𝑐𝑝𝑇
= 1 +

𝑉2(𝛾 − 1)

2𝛾𝑅𝑇
= 1 + (

𝛾 − 1

2
)
𝑉2

𝑐2
 

𝑻𝒐

𝑻
= 𝟏 + (

𝜸 − 𝟏

𝟐
)𝑴𝟐 
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(iii) Stagnation Pressure: It is defined as the pressure of a fluid when it is adiabatically decelerated to 

zero velocity. The relation between the stagnation and static pressures can be written as: 

𝑝𝑜

𝑝
= (

𝑇𝑜

𝑇
)

𝛾
𝛾−1

 

𝒑𝒐

𝒑
= [𝟏 + (

𝜸 − 𝟏

𝟐
)𝑴𝟐]

𝜸
𝜸−𝟏

 

For incompressible flows, ℎ =
𝑝

𝜌
 

𝑝𝑜

𝜌
=

𝑝

𝜌
+

𝑉2

2
 

𝒑𝒐 = 𝒑 +
𝝆𝑽𝟐

𝟐
 

(iv) Stagnation Density: The stagnation density can be defined by using stagnation pressure and 

temperature. For an isentropic process, 

𝜌𝑜

𝜌
= (

𝑇𝑜

𝑇
)

1
𝛾−1

 

𝝆𝒐

𝝆
= [𝟏 + (

𝜸 − 𝟏

𝟐
)𝑴𝟐]

𝟏
𝜸−𝟏

 

3.4 Compression Process in Compressor: 

3.4.1 Efficiency of Compression Process: 

Question No 3.5: Define the following, with the help of a h-s diagram, for the power absorbing 

turbomachines: (i) Total-to-total efficiency, (ii) Total-to-static efficiency, (iii) Static-to-total 

efficiency, (iv) Static-to static efficiency. (VTU, Dec-06/Jan-07) 

 Answer: The h-s diagram for the compression process is shown in figure 3.3. The fluid has initially 

the static pressure and temperature determines by state 1, the state 01 is the corresponding stagnation 

state. After passing through the turbomachine, the final static properties of the fluid are determined by 

state 2 and state 02 is corresponding stagnation state. If the process is reversible, the final fluid static 

state would be 2’ while stagnation state would be 02’. Line 1-2 in static coordinates and line 01-02 in 

stagnation coordinates represent the real process. 

The actual work input for compression process is, 

               𝑤 = ℎ02 − ℎ01 

The ideal work input can be calculated by any one of the following four equations: 

(i) Totol-to-total work input is the ideal work input for the stagnation ends,  

𝑤𝑡−𝑡 = ℎ02′ − ℎ01 

(ii) Total-to-static work input is the ideal work input for the stagnation inlet to the static exit,  
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               𝑤𝑡−𝑠 = ℎ2′ − ℎ01  

(iii) Static-to-total work input is the ideal work input for the static inlet to the stagnation exit, 

𝑤𝑠−𝑡 = ℎ02′ − ℎ1 

(iv) Static-to-static work input is the ideal work input for the static inlet to the static exit, 

𝑤𝑠−𝑠 = ℎ2′ − ℎ1 

 

Fig. 3.3 h-s diagram for compression process 

The efficiency of the compression process can be expressed by any one of the following equations: 

(i) Total-to-total efficiency is defined as the ratio of total-to-total work input to the actual work input. 

𝜂𝑡−𝑡 =
𝑤𝑡−𝑡

𝑤
=

ℎ02′ − ℎ01

ℎ02 − ℎ01
 

(ii) Total-to-static efficiency is defined as the ratio of total-to-static work input to the actual work 

input. 

𝜂𝑡−𝑠 =
𝑤𝑡−𝑠

𝑤
=

ℎ2′ − ℎ01

ℎ02 − ℎ01
 

(iii) Static-to-total efficiency is defined as the ratio of static-to-total work input to the actual work 

input. 

𝜂𝑠−𝑡 =
𝑤𝑠−𝑡

𝑤
=

ℎ02′ − ℎ1

ℎ02 − ℎ01
 

(iv) Static-to-static efficiency is defined as the ratio of static-to-static work input to the actual work 

input. 

𝜂𝑠−𝑠 =
𝑤𝑠−𝑠

𝑤
=

ℎ2′ − ℎ1

ℎ02 − ℎ01
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3.4.2 Effect of Pre-heat: 

Question No 3.6: With the help of T-s diagram, show that the preheat factor in a multistage 

compressor is less than unity. (VTU, May/Jun-10, Jun/Jul-11)  

Answer: The preheat factor for a compressor may be defined as the ratio of direct or Rankine 

isentropic work to the cumulative isentropic work. 

 The thermodynamic effect of multistage compression can be studied by considering three stage 

compressor working between inlet pressure p1 and the delivery pressure p2 as shown in the figure 3.4. 

The intermediate pressures are being pA and pB. The stage pressure ratio, pr and the stage efficiency, ηst 

are assumed to be same for all stages. The process 1-2’ and 1-2 are the isentropic and actual 

compression process respectively. 

 

Fig. 3.4 Effect of preheat on compression process 

As the constant pressure lines are diverging towards the right hand side of the temperature-

entropy diagram, the isentropic work per stage increases as the temperature difference increases for the 

same pressure ratio and the stage efficiency. For example, in the second stage between pressures pA 

and pB, the isentropic temperature difference represented by the line A-Y is greater than that 

represented by the line X-O. It is therefore the isentropic work for the stage is greater by virtue of the 

inefficiency of the previous stage. Similarly for the next stage also.  

