
Module 1

Crypto Basics

The basic terminology of crypto includes the following.

• Cryptology — the art and science of making and breaking "secret codes."

• Cryptography — the making of "secret codes."

• Cryptanalysis — the breaking of "secret codes."

• Crypto — a synonym for any or all of the above (and more), where the precise meaning should

be clear from context.

A cipher or crypto system is used to encrypt data. The original unencrypted data is known

as plaintext, and the result of encryption is ciphertext. We decrypt the ciphertext to recover the

original plaintext. A key is used to configure a cryptosystem for encryption and decryption.

In a symmetric cipher, the same key is used to encrypt and to decrypt, as illustrated by the

black box cryptosystem in Figure 1. There is also a concept of public key cryptography where the

encryption and decryption keys are different. Since different keys are used, it's possible to make

the encryption key public—thus the name public key.2 In public key crypto, the encryption key

is, appropriately, known as the public key, whereas the decryption key, which must remain

secret, is the private key. In symmetric key crypto, the key is known as a symmetric key. We'll

avoid the ambiguous term secret key.

Figure 1: Crypto as a Block Box

Simple Substitution Cipher

First, we consider a particularly simple implementation of a simple substitution cipher. In the

simplest case, the message is encrypted by substituting the letter of the alphabet n places ahead

of the current letter. For example,

with n = 3, the substitution—which acts as the key—is

 plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z

ciphertext: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

where we've followed the convention that the plaintext is lowercase, and the ciphertext is

uppercase. In this example, the key could be given succinctly as "3" since the amount of the shift

is, in effect, the key. Using the key 3, we can encrypt the plaintext message

fourscoreandsevenyearsago

by looking up each plaintext letter in the table above and then substituting the corresponding

letter in the ciphertext row, or by simply replacing each letter by the letter that is three positions

ahead of it in the alphabet. For the particular plaintext above, the resulting ciphertext is

IRXUVFRUHDAGVHYHABHDUVDIR.

Cryptanalysis of a Simple Substitution

Suppose Trudy intercepts the following ciphertext, which she suspects was produced by a simple

substitution cipher, where the key could be any permutation of the alphabet:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBWLXTOXBTFXCÌWA

XBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBIPBFXFqVXGTVJV

WLBTPQWAEBFPBFHCVLXBQUFEWLXGDPEQVPQGVPPBFTIXPFHXZHVFAG

FOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPTOGHFqPBQWAqjJTODXqH , »

FOQPWTBDHHIXqVAPBFZqHCFWPFHPBFIPBqWKFABVYYDZBOTHPBqPqjT ^ ' '

qOTOGHFqAPBFEqjHDXXqVAVXEBqPEFZBVFOJIWFFACFCCFHQWAUVWFL

qHGFXVAFXqHFUFHILTTAVWAFFAWTEVDITDHFHFqAITIXPFHXAFqHEFZ

qWGFLVWPTOFFA

Since it's too much work for Trudy to try all 288 possible keys, can she be cleverer? Assuming

the plaintext is English, Trudy can make use of the English letter frequency counts in Figure 2.2

together with the frequency counts for the ciphertext in (2.2), which appear in Figure 2.

Figure 2: English Letter Frequency Count

From the ciphertext frequency counts in Figure 2, we see that "F" is the most common letter in

the encrypted message and, according to Figure 3 "E" is the most common letter in the English

language. Trudy therefore surmises that it's likely that "F" has been substituted for "E."

Continuing in this manner, Trudy can try likely substitutions until she recognizes words, at

which point she can be confident in her guesses.

Figure 3: Ciphertext Frequency Count

Double Transposition Cipher

In this section we discuss another classic cipher that illustrates some important basic concepts.

The double transposition presented in this section is a weaker form of the usual double

transposition cipher. We use this form of the cipher since it provides a slightly simpler means of

illustrating all of the points that we want to make. To encrypt with a double transposition cipher,

we first write the plaintext into an array of a given size and then permute the rows and columns

according to specified permutations. For example, suppose we write the plaintext attack at dawn

into a 3 x 4 array:

For the double transposition, the key consists of the size of the matrix and the row and column

permutations. Anyone who knows the key can simply put the ciphertext into the appropriate

sized matrix and undo the permutations to recover the plaintext For example, to decrypt (2.3), the

ciphertext is first put into a 3 x 4 array. Then the columns are numbered as (4,2,1,3) and

rearranged to (1,2,3,4), and the rows are numbered (3,2,1) and rearranged into (1,2,3), and we

see that we have recovered the plaintext, namely, attack at dawn. The bad news is that, unlike a

simple substitution, the double transposition does nothing to disguise the letters that appear in the

message. The good news is that the double transposition appears to thwart an attack that relies on

the statistical information contained in the plaintext, since the plaintext statistics are disbursed

throughout the ciphertext.

Even this simplified version of the double transposition is not a trivial cipher to break. The idea

of smearing plaintext information through the ciphertext is so useful that it is employed by

modern block ciphers, as we will see in the next chapter.

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Module 2- Hash Functions

HASH FUNCTIONS

Hash Function: It is any functions that takes an input of any size and produce an output of a fixed

size.

A cryptographic hash function h(x) must provide all of the following.

• Compression — For any size input x, the output length of y = h(x) is small. In practice, the output is

a fixed size, regardless of the length of the input.

• Efficiency — It must be easy to compute h(x) for any input x. The computational effort required to

compute h{x) will grow with the length of x, but it cannot grow too fast.

• One-way — Given any value y, it's computationally infeasible to find a value a; such that h{x) = y.

Another way to say this is that there is no feasible way to invert the hash.

• Weak collision resistance — Given x and h(x), it's infeasible to find any y, with y ≠ x, such that h(y)

= h(x). Another way to state this requirement is that it is not feasible to modify a message without

changing its hash value.

• Strong collision resistance — It's infeasible to find any x and y, such that x ≠ y and h(x) = h(y). That

is, we cannot find any two inputs that hash to the same output.

Hash functions used in the computation of digital signatures.

Motivation:

● Alice signs a message M by using her private key to "encrypt," that is, she computes

S =[M]Alice · If Alice sends M and S to Bob, then Bob can verify the signature by verifying that M =

{S}Alice, if M is large, [M] Alice is costly to compute.

● If a cryptographic function h, Alice will sign M by first hashing M then signing the hash, that

is, Alice computes S = [h(M)]Alice. Hashes are efficient (comparable to block cipher

algorithms), and only a small number of bits need to be signed.

● Then Alice can send Bob M and S, as illustrated in Figure. Bob verifies the signature by

hashing M and comparing the result to the value obtained when Alice's public key is applied to

S. That is, Bob verifies that h(M) = {S}Alice·

Module 2- Hash Functions

The Birthday Problem:

● Suppose there are N people in a room.

● How large must N be before the probability someone has same birthday as me

is>=1/2?

● Assuming all birth dates are equally likely.

● The probability that person does not have the same probability as you is given as:

1-(1/365)=364/365

● Probability that none of N people have the same birthday as you is

(364/365)N

● The probability that at least one person has the same birthday as you is

1− (364/365)N

● Solving: 1/2 = 1 − (364/365)N for N. Therefore N = 253

● Number of people(N) that must be in a room before probability is ≥ 1/2 that any two (or more)

have same birthday is

1 − (365/365) ⋅(364/365) ⋅ ⋅ ⋅(365−N+1)/365 =1/2. Therefore N=23

● With N people in a room, the number of comparisons is N².

● Since there are 365 different birth dates, a match n be find at the point where

N²=365 or N=√365=19.

● If h(x) is N bits, then 2N different hash values are possible.

● So, if you hash about sqrt(2N) = 2N/2 values then you expect to find a collision

● Secure N-bit hash requires 2N/2 work to “break” & Secure N-bit symmetric cipher has work

factor of 2N−1.

A Birthday Attack

● If M is the message that Alice wants to sign, then she computes S = [h(M)A]lice &

sends S and M to Bob.

● Attacker selects an "evil" message E that she wants Alice to sign, but which Alice

is unwilling to sign.

● Attacker also creates an innocent message I that she is confident Alice is willing to

sign.

● Attacker generates 2n/2 variants of the innocent message. These innocent messages,

which we denote Ii, all have the same meaning as I, but since themessages differ,

their hash values differ.

Module 2- Hash Functions

● Attacker creates 2n/2 variants of the evil message, which denoted asEi. but their

hashes differ.

● By the birthday problem, attacker can expect to find a collision, h(Ej) = h(Ik).

● Given such a collision, attacker sends Ik to Alice, & asks Alice to sign it.

● Alice signs it and returns Ik and h[Ik]Alice to attacker.

● Since h(Ej) = h(Ik), it follows that h[Ej]Alice = h[Ik]Alice· Consequently attacker has

obtained Alice's signature on the evil message Ej.

● To prevent this attack, choose a hash function for whichn, the size of the hash

function output, is so large that attacker cannot compute 2 N/2 hashes.

Non-Cryptographic Hashes

● Consider data X = (X1,X2,X3,…,Xn), each Xi is a byte.

● Defining hash function h(X) = (X1+X2+X3+…+Xn) mod 256. This provides

compression, since any size of input is compressed to an 8-bit output. Hash would

be easy to break, since the birthday problem tells us that if we hash just 42= 16

randomly selected inputs, we can expect to find a collision.

For example: swapping two bytes will always yield acollision, such as X =

(10101010, 00001111), Hash is h(X) = 10111001. If Y = (00001111, 10101010)

then h(X) = h(Y).

i.e h(10101010,00001111) = h(00001111,10101010) = 10111001.

● Consider data X = (X0,X1,X2,…,Xn-1)

● Suppose hash is defined as h(X) = (nX1+(n−1)X2+(n−2)X3+…+2⋅Xn-1+Xn) mod 256. It

gives different results when the byte order is swapped.

For example: h(10101010,00001111) ≠ h(00001111,10101010)

● But there exists birthday problem issue and it also happens to be relatively easy to

construct collisions.

For example: h(00000001,00001111) = h(00000000,00010001) = 00010001.

● This is not a secure cryptographic hash, it's useful in a particular non-

cryptographic application known as Rsync.

● Cyclic Redundancy Check is the remainder in a long division calculation, good for

 detecting burst errors and such random errors unlikely to yield a collision.

Module 2- Hash Functions

● “Fast and strong”

● CRC has been mistakenly used where crypto integrity check is required (e.g.,

WEP).

Tiger Hash

● Designed by Ross Anderson and Eli Biham ⎯ leading cryptographers

● Design criteria:

o Secure

o Optimized for 64-bit processors.

o Easy replacement for MD5 or SHA-1.

● Input to Hash function is divided into 512 bit blocks (padded).

● Output is 192 bits (three 64-bit words).

● Intermediate rounds are all 192 bits

● 4 S-boxes(Substitution-box) is used, each maps 8 bits to 64 bits.

● A “key schedule” is used, since there is no key, is applied to the input block.

Tiger Outer Round:

➢ The input X is padded to a multiple of 512 bits and written as

X = (X0,X1,…,Xn-1)

➢ Employs one outer round for each Xi

➢ Initial (a,b,c) constants.

➢ The final (a, b, c) output from one round is the initial triple for the subsequent

round and the final (a, b, c) from the final round is the 192-bit hash value.

Module 2- Hash Functions

Tiger Outer Round

➢ In Outer round, input to outer round F5 is (a,b,c).

➢ The output of F5 as (a,b,c), the input toF7 is (c,a,b), the input to F9 is

(b,c,a).

➢ Each function Fm consists of eight inner rounds.

Tiger Inner Rounds:

➢ Each Fm consists of precisely 8 inner rounds.

➢ 512 bit input W to Fm

o W=(w0,w1,…,w7)

o W is one of the input blocks Xi

➢ All lines are 64 bits

➢ The input values for fm,i, for i=0,1,2,…,7 are

Module 2- Hash Functions

Tiger Hash: One Round

Tiger Inner Round for Fm

● Each fm,i is a function of a,b,c,wi and m

o Input values of a,b,c from previous round.

o And wi is 64-bit block of 512 bit W.

o Subscript m is mul tiplier

o And c = (c0,c1,…,c7)

● Output of fm,i is

o c = c ⊕ wi

o a = a − (S0[c0] ⊕ S1[c2] ⊕ S2[c4] ⊕ S3[c6])

o b = b + (S3[c1] ⊕ S2[c3] ⊕ S1[c5] ⊕ S0[c7])

o b = b ∗ m

● Each Si is S-box(i.e., lookup table): 8 bits mapped to 64 bits.

Tiger Hash Key Schedule:

● Input is X
o X=(x0,x1,…,x7)

● Small change in X will produce large change in key schedule output.

Module 2- Hash Functions

Summary:

● Hash and intermediate values are 192 bits.

● 24 (inner) rounds:

o S-boxes: Claimed that each input bit affects a, b and c after 3 rounds.

o Key schedule: Small change in message affects many bits of intermediate hash

values.

o Multiply: Designed to ensure that input to S-box in one round mixed into many

S-boxes in next.

● S-boxes, key schedule and multiply together designed to ensure strong avalanche effect.

Note: A desirable property of any cryptographic hash function is the so-called avalanche effect. The

goal is that any small change in the input should cascade and cause a large change in the output.

● At a higher level, Tiger employs

o Confusion

o Diffusion

HMAC

For message integrity we can compute a message authentication code, or MAC, where the MAC is

computed using a block cipher in CBC mode. The MAC is the final encrypted block, which is also

known as the CBC residue. Since a hash function effectively gives us a fingerprint of a file, we should

also be able to use a hash to verify message integrity.

Module 2- Hash Functions

Motivation:

Consider Alice protect the integrity of M by simply computing h(M) and sending both M and h(M) to

Bob.If M changes, Bob will detect the change, provided that h(M) has not changed (and vice versa).

However, if attacker replaces M with M' and also replaces h(M) with h(M'), then Bob will have no

way to detect the tampering. But using a hash function to provide integrity protection, involves a key

to prevent attacker from changing the hash value.

Approach: Alice encrypt the hash value with a symmetric cipher, E(h(M),K), and send this to Bob. A

slightly different approach is used to compute a hashed MAC, or HMAC. Instead of encrypting the

hash, directly mix the key into M when computing the hash.

Two approaches are to prepend the key to the message, or append the key to the message:

● h(K,M)

● h(M,K)

h(K,M) :

If h(K,M) is used to compute an HMAC, then consider cryptographic hashes hash the message in blocks—

for MD5, SHA-1, and Tiger, the block size is 512 bits. As a result, if M = {B1, B2), where each Bi is

512 bits, then

h(M) = F(F(A, B1),B2) = F(h(B1), B2) equation (1)

for some function F, where A is a fixed initial constant.

For example, in the Tiger hash, the function F consists of the outer with each Bi corresponding to a

512-bit block of input and A corresponding to the 192-bit initial value {a,b,c).

If an attacker chooses M' so that M' = (M,X), attacker might be able to use equation (1) to find h(K,M')

from h(K,M) without knowing K since, for K, M, and X of the appropriate size,

h(K, M') = h(K, M, X) = F(h(K, M),X)

where the function F is known.

h(M,K):

If it should happen that there is a known collision for the hash function h, that is, if there exists some

M' with h(M') = h(M), then by equation (1), then

h(M, K) = F(h(M), K) = F(h(M'), K) = h(M’, K)

provided that M and M' are each a multiple of the block size.

Module 2- Hash Functions

Conclusion: If such a collision exists, the hash function is considered insecure.

HMAC:

Approved method to mix the key into the hash for computing an HMAC is as follows.

Let B be the block length of hash, in bytes. For all popular hashes (MD5, SHA-1, Tiger, etc.), B = 64.

Next, define

ipad = 0x36 repeated B times

&

opad = 0x5C repeated B times

Then the HMAC of M is defined to be

This approach thoroughly mixes the key into the resulting hash. While two hashes are required to

compute an HMAC, note that the second hash will be computed on a small number of bits—the output

of the first hash with the modified key appended.

 Uses for Hash Functions:

Module 2- Hash Functions

Hash functions include authentication, message integrity (using an HMAC), message fingerprinting,

error detection, and digital signature efficiency and can also be used to solve security-related

problems.

 Online Bids:

● Consider suppose an item is for sale online and Alice, Bob, and Charlie all want to place bids

and these are supposed to be sealed bids, that is, each bidder gets one chance to submit a secret

bid and only after all bids have been received are the bids revealed.

● The highest bidder wins. Alice, Bob, and Charlie don't necessarily trust each other and they

definitely don't trust the online service that accepts the bids.

● Each bidder is concerned that the online service might reveal their bid to the other bidders—

either intentionally or accidentally.

For example,

● Suppose Alice places a bid of $10.00 and Bob bids $12.00. If Charlie is able to discover the

values of these bids prior to placing his bid (and prior to the deadline for bidding), he could bid

$12.01 and win. The point is that nobody wants to be the first (or second) to place their bid,

since there might be an advantage to bidding later.

So, the online service proposes the following scheme.

● Each bidder will determine their bids, say, bid A for Alice, bid B for Bob, and C for Charlie,

keeping their bids secret.

● Then Alice will submit h{A), Bob will submit h(B), and Charlie will submit h(C).

● Once all three hashed bids have been received, the hash values will be posted online for all to

see.

● At this point all three participants will submit their actual bids, that is, A, B, and C.

Advantage: If the cryptographic hash function is secure, it's one-way, so no disadvantage to

submitting a hashed bid prior to a competitor. And since it is infeasible to determine a collision, no

bidder can change their bid after submitting their hash value.

i.e, the hash value binds the bidder to his or her original bid, without revealing any information about

the bid itself. If there is no disadvantage in being the first to submit a hashed bid, and there is no way

to change a bid once a hash value has been submitted, then this scheme prevents the cheating.

Disadvantage: It is subject to a forward search attack.

Module 2- Hash Functions

 Spam Reduction

● Spam is defined as unwanted and unsolicited bulk email.

● In this scheme, Alice will refuse to accept an email until she has proof that the sender

expended sufficient effort to create the email. Effort will be measured in terms of computing

resources, in particular, CPU cycles.

● This scheme would not eliminate spam, but it would limit the amount of such email that any

user can send.

● Let M be an email message and let T be the current time. The message M includes the sender's

and intended recipient's email addresses, but does not include any additional addresses.

● The sender of message M must determine a value R such that

● That is, the sender must find a value R so that the hash in equation (5.5) has zeros in all of its

first N output bits.

● Once this is done, the sender sends the triple (M,R,T). Before Alice, the recipient, accepts the

email, she needs to verify that the time T is recent, and that h(M, R, T) begins with N zeros.

● Again, the sender chooses random values R and hashes each until he finds a hash value that

begins with TV zeros. Therefore, the sender will need to compute, on average, about 2 hashes.

● The recipient can verify that h(M, R, T) begins with N zeros by computing a single hash. So the

work for the sender (measured in terms of hashes) is about 2N, while the work for the recipient

is always a single hash.

● In this scheme, we would need to choose N so that the work level is acceptable for normal

email users but unacceptably high for spammers.

● It might also be possible for users to select their own individual value of N to match their

personal tolerance for spam.

For example, if Alice hates spam, N = 40. While this would deter spammers, it might also

deter many legitimate email senders. If Bob, doesn't mind receiving some spam and he never wants to

deter a legitimate email sender, he might set his value to, N = 10. Spammers dislikes this scheme.

Legitimate bulk emailers also might not like this scheme, since they would need to spend resources

(i.e., money) to compute vast numbers of hashes.

 Miscellaneous Crypto-Related Topics

Module 2- Hash Functions

5.9.1 Secret Sharing

Suppose Alice and Bob want to share a secret S in the sense that:

• Neither Alice nor Bob alone (nor anyone else) can determineS with a probability better than

guessing.

• Alice and Bob together can easily determine S.

Suppose the secret S is a real number. Draw a line L in the plane through the point (0, S) and give

Alice a point A = (X0, Y0) on L and give Bob another point B = (X1, Y1), which also lies on the line L.

Then neither Alice nor Bob individually has any information about S, since an infinite number of lines

pass through a single point. But together, the two points A and B uniquely determine L, and therefore

the y-intercept, and hence the value S. This example is illustrated in the "2 out of 2" scheme which is

given below:

Secret Sharing Schemes

It's easy to extend this idea to an "m out of n" secret sharing scheme, for any m < n, where n is the

number of participants, any m of which can cooperate to recover the secret. For m = 2, a line always

works. For example, a "2 out of 3" scheme appears in Figure.

A line, which is a polynomial of degree one, is uniquely determined by two points, whereas a

parabola, which is a polynomial of degree two, is uniquely determined by three points. In general, a

polynomial of degree m -1 is uniquely determined by m points. This elementary fact is allows us to

construct an m out of n secret sharing scheme for any m < n. For example, a "3 out of 3" scheme is

illustrated in Figure.

Key Escrow

Module 2- Hash Functions

One particular application where secret sharing would be useful is in the key escrow problem .

Suppose that we require users to store their keys with an official escrow agency. The government

could then get access to keys as an aid to criminal investigations.

● One concern with key escrow is that the escrow agency might not be trustworthy.

● It is possible to ameliorate this concern by having several escrow agencies and allow users to

split the key among n of these, so that m of the n must cooperate to recover the key.

● Alice could select escrow agencies that she considers most trustworthy and have her secret

split among these using an m out of n secret sharing scheme.

Shamir's secret sharing scheme could be used to implement such a key escrow scheme.

For example, suppose n = 3 and m = 2 and Alice's key is S. Then the "2 out of 3" scheme illustrated in

above Figure could be used.

Alice might choose to have the Department of Justice hold the point = (X0, Y0), the Department of

Commerce hold = (X1, Y1), and Fred's Key Escrow, Inc., hold (X2,Y2)· Then at least two of these three

escrow agencies would need to cooperate to determine Alice's key S.

Visual Cryptography

● Visual secret sharing scheme is absolutely secure, as is the polynomial-based secret sharing

scheme.

● In visual secret sharing (aka visual cryptography), no computation is required to decrypt the

underlying image.

● In the simplest case, we start with a black-and-white image and create two transparencies, one

for Alice and one for Bob.

● Each individual transparency appears to be a collection of random black and white subpixels,

but if Alice and Bob overlay their transparencies, the original image appears (with some loss of

contrast).

● In addition, either transparency alone yields no information about the underlying image.

Module 2- Hash Functions

Pixel shares

● Above figure shows various ways that an individual pixel can be split into "shares," where one

share goes to Alice's transparency and the corresponding share goes to Bob's.

For example,

● If a specific pixel is white, then we can flip a coin to decide whether to use row "a" or row "b"

from above Figure. Then, Alice's transparency gets share 1 from the selected row (either a or

b), while Bob's transparency gets share 2.

● The shares are put in Alice's and Bob's transparencies at the same position corresponding to the

pixel in the original image. When Alice's and Bob's transparencies are overlaid, the resulting

pixel will be half-black/half-white.

● In the case of a black pixel, we flip a coin to select between rows "c" and "d" and we again use

the selected row to determine the shares.

● If the original pixel was black, the overlaid shares always yield a black pixel.

● If the original pixel was white, the overlaid shares will yield a half-white/half-black pixel,

which will be perceived as gray.

● This results in a loss of contrast (black and gray versus black and white), but the original image

is still clearly discernible.

For example, Below Figure illustrates a share for Alice and a share for Bob, along with the resulting

overlaying of the two shares.

Module 2- Hash Functions

Alice's Share, Bob's Share, and Overlay Image

 Random Numbers

In cryptography, random numbers are needed to generate symmetric keys, RSA key pairs (i.e.,

randomly selected large primes), and Diffie-Hellman secret exponents as well as in security protocols.

Random numbers are used in many non-security applications such as simulations and various

statistical applications. In such cases, the random numbers usually only need to be statistically random.

Cryptographic random numbers must be statistically random and they must be unpredictable.

Consider the following example:

Suppose that a server generates symmetric keys for users. Suppose the following keys are generated

for the listed users:

• KA for Alice

• KB for Bob

• KC for Charlie

• KD for Dave

Now, if Alice, Bob, and Charlie don't like Dave, they can pool their information to see if it will help

them determine Dave's key. That is, Alice, Bob, and Charlie could use knowledge of their keys, KA,

KB, and KC, to see if it helps them determine Dave's key KD. If KD can be predicted from knowledge of

the keys KA, KB, and KC, then the security of the system is compromised.

Commonly used pseudo-random number generators are predictable. Consequently, pseudo-random

number generators are not appropriate for cryptographic applications.

Texas Hold 'em Poker

Consider a real-world example that illustrates the wrong way to generate random numbers:

Module 2- Hash Functions

● ASF Software, Inc., developed an online version of the card game known as Texas Hold 'em

Poker .

● In this game, each player is first dealt two cards, face down. Then a round of betting takes

place, followed by three community cards being dealt face up—all players can see the

community cards and use them in their hand.

● After another round of betting, one more community card is revealed, then another round of

betting.

● Finally, a final community card is dealt, after which additional betting can occur. Of the

players who remain at the end, the winner is the one who can make the best poker hand from

his two cards together with the five community cards.

● The game is illustrated in the below Figure.

Texas Hold 'Em Poker

● In this game, random numbers are required to shuffle a virtual deck of cards.

● The AFS poker software had a serious flaw in the way that random numbers were used to

shuffle the deck of cards.

● As a result, the program did not produce a truly random shuffle, and it was possible for a

player to determining the entire deck in real time.

● A player who could take advantage of this flaw could cheat, since he would know all of the

other players' hands, as well as the future community cards before they were revealed.

How was it possible to determine the shuffle?

First, there are 52! > 2225 distinct shuffles of a 52-card deck.

● The AFS poker program used a "random" 32-bit integer to determine the shuffle.

Consequently, the program could generate no more than 232 different shuffles out of the more

than 2225 possible. This was an inexcusable flaw.

● To generate the "random" shuffle, the program used the pseudo-random number generator, or

PRNG, built into the Pascal programming language.

Module 2- Hash Functions

● The PRNG was reseeded with each shuffle, with the seed value being a known function of the

number of milliseconds since midnight. Since the number of milliseconds in a day is less than

227 distinct shuffles could actually occur.

● Trudy, the attacker, if she synchronized her clock with the server, Trudy could reduce the

number of shuffles that needed to be tested to less than 218.

● These 218 possible shuffles could all be generated in real time and tested against the community

cards to determine the actual shuffle for the hand currently in play.

● After the first set of community cards were revealed, Trudy could determine the shuffle

uniquely and she would then know the final hands of all other players—even before any of the

other players knew their own final hand!

The AFS Texas Hold 'em Poker program is an extreme example of the ill effects of using predictable

random numbers where unpredictable random numbers are required. In this example, the number of

possible random shuffles was so small that it was possible to determine the shuffle and thereby break

the system.

How can we generate cryptographic random numbers?

Since a secure stream cipher keystream is not predictable, the keystream generated by, say, the RC4

cipher must be a good source of cryptographic random numbers.

Generating Random Bits

● True randomness is difficult to achieve. The concept of entropy, as developed by Claude

Shannon explains Entropy is a measure of the uncertainty or, conversely, the predictability of a

sequence of bits.

● Sources of true randomness do exist.

For example,

● Radioactive decay is random.

● Hardware devices are available that can be used to gather random bits based on various

physical and thermal properties that are known to be unpredictable.

● Another source of randomness is the lava lamp, which achieves its randomness from its chaotic

behaviour.

● Since software is deterministic, true random numbers must be generated external to any code.

● Reasonable sources of randomness include mouse movements, keyboard dynamics, certain

network activity, and so on.

Module 2- Hash Functions

Information Hiding

The two methods of information hiding, namely,

● Steganography and

● Digital watermarking.

➢ Steganography, or hidden writing, is the attempt to hide the fact that information is

being transmitted.

➢ Watermarks generally involve hidden information, but for a slightly different purpose.

For example,

A copyright holder might hide a digital watermark (containing some identifying

information) in digital music is a effort to prevent music piracy.

Digital watermarks: Digital watermarks can be categorized in many different ways.

• Invisible — Watermarks that are not supposed to be perceptible in the media.

• Visible — Watermarks that are meant to be observed, such as a stamp of TOP SECRET on a

document.

Watermarks can also be categorized as follows:

• Robust — Watermarks that are designed to remain readable even if they are attacked.

• Fragile — Watermarks that are supposed to be destroyed or damaged if any tampering occurs.

For example,

1) Insert a robust invisible mark in digital music in the hope of detecting piracy. Then when

pirated music appears on the Internet, we can trace it back to its source. Or we might insert a

fragile invisible mark into an audio file. In this case, if the watermark is unreadable, the

recipient knows that tampering has occurred. This latter approach is essential an integrity

check.