Therefore,     𝑤𝑠 < (Δ𝑤𝑠1 + Δ𝑤𝑠2 + Δ𝑤𝑠3) 

Or,       𝑤𝑠 < 𝛴𝛥𝑤𝑠 

𝒘𝒔

𝚺𝚫𝒘𝒔
< 1 
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Therefore, the Preheat factor  
𝑤𝑠

ΣΔ𝑤𝑠
 is always less than unity for multistage compressor. This is due to 

the preheating of the fluid at the end of each compression stage and this appears as the losses in the 

subsequent stages. 

Question No 3.7: For a multistage compressor, show that the overall efficiency is less than the stage 

efficiency using T-s diagram. (VTU, Jun/Jul-08) 

Answer: Consider three stage compressor working between inlet pressure p1 and the delivery pressure 

p2 as shown in the figure 3.4. The intermediate pressures are being pA and pB. The stage pressure ratio, 

pr and the stage efficiency, ηst are assumed to be same for all stages. The process 1-2’ and 1-2 are the 

isentropic and actual compression process respectively. 

 If the overall efficiency of the multistage compressor is ηo, then the total actual work is given by, 

𝑤𝑎 =
𝑤𝑠

𝜂𝑜
   

Or,          𝒘𝒔 = 𝜼𝒐𝒘𝒂 

The total actual work can also be written as the sum of the actual work done in each stage, 

𝑤𝑎 = 𝑤𝑎1 + 𝑤𝑎2 + 𝑤𝑎3 =
Δ𝑤𝑠1

𝜂𝑠𝑡
+

Δ𝑤𝑠2

𝜂𝑠𝑡
+

Δ𝑤𝑠3

𝜂𝑠𝑡
 

𝑤𝑎 =
1

𝜂𝑠𝑡

(Δ𝑤𝑠1 + Δ𝑤𝑠2 + Δ𝑤𝑠3) 

𝑤𝑎 =
1

𝜂𝑠𝑡
ΣΔ𝑤𝑠 

Or,                                                                 𝚺𝚫𝒘𝒔 = 𝜼𝒔𝒕𝒘𝒂 

 As the constant pressure lines are diverging towards the right hand side of the temperature-

entropy diagram, the isentropic work per stage increases as the temperature difference increases for the 

same pressure ratio and the stage efficiency.  

Therefore,     𝑤𝑠 < (Δ𝑤𝑠1 + Δ𝑤𝑠2 + Δ𝑤𝑠3) 

Or,       𝑤𝑠 < 𝛴𝛥𝑤𝑠 

𝜂𝑜𝑤𝑎 < 𝜂𝑠𝑡𝑤𝑎 

𝜼𝒐 < 𝜼𝒔𝒕 

For multistage compressor, the overall isentropic efficiency is less than the stage efficiency. 

3.4.3 Infinitesimal Stage Efficiency or Polytropic Efficiency: 

Question No 3.8: Obtain an expression for polytropic efficiency for a compressor in terms of 

pressure ratio and temperature ratio. Further express stage efficiency in terms of polytropic 

efficiency and pressure ratio. Also draw the relevant T-s diagram. (VTU, Jun/Jul-13) Or, Define the 
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term infinitesimal stage efficiency of a compressor. Show that the polytropic efficiency during the 

compression process is given by 𝜼𝒑 =

𝜸−𝟏

𝜸
𝒍𝒏(

𝒑𝟐
𝒑𝟏

)

𝒍𝒏(
𝑻𝟐
𝑻𝟏

)
 .(VTU, Dec-14/Jan-15) 

Answer: A finite compressor stage is made up of number of infinitesimal stages; the efficiency of 

these small stages is called polytropic efficiency or infinitesimal stage efficiency.  

 Consider a single stage compressor having its stage efficiency ηst, operates between the 

pressures p1 and p2, and an infinitesimal stage of efficiency ηp, working between the pressures p and 

p+dp as shown in figure 3.5.  

The infinitesimal stage efficiency is given by, 

𝜂𝑝 =
𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑅𝑖𝑠𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑅𝑖𝑠𝑒
=

𝑑𝑇′

𝑑𝑇
 

The actual temperature rise for infinitesimal stage is given by, 

𝑑𝑇 =
𝑑𝑇′

𝜂𝑝
=

𝑇′ − 𝑇

𝜂𝑝
=

𝑇 (
𝑇′
𝑇

− 1)

𝜂𝑝
 

𝑑𝑇

𝑇
=

[(
𝑝 + 𝑑𝑝

𝑝 )

𝛾−1
𝛾

− 1]

𝜂𝑝
 

𝑑𝑇

𝑇
=

1

𝜂𝑝
[(1 +

𝑑𝑝

𝑝
)

𝛾−1
𝛾

− 1] 

 

Fig. 3.5 Infinitesimal stage of a compressor 
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By series of expansion, (1 + 𝑥)𝑛 = 1 + 𝑛𝑥 +
𝑛(𝑛−1)

2
𝑥2 + ⋯ and neglecting second order differentials, 

𝑑𝑇

𝑇
=

1

𝜂𝑝
[1 +

𝛾 − 1

𝛾

𝑑𝑝

𝑝
− 1] 

𝑑𝑇

𝑇
=

1

𝜂𝑝

𝛾 − 1

𝛾

𝑑𝑝

𝑝
                                                                          (3.3) 

By integration with limits 1 to 2, 

𝑙𝑛 (
𝑇2

𝑇1
) =

1

𝜂𝑝

𝛾 − 1

𝛾
𝑙𝑛 (

𝑝2

𝑝1
) 

𝜼𝒑 =

𝜸 − 𝟏
𝜸 𝒍𝒏 (

𝒑𝟐

𝒑𝟏
)

𝒍𝒏 (
𝑻𝟐

𝑻𝟏
)

 

Question No 3.9: With the help of T-s diagram, show that polytropic efficiency during the 

compression process is given by 𝜼𝒑 = (
𝜸−𝟏

𝜸
) (

𝒏

𝒏−𝟏
)(VTU, Jun/Jul-13) 