2) Many modern currencies include (non-digital) watermarks. Several current and recent U.S.

bills, including the $20 bill pictured in below figure visible watermarks. In this $20 bill, the

image of President Jackson is embedded in the paper itself (in the right-hand section of the bill)

and is visible when held up to a light. This visible watermark is designed to make

counterfeiting more difficult, since special paper is required to duplicate this easily verified

watermark.

Module 2- Hash Functions

Watermarked Currency

Example of a simple approach to steganography:

This particular example is applicable to digital images.

Consider images that employ the well-known 24 bits color scheme— one byte each for red, green,

and blue, denoted R, G, and B, respectively.

For example,1) the color represented by (R, G, B) = (0x7E, 0x52,0x90) is much different than (R,

G,B) = (OxFE, 0x52,0x90), even though the colors only differ by one bit.

On the other hand, the color (R, G, B) = (OxAB, 0x33, OxFO) is indistinguishable from (R, G,B) =

(OxAB, 0x33, OxF1), yet these two colors also differ by only a single bit.

The low-order RGB bits are unimportant, since they represent imperceptible changes in color. Since

the low-order bits don't matter, it can use them for any purposes we choose, including information

hiding.

2) Consider the two images of Alice in the below Figure. The left-most Alice contains no hidden

information, whereas the right-most Alice has the entire Alice in Wonderland book (in PDF format)

embedded in the low-order RGB bits.

➢ To the human eye, the two images appear identical at any resolution. If we compare the bits in

these two images, the differences would be obvious.

➢ In particular, it's easy for an attacker to write a computer program to extract the low-order RGB

bits—or to overwrite the bits with garbage and thereby destroy the hidden information, without

doing any damage to the image.

➢ It is difficult to apply Kerckhoffs' Principle for this example.

Module 2- Hash Functions

A Tale of Two Alices

3) Consider an HTML file that contains the following text, taken from the well-known poem

"To talk of many things

Of shoes and ships and sealing wax

Of cabbages and kings

And why the sea is boiling hot

And whether pigs have wings."

In HTML, the RGB font colors are specified by a tag of the form ...

where rr is the value of R in hexadecimal, gg is G in hex, and bb is B in hex.

For example, the color black is represented by #000000, whereas white is #FFFFFF.

Since the low-order bits of R, G, and B won't affect the perceived color, we can hide information in

these bits, as shown in the HTML snippet in the Table . Reading the low-order bits of the RGB colors

yields the "hidden" information 011 010 100 100 000 101.

Table : Simple Steganography Example-

"The time has come,"

the Walrus said,

"To talk of many things :</fontxbr>

0f shoes and ships and sealing wax

0f cabbages and kings</fontxbr>

And why the sea is boiling hot

And whether pigs have wings."

● Hiding information in the low-order RGB bits of HTML color tags is obviously not as

impressive as hiding Alice in Wonderland in Alice's image.

Module 2- Hash Functions

● This method is not at all robust—an attacker who knows the scheme can read the hidden

information as easily as the recipient.

● Or an attacker could instead destroy the information by replacing the file with another one that

is identical, except that the low-order RGB bits have been randomized.

The conclusion here is that for information hiding to be robust, the information must reside in bits that

do matter. But this creates a serious challenge, since any changes to bits that do matter must be done

very carefully for the information hiding to remain "invisible."

As noted above, if Trudy knows the information hiding scheme, she can recover the hidden

information as easily as the intended recipient. Watermarking schemes therefore generally encrypt the

hidden information before embedding it in a file. But even so, if Trudy understands how the scheme

works, she can almost certainly damage or destroy the information.

Watermarking schemes often use spread spectrum techniques to better hide the information-carrying

bits.

Module 3: Random Number Generation

Entity Authentication

Entity Authentication is one of the security service. Many cryptographic entity authentication

mechanisms rely on randomly generated numbers.

 Random Number Generation:

Many cryptographic primitives cannot function securely without randomness

The need for randomness:

 Most cryptographic primitives take structured input and turn it into something that has no

structure.

 Many cryptographic primitives require sources of randomness in order to function.

What is randomness?

Randomness is about ideas such as ‘unpredictability’ and ‘uncertainty’. A random number generation

process is often assessed by applying a series of statistical tests.

Non-deterministic generators

There are two general approaches to generating randomness.

A non-deterministic generator is based on the randomness produced by physical phenomena

and therefore provides a source of ‘true randomness’ in the sense that the source is very hard to

control and replicate. Non-deterministic generators can be based on hardware or software.

 HARDWARE-BASED NON-DETERMINISTIC GENERATORS

Hardware-based non-deterministic generators rely on the randomness of

physical phenomena. Generators of this type require specialist hardware.

Examples include:

 measurement of the time intervals involved in radioactive decay of a nuclear atom;

 semiconductor thermal (Johnson) noise, which is generated by the thermal motion of

electrons;

 instability measurements of free running oscillators;

 white noise emitted by electrical appliances;

 quantum measurements of single photons reflected into a mirror.

Hardware-based generators provide a continuous supply of randomly generated output for as

long as the power required to run the generator lasts, or until the process ceases to produce output.

However, because specialist hardware is required, these types of generator are relatively expensive.

 SOFTWARE-BASED NON-DETERMINISTIC GENERATORS

Module 3: Random Number Generation

Software-based non-deterministic generators rely on the randomness of physical phenomena

detectable by the hardware contained in a computing device.

Examples include:

 capture of keystroke timing;

 outputs from a system clock;

 hard-drive seek times;

 capturing times between interrupts (such as mouse clicks);

 mouse movements;

 computations based on network statistics.

These sources of randomness are cheaper, faster and easier to implement than hardware-based

techniques.

Disadvantage: Two problems with non-deterministic generators:

1. They tend to be expensive to implement.

2. It is, essentially, impossible to produce two identical strings of true randomness in two

different places.

Deterministic generators

BASIC MODEL OF A DETERMINISTIC GENERATOR

 A deterministic generator is an algorithm that outputs a pseudorandom bit string, in

other words a bit string that has no apparent structure.

 The output of a deterministic generator is certainly not randomly generated. If anyone

who knows the information that is input to the deterministic generator can completely

predict the output.

 If input into the deterministic generator is secret then, with careful design of the

generation process, generated output will have no apparent structure.

 It will thus appear to have been randomly generated to anyone who does not know the

secret input. This is precisely the idea behind a deterministic generator.

 The basic model of a deterministic generator is shown in the below Figure

The two components of this model are:

Basic model of a deterministic generator

Module 3: Random Number Generation

A seed. The secret information that is input into the deterministic generator is often referred to as a

seed. This is essentially a cryptographic key. The seed is the only piece of information that is

definitely not known to an attacker. Thus, to preserve the unpredictability of the pseudorandom

output sequence it is important both to protect this seed and to change it frequently.

The generator. This is the cryptographic algorithm that produces the pseudorandom output from the

seed.

DETERMINISTIC GENERATORS IN PRACTICE

A deterministic generator overcomes the two problems that we identified for non-deterministic

generators:

1. They are cheap to implement and fast to run. It is no coincidence that deterministic generators

share these advantages with stream ciphers, since the keystream generator for a stream cipher is a

deterministic generator whose output is used to encrypt

2. Two identical pseudorandom outputs can be produced in two different locations. All that is needed

is the same deterministic generator and the same seed.

The seed is relatively short. It is normally a symmetric key of a standard recommended length, such

as 128 bits.

Properties of non-deterministic and deterministic generators:

Cryptanalysis of the generator. Deterministic generators are cryptographic algorithms and are

always vulnerable to potential weaknesses in their design. Use of a well-respected deterministic

generator is probably the best way of reducing associated risks.

Seed management. If the same seed is used twice with the same input data then the same

pseudorandom output will be generated. Thus seeds need to be regularly updated and managed. The

management of seeds brings with it most of the same challenges as managing keys, and presents a

likely target for an attacker of a deterministic generator.

 Providing freshness

Module 3: Random Number Generation

 Freshness mechanisms are techniques that can be used to provide assurance that a given

message is ‘new’, in the sense that it is not a replay of a message sent at a previous time.

 The main threat that such mechanisms are deployed against is the capture of a message by an

adversary, who then later replays it at some advantageous time.

 Freshness mechanisms are particularly important in the provision of security services that are

time-relevant, of which one of the most important is entity authentication.

There are three common types of freshness mechanism.

Clock-based mechanisms

 A clock-based freshness mechanism is a process that relies on the generation of some data that

identifies the time that the data was created. This is sometimes referred to as a timestamp.

 This requires the existence of a clock upon which both the creator of the data and anyone

checking the data can rely.

For example, suppose that Alice and Bob both have such a clock and that Alice includes the

time on the clock when she sends a message to Bob. When Bob receives the message, he

checks the time on his clock and if it ‘matches’ Alice’s timestamp then he accepts the

message as fresh.

Clock-based freshness mechanisms seem a natural solution, however, they come with four potential

implementation problems:

1. Existence of clocks. Alice and Bob must have clocks. For many devices, such as personal

computers and mobile phones, this is quite reasonable. It may not be so reasonable for other

devices, such as certain types of smart token.

2. Synchronisation.

 Alice’s and Bob’s clocks need to be reading the same time, or sufficiently close to the same

time.

 The clocks on two devices are unlikely to be perfectly synchronised since clocks typically

suffer from clock drift.

 Even if they drift by a fraction of one second each day, this drift steadily accumulates.

Solution:

 One solution might be to only use a highly reliable clock, for example one

based on a widely accepted time source such as universal time.

 Another solution might be to regularly run a resynchronisation protocol.

Module 3: Random Number Generation

 Next solution is to define a window of time within which a timestamp will be

accepted. Deciding on the size of this window of acceptability is application

dependent and represents a tradeoff parameter between usability and security.

3. Communication delays. It is inevitable that there will be some degree of communication

delay between Alice sending, and Bob receiving, a message.

4. Integrity of clock-based data. Bob will normally require some kind of assurance that the

timestamp received from Alice is correct. This can be provided by conventional cryptographic

means, for example using a MAC or a digital signature. However, such an assurance can only

be provided when Bob has access to the cryptographic key required to verify the timestamp.

Sequence numbers

In applications where clock-based mechanisms are not appropriate, an alternative mechanism

is to use logical time. Logical time maintains the order in which messages or sessions occur and is

normally instantiated by a counter or sequence number.

An example: Suppose Alice and Bob regularly communicate with one another and wish to ensure

that messages that they exchange are fresh. Alice can do this by maintaining two sequence numbers

for communicating with Bob, which are counters denoted by NAB and NBA. Alice uses sequence

number NAB as a counter for messages that she sends to Bob, and sequence number NBA as a counter

for messages that she receives from Bob. Both sequence numbers work in the same way.

When Alice sends a message to Bob:

1. Alice looks up her database to find the latest value of the sequence number NAB. Suppose that at this

moment in time NAB = Tnew .

2. Alice sends her message to Bob along with the latest sequence number value, which is Tnew .

3. Alice increments the sequence number NAB by one (in other words, she sets NAB = Tnew + 1) and

stores the updated value on her database. This updated value will be the sequence number that she

uses next time that she sends a message to Bob.

When Bob receives the message from Alice:

4. Bob compares the sequence number Tnew sent by Alice with the most recent value of the sequence

number NAB on his database. Suppose this is NAB = Told .

5. If Tnew > Told then Bob accepts the latest message as fresh and he updates his stored value of NAB

from Told to Tnew .

6. If Tnew ≤ Told then Bob rejects the latest message from Alice as not being fresh.

Module 3: Random Number Generation

Sequence numbers address the four concerns that are raised with clock-based mechanisms:

1. Existence of clocks. The communicating parties no longer require clocks.

2. Synchronisation. In order to stay synchronised, communicating parties need to maintain a

database of the latest sequence numbers.

3. Communication delays. These only apply if messages are sent so frequently that there is a

chance that two messages arrive at the destination in the reverse order to which they were

sent. If this is a possibility then there remains a need to maintain the equivalent of a window

of acceptability, except that this will be measured in terms of acceptable sequence number

differences, rather than time.

For example, Bob might choose to accept the message as fresh not just iTfnew > Told , but also if

Tnew = Told , since there is a chance that the previousmessage from Alice to Bob has

not yet arrived. This issue is not relevant if either:

• delays of this type are not likely (or are impossible);

• Bob is more concerned about the possibility of replays than the implications

of rejecting genuine messages.

4. Integrity of sequence numbers. Just as for clock-based time, an attacker who can freely

manipulate sequence numbers can cause various problems in any protocol that relies on them.

Thus sequence numbers should have some level of cryptographic integrity protection when

they are sent.

Nonce-based mechanisms

 One problem that is shared by both clock-based mechanisms and sequence numbers is the

need for some integrated infrastructure. This problem solved using a mechanism called Nonce-

based mechanisms.

 Their only requirement is the ability to generate nonces (literally, ‘numbers used only once’),

which are randomly generated numbers for one-off use.

 The general principle is that Alice generates a nonce at some stage in a communication

session (protocol).

 If Alice receives a subsequent message that contains this nonce then Alice has assurance that

the new message is fresh, whereby ‘fresh’ we mean that the received message must have been

created after the nonce was generated.

Suppose that Alice generates a nonce and then sends it in the clear to Bob. Suppose then that Bob

sends it straight back. Consider the following three claims about this simple scenario:

Module 3: Random Number Generation

Alice cannot deduce anything from such a simple scenario:

 This is not true, although it is true that she cannot deduce very much. She has just received a

message consisting of a nonce from someone. It could be from anyone.

 However, it consists of a nonce that she has just generated. This means is that it is virtually

certain that whoever sent the nonce back to her (and it might not have been Bob) must

have seen the nonce that Alice sent to Bob.

 In other words, this message that Alice has just received was almost certainly sent by

someone after Alice sent the nonce to Bob.

 In other words, the message that Alice has just received is not authenticated, but it is fresh.

There is a chance that the nonce could have been generated before:

 This is true, there is a ‘chance’, but if we assume that the nonce has been generated

using a secure mechanism and that the nonce is allowed to be sufficiently large then it is a

very small chance.

 This is the same issue that arises for any cryptographic primitive. If Alice and Bob

share a symmetric key that was randomly generated then there is a ‘chance’ that an

adversary could generate the same key and be able to decrypt ciphertexts that they

exchange.

 We can guarantee that by generating the nonce using a secure mechanism, the chance of the

nonce having been used before is so small that we might as well forget about it.

Since a nonce was used, Bob is sure that the message from Alice is fresh.