Answer: From equation (3.3), 

𝑑𝑇

𝑇
=

1

𝜂𝑝

𝛾 − 1

𝛾

𝑑𝑝

𝑝
 

By integration, 

𝑙𝑛(𝑇) =
1

𝜂𝑝

𝛾 − 1

𝛾
𝑙𝑛(𝑝) + 𝐶𝑜𝑛𝑠𝑡 

𝑝
𝛾−1
𝜂𝑝𝛾

𝑇
= 𝐶𝑜𝑛𝑠𝑡 

For actual compression process 1-2, 

𝑇2

𝑇1
= (

𝑝2

𝑝1
)

𝛾−1
𝜂𝑝𝛾

 

Assume actual compression process having polytropic index ‘n’, 

𝑇2

𝑇1
= (

𝑝2

𝑝1
)

𝑛−1
𝑛

 

Therefore, 

(
𝑝2

𝑝1
)

𝛾−1
𝜂𝑝𝛾

= (
𝑝2

𝑝1
)

𝑛−1
𝑛

 

Equating the indices, 

𝛾 − 1

𝜂𝑝𝛾
=

𝑛 − 1

𝑛
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Or, 

𝜼𝒑 = (
𝜸 − 𝟏

𝜸
) (

𝒏

𝒏 − 𝟏
) 

Question No 3.10: Derive an expression for stage efficiency of a compressor in terms of stage 

pressure ratio, polytropic efficiency and ratio of specific heats. Indicate the process on T-s diagram. 

(VTU, Dec-12) Or, 

With the help of T-s diagram, show that stage efficiency of compressor is given by 

      𝜼𝒔𝒕 =
𝑷𝒓

𝜸−𝟏
𝜸

−𝟏

𝑷𝒓

𝜸−𝟏
𝜼𝒑𝜸

−𝟏

 

Answer: From the T-s diagram shown in figure 3.5, the compressor stage efficiency is given by, 

𝜂𝑠𝑡 =
𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑅𝑖𝑠𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑅𝑖𝑠𝑒
 

𝜂𝑠𝑡 =
𝑇2′ − 𝑇1

𝑇2 − 𝑇1
=

𝑇1 (
𝑇2′

𝑇1
− 1)

𝑇1 (
𝑇2

𝑇1
− 1)

=

[(
𝑝2

𝑝1
)

𝛾−1
𝛾

− 1]

[(
𝑝2

𝑝1
)

𝛾−1
𝜂𝑝𝛾

− 1]

 

Let, 𝑝𝑟 =
𝑝2

𝑝1
 

𝜼𝒔𝒕 =
𝑷𝒓

𝜸−𝟏
𝜸

− 𝟏

𝑷𝒓

𝜸−𝟏
𝜼𝒑𝜸

− 𝟏

 

3.4.4 Multistage Compressors: 

Question No 3.11: Derive an expression for an overall isentropic efficiency for multistage 

compression in terms of pressure ratio, polytropic efficiency, number of stages and ratio of specific 

heats for a compressor. Or, 

Show that for a multistage compression the overall isentropic efficiency is given by 

                                                                         𝜼𝒐 =
𝑷𝒓

𝑲
𝜸−𝟏
𝜸

−𝟏

𝑷𝒓

𝑲
𝜸−𝟏
𝜼𝒑𝜸

−𝟏

 

Where K= number of stages, Pr= pressure ratio per stage, ηp= polytropic efficiency, γ= ratio of 

specific heats.  

Answer: The figure 3.6 shows the T-s diagram for compression process in multistage compressor 

operating between the pressures p1 and pK+1. If there are K stages with the overall pressure ratio 
𝑝𝐾+1

𝑝1
 

and having equal stage efficiency and stage pressure ratio. 

The overall efficiency of the multistage compressor is, 
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𝜂𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑅𝑖𝑠𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑅𝑖𝑠𝑒
 

 

Fig. 3.6 Compression process in multistage compressor 

𝜂𝑜 =
𝑇(𝐾+1)′ − 𝑇1

𝑇𝐾+1 − 𝑇1
=

𝑇1 (
𝑇(𝐾+1)′

𝑇1
− 1)

𝑇1 (
𝑇𝐾+1

𝑇1
− 1)

 

𝜼𝒐 =
𝑷𝒓𝒐

𝜸−𝟏
𝜸 − 𝟏

𝑷𝒓𝒐

𝜸−𝟏
𝜼𝒑𝜸

− 𝟏

 

The overall pressure ratio can be written as, 𝑝𝑟𝑜 = 𝑝𝑟
𝐾 

Then overall efficiency of multistage compressor is, 

𝜼𝒐 =
𝑷𝒓

𝑲
𝜸−𝟏
𝜸 − 𝟏

𝑷𝒓

𝑲
𝜸−𝟏
𝜼𝒑𝜸

− 𝟏

 

Question No 3.12: Derive an expression for an overall isentropic efficiency for finite number of 

stages of compression in terms of pressure ratio, stage efficiency, number of stages and ratio of 

specific heats for a compressor. (VTU, May/Jun-10) Or, Show that for a finite number of stages for 

compression the overall isentropic efficiency is given by    

        𝜼𝒐 =
𝑷𝒓

𝑲
𝜸−𝟏
𝜸 − 𝟏

[𝟏 +
𝑷𝒓

𝜸−𝟏
𝜸

− 𝟏
𝜼𝒔𝒕

]

𝑲

− 𝟏
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Where K= number of stages, Pr= pressure ratio per stage, ηst= stage efficiency, γ= ratio of specific 

heats. (VTU, Jan/Feb-06) 