 This is not true, he certainly cannot. As far as Bob is concerned, this nonce is just a number. It

could be a copy of a message that was sent a few days before.

 Since Bob was not looking over Alice’s shoulder when she generated the nonce, he gains no

freshness assurance by seeing it.

 If Bob has freshness requirements of his own then he should also generate a nonce and

request that Alice include it in a later message to him.

Nonce-based mechanisms, come with two costs:

1. Any entity that requires freshness needs to have access to a suitable generatorw,

not the case for every application.

hich is

2. Freshness requires a minimum of two message exchanges, since it is only obtained

when one entity receives a message back from another entity to whom they earlier sent a

nonce. In contrast, clock-based mechanisms and sequence numbers can be used to provide

freshness directly in one message exchange.

Comparison of freshness mechanisms

Module 3: Random Number Generation

Fundamentals of entity authentication

 Entity authentication is the assurance that a given entity is involved and currently active in a

communication session. This means that entity authentication really involves assurance of

both:

Identity. the identity of the entity who is making a claim to be authenticated;

Freshness. that the claimed entity is ‘alive’ and involved in the current session.

 If we fail to assure ourselves of freshness then we could be exposed to replay attacks, where

an attacker captures information used during an entity authentication session and replays it a

later date in order to falsely pass themselves off as the entity whose information they ‘stole’.

 If entity authentication is only used to provide assurance of the identity of one entity to

another (and not vice versa) then we refer to it as unilateral entity authentication.

 If both communicating entities provide each other with assurance of their identity then we call

this mutual entity authentication.

A problem with entity authentication

Entity authentication is a security service that is only provided for an ‘instant in time’. It establishes

the identity of a communicating entity at a specific moment, but just seconds later that entity could be

replaced by another entity, and we would be none the wiser.

Consider the following very simple attack scenario:

 Alice walks up to an ATM, inserts her payment card and is asked for her PIN. Alice enters her

PIN. This is an example of entity authentication since the card/PIN combination is precisely

the information that her bank is using to ‘identify’ Alice.

 As soon as the PIN is entered, Alice is pushed aside by an attacker who takes over the

communication session and proceeds to withdraw some cash.

 The communication session has thus been ‘hijacked’. Note that there was no failure of the

entity authentication mechanism in this example.

Module 3: Random Number Generation

 The only ‘failure’ is that it is assumed that the communication that takes place just a few

seconds after the entity authentication check is still with the entity who successfully presented

their identity information to the bank via the ATM.

 This instantaneous aspect of entity authentication might suggest that for important

applications we are going to have to conduct almost continuous entity authentication in order

to have assurance of the identity of an entity over a longer period of time.

 In the case of the ATM, we would thus have to request Alice to enter her PIN every time she

selects an option on the ATM. This will really annoy Alice and does not even protect against

the above attack, since the attacker can still push Alice aside at the end of the transaction and

steal her money.

The solution is to combine entity authentication with the establishment of a cryptographic key.

Applications of entity authentication

Entity authentication tends to be employed in two types of situation:

Access control. Entity authentication is often used to directly control access to either physical or

virtual resources. An entity, sometimes in this case a human user, must provide assurance of their

identity in real time in order to have access. The user can then be provided with access to the

resources immediately following the instant in time that they are authenticated.

As part of a more complex cryptographic process. Entity authentication is also a common

component of more complex cryptographic processes, typically instantiated by a cryptographic

protocol. In this case, entity authentication is normally established at the start of a connection. An

entity must provide assurance of their identity in real time in order for the extended protocol to

complete satisfactorily.

General categories of identification information

One of the prerequisites for achieving entity authentication is that there is some means of providing

information about the identity of a claimant (the entity that we are attempting to identify). There are

several different general techniques :

 Providing identity information is not normally enough to achieve entity authentication. Entity

authentication also requires a notion of freshness.

 Different techniques for providing identity information can be, and often are, combined in real

security systems.

 Cryptography has a dual role in helping to provide entity authentication:

Module 3: Random Number Generation

i. Some of these approaches involve identity information that may have little to

do with cryptography (such as possession of a token or a password).

Cryptography can still be used to support these approaches. For example:

cryptography can play a role in the secure storage of passwords.

ii. Almost all of these approaches require a cryptographic protocol as part of their

implementation.

Something The Claimant Has:

For human users, identity information can be based on something physically held by the user.

This technique can also be used for providing identity information in the electronic world. Examples

of mechanisms of this type include:

Dumb tokens:

Dumb means a physical device with limited memory that can be used to store identity information.

Dumb tokens normally require a reader that extracts the identity information from the token and then

indicates whether the information authenticates the claimant or not.

One example of a dumb token is a plastic card with a magnetic stripe. The security of the card is

based entirely on the difficulty of extracting the identity information from the magnetic stripe, a

reader that can extract or copy this information. Hence this type of dumb token is quite insecure.

 In order to enhance security, it is common to combine the use of a dumb token with another

method of providing identification, such as one based on something the user knows.

For example, in the banking community plastic cards with magnetic stripes are usually combined

with a PIN, which is a piece of identity information that is required for entity authentication but that

is not stored on the magnetic stripe.

Smart cards:

A smart card is a plastic card that contains a chip, which gives the card a limited amount of memory

and processing power. The advantage of this over a dumb token is that the smart card can store secret

data more securely and can also conduct cryptographic computations. However, like dumb tokens,

the interface with a smart card is normally through an external reader.

Smart cards are widely supported by the banking industry, where most payment cards now include a

chip as well as the conventional magnetic stripe Smart cards are also widely used for other

applications, such as electronic ticketing, physical access control, identity cards etc.

Smart tokens:

Module 3: Random Number Generation

Smart tokens have their own user interface. This can be used, for example, to enter data such as a

challenge number, for which the smart token can calculate a cryptographic response.

All types of smart token (including smart cards) require an interface to a computer system of some

sort. This interface could be a human being or a processor connected to a reader. As with dumb

tokens, smart tokens are often implemented alongside another identification method, typically based

on something that the user knows.

SOMETHING THE CLAIMANT IS

The field of biometrics is devoted to developing techniques for user identification that are based on

physical characteristics of the human body.

A biometric mechanism typically converts a physical characteristic into a digital code that is stored

on a database. When the user is physically presented for identification, the physical characteristic is

measured by a reader, digitally encoded, and then compared with the template code on the database.

Biometric measurements are often classified as either being:

Static, because they measure unchanging features such as fingerprints, hand geometry, face structure,

retina and iris patterns.

Dynamic, because they measure features that (slightly) change each time that they are measured, such

as voice, writing and keyboard response times.

SOMETHING THE CLAIMANT KNOWS

Basing identity information, at least partially, on something that is known to the claimant is a very

familiar technique. Common examples of this type of identity information include PINs, passwords

and passphrases. This is the technique most immediately relevant to cryptography since identity

information of this type, as soon as it is stored anywhere on a device, shares many of the security

issues of a cryptographic key.

In many applications, identity information of this type often is a cryptographic key. Strong

cryptographic keys are usually far too long for a human user to remember and hence ‘know’. This can

be some good news and some potentially bad news concerning the use of cryptographic keys as

identity information:

1. Most information systems consist of networks of devices and computers. These machines are

much better at ‘remembering’ cryptographic keys than humans!

Thus, if the claimant is a machine then it is possible that a cryptographic key can be

something that is ‘known’.

2. Where humans are required to ‘know’ a cryptographic key, they normally activate the key by

presenting identity information that is easier to remember such as a PIN, password or

Module 3: Random Number Generation

passphrase. This reduces the effective security of that cryptographic key from that of the key

itself to that of the shorter information used to activate it.

 Passwords

Problems with passwords

Length.: Since passwords are designed to be memorised by humans, there is a natural

limit to the length that they can be. This means that the password space (all possible

passwords) is limited in size,thus restricting the amount of work required for anexhaustive

search of all passwords.

Complexity.

• The full password space is rarely used in applications because humans find randomly

generated passwords hard to remember. As a result we often work from highly

restricted password spaces, which greatly reduces the security. This makes dictionary

attacks possible, where an attacker exhaustively tries all the ‘likely’ passwords and

hopes to eventually find the correct one.

• Clever pneumonic techniques can slightly increase the size of a usable password

space.

• Moving from passwords to passphrases can improve this situation by significantly

increasing the password space.

Repeatability:

• For the lifetime of a password, each time that it is used it is exactly the same. This

means that if an attacker can obtain the password then there is an (often significant)

period of time within which the password can be used to fraudulently claim the

identity of the original owner.

• One measure that can be taken to restrict this threat is to regularly force password

change. However, this again raises a usability issue since regular password change is

confusing for humans and can lead to insecure password storage practices.

Vulnerability.:

The consequences of ‘stealing’ a password can be serious. However, passwords are

relatively easy for an attacker to obtain:

 they are most vulnerable at point of entry, when they can be viewed by an

attacker watching the password holder (a technique often referred to as

shoulder surfing);

Module 3: Random Number Generation

 they can be extracted by attackers during social engineering activities, where a

password holder is fooled into revealing a password to an attacker who makes

claims.

for example: to be a system administrator (an attack that is sometimes known

as phishing);

 they can be obtained by an attacker observing network traffic or by an attacker

who compromises a password database.

Cryptographic password protection

 Consider a large organisation that wishes to authenticate many users onto its internal

system using passwords.

One way of implementing this is to use a system that compares offered passwords with those stored

on a centralised password database. Since this database potentially contains a complete list of

account names and passwords. Even if this database is managed carefully, the administrators of the

system potentially have access to this list, which may not be desirable.

 One area where cryptography can be used to help to implement an identification system based

on passwords is in securing the password database.

As an example of a cryptographic primitive being used in a different way to create a one-way

function, below Figure illustrates the basic idea behind the function that was used in many early

UNIX operating systems for password database protection.

 In the password database in the UNIX system, often identified by /etc/passwd, every user has

an entry that consists of two pieces of information:

Salt. This is a 12-bit number randomly generated using the system clock. The salt is used to

uniquely modify the DES encryption algorithm nin a subtle way. We denote the result of this unique

modification by DES+.

Password image. This is the result that is output after doing the following:

1. Convert the 8 ASCII character password into a 56-bit DES key. This is straightforward,

since each ASCII character consists of 7 bits.

Module 3: Random Number Generation

One-way function for UNIX password protection

2. Encrypt the plaintext consisting of all zeros (64 zero bits) using the uniquely modified

DES+ with the 56-bit key derived from the password.

3. Repeat the last encryption step 25 times (in other words, we encrypt the all zero string 25

times). This last step is designed to slow the operation down in such a way that it is not

inconvenient for a user, but much more difficult for an attacker conducting a dictionary

attack.

When a user enters their password, the system looks up the salt, generates the modified DES+

encryption algorithm, forms the encryption key from the password, and then conducts the multiple

encryption to produce the password image. The password image is then checked against the version

stored in /etc/passwd. If they match then the password is accepted.

3.5 Dynamic password schemes

Two of the main problems with passwords are vulnerability (they are quite easy to steal) and

repeatability (once stolen they can be reused).

A dynamic password scheme, also often refered to as a one-time password scheme, preserves the

concept of a password but greatly improve its security by:

1. limiting the exposure of the password, thus reducing vulnerability;

2. using the password to generate dynamic data that changes on each authentication attempt, thus

preventing repeatability.

Idea behind dynamic password schemes

A dynamic password scheme uses a ‘password function’ rather than a password. If a claimant, is a

human user, wants to authenticate to a device, such as an authentication server, then the user inputs

some data into the function to compute a value that is sent to the device. There are thus two

components that we need to specify:

Module 3: Random Number Generation

The password function: Since this function is a cryptographic algorithm, it is usually implemented

on a smart token. In the example, we will assume that this is a smart token with an input interface that

resembles a small calculator.

The input: We want the user and the device to agree on an input to the password function, the result

of which will be used to authenticate the user. Since the input must be fresh, any of the freshness

mechanisms could be used. All of these techniques are deployed in different commercial devices,

namely:

• Clock-based. The user and the device have synchronised clocks and thus the current time can

be used to generate an input that both the user and the device will ‘understand’.

• Sequence numbers. The user and the device both maintain synchronised sequence numbers.

• Nonce-based. The device randomly generates a number, known as a challenge, and sends it to

the user, who computes a cryptographic response. Such mechanisms are often referred to as

challenge–response mechanisms.

Example dynamic password scheme

Figure shows an authentication attempt using this dynamic password scheme:

1. The server randomly generates a challenge and sends it to the user. It is possible that the user

first sends a message to the server requesting that the server send them a challenge.

2. The user authenticates themselves to the token using the PIN.

3. If the PIN is correct then the token is activated. The user then uses the token interface by

means of a keypad to enter the challenge into the token.

4. The token uses the password function to compute a response to the challenge. If algorithm A

is an encryption algorithm then the challenge can be regarded as a plaintext and the response

is the ciphertext that results from applying encryption algorithm A using key K. The token

displays the result to the user on its screen.

5. The user sends this response back to the server. This step might involve the user reading the

response off the screen of the token and then typing it into a computer that is being used to

access the authentication server.

6. The server checks that the challenge is still valid. If it is still valid, the server inputs the

challenge into the password function and computes the response, based on the same algorithm

A and key K.

7. The server compares the response that it computed itself with the response that was sent by

the user. If these are identical then the server authenticates the user, otherwise the server

rejects the user.

Module 3: Random Number Generation

Example of a dynamic password scheme based on challenge–response

ANALYSIS OF DYNAMIC PASSWORD SCHEME:

There can be several significant improvements:

Local use of PIN:

With regard to security at the user end, the main difference is that the user uses the PIN to

authenticate themselves to a small portable device that they have control over. The chances of the

PIN being viewed by an attacker while it is being entered are lower than for applications where a user

has to enter a PIN into a device not under their control, such as an ATM. Also, the PIN is only

transferred from the user’s fingertips to the token and does not then get transferred to any remote

server.

Two factors. Without access to the token, the PIN is useless. Thus another improvement is that we

have moved from one-factor authentication (something the claimant knows, namely the password) to

two-factor authentication (something the claimant knows, namely the PIN, and something the

claimant has, namely the token).

Dynamic responses. The biggest security improvement is that every time an authentication attempt is

made, a different challenge is issued and therefore a different response is needed. Of course, because

the challenge is randomly generated there is a very small chance that the same challenge is issued on

two separate occasions. But assuming that a good source of randomness is used then this chance is so

low that we can dismiss it. Hence anyone who succeeds in observing a challenge and its

corresponding response cannot use this to masquerade as the user at a later date.

 Zero-knowledge mechanisms

 Motivation for zero-knowledge:

Module 3: Random Number Generation

 Requirement for mutual trust. Firstly, they are all based on some degree of trust between

the entities involved.

For example, passwords often require the user to agree with the server on use of a

password, even if the server only stores a hashed version of the password. However, there

are situations where entity authentication might be required between two entities who are

potential adversaries and do not trust one another enough to share any information.

 Leaking of information. Secondly, they all give away some potentially useful information

on each occasion that they are used. Conventional passwords are catastrophic in this regard

since the password is fully exposed when it is entered, and in some cases may even remain

exposed when transmitted across a network. Our example dynamic password scheme is

much better, but does reveal valid challenge–response pairs each time that it is run.

 Entity authentication could be provided in such a way that no shared trust is necessary and no

knowledge at all is given away during an authentication attempt.

 The requirement for a zero-knowledge mechanism is that one entity (the prover) must be able

to provide assurance of their identity to another entity (the verifier) in such a way that it is

impossible for the verifier to later impersonate the prover, even after the verifier has observed

and verified many different successful authentication attempts.

Zero-knowledge analogy

Consider a popular analogy in which we will play the role of verifier. The setting is a cave shaped in

a loop with a split entrance, as depicted in Figure 8.4.

The back of the cave is blocked by a stone doorway that can only be opened by using a secret key

phrase. We wish to hire a guide to make a circular tour of the entire cave system but need to make

sure in advance that our guide knows the key phrase, otherwise we will not be able to pass through

the doorway. The guide, who will be our prover (the entity authentication claimant), is not willing to

Module 3: Random Number Generation

tell us the key phrase, otherwise there is a risk that we might go on our own tour without hiring him.

Thus we need to devise a test of the guide’s knowledge before we agree to hire him.

The guide has a further concern. For all he knows, we are from a rival guiding company and are

trying to learn the key phrase. He wants to make sure that no matter how rigorous a test is run, we

will not learn anything that could help us to try to work out what the key phrase is. i. e he wants to

make sure that the test is a zero-knowledge mechanism that verifies his claim to know the key phrase.

So here is what we do:

1. We wait at the main cave entrance and send the guide down the cave to the place where it

splits into two tunnels, labelled A and B. We cannot see this tunnel split from the main

entrance, so we send a trusted observer down with him, just to make sure he does not cheat

during the test.

2. The guide randomly picks a tunnel entrance and proceeds to the stone door.

3. We toss a coin. If it is heads then we shout down the cave that we want the guide to come out

through tunnel A. If it is tails then we shout down the cave that we want the guide to come out

through tunnel B.

4. The observer watches to see which tunnel the guide emerges from.

Suppose we call heads (tunnel A). If the guide comes out of tunnel B (the wrong entrance) then we

decide not to hire him since he does not appear to know the key phrase. However, if he comes out of

tunnel A (the correct entrance) then one of two things have happened:

• The guide got lucky and chose tunnel A in the first place. In that case he just turned back,

whether he knows the key phrase or not. In this case we learn nothing.

• The guide chose tunnel B. When we called out that he needed to come out of tunnel A, he used

the key phrase to open the door and crossed into tunnel A. In this case the guide has

demonstrated knowledge of the key phrase.

So if the guide emerges from tunnel A then there is a 50% chance that he has just demonstrated

knowledge of the key phrase. The problem is that there is also a chance that he got lucky.

So we run the test again. If he passes a second test then the chances that he got lucky twice are now

down to 25%, since he needs to get lucky in both independent tests. Then we run the test again, and

again. If we run n such independent tests and the guide passes them all, then the probability that the

guide does not know the key phrase is:

Module 3: Random Number Generation

Thus we need to insist on n tests being run, where 1/2n is sufficiently small that we will be willing to

accept that the guide almost certainly has the secret knowledge.

Meanwhile, the guide will have done a great deal of walking around the cave system and using the

key phrase, without telling us any information about the key phrase. So the guide will also be

satisfied with the outcome of this process.

MODULE 3: Chap 2-Cryptographic Protocols

Cryptographic Protocols

 Protocol basics

 Operational motivation for protocols

Many applications:

 Have complex security requirements. For example, if we wish to transmit some

sensitive information across an insecure network then there should be confidentiality

and data origin authentication guarantees .

 Involve different data items with different security requirements. Most

applications involve different pieces of data, each of which may have different security

requirements.

For example, an application processing an online transaction may require the

purchase details (product, cost) to be authenticated, but not encrypted, so that this

information is widely available. However, the payment details (card number, expiry

date) are likely to be required to be kept confidential. It is also possible that different

requirements of this type arise for efficiency reasons, since all cryptographic

computations (particularly public-key computations) have an associated efficiency cost.

It can thus be desirable to apply cryptographic primitives only to those data items that

strictly require a particular type of protection.

 Involve information flowing between more than one entity. It is rare for a

cryptographic application to involve just one entity, such as when a user encrypts a file

for storage on their local machine. Most applications involve at least two entities

exchanging data.

For example, a card payment scheme may involve a client, a merchant, the client’s

bank and the merchant’s bank (and possibly other entities).

 Consist of a sequence of logical (conditional) events. Real applications normally

involve multiple operations that need to be conducted in a specific order, each of which

may have its own security requirements.

For example, it does not make any sense to provide confidentiality protection for the

deduction of a sum from a client’s account and issue some money from a cash

machine until entity authentication of the client has been conducted.

 Components of a cryptographic protocol

MODULE 3: Chap 2-Cryptographic Protocols

A cryptographic protocol needs to specify:

The protocol assumptions – any prerequisite assumptions concerning the environment in which

the protocol will be run. This involves assumptions about the entire environment (including, for

example, security of devices used in the protocol). What needs to have happened before the

protocol is run?

The protocol flow – the sequence of communications that need to take place between the entities

involved in the protocol. Each message is often referred to as being a step or pass of the protocol.

Who sends a message to whom, and in which order?

The protocol messages – the content of each message that is exchanged between two entities in

the protocol. What information is exchanged at each step?

The protocol actions – the details of any actions (operations) that an entity needs to perform

after receiving or before sending, a protocol message. What needs to be done between steps?

 From objectives to a protocol

 Stages of protocol design

There are three main stages to the process of designing a cryptographic protocol:

 Defining the objectives. This is the problem statement, which identifies what the

problem is that the protocol is intended to solve. Particularly performance-related

objectives.

 Determining the protocol goals. This stage translates the objectives into a set of clear

cryptographic requirements. The protocol goals are typically statements of the form at

the end of the protocol, entity X will be assured of security service Y. We will see some

examples shortly.

Alice Bob

SigAlice(contract)

Figure 9.1. A simple cryptographic protocol providing non-repudiation

 Specifying the protocol. This takes the protocol goals as input and involves determining

some cryptographic primitives, message flow and actions that achieve these goals.

A very simple example of these stages would be the following:

Defining the objectives. Merchant Bob wants to make sure that a contract that he will receive

from Alice cannot later be denied.

Determining the protocol goals. At the end of the protocol Bob requires non- repudiation of the

contract received from Alice.

MODULE 3: Chap 2-Cryptographic Protocols

Specifying the protocol. A protocol to achieve this simple goal is given in Figure 9.1. In this

protocol there is only one message, which is sent from Alice to Bob. This message consists of

the contract, digitally signed by Alice. The notation SigAlice represents a generic digital signature

algorithm. We assume that if a digital signature scheme with appendix is used then part of

SigAlice(contract) is a plaintext version of the contract.

 Analysing a simple protocol

 A simple application

THE OBJECTIVES

In this scenario we suppose that Alice and Bob have access to a common network. Periodically, at

any time of his choosing, Bob wants to check that Alice is still ‘alive’ and connected to the

network. This is main security objective, which will be referred to as a check of liveness.

Lets assume that Alice and Bob are just two entities in a network consisting of many such

entities, all of whom regularly check the liveness of one another, perhaps every few seconds.

Thus set a secondary security objective that whenever Bob receives any confirmation of liveness

from Alice, he should be able to determine precisely which liveness query she is responding to.

THE PROTOCOL GOALS

Whenever Bob wants to check that Alice is alive he will need to send a request to Alice, which

she will need to respond to with a reply.

At the end of any run of a suitable cryptographic protocol, the following three goals should have

been met:

1. Data origin authentication of Alice’s reply. If this is not provided then Alice may not

be alive since the reply message might have been created by an attacker.

2. Freshness of Alice’s reply. If this is not provided then, even if there is data origin

authentication of the reply, this could be a replay of a previous reply.

In other words, an attacker could observe a reply that Alice makes when she is alive

and then send a copy of it to Bob at some stage after Alice has expired. This would be

a genuine reply created by Alice. But she would not be alive and hence the protocol

will have failed to meet its objectives.

3. Assurance that Alice’s reply corresponds to Bob’s request. If this is not provided then it

is possible that Bob receives a reply that corresponds to a different request (either one of

his own, or of another entity in the network).

MODULE 3: Chap 2-Cryptographic Protocols

CANDIDATE PROTOCOLS

Figure 9.2 shows the protocol flow and messages of our first candidate protocol.

PROTOCOL ASSUMPTIONS

There are three assumptions that we make before running this protocol:

1. Bob has access to a source of randomness. This is necessary because the protocol

requires Bob to be able to generate a nonce and also assume that this generator is ‘secure’

in order to guarantee unpredictability of the output.

2. Alice and Bob already share a symmetric key K that is known only to them. This is

necessary because the protocol requires Alice to be able to generate a MAC that Bob can

verify.

MODULE 3: Chap 2-Cryptographic Protocols

3. Alice and Bob agree on the use of a strong MAC algorithm. This is necessary because

if the MAC algorithm is flawed then data origin authentication is not necessarily

provided by it.

If Alice and Bob do not already share a symmetric key then they will need to first run a

different protocol in order to establish a common symmetric key K . If Alice and Bob have not

already agreed on the use of a strong MAC algorithm to compute the MAC then Alice could

indicate the choice of MAC algorithm that she is using in her reply.

PROTOCOL DESCRIPTION

Protocol 1 consists of the following steps:

1. Bob conducts the following steps to form the request:

a) Bob generates a nonce rB (this is an implicit action that is not described in Figure9.2.

b) Bob concatenates rB to the text It’s Bob, are you OK?. This combined data string is the

request.

c) Bob sends the request to Alice.

2. Assuming that she is aliveandable to respond, Aliceconducts the following steps to form the

reply:

a) Alice concatenates the nonce rB to identifier Bob and the text Yes, I’m OK. We will refer

to this combined data string as the reply text.

b) Alice computes a MAC on the reply text using key K (this is an implicit action). The

reply text is then concatenated to the MAC to form the reply.

c) Alice sends the reply to Bob.

3. Onreceiptofthereply,Bobmakesthefollowingchecks.:

a) Bob checks that the received reply text consists of a valid rB (which he can recognise

because he generated it and has stored it on a local database) concatenated to his

identifier Bob and a meaningful response to his query (in this case, Yes, I’m OK).

b) Bob computes a MAC on the received reply text with key K (which he shares with

Alice) andchecks to see if it matches the received MAC.

c) If both of these checks are satisfactory then Bob accepts the reply and ends the protocol.

We say that the protocol successfully completes if this is the case.

PROTOCOL ANALYSIS

Protocol 1 meets the required goals:

a) Data origin authentication of Alice’s reply. Under second assumption, the only

MODULE 3: Chap 2-Cryptographic Protocols

entity other than Bob who can compute the correct MAC on the reply text is Alice.

Thus, given that the received MAC is correct, the received MAC must have been

computed by Alice. Thus Bob indeed has assurance that the reply (and by implication

the reply text) was generated by Alice.

b) Freshness of Alice’s reply. The reply text includes the nonce rB, which Bob

generated at the start of the protocol. Thus, by the principles, the reply is fresh.

c) Assurance that Alice’s reply corresponds to Bob’s request.

There are two pieces of evidence in the reply that provide this:

 Firstly, and most importantly, the reply contains the nonce rB, which Bob generated for

this run of the protocol. By our first protocol assumption, this nonce is very unlikely to

ever be used for another protocol run, thus the appearanceof rB in the reply makes it almost

certainthatthereplycorresponds to hisrequest.

 The reply contains the identifier Bob.

Four of the components of a cryptographic protocol:

 The protocol assumptions. If the protocol assumptions do not hold then, even when the

protocol successfully completes, the security goals are not met.

For example, if a third entity Charlie also knows the MAC key K then Bob cannot be

sure that the reply comes from Alice, since it could have come from Charlie.

 The protocol flow. Clearly the two messages in this protocol must occur in the specified

order, since the reply cannot be formed until the request is received.

 The protocol messages. The protocol goals are not necessarily met if the content of the

two messages is changed in any way.

 The protocol actions. The protocol goals are not met if any of the actions are not

undertaken.

For example, if Bob fails to check that the MAC on the reply text matches the

received MAC then he has no guarantee of the origin of the reply.

 Protocol 2

Figure 9.3 shows the protocol flow and messages of our second candidate protocol.

MODULE 3: Chap 2-Cryptographic Protocols

PROTOCOL ASSUMPTIONS

As can be seen from Figure 9.3, Protocol 2 is very similar to Protocol 1. In fact, it is in the

protocol assumptions that the main differences lie:

Bob has access to a source of randomness. As for Protocol 1.

Alice has been issued with a signature key and Bob has access to a verification key

corresponding to Alice’s signature key. This is the digital signature scheme equivalent of the

second assumption for Protocol 1.

Alice and Bob agree on the use of a strong digital signature scheme.

PROTOCOL DESCRIPTION

The description of Protocol 2 is exactly as for Protocol 1, except that:

Instead of computing a MAC on the reply text, Alice digitally signs the reply text using her signature

key.

Instead of computing and comparing the received MAC on the reply text, Bob verifies Alice’s

digital signature on the reply text usingherverificationkey.

PROTOCOL ANALYSIS

The analysis of Protocol 2 is exactly as for Protocol 1, except for:

Data origin authentication of Alice’s reply. Under second assumption, the only entity who can

compute the correct digital signature on the reply text is Alice. Thus, given that her digital

signature is verified, the received digital signature must have been computed by Alice. Thus Bob

indeed has assurance that the reply (and by implication the reply text) was generated by Alice.

Therefore deduce that Protocol 2 also meets the three security goals.

MODULE 3: Chap 2-Cryptographic Protocols

REMARKS

Protocol 2 can be thought of as a public-key analogue of Protocol 1. So which one is better?