Answer: If T1 is the initial temperature at which the fluid enters the multistage compressor, K is the 

number of stages having equal pressure ratio pr in each stage, then the actual temperature rise in each 

stage can be given as follows: 

For first stage:  

∆𝑇1 = (𝑇2 − 𝑇1) =
(𝑇2′ − 𝑇1)

𝜂𝑠𝑡
=

𝑇1 (
𝑇2′

𝑇1
− 1)

𝜂𝑠𝑡
= 𝑇1

𝑃𝑟

𝛾−1
𝛾 − 1

𝜂𝑠𝑡
 

Let 𝐴 =
𝑃𝑟

𝛾−1
𝛾

−1

𝜂𝑠𝑡
 

∆𝑻𝟏 = 𝑨𝑻𝟏 

For second stage: 

∆𝑇2 = (𝑇3 − 𝑇2) = 𝐴𝑇2 = 𝐴(𝑇1 + 𝐴𝑇1) 

∆𝑻𝟐 = 𝑨𝑻𝟏(𝟏 + 𝑨) 

For third stage: 

∆𝑇3 = (𝑇4 − 𝑇3) = 𝐴𝑇3 = 𝐴[𝑇2 + 𝐴𝑇1(1 + 𝐴)] 

∆𝑇3 = 𝐴[(𝑇1 + 𝐴𝑇1) + 𝐴𝑇1(1 + 𝐴)] = 𝐴[𝑇1(1 + 𝐴) + 𝐴𝑇1(1 + 𝐴)] 

∆𝑇3 = 𝐴[(1 + 𝐴)(𝑇1 + 𝐴𝑇1)] = 𝐴𝑇1[(1 + 𝐴)(1 + 𝐴)] 

∆𝑻𝟑 = 𝑨𝑻𝟏(𝟏 + 𝑨)𝟐 

Similarly for fourth stage: 

∆𝑻𝟒 = 𝑨𝑻𝟏(𝟏 + 𝑨)𝟑 

And for Kth stage:  

∆𝑻𝑲 = 𝑨𝑻𝟏(𝟏 + 𝑨)𝑲−𝟏 

Total temperature rise across the multistage compressor is: 

∆𝑇𝑜 = ∆𝑇1 + ∆𝑇2 + ∆𝑇3 + ∆𝑇4 + ⋯+ ∆𝑇𝐾 

∆𝑇𝑜 = 𝐴𝑇1 + 𝐴𝑇1(1 + 𝐴) + 𝐴𝑇1(1 + 𝐴)2 + 𝐴𝑇1(1 + 𝐴)3 + ⋯+ 𝐴𝑇1(1 + 𝐴)𝐾−1 

∆𝑇𝑜 = 𝐴𝑇1[1 + (1 + 𝐴) + (1 + 𝐴)2 + (1 + 𝐴)3 + ⋯+ (1 + 𝐴)𝐾−1] 

∆𝑇𝑜 = 𝐴𝑇1𝑆 

Where     𝑺 = 𝟏 + (𝟏 + 𝑨) + (𝟏 + 𝑨)𝟐 + (𝟏 + 𝑨)𝟑 + ⋯+ (𝟏 + 𝑨)𝑲−𝟏 

     𝑆 = 1 + (1 + 𝐴)[1 + (1 + 𝐴) + (1 + 𝐴)2 …+ (1 + 𝐴)𝐾−2] 

Or,  𝑆 = 1 + (1 + 𝐴)[1 + (1 + 𝐴) + (1 + 𝐴)2 …+ (1 + 𝐴)𝐾−2 + (1 + 𝐴)𝐾−1 − (1 + 𝐴)𝐾−1] 

𝑆 = 1 + (1 + 𝐴)[𝑆 − (1 + 𝐴)𝐾−1] 

𝑆 = 1 + 𝑆(1 + 𝐴) − (1 + 𝐴)𝐾 = 1 + 𝑆 + 𝑆𝐴 − (1 + 𝐴)𝐾 

𝑺𝑨 = (𝟏 + 𝑨)𝑲 − 𝟏 
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But,       ∆𝑇𝑜 = 𝑆𝐴𝑇1 

∆𝑇𝑜 = 𝑇1[(1 + 𝐴)𝐾 − 1] 

∆𝑻𝒐 = 𝑻𝟏

[
 
 
 

(𝟏 +
𝑷𝒓

𝜸−𝟏
𝜸 − 𝟏

𝜼𝒔𝒕
)

𝑲

− 𝟏

]
 
 
 

 

The overall efficiency of the multistage compressor is, 

𝜂𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑅𝑖𝑠𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑅𝑖𝑠𝑒
=

∆𝑇𝑜′

∆𝑇𝑜
 

𝜂𝑜 =
𝑇(𝐾+1)′ − 𝑇1

∆𝑇𝑜
=

𝑇1 (
𝑇(𝐾+1)′

𝑇1
− 1)

∆𝑇𝑜
=

𝑇1 (𝑃𝑟𝑜

𝛾−1
𝛾 − 1)

∆𝑇𝑜
 

𝜂𝑜 =

𝑇1 (𝑃𝑟

𝐾
𝛾−1
𝛾 − 1)

𝑇1

[
 
 
 

(1 +
𝑃𝑟

𝛾−1
𝛾

− 1
𝜂𝑠𝑡

)

𝐾

− 1

]
 
 
 

 

  𝜼𝒐 =
𝑷𝒓

𝑲
𝜸−𝟏
𝜸 − 𝟏

[𝟏 +
𝑷𝒓

𝜸−𝟏
𝜸

− 𝟏
𝜼𝒔𝒕

]

𝑲

− 𝟏

 

3.5 Expansion Process in Turbine: 

3.5.1 Efficiency of Expansion Process: 

Question No 3.13: Define the following, with the help of a h-s diagram, for the power generating 

turbomachines: (i) Total-to-total efficiency, (ii) Total-to-static efficiency, (iii) Static-to-total 

efficiency, (iv) Static-to static efficiency. (VTU, Dec-07/Jan-08, May/Jun-10, Dec-10, Jun/Jul-11) 

 Answer: The h-s diagram for the expansion process is shown in figure 3.7. The fluid has initially the 

static pressure and temperature determines by state 1, the state 01 is the corresponding stagnation state. 