 It could be argued that, especially in resource-constrained environments, Protocol 1 has

an advantage in that it is more computationally efficient, since computing MACs

generally involves less computation than signing and verifying digital signatures.

 However, it could also be argued that Protocol 2 has the advantage that it could be run

between an Alice and Bob who have not pre-shared a key, so long as Bob has access to

Alice’s verification key.

 Protocol 3

PROTOCOL ASSUMPTIONS

These are identical to Protocol 1.

PROTOCOL DESCRIPTION

This is identical to Protocol 1, except that in Protocol 3 the identifier Bob is omitted from the

reply text.

PROTOCOL ANALYSIS

This is identical to Protocol 1, except for:

Assurance that Alice’s reply corresponds to Bob’s request.

As argued for Protocol 1, the inclusion of the nonce rB in the reply appears,

superficially, to provide this assurance since rB is in some sense a unique identifier of

Bob’s request. However, there is an attack that can be launched against Protocol 3 in

certain environments which shows that this is not always true. Since the attacker plays

the role of a ‘mirror’, and this is a reflection attack against Protocol 3. The attack is

depicted in Figure 9.5.

The reflection attack working:

MODULE 3: Chap 2-Cryptographic Protocols

Lets assume that an attacker is able to intercept and block all communication between

Alice and Bob and also assume that Bob normally recognises that incoming traffic may be

from Alice through the use of the channel, rather than an explicit identifier. This is perhaps

an unreasonable assumption, but we are trying to keep it simple. Thus, even if Alice is no

longer alive, the attacker can pretend to be Alice by sending messages on this channel. The

reflection attack works as follows:

1. Bob initiates a run of Protocol 3 by issuing a request message.

2. The attacker intercepts the request message and sends it straight back to Bob, except that

the text It’s Bob is replaced by the text It’s Alice.

3. At this point it is to suggest that Bob will regard the receipt of a message containing his

nonce rB as rather strange and will surely reject it. However, resist the temptation to

anthropomorphise the analysis of a cryptographic protocol and recall that in most

applications of this type of protocol both Alice and Bob will be computing devices

following programmed instructions. In this case Bob will simply see a request message

that appears to come from Alice and, since he is alive, will compute a corresponding

reply message. He then sends this reply to Alice.

4. The attacker intercepts this reply message and sends it back to Bob.

5. Bob, who is expecting a reply from Alice, checks that it contains the expected fields and

that the MAC is correct. Of course it is, because he computed it himself!

The reflection attack described in Figure 9.5 as two nested runs of Protocol 3:

• The first run is initiated by Bob, who asks if Alice is alive. He thinks that he is running it

with Alice, but instead he is running it with the attacker.

• The second run is initiated by the attacker, who asks if Bob is alive. Bob thinks that this

request is from Alice, but it is from the attacker. Note that this run of Protocol 3 begins

after the first run of the protocol has begun, but completes before the first run ends.

MODULE 3: Chap 2-Cryptographic Protocols

A better response would be to repair Protocol 3. There are two options:

1. Include an action to check for this attack:

This would involve Bob keeping a note of all Protocol 3 sessions that he currently has

open. He should then check whether any request messages that he receives match any of

his own open requests.

2. Include an identifier.

Include some sort of identifier in the reply that prevents the reflection attack from

working. There is no point in doing so in the request since it is unprotected and an

attacker could change it without detection.

 Protocol 4

Figure 9.6 shows the protocol flow and messages of our fourth candidate protocol.

PROTOCOL ASSUMPTIONS

These are identical to Protocol 1, expect that we assume that Alice and Bob have agreed on the

use of a strong symmetric encryption algorithm E (rather than a MAC).

PROTOCOL DESCRIPTION

The description of Protocol 4 is exactly as for Protocol 1, except that:

 Instead of computing a MAC on the reply text, Alice uses E to encrypt the reply text

using key K.

 Alice does not send the reply text to Bob.

 Instead of computing and comparing the received MAC on the reply text, Bob simply

decrypts the received encrypted reply text.

PROTOCOL ANALYSIS

MODULE 3: Chap 2-Cryptographic Protocols

The analysis of Protocol 4 is exactly as for Protocol 1, except for the issue of data origin

authentication of Alice’s reply. Consider whether encryption can be used in this context to

provide data origin authentication.

There are two arguments:

The case against:

This is perhaps the purist’s viewpoint. Protocol 4 does not provide data origin authentication

because encryption does not, in general, provide data origin authentication.

The case for:

Problems that may arise if encryption is used to provide data origin authentication. These mainly

arose when the plaintext was long and unformatted. In this case the reply text is short and has a

specific format. Thus, if a block cipher such as AES is used then it is possible that the reply text

is less than one block long, hence no ‘block manipulation’ will be possible. Even if the reply text

is two blocks long and ECB mode is used to encrypt these two blocks, the format of the reply text

is specific and any manipulation is likely to be noticed by Bob (assuming of course that he checks

for it).

 Protocol 5

Protocol 5, depicted in Figure 9.7, is very similar to Protocol 1, except that the nonce generated

by Bob is replaced by a timestamp generated by Bob.

PROTOCOL ASSUMPTIONS

These are the same as the assumptions for Protocol 1, except that the need for Bob to have a

source of randomness is replaced by:

Bob can generate and verify integrity-protected timestamps:

This requires Bob to have a system clock. Requiring TB to be integrity-protected means that it cannot be

manipulated by an attacker without subsequent detection of this by Bob.

PROTOCOL DESCRIPTION : The description of Protocol 5 is exactly as for Protocol 1, except

that:

 Instead of generating a nonce rB, Bob generates an integrity-protected timestamp TB.

This is then included in both the request (by Bob) and the reply (by Alice).

 As part of his checks on the reply, Bob checks that the reply text includes TB.

MODULE 3: Chap 2-Cryptographic Protocols

PROTOCOL ANALYSIS

The analysis of Protocol 5 is similar to Protocol 1.

Data origin authentication of Alice’s reply. As for Protocol 1.

Freshness of Alice’s reply. The reply text includes the timestamp TB, which Bob generated at

the start of the protocol. The reply is fresh.

Assurance that Alice’s reply corresponds to Bob’s request. There are two pieces of evidence

in the reply that provide this:

1. The reply contains the timestamp TB, which Bob generated for this run of the protocol.

Assuming that the timestamp is of sufficient granularity that it is not possible for Bob to

have issued the same timestamp for different protocol runs (or that it includes a unique

session identifier), the presence of TB indicates that the reply matches the request.

2. The reply contains the identifier Bob, preventing reflection attacks. Thus Protocol 5

meets the three security goals.

Thus Protocol 5 meets the three security goals.

REMARKS

Protocol 5 can be thought of as the ‘clock-based’ analogue of Protocol 1.

No need for Alice to share a synchronised clock with Bob for Protocol 5 to work. This is

because only Bob requires freshness, hence it suffices that Alice includes Bob’s timestamp

without Alice necessarily being able to ‘make sense’ of, let alone verify, it.

One consequence of this is that it is important that TB is integrity-protected. To see this, suppose

that TB just consists of the time on Bob’s clock, represented as an unprotected timestamp

(perhaps just a text stating the time). In this case the following attack is possible:

MODULE 3: Chap 2-Cryptographic Protocols

1. At 15.00, the attacker sends Alice a request that appears to come from Bob but has TB set

to the time 17.00, which is a time in the future that the attacker anticipates that Bob will

contact Alice.

2. Alice forms a valid reply based on TB being 17.00 and sends it to Bob.

3. The attacker intercepts and blocks the reply from reaching Bob, then stores it.

4. The attacker hits Alice over the head with a blunt instrument. (Less violent versions of

this attack are possible!)

5. At 17.00, Bob sends a genuine request to Alice (recently deceased).

6. The attacker intercepts the request and sends back the previously intercepted reply from

Alice.

7. Bob accepts the reply as genuine (which it is) and assumes that Alice is OK (which she

most definitely is not). This attack is only possible because, in this example, we allowed

the attacker to ‘manipulate’ TB. By assuming that TB is a timestamp that cannot be

manipulated in such a way, this attack is impossible.

 Protocol 6

Protocol 6 is shown in Figure 9.8.

PROTOCOL ASSUMPTIONS These are the same as the assumptions for Protocol 1, except

that the need for Bob to have a random generator is replaced by:

Alice can generate timestamps that Bob can verify. As part of this assumption we further

require that Alice and Bob have synchronised clocks

PROTOCOL DESCRIPTION

The description of Protocol 6 is slightly different from Protocol 1, so we will explain it in more

detail than the last few protocols.

MODULE 3: Chap 2-Cryptographic Protocols

1. Bob conducts the following steps to form the request:

a) Bob forms a simplified request message that just consists of the text It’s Bob, are

you OK?.

b) Bob sends the request to Alice.

2. Assuming that she is alive and able to respond, Alice conducts the following steps to

form the reply:

(a) Alice generates a timestamp TA and concatenates it to identifier Bob and the text

Yes, I’m OK, to form the reply text.

(b) Alice computes a MAC on the reply text using key K. The reply text is then

concatenated to the MAC to form the reply.

(c) Alice sends the reply to Bob.

3. On receipt of the reply, Bob makes the following checks:

a) Bob checks that the received reply text consists of a timestamp TA concatenated

to his identifier Bob and a meaningful response to his query (in this case, Yes,

I’m OK).

b) Bob verifies TA and uses his clock to check that it consists of a fresh time.

c) Bob computes a MAC on the received reply text with key K and checks to see if

it matches the received MAC.

d) If both these checks are satisfactory then Bob accepts the reply and ends the

protocol.

PROTOCOL ANALYSIS

The analysis of Protocol 6 is similar to Protocol 1.

Data origin authentication of Alice’s reply. As for Protocol 1.

Freshness of Alice’s reply. The reply text includes the timestamp TA. The reply is fresh.

Assurance that Alice’s reply corresponds to Bob’s request. Unfortunately this is not

provided, since the request does not contain any information that can be used to uniquely

identify it. Thus Protocol 6 does not meet all three security goals.

REMARKS

Protocol 6 has only failed on a technicality. It could easily be ‘repaired’ by including a unique

session identifier in the request message, which could then be included in the reply text.

MODULE 3: Chap 2-Cryptographic Protocols

 Protocol 7

Seventh protocol variant is closely related to Protocol 6, and is depicted in Figure 9.9.

PROTOCOL ASSUMPTIONS

These are the same as the assumptions for Protocol 6.

PROTOCOL DESCRIPTION

The description of Protocol 7 is almost the same as Protocol 6. The only differences are:

• Bob includes a unique session identifier IDS in the request, which Alice includes in the

reply text. This identifier is not necessarily randomly generated (unlike the nonces that

were used in some of the previous variants).

• The reply text that is sent in the clear by Alice differs from the reply text on which

Alice computes the MAC. The difference is that TA is included in the latter, but not the

former.

PROTOCOL ANALYSIS

The analysis of Protocol 7 is similar to Protocol 6. The inclusion of the session identifier IDS is

intended to remove the concerns about linking the reply to the request. The omission of TA from

the reply text that is sent in the clear at first just looks like a saving in bandwidth, since:

• Alice and Bob have synchronised clocks, by our assumptions,

• it is not strictly necessary that the data on which the MAC is computed matches

the reply text, so long as Bob receives all the critical data that he needs to check

the MAC.

Problem:

Bob does not know TA. Even if they have perfectly synchronised clocks, the time that Alice

issues TA will not be the same time that Bob receives the message due to communication delays.

MODULE 3: Chap 2-Cryptographic Protocols

Thus Bob does not know all the reply text on which the MAC is computed, and hence cannot

verify the MAC to obtain data origin authentication. The only option is for Bob to check all the

possible timestamps TA within a reasonable window and hope that he finds one that matches.

While this is inefficient, it is worth noting that this technique is sometimes used in real

applications to cope with time delays and clock drift.

REMARKS

Protocol 7 is easily fixed by including TA in both versions of the reply text, as is done in

Protocol 6. Nonetheless, this protocol flaw demonstrates how sensitive cryptographic protocols

are to even the slightest ‘error’ in their formulation.

 Authentication and key establishment protocols

AKE protocols (authentication and key establishment):

The two main security objectives of an AKE protocol are always:

Mutual entity authentication:

Occasionally just unilateral entity authentication.

Establishment of a common symmetric key:

Regardless of whether symmetric or public-key techniques are used to do this. It should not

come as a surprise that these two objectives are required together in one protocol.

Need to authenticate key holders:

Key establishment makes little sense without entity authentication. It is hard to imagine any

applications where we would want to establish a common symmetric key between two parties

without at least one party being sure of the other’s identity. Indeed, in many applications mutual

entity authentication is required. The only argument for not featuring entity authentication in a

key establishment protocol is for applications where the authentication has already been

conducted prior to running the key establishment protocol.

Prolonging authentication:

The result of entity authentication can be prolonged by simultaneously establishing a symmetric

key. A problem with entity authentication is that it is achieved only for an instant in time.

 Typical AKE protocol goals

Mutual entity authentication:

Alice and Bob are able to verify each other’s identity to make sure that they know with whom

they are establishing a key.

MODULE 3: Chap 2-Cryptographic Protocols

Mutual data origin authentication: Alice and Bob are able to be sure that information being

exchanged originates with the other party and not an attacker.

Mutual key establishment: Alice and Bob establish a common symmetric key.

Key confidentiality: The established key should at no time be accessible to any party other than

Alice and Bob.

Key freshness: Alice and Bob should be happy that (with high probability) the established key

is not one that has been used before.

Mutual key confirmation: Alice and Bob should have some evidence that they both end up

with the same key.

Unbiased key control: Alice and Bob should be satisfied that neither party can unduly influence

the generation of the established key.

 Diffie–Hellman key agreement protocol IDEA

BEHIND THE DIFFIE–HELLMAN PROTOCOL The

Diffie–Hellman protocol requires the existence of:

• A public-key cryptosystem with a special property, We denote the public and

private keys of Alice and Bob in this cryptosystem by (PA, SA) and (PB, SB),

respectively. These may be temporary key pairs that have been generated

specifically for this protocol run, or could be long-term key pairs that are used for

more than one protocol run.

• A combination function F with a special property. By a ‘combination’ function,

means a mathematical process that takes two numbers x and y as input, and

outputs a third number which we denote F(x, y). Addition is an example of a

combination function, with F(x, y) = x + y.

The Diffie–Hellman protocol is designed for environments where secure channels do not yet

exist, it is often used to establish a symmetric key, which can then be used to secure such a

channel.

The basic idea behind the Diffie–Hellman protocol is that:

1. Alice sends her public key PA to Bob.

2. Bob sends his public key PB to Alice.

3. Alice computes F(SA, PB). Note that only Alice can conduct this computation, since it

involves her private key SA.

MODULE 3: Chap 2-Cryptographic Protocols

4. Bob computes F(SB, PA). Note that only Bob can conduct this computation, since it

involves his private key SB. The special property for the public-key cryptosystem and

the combination function F is that F(SA, PB) = F(SB, PA).

At the end of the protocol Alice and Bob will thus share this value, which we denote ZAB, this

shared value ZAB can then easily be converted into a key of the required length. Since the

private keys of Alice and Bob are both required to compute ZAB, it should only be computable

by Alice and Bob, and not anyone else (an attacker) who observed the protocol messages. Note

that this is true despite the fact that the attacker will have seen PA and PB.

INSTANTIATION OF THE DIFFIE–HELLMAN PROTOCOL

For ElGamal, choose two public system wide parameters:

• a large prime p, typically 1024 bits in length;

• a special number g (a primitive element).

The Diffie–Hellman protocol is shown in Figure 9.10 and proceeds as follows.

Note that all calculations are performed modulo p and thus we omit mod p in each computation

for convenience.

a) Alice randomly generates a positive integer a and calculates ga. This is, effectively, a

temporary ElGamal key pair. Alice sends her public key ga to Bob.

b) Bob randomly generates a positive integer b and calculates gb. Bob sends his public

key gb to Alice.

c) Alice uses gb and her private key a to compute (gb) a.

d) Bob uses ga and his private key b to compute(ga) b

e) The special combination function property that is needed that raising a number to the

power a and then raising the result to the power b is the same as raising the number to

the power b and then raising the result to the power a, which means that:

MODULE 3: Chap 2-Cryptographic Protocols

(ga) b = (gb)a.

So Alice and Bob have ended up with the same value at the end of this protocol.

There are several important issues to note:

1. It is widely believed that the shared value ZAB = gab cannot be computed by anyone who

does not know either a or b. An attacker who is monitoring the communication channel

only sees ga and gb.

2. The main purpose of the Diffie–Hellman protocol is to establish a common cryptographic
=

key KAB. Thereare two reasonswhy the shared value ZAB= gab is unlikely to itself form the

key in a real application:

 ZAB is not likely to be the correct length for a cryptographic key. If we conduct the

Diffie–Hellman protocol with p having 1024 bits, then the shared value will also

be a value of 1024 bits, which is much longer than a typical symmetric key.

 Having gone through the effort of conducting a run of the Diffie–Hellman

protocol to compute ZAB, Alice and Bob may want to use it to establish several

different keys. Hence they may not want to use ZAB as a key, but rather as a seed

from which to derive several different keys. The rationale behind this is that ZAB is

relatively expensive to generate, both in terms of computation and

communication, whereas derived keys KAB are relatively cheap to generate from

ZAB.

3. Any public-key cryptosystem that has the right special property and for which a suitable

combination function F can be found, could be used to produce a version of the Diffie–

Hellman protocol. In this case:

 very informally, the special property of ElGamal is that public keys of different

users can be numbers over the same modulus p, which means that they can be

combined in different ways;

 the combination function F , which is F (x, gy) = (gy)x , has the special property

that it does not matter in which order the two exponentiations are conducted,

since:

F (x, gy) = (gy)x = (gx)y = F (y, gx).

It is not possible to use keys pairs from any public-key cryptosystem to instantiate the

Diffie–Hellman protocol. In particular, RSA key pairs cannot be used because in RSA

each user has their own modulus n, making RSA key pairs difficult to combine in the

above manner.

MODULE 3: Chap 2-Cryptographic Protocols

candidate AB

ANALYSIS OF THE DIFFIE–HELLMAN PROTOCOL

Mutual entity authentication: There is nothing in the Diffie–Hellman protocol that gives either

party any assurance of who they are communicating with. The values a and b (and hence ga and

gb) have been generated for this protocol run and cannot be linked with either Alice or Bob.

Neither is there any assurance that these values are fresh.

Mutual data origin authentication: This is not provided, by the same argument as above.

Mutual key establishment: Alice and Bob do establish a common symmetric key at the end of

the Diffie–Hellman protocol, so this goal is achieved.

Key confidentiality. The shar=ed value ZAB=gab is not computable by anyone other than Alice or

Bob. Neither is any key KAB derived from ZAB. Thus this goal is achieved.

Key freshness. Assuming that Alice and Bob choose fresh private keys a and b then ZAB should

also be fresh. Indeed, it suffices that just one of Alice and Bob choose a fresh private key.

Mutual key confirmation. This is not provided, since neither party obtains any explicit

evidence that the other has constructed the same shared value ZAB.

Unbiased key control. Both Alice and Bob certainly contribute to the generation of ZAB.

Technically, if Alice sends ga to Bob before Bob generates b, then Bob could ‘play around’ with

a few
=

choices for b until he finds a b that results in a Z =gab that he particularly

‘likes’.

MAN-IN-THE-MIDDLE ATTACK ON THE DIFFIE–HELLMAN PROTOCOL

The man-in-the-middle attack is applicable to any situation where an attacker (Fred, in Figure

9.11) can intercept and alter messages sent on the communication channel between Alice and

Bob.

The man-in-the middle attack works as follows (where all calculations are modulo p):

1. Alice begins a normal run of the Diffie–Hellman protocol depicted in Figure 9.10. She

randomly generates a positive integer a and calculates ga. Alice sends ga to Bob.

MODULE 3: Chap 2-Cryptographic Protocols

2. Fred intercepts this message before it reaches Bob, generates his own positive integer f ,

and calculates gf . Fred then claims to be Alice and sends gf to Bob instead of ga.

3. Bob continues the Diffie–Hellman protocol as if nothing untoward has happened. Bob

randomly generates a positive integer b and calculates gb. Bob sends gb to Alice.

4. Fred intercepts this message before it reaches Alice. Fred then claims to be Bob and

sends gf to Alice instead of gb.

5. Alice now believes that the Diffie–Hellman protocol has successfully completed. She
=

uses gf and her private integer a to compute gaf= (gf)a.

6. Bob also believes that it has successfully completed. He uses gf & b to compute gbf= (gf)b.
=

7. Fred c=omputes gaf=(ga)f and gbf= (gb)f . He now has two different shared values, gaf , which

he shares with Alice, and gbf , which he shares with Bob.

At the end of this man-in-the-middle attack, all three entities hold different beliefs:

• Alice believes that she has established a shared value with Bob. But she is wrong, because

she hasestablisheda shared value with Fred.

• Bob believes that he has established a shared value with Alice. But he is wrong, because he

has established a shared value with Fred.

• Fredcorrectlybelievesthathehasestablishedtwodifferentsharedvalues,one with Alice and

the other with Bob.

At the end of this man-in-the-middle attack, Fred cannot determine the shared value gab that

Alice and Bob would have established had he not interfered, since both a and b remain secret to

him, protected by the difficulty of the discrete logarithm problem. Nonetheless, Fred is now in a

powerful position:

• IfFred’sobjectivewassimplytodisruptthekeyestablishmentprocessbetween Alice and Bob

then he has already succeeded. If Alice derives a key KAF from gaf and then encrypts a

message to Bob using this key, Bob will not be able to decrypt it successfully because the key

KBF that he derives from his shared value gbf will be different from KAF .

• Much more serious is the situation that arises if Fred remains on the communication

channel. In this case, if Alice encrypts a plaintext to Bob using key KAF , Fred (who is the only

person who can derive both KAF and KBF) can decrypt the ciphertext using KAF to learn the

plaintext. Hecanthenre-encrypt theplaintextusing KBF and send thisto Bob. In thisway, Fred

can ‘monitor’ the encrypted communication between Alice and Bob without them being

MODULE 3: Chap 2-Cryptographic Protocols

aware that this is even happening.

• This man-in-the middle attack was only able to succeed because neither Alice nor Bob

could determine from whom they were receiving messages during the Diffie–Hellman

protocol run.

AKE PROTOCOLS BASED ON DIFFIE–HELLMAN

Way of building in authentication: The station-to-station (STS) protocol makes an additional

assumption that Alice and Bob have each established a long-term signature/verification key

pair and have had their verification keys certified. The STS protocol is shown in Figure 9.12

and proceeds as follows (where all calculations are modulo p):

1. Alice randomly generates a positive integer a and calculates ga. Alice sends ga to Bob, along

withthecertificate CertA forher verification key.

2. Bob verifies CertA. If he is satisfied with the result then Bob randomly generates a positive

integer b and calculates gb. Next, Bob signs a message that consists of Alice’s name, ga and

gb. Bobthensends gb to Alice, alongwiththecertificate CertB for his verification key and the

signed message.

3. Alice verifies CertB. If she is satisfied with the result then she uses Bob’s verification key to

verify the signed message. If she is satisfied with this, she signs a message that consists of

Bob’s name, ga and gb, which she then sends back to Bob. Finally, Alice uses gb and her

privatekeya tocompute(gb)a.

4. Bob uses Alice’s verification key to verify the signed message that he has just received. If he

is satisfied withtheresultthen Bob uses ga andhisprivatekey b to compute(ga)b.

With the exception of the first two, the goals are met for the STS protocol are just as for the

basic Diffie–Hellman protocol (in other words, they are all met except for key confirmation).

It remains to check whether the first two authentication goals are nowmet:

Mutual entity authentication. Since a and b are randomly chosen private keys, ga and gb are

thus also effectively randomly generated values. Hence we can consider ga and gb as

being nonces. At the end of the second STS protocol message, Alice receives a digital

signature from Bob on a message that includes her ‘nonce’ ga. Similarly, at the end of the

third STS protocol message, Bob receives a digital signature from Alice on a message that

MODULE 3: Chap 2-Cryptographic Protocols

includes his ‘nonce’ gb. Hence, by the principles , mutual entity authentication is provided,

since both Alice and Bob each perform a cryptographic computation using a key only

known to them on a nonce generated by the other party.

Mutual data origin authentication. This is provided, since the important data that is

exchanged in the main messages is digitally signed.

 An AKE protocol based on key distribution

The STS protocol is an AKE protocol based on key agreement and the use of public-key

cryptography. We will now look at an AKE protocol based on key distribution and the use of

symmetric cryptography. This protocol is a simplified version of one from ISO 9798-2. This

protocol involves the use of a trusted third party (denoted TTP).

PROTOCOL DESCRIPTION

The idea behind this AKE protocol is that Alice and Bob both trust the TTP. When Alice and Bob

wish to establish a shared key KAB, they will ask the TTP to generate one for them, which will

then be securely distributed to them. The protocol involves the following assumptions:

• Alice has already established a long-term shared symmetric key KAT with the TTP.

• Bob has already established a long-term shared symmetric key KBT with the TTP.

• Alice and Bob arebothcapableofrandomly generating nonces.

There is a further assumption made on the type of encryption mechanism used, but we will

discuss that when we consider data origin authentication.

The protocol is shown in Figure 9.13 and proceeds as follows:

1. BobstartstheprotocolbyrandomlygeneratinganoncerB andsendingitto Alice.

2. Alice randomly generates a nonce rA and then sends a request for a symmetric key to the

TTP. This request includes both Alice’s and Bob’s names, as well as the two nonces rA and

rB.

3. The TTP generates a symmetric key KAB and then encrypts it twice. The first ciphertext is

intended for Alice and encrypted using KAT . The plaintext consists of rA, KAB and Bob’s

name. The second ciphertext is intended for Bob and encrypted using KBT . The plaintext

consists of rB, KAB and Alice’s name. The two ciphertexts are sent to Alice.

4. Alice decrypts the first ciphertext using KAT and checks that it contains rA and Bob’s name.

MODULE 3: Chap 2-Cryptographic Protocols

She extracts KAB. She then generates a new nonce rAj . Next, she generates a new

ciphertext by encrypting rAj and rB using KAB. Finally, she forwards the second

ciphertextthatshereceivedfromtheTTP,andthenew ciphertext that she has just created,

to Bob.

5. Bob decrypts the first ciphertext that he receives (which is the second ciphertext that Alice

received from the TTP) using KBT and checks that it contains rB and Alice’s name. He

extracts KAB. He then decrypts the second ciphertext using KAB and checks to see if it

contains rB. He extracts rAj . Finally, he encrypts rB, rAj and Alice’s name using KAB and

sends this ciphertext to Alice. Alice decrypts the ciphertext using KAB and checks that the

plaintext consists of rB, rAj and Alice’s name. If it does then the protocol concludes

successfully.

PROTOCOL ANALYSIS

Mutual entity authentication: We will divide this into two separate cases.

First we look at Bob’s perspective. At the end of the fourth protocol message, the second

ciphertext that Bob receives is an encrypted version of his nonce rB. Thus this ciphertext is fresh.

But whoencrypted it? Whoever encrypted it must haveknownthekey KAB. Bob receivedthiskeyby

successfully using KBT to decrypt a ciphertext, which resulted in a correctly formatted plaintext

message consisting of rB, KAB and Alice’s name. Thus Bob can be sure that this ciphertext

originated with the TTP, since the TTP is the only entityother than Bob whoknows KBT . Theformat

of this plaintext is essentially an ‘assertion’ by the TTP that the key KAB has been freshly issued

(because rB is included) for use in communicationbetween Bob (because it is encryptedusing KBT)

and Alice(becausehernameisincluded).Thustheentitythatencryptedthesecond ciphertext in the

fourth protocol message must have been Alice because the TTP has asserted that only Alice and

BobhaveaccesstoKAB.HenceBobcan be sure that he has just been talking to Alice.

1.Alice’s perspective is similar. At the end of the last protocol message, Alice receives an

encrypted version of her nonce rAj . This ciphertext, which was encrypted using KAB, is

thus fresh. In the third protocol message Alice receives an assertion from the TTP that KAB

has been freshly (because rA is included) issued for use for communication between Alice

(because it is encryptedusing KAT) and Bob (because his name is included). Thus the entity

that encrypted the last protocol message must have been Bob, again because the TTP has

MODULE 3: Chap 2-Cryptographic Protocols

assertedthatonly Alice and Bob haveaccessto KAB. Thus Alice canbe sure that she has just

been talking to Bob.