After passing through the turbomachine, the final static properties of the fluid are determined by state 

2 and state 02 is corresponding stagnation state. If the process is reversible, the final fluid static state 

would be 2’ while stagnation state would be 02’. Line 1-2 in static coordinates and line 01-02 in 

stagnation coordinates represent the real process. 

The actual work output for expansion process is, 

               𝑤 = ℎ01 − ℎ02 

The ideal work output can be calculated by any one of the following four equations: 
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(i) Totol-to-total work output is the ideal work output for the stagnation ends,  

𝑤𝑡−𝑡 = ℎ01 − ℎ02′ 

(ii) Total-to-static work output is the ideal work output for the stagnation inlet to the static exit,  

               𝑤𝑡−𝑠 = ℎ01 − ℎ2′  

(iii) Static-to-total work output is the ideal work output for the static inlet to the stagnation exit, 

𝑤𝑠−𝑡 = ℎ1 − ℎ02′ 

(iv) Static-to-static work output is the ideal work output for the static inlet to the static exit, 

𝑤𝑠−𝑠 = ℎ1 − ℎ2′ 

 

Fig. 3.7 h-s diagram for expansion process 

The efficiency of the compression process can be expressed by any one of the following equations: 

(i) Total-to-total efficiency is defined as the ratio of actual work output to the total-to-total work 

output. 

𝜂𝑡−𝑡 =
𝑤

𝑤𝑡−𝑡
=

ℎ01 − ℎ02

ℎ01 − ℎ02′
 

(ii) Total-to-static efficiency is defined as the ratio of actual work output to the total-to-static work 

output. 

𝜂𝑡−𝑠 =
𝑤

𝑤𝑡−𝑠
=

ℎ01 − ℎ02

ℎ01 − ℎ2′
 

(iii) Static-to-total efficiency is defined as the ratio of actual work output to the static-to-total work 

output. 

𝜂𝑠−𝑡 =
𝑤

𝑤𝑠−𝑡
=

ℎ01 − ℎ02

ℎ1 − ℎ02′
 

(iv) Static-to-static efficiency is defined as the ratio of actual work output to the static-to-static work 

output. 
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𝜂𝑠−𝑠 =
𝑤

𝑤𝑠−𝑠
=

ℎ01 − ℎ02

ℎ1 − ℎ2′
 

3.5.2 Effect of Reheat: 

Question No 3.14: What is Reheat factor? Show that the reheat factor is greater than unity in a 

multistage turbine. (VTU, Dec-06/Jan-07, Jun/Jul-09, Dec-11, Jun/Jul-14, Dec-14/Jan-15)  

Answer: The reheat factor for a turbine may be defined as the ratio of cumulative isentropic work to 

the direct or Rankine isentropic work. 

 The thermodynamic effect of multistage expansion can be studied by considering three stage 

turbine working between inlet pressure p1 and the delivery pressure p2 as shown in the figure 3.8. The 

intermediate pressures are being pA and pB. The stage pressure ratio, pr and the stage efficiency, ηst are 

assumed to be same for all stages. The process 1-2’ and 1-2 are the isentropic and actual expression 

process respectively. 

 

Fig. 3.8 Effect of reheat on expansion process 

As the constant pressure lines are diverging towards the right hand side of the temperature-

entropy diagram, the isentropic work per stage increases as the temperature difference increases for the 

same pressure ratio and the stage efficiency. For example, in the second stage between pressures pA 

and pB, the isentropic temperature difference represented by the line A-Y is greater than that 

represented by the line O-X. It is therefore the isentropic work for the stage is greater by virtue of the 

inefficiency of the previous stage. Similarly for the next stage also.  

Therefore,     (Δ𝑤𝑠1 + Δ𝑤𝑠2 + Δ𝑤𝑠3) > 𝑤𝑠 

Or,       𝛴𝛥𝑤𝑠 > 𝑤𝑠 
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𝚺𝚫𝒘𝒔

𝒘𝒔
> 1 

Therefore, the Reheat factor  
ΣΔ𝑤𝑠

𝑤𝑠
 is always greater than unity for multistage turbine. This is due to the 

reheating of the fluid at the end of each expansion stage and this appears as the losses in the 

subsequent stages. 

Question No 3.15: For a multistage turbine, show that the overall efficiency is greater than the stage 

efficiency using T-s diagram. (VTU, Jun/Jul-08) 

Answer: Consider three stage turbine working between inlet pressure p1 and the delivery pressure p2 

as shown in the figure 3.8. The intermediate pressures are being pA and pB. The stage pressure ratio, pr 

and the stage efficiency, ηst are assumed to be same for all stages. The process 1-2’ and 1-2 are the 

isentropic and actual expansion process respectively. 

 If the overall efficiency of the multistage expansion is ηo, then the total actual work is given by, 

𝑤𝑎 = 𝜂𝑜𝑤𝑠 

Or, 

𝒘𝒔 =
𝒘𝒂

𝜼𝒐
 

The total actual work can also be written as the sum of the actual work done in each stage, 

𝑤𝑎 = 𝑤𝑎1 + 𝑤𝑎2 + 𝑤𝑎3 = 𝜂𝑠𝑡Δ𝑤𝑠1 + 𝜂𝑠𝑡Δ𝑤𝑠2 + 𝜂𝑠𝑡Δ𝑤𝑠3 

𝑤𝑎 = 𝜂𝑠𝑡(Δ𝑤𝑠1 + Δ𝑤𝑠2 + Δ𝑤𝑠3) 

𝑤𝑎 = 𝜂𝑠𝑡ΣΔ𝑤𝑠 

Or,                                                              

𝚺𝚫𝒘𝒔 =
𝒘𝒂

𝜼𝒔𝒕
 

 As the constant pressure lines are diverging towards the right hand side of the temperature-

entropy diagram, the isentropic work per stage increases as the temperature difference increases for the 

same pressure ratio and the stage efficiency.  

Therefore,     (Δ𝑤𝑠1 + Δ𝑤𝑠2 + Δ𝑤𝑠3) > 𝑤𝑠 

Or,       𝛴𝛥𝑤𝑠 > 𝑤𝑠 

𝑤𝑎

𝜂𝑠𝑡
>

𝑤𝑎

𝜂𝑜
 

𝜼𝒐 > 𝜼𝒔𝒕 

For multistage turbine, the overall isentropic efficiency is greater than the stage efficiency. 
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3.5.3 Infinitesimal Stage Efficiency or Polytropic Efficiency: 

Question No 3.16: Define the term infinitesimal stage efficiency of a turbine. Show that the 

polytropic efficiency during the expansion process is given by 𝜼𝒑 =
𝒍𝒏(

𝑻𝟐
𝑻𝟏

)

𝜸−𝟏

𝜸
𝒍𝒏(

𝒑𝟐
𝒑𝟏

)
  

(VTU, Dec-09/Jan-10, Jun-12, Dec-13/Jan-14) 

Answer: A finite turbine stage is made up of number of infinitesimal stages; the efficiency of these 

small stages is called polytropic efficiency or infinitesimal stage efficiency.  

 Consider a single stage turbine having its stage efficiency ηst, operates between the pressures p1 

and p2, and an infinitesimal stage of efficiency ηp, working between the pressures p and p-dp as shown 

in figure 3.9.  

 

Fig. 3.9 Infinitesimal stage of a turbine 

The infinitesimal stage efficiency is given by, 

𝜂𝑝 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑟𝑜𝑝

𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑟𝑜𝑝
=

𝑑𝑇

𝑑𝑇′
 

The actual temperature rise for infinitesimal stage is given by, 

𝑑𝑇 = 𝜂𝑝𝑑𝑇′ = 𝜂𝑝(𝑇 − 𝑇′) = 𝜂𝑝𝑇 (1 −
𝑇′

𝑇
) 

𝑑𝑇

𝑇
= 𝜂𝑝 [1 − (

𝑝 − 𝑑𝑝

𝑝
)

𝛾−1
𝛾

] 

𝑑𝑇

𝑇
= 𝜂𝑝 [1 − (1 −

𝑑𝑝

𝑝
)

𝛾−1
𝛾

] 

By series of expansion, (1 − 𝑥)𝑛 = 1 − 𝑛𝑥 +
𝑛(𝑛−1)

2
𝑥2 − ⋯ and neglecting second order differentials, 
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𝑑𝑇

𝑇
= 𝜂𝑝 [1 − (1 −

𝛾 − 1

𝛾

𝑑𝑝

𝑝
)] 

𝑑𝑇

𝑇
= 𝜂𝑝

𝛾 − 1

𝛾

𝑑𝑝

𝑝
                                                                          (3.4) 

By integration with limits 1 to 2, 

𝑙𝑛 (
𝑇2

𝑇1
) = 𝜂𝑝

𝛾 − 1

𝛾
𝑙𝑛 (

𝑝2

𝑝1
) 

𝜼𝒑 =
𝒍𝒏 (

𝑻𝟐

𝑻𝟏
)

𝜸 − 𝟏
𝜸 𝒍𝒏 (

𝒑𝟐

𝒑𝟏
)
 

Or, 

𝜼𝒑 =

𝜸
𝜸 − 𝟏 𝒍𝒏 (

𝑻𝟐

𝑻𝟏
)

𝒍𝒏 (
𝒑𝟐

𝒑𝟏
)

 

Question No 3.17: With the help of T-s diagram, show that polytropic efficiency during expansion 

process is given by 𝜼𝒑 = (
𝜸

𝜸−𝟏
) (

𝒏−𝟏

𝒏
) (VTU, Dec-08/Jan-09, Jun/Jul-14) 

Answer: From equation (3.4), 

𝑑𝑇

𝑇
= 𝜂𝑝

𝛾 − 1

𝛾

𝑑𝑝

𝑝
 

By integration, 

𝑙𝑛(𝑇) = 𝜂𝑝

𝛾 − 1

𝛾
𝑙𝑛(𝑝) + 𝐶𝑜𝑛𝑠𝑡 

𝑝
𝜂𝑝

𝛾−1
𝛾

𝑇
= 𝐶𝑜𝑛𝑠𝑡 

For actual compression process 1-2, 

𝑇2

𝑇1
= (

𝑝2

𝑝1
)
𝜂𝑝

𝛾−1
𝛾

 

Assume actual compression process having polytropic index ‘n’, 

𝑇2

𝑇1
= (

𝑝2

𝑝1
)

𝑛−1
𝑛

 

Therefore, 

(
𝑝2

𝑝1
)
𝜂𝑝

𝛾−1
𝛾

= (
𝑝2

𝑝1
)

𝑛−1
𝑛

 

Equating the indices, 

𝜂𝑝

𝛾 − 1

𝛾
=

𝑛 − 1

𝑛
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Or, 

𝜼𝒑 = (
𝜸

𝜸 − 𝟏
) (

𝒏 − 𝟏

𝒏
)                                                          (3.5) 

Question No 3.18: Show that the index ‘n’ of polytropic expansion in a turbine of infinitesimal 

stage efficiency ηp is given by 𝒏 =
𝜸

𝜸−(𝜸−𝟏)𝜼𝒑
, where γ is a ratio of specific heats. (VTU, Dec-10) 

Answer: From equation (3.5), 

𝜂𝑝 = (
𝛾

𝛾 − 1
)(

𝑛 − 1

𝑛
) 

𝜂𝑝(𝛾 − 1)𝑛 = 𝛾(𝑛 − 1) 

𝜂𝑝𝛾𝑛 − 𝜂𝑝𝑛 = 𝛾𝑛 − 𝛾 

𝜂𝑝𝛾𝑛 − 𝜂𝑝𝑛 − 𝛾𝑛 = −𝛾 

𝑛(𝜂𝑝𝛾 − 𝜂𝑝 − 𝛾) = −𝛾 

𝑛 =
−𝛾

𝜂𝑝𝛾 − 𝜂𝑝 − 𝛾
=

𝛾

−𝜂𝑝𝛾 + 𝜂𝑝 + 𝛾
 

𝒏 =
𝜸

𝜸 − (𝜸 − 𝟏)𝜼𝒑
 

Question No 3.19: With the help of T-s diagram, show that stage efficiency of turbine is given by 

      𝜼𝒔𝒕 =
𝟏−𝑷𝒓

−(𝜂𝑝
𝜸−𝟏
𝜸

)

𝟏−𝑷𝒓

−(
𝜸−𝟏
𝜸

)
 (VTU, Jun-12) 

Answer: From the T-s diagram shown in figure 3.9, the turbine stage efficiency is given by, 

𝜂𝑠𝑡 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑟𝑜𝑝

𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑟𝑜𝑝
 

𝜂𝑠𝑡 =
𝑇1 − 𝑇2

𝑇1 − 𝑇2′
=

𝑇1 (1 −
𝑇2

𝑇1
)

𝑇1 (1 −
𝑇2′

𝑇1
)

=

[1 − (
𝑝2

𝑝1
)
𝜂𝑝

𝛾−1
𝛾

]

[1 − (
𝑝2

𝑝1
)

𝛾−1
𝛾

]

 

Let, 𝑝𝑟 =
𝑝1

𝑝2
 

𝜼𝒔𝒕 =
𝟏 − 𝑷𝒓

−(𝜂𝑝
𝜸−𝟏
𝜸

)

𝟏 − 𝑷𝒓

−(
𝜸−𝟏
𝜸 )
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3.5.4 Multistage Turbines: 

Question No 3.20: Derive an expression for an overall isentropic efficiency for multistage expansion 

in terms of pressure ratio, polytropic efficiency, number of stages and ratio of specific heats for a 

turbine. Or, 

Show that for a multistage expansion the overall isentropic efficiency is given by 

                                                                         𝜼𝒐 =
𝟏−𝑷𝒓

−(𝜂𝑝
𝜸−𝟏
𝜸

𝑲)

𝟏−𝑷𝒓

−(
𝜸−𝟏
𝜸

𝑲)
 

Where K= number of stages, Pr= pressure ratio per stage, ηp= polytropic efficiency, γ= ratio of 

specific heats.  

Answer: The figure 3.10 shows the T-s diagram expansion process in multistage turbine operating 

between the pressures p1 and pK+1. If there are K stages with the overall pressure ratio 
𝑝1

𝑝𝐾+1
 and having 

equal stage efficiency and stage pressure ratio. 

 

Fig. 3.10 Expansion process in multistage turbine 

The overall efficiency of the multistage turbine is, 

𝜂𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑟𝑜𝑝

𝑇𝑜𝑡𝑎𝑙 𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑟𝑜𝑝
 

𝜂𝑜 =
𝑇1 − 𝑇𝐾+1

𝑇1 − 𝑇(𝐾+1)′
=

𝑇1 (1 −
𝑇𝐾+1

𝑇1
)

𝑇1 (1 −
𝑇(𝐾+1)′

𝑇1
)

=

[1 − (
𝑝𝐾+1

𝑝1
)
𝜂𝑝

𝛾−1
𝛾

]

[1 − (
𝑝(𝐾+1)′

𝑝1
)

𝛾−1
𝛾

]

 

Let, 𝑝𝑟𝑜 =
𝑝1

𝑝𝐾+1
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𝜼𝒐 =
𝟏 − 𝑷𝒓𝒐

−(𝜂𝑝
𝜸−𝟏
𝜸

)

𝟏 − 𝑷𝒓𝒐

−(
𝜸−𝟏
𝜸 )

 

The overall pressure ratio can be written as, 𝑝𝑟𝑜 = 𝑝𝑟
𝐾 

Then overall efficiency of multistage turbine is, 

𝜼𝒐 =
𝟏 − 𝑷𝒓

−(𝜂𝑝
𝜸−𝟏
𝜸

𝑲)

𝟏 − 𝑷𝒓

−(
𝜸−𝟏
𝜸 𝑲)

 

Question No 3.21: Derive an expression for an overall isentropic efficiency for finite number of 

stages of expansion in terms of pressure ratio, stage efficiency, number of stages and ratio of 

specific heats for a turbine. (VTU, Jul-07) Or, 

Show that for a finite number of stages for expansion the overall isentropic efficiency is given by 

                                                                         𝜼𝒐 =
𝟏−{𝟏−𝜼𝒔𝒕[𝟏−(

𝟏

𝒑𝒓
)

𝜸−𝟏
𝜸 ]}

𝑲

[𝟏−(
𝟏

𝒑𝒓
)
𝑲

𝜸−𝟏
𝜸 ]

 

Where K= number of stages, Pr= pressure ratio per stage, ηst= stage efficiency, γ= ratio of specific 

heats. (VTU, Jun/Jul-09) 

Answer: If T1 is the initial temperature at which the fluid enters the multistage turbine, K is the 

number of stages having equal pressure ratio pr in each stage, then the actual temperature drop in each 

stage can be given as follows: 

 For first stage: 

∆𝑇1 = (𝑇1 − 𝑇2) = 𝜂𝑠𝑡(𝑇1 − 𝑇2′) = 𝑇1𝜂𝑠𝑡 (1 −
𝑇2′

𝑇1
) = 𝑇1𝜂𝑠𝑡 [1 − (

𝑝2

𝑝1
)

𝛾−1
𝛾

] 

∆𝑇1 = 𝑇1𝜂𝑠𝑡 [1 − (
1

𝑝𝑟
)

𝛾−1
𝛾

] 

Let, 𝐵 = 𝜂𝑠𝑡 [1 − (
1

𝑝𝑟
)

𝛾−1

𝛾
] 

∆𝑻𝟏 = 𝑩𝑻𝟏 

For second stage: 

∆𝑇2 = (𝑇2 − 𝑇3) = 𝐵𝑇2 = 𝐵(𝑇1 − 𝐵𝑇1) 

∆𝑻𝟐 = 𝑩𝑻𝟏(𝟏 − 𝑩) 

For third stage: 

∆𝑇3 = (𝑇3 − 𝑇4) = 𝐵𝑇3 = 𝐵[𝑇2 − 𝐵𝑇1(1 − 𝐵)] 
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∆𝑇3 = 𝐵[𝑇1 − 𝐵𝑇1 − 𝐵𝑇1(1 − 𝐵)] = 𝐵𝑇1[(1 − 𝐵) − 𝐵(1 − 𝐵)] 

∆𝑻𝟑 = 𝑩𝑻𝟏(𝟏 − 𝑩)𝟐 

Similarly for fourth stage: 

∆𝑻𝟒 = 𝑩𝑻𝟏(𝟏 − 𝑩)𝟑 

And for Kth stage: 

∆𝑻𝑲 = 𝑩𝑻𝟏(𝟏 − 𝑩)𝑲−𝟏 

Total temperature drop across the multistage turbine is: 

∆𝑇𝑜 = ∆𝑇1 + ∆𝑇2 + ∆𝑇3 + ∆𝑇4 + ⋯+ ∆𝑇𝐾 

∆𝑇𝑜 = 𝐵𝑇1 + 𝐵𝑇1(1 − 𝐵) + 𝐵𝑇1(1 − 𝐵)2 + 𝐵𝑇1(1 − 𝐵)3 + ⋯+ 𝐵𝑇1(1 − 𝐵)𝐾−1 

∆𝑇𝑜 = 𝐵𝑇1[1 + (1 − 𝐵) + (1 − 𝐵)2 + (1 − 𝐵)3 + ⋯+(1 − 𝐵)𝐾−1] 

Let,              𝑺 = 𝟏 + (𝟏 − 𝑩) + (𝟏 − 𝑩)𝟐 + (𝟏 − 𝑩)𝟑 + ⋯+(𝟏 − 𝑩)𝑲−𝟏 

𝑆 = 1 + (1 − 𝐵)[1 + (1 − 𝐵) + (1 − 𝐵)2 + ⋯+(1 − 𝐵)𝐾−2] 

𝑆 = 1 + (1 − 𝐵)[1 + (1 − 𝐵) + (1 − 𝐵)2 + ⋯+ (1 − 𝐵)𝐾−2+(1 − 𝐵)𝐾−1−(1 − 𝐵)𝐾−1] 

𝑆 = 1 + (1 − 𝐵)[𝑆−(1 − 𝐵)𝐾−1] = 1 + 𝑆(1 − 𝐵) − (1 − 𝐵)𝐾 

𝑆 = 1 + 𝑆 − 𝑆𝐵 − (1 − 𝐵)𝐾 

𝑺𝑩 = 𝟏 − (𝟏 − 𝑩)𝑲 

But,                ∆𝑇𝑜 = 𝑆𝐵𝑇1 

∆𝑇𝑜 = 𝑇1[1 − (1 − 𝐵)𝐾] 

∆𝑻𝒐 = 𝑻𝟏 {𝟏 − {𝟏 − 𝜼𝒔𝒕 [𝟏 − (
𝟏

𝒑𝒓
)

𝜸−𝟏
𝜸

]}

𝑲

} 

The overall efficiency of the multistage turbine is, 

𝜂𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑟𝑜𝑝

𝑇𝑜𝑡𝑎𝑙 𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐷𝑟𝑜𝑝
 

𝜂𝑜 =
∆𝑇𝑜

𝑇1 − 𝑇(𝐾+1)′
=

𝑇1 {1 − {1 − 𝜂𝑠𝑡 [1 − (
1
𝑝𝑟

)

𝛾−1
𝛾

]}

𝐾

}

𝑇1 (1 −
𝑇(𝐾+1)′

𝑇1
)

=

1 − {1 − 𝜂𝑠𝑡 [1 − (
1
𝑝𝑟

)

𝛾−1
𝛾

]}

𝐾

[1 − (
𝑝(𝐾+1)′

𝑝1
)

𝛾−1
𝛾

]

 

But, 
𝑝1

𝑝(𝐾+1)′
= 𝑝𝑟𝑜 = 𝑝𝑟

𝐾 

𝜼𝒐 =

𝟏 − {𝟏 − 𝜼𝒔𝒕 [𝟏 − (
𝟏
𝒑𝒓

)

𝜸−𝟏
𝜸

]}

𝑲

[𝟏 − (
𝟏
𝒑𝒓

)
𝑲

𝜸−𝟏
𝜸

]
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