Mutual data origin authentication: We use symmetric encryption throughout this protocol

and do not apparently employ any mechanism to explicitly provide data origin

authentication, such as a MAC. While symmetric encryption does not normally provide

data origin authentication. Throughout current protocol, the plaintexts are strictly

formatted and fairly short, hence it might be reasonable to claim that encryption alone is

providing data origin authentication, so long as a strong block cipher such as AES is used.

However, the standard ISO 9798-2 goes further, by specifying that the ‘encryption’ used in

this protocol must be such that data origin authentication is also essentially provided.

One method would be to use an authenticated-encryption primitive. This goal is thus also

met.

Mutual key establishment: At the end of the protocol Alice and Bob have established KAB, so

this goal is met.

Key confidentiality: The key KAB can only be accessed by an entity who has knowledge of

either KAT, KBT or KAB. This means either the TTP (who is trusted), Alice or Bob. So this goal is

met.

Key freshness: This goal is met so long as the TTP generates a fresh key KAB. Again, we are

trusting that the TTP will do this.

Mutual key confirmation: Both Alice and Bob demonstrate that they know KAB by using it to

encrypt plaintexts (Alice in the fourth protocol message; Bob in the last protocol message).

Thus both confirm knowledge of the shared key.

Unbiased key control: This is provided because KAB is generated by the TTP.

Thus we conclude that all the goals are provided. A similar AKE protocol is used by the widely

deployed Kerberos protocol.

Module 4-Key Management

KEY MANAGEMENT

 Key management fundamentals

 What is key management?

 Key management is the secure administration of cryptographic keys.

 Cryptographic keys are special pieces of data.

 Key management thus involves most of the diverse processes associated with

information security. These include:

 Technical controls. These can be used in various aspects of key management.

For example, special hardware devices may be required for storing

cryptographic keys, and special cryptographic protocols are necessary in order

to establish keys.

 Process controls. Policies, practices and procedures play a crucial role in key

management. For example, business continuity processes may be required in

order to cope with the potential loss of important cryptographic keys.

 Environmental controls. Key management must be tailored to the environment

in which it will be practiced. For example, the physical location of

cryptographic keys plays a big role in determining the key management

techniques that are used to administer them.

 Human factors. Key management often involves people doing things. Many

key management systems rely on manual processes.

 The key lifecycle

The main phases of the key lifecycle are depicted in the Figure.

Key generation concerns the creation of keys.

Key establishment is the process of making sure that keys reach the end points where they will

be used.

Key storage deals with the safekeeping of keys. It may also be important to conduct

key backup so that keys can be recovered in the event of loss of a key and, key archival.

Key usage is about how keys are used.

key change. How a key’s life ends in key destruction.

Module 4-Key Management

The key lifecycle

 Fundamental key management requirements

There are two fundamental key management requirements that apply throughout the various

phases of the key lifecycle:

Secrecy of keys. Throughout the key lifecycle, secret keys (in other words, symmetric keys

and private keys) must remain secret from all parties except those that are authorised to know

them.

Example:

 if a weak key generation mechanism is used then it might be possible to determine

information about a secret key more easily than intended;

 secret keys are vulnerable when they are ‘moved around’, thus secure key distribution

mechanisms must be used;

 secret keys are perhaps most vulnerable when they are ‘sitting around’, thus key storage

mechanisms must be strong enough to resist an attacker who has access to a device on

which they reside;

 if secret keys are not destroyed properly then they can potentially be recovered after the

supposed time of destruction.

Assurance of purpose of keys. Throughout the key lifecycle, those parties relying on a key

must have assurance of purpose of the key.

Module 4-Key Management

This ‘purpose’, may include :

• information concerning which entities are associated with the key

• the cryptographic algorithm that the key is intended to be used for.

• key usage restrictions, for example, that a symmetric key can only be used for creating and

verifying a MAC, or that a signature key can only be used for digitally signing transactions of

less than a certain value.

 Key management systems

A key management system may depend on:

Network topology. Key management is much simpler if it is only needed to support two

parties who wish to communicate securely, rather than a multinational organisation that wishes

to establish the capability for secure communication between any two employees.

Cryptographic mechanisms. Some of the key management system requirements of symmetric

and public-key cryptography differ.

Compliance restrictions. For example, depending on the application, there may be legal

requirements for key recovery mechanisms or key archival .

Legacy issues. Large organisations whose security partly depends on that of other related

organisations may find that their choice of key management system is restricted by

requirements to be compatible with business partners, some of whom might be using older

technology.

 Key lengths and lifetimes

 Longer keys are better from a security perspective.

 A cryptographic computation normally takes more time if the key is longer. In addition,

longer keys involve greater storage and distribution overheads.

10.2.1 Key lifetimes

 The key can only be used for a specified period of time, during which it is regarded as

being live.

 Once that lifetime has been exceeded, the key is regarded as expired and should no

longer be used. At this point it may need to be archived or perhaps destroyed.

There are many reasons why cryptographic keys have finite lifetimes. These include:

Module 4-Key Management

 Mitigation against key compromise. Having a finite lifetime prevents keys being used

beyond a time within which they might reasonably be expected to be compromised,

For example: by an exhaustive key search or compromise of the storage medium.

 Mitigation against key management failures. Finite key lifetimes help to mitigate

against failures in key management.

For example: forcing an annual key change will guarantee that personnel who leave

an organisation during the year, but for some reason retain keys, do not have access to

valid keys the following year.

 Mitigation against future attacks. Finite key lifetimes help to mitigate against future

advances in the attack environment. For this reason, keys are normally set to expire

well before current knowledge suggests that they need to.

 Enforcement of management cycles. Finite lifetimes enforce a key change process,

which might be convenient for management cycles.

For example: if keys provide access to electronic resources that are paid for on an

annual subscription basis, then having a one-year key lifetime allows access to keys to

be directly linked to subscriptions to the service.

 Flexibility. Finite key lifetimes introduce an additional ‘variable’ which can be

adjusted to suit application requirements.

For example, a relatively short key (which is relatively inexpensive to generate,

distribute and store) could be adopted under the pretext that the key lifetime is also

suitably short.

 Limitation of key exposure. Consider some information relating to a key is ‘leaked’ to

an attacker every time the attacker sees a cryptographic value computed using that key.

This is because the result of every cryptographic computation provides the attacker with

information that they did not have before they saw the ciphertext. We refer to this as

key exposure.

 Key generation

Key generation processes for symmetric and public-key cryptography are fundamentally

different.

 Direct key generation

 Symmetric keys are just randomly generated numbers (normally bit strings).

Module 4-Key Management

 Method for generating a cryptographic key is to randomly generate a number, or more

commonly a pseudorandom number.

 The choice of technique will depend on the application.

For example, use of a hardware-based non-deterministic generator might be appropriate for a

master key, whereas a software-based non-deterministic generator based on mouse movements

might suffice for generating a local key to be used to store personal files on a home PC.

 Key derivation

The term key derivation is the generation of cryptographic keys from other cryptographic keys

or secret values.

Advantages of deriving keys from other keys:

1. Efficiency. Generating and establishing one key (sometimes called a base key), and

then using it to derive many keys.

For example:

 Many applications require both confidentiality and data origin authentication.

 If separate cryptographic mechanisms are to be used to provide these two security

services then they require an encryption key and a MAC key

 It is good practice to make sure that the keys used for each of these mechanisms are

different. Rather than generating and establishing two symmetric keys for this purpose,

a cost efficient solution is to generate and establish one key K and then derive two keys

K1 and K2 from it.

For example, a very simple key derivation process might involve computing:

K1= h(K||0) and K2 = h(K||1),

where h is a hash function.

2. Longevity:

 In some applications, long-term symmetric keys are preloaded onto devices before

deployment.

 Using these long-term keys directly to encrypt data exposes them to cryptanalysis.

 Randomly generating a new key requires a key establishment mechanism to be used,

which may not always be possible or practical.

 A good solution is to derive keys for use from the long-term key.

There are standards for key derivation:

Module 4-Key Management

For example: PKCS#5 defines how a key can be derived from a password or a PIN, which can

be regarded as a relatively insecure type of cryptographic key, but one which is often long term

(such as the PIN associated with a payment card).

Key derivation in this case is defined as a function f (P, S, C, L), where:

 f is a key derivation function that explains how to combine the various inputs in order

to derive a key;

 P is the password or PIN;

 S is a string of (not necessarily all secret) pseudorandom bits, used to enable P to be

used to derive many different keys;

 C is an iteration counter that specifies the number of ‘rounds’ to compute.

 L is the length of the derived key.

 Key generation from components

For extremely important secret keys it may not be desirable to trust one entity with key

generation in such cases we need to distribute the key generation process amongst a group of

entities in such a way that no members of the group individually have control over the process,

but collectively they do. One technique for facilitating this is to generate a key in

component form.

Considering a simple scenario involving three entities: Alice, Bob and Charlie. Assume that we

wish to generate a 128-bit key:

1. Alice, Bob and Charlie each randomly generate acomponent of 128 bits. This component

is itself a sort of key, so any direct key generation mechanism could be used to

generate it. The generation of components should be performed as securely as

possible. Let us denote the resulting components by KA, KB and KC , respectively.

2. Alice, Bob and Charlie securely transfer their components to a securecombiner. In most

applications this combiner will be represented by a hardware security module. The

input of the components to the secure combiner is normally conducted according to a

strict protocol that takes the form of a key ceremony.

3. The secure combiner derives a key K from the separate components.

In this example, the best derivation function is XOR i.e :

K = KA ⊕ KB ⊕ KC .

 Thus Alice, Bob and Charlie are able to jointly generate a key in such a way that all

three of their components are necessary for the process to complete.

Module 4-Key Management

 If only two of the components are present then no information about the key can be

derived, even if the components are combined.

 Public-key pair generation

Key generation for public-key cryptography is algorithm-specific.

Not every number in the ‘range’ of the keyspace of a public-key cryptosystem is a valid key.

For example: for RSA the keys d and e are required to have specific mathematical properties.

If we choose an RSA modulus of 1024 bits then there are, in theory, 21024 candidates for e or d.

However, only some of these 21024 numbers can be an e or a d, the other choices are ruled out.

 Some keys in public-key cryptosystems are chosen to have a specific format.

For example, RSA public keys are sometimes chosen to have a specific format that

results in them being ‘faster than the average case’ when they are used to compute

exponentiations,

 The generation of a key pair can be slow and complex. Some devices, such as smart

cards, may not have the computational resources to generate key pairs.

In such cases it may be necessary to generate key pairs off the card and import them.

 Key establishment

Key establishment is the process of getting cryptographic keys to the locations where they will

be used.

The key does not need to be shared. This applies to any keys that can be locally generated

and do not need to be transferred anywhere, such as symmetric keys for encrypting data on a

local machine..

The key does not need to be secret. This applies mainly to public keys.

The key can be established in a controlled environment. In some cryptographic applications

it is possible to establish all the required keys within a controlled environment before the

devices containing the keys are deployed. This is termed key predistribution.

 Key hierarchies

 key hierarchy is a technique used for managing symmetric keys.

 This consists of a ranking of keys, with high-level keys being more ‘important’ than

low-level keys.

 Keys at one level are used to encrypt keys at the level beneath.

Module 4-Key Management

PHILOSOPHY BEHIND KEY HIERARCHIES

There are two advantages of deploying keys in a hierarchy:

Secure distribution and storage:

By using keys at one level to encrypt keys at the level beneath, most keys in the

system can be protected by the keys above them. This allows keys to be securely

distributed and stored in encrypted form.

Facilitating scalable key change.

 The risk of a key being compromised, keys that are directly used to perform

cryptographic computations, such as encryption of transmitted data.

 Use of a key hierarchy makes it easy to change these low-level keys without the need to

replace the high-level keys, which are expensive to establish.

A SIMPLE KEY HIERARCHY

The idea of a key hierarchy is illustrated considering a simple example which is shown in the

Figure. The three levels of this hierarchy consist of:

Master keys. These are the top-level keys that require careful management. They are only used

to encrypt key encrypting keys. Since the key management of master keys is expensive, they

will have relatively long lifetimes.

Key encrypting keys. These are distributed and stored in encrypted form using master keys.

They are only used to encrypt data keys. Key encrypting keys will have shorter lifetimes than

master keys, since they have greater exposure and are easier to change.

Data keys. These are distributed and stored in encrypted form using key encrypting keys.

These are the working keys that will be used to perform cryptographic computations. They

have high exposure and short lifetimes. This corresponds to the lifetime a single session, hence

data keys are often referred to as session keys.

MANAGING THE TOP-LEVEL KEYS

Top-level (master) keys need to be securely managed, or the whole key hierarchy is

compromised. Most key management systems using key hierarchies will employ hardware

security modules (HSMs) to store master keys. These top-level keys will never leave the HSMs

in unprotected form.

Module 4-Key Management

 Master keys are commonly generated, established and backed up in component form.

 If a master key needs to be shared between two different HSMs then one option is to

generate the same master key from components separately on each HSM.

 An alternative is to run a key agreement protocol between the two HSMs in order to

establish a shared master key.

SCALABLE KEY HIERARCHIES

A key hierarchy works for a relatively simple network, but quickly becomes unmanageable for

large networks.

Problem: Consider a simple two-level hierarchy consisting of only master and data keys. If

there is a network of n users, then the number of possible pairs of users is 12 n(n − 1). This

means that, if there are 100 users then there are 12 × 100 × 99 = 4950 possible pairs of users.

Hence, in the worst case, we might have to establish 4950 separate master keys amongst the

100 HSMs in the network, which is not practical.

Alternatively, install the same master key in all HSMs. Data keys for communication between

Alice and Bob could then be derived from the common master key and Alice and Bob’s

identities.

However, compromise of Alice’s HSM would now not only compromise data keys for use

between Alice and Bob, but data keys between any pair of users in the network. This is not

normally acceptable.

Solution:

 It is common to deploy the services of a trusted third party, whom all the users trust,

refer to as a key centre (KC).

 The idea is that each user in the network shares a key with the KC, which acts as a ‘go

between’ any time any pairs of users require a shared key.

 In this way we reduce the need for 4950 master keys in a network of 100 users to just

100 master keys, each one shared between a specific user and the KC.

There are two key distribution approaches to acquiring shared keys from a KC.

Consider a simple scenario.

Module 4-Key Management

In each case let us assume that Alice wishes to establish a shared data key K with Bob, also

assume that both Alice and Bob have respectively established master keys KAC and KBC with the

KC, and that a simple two-level key hierarchy is being employed.

The two approaches are:

 Key translation.

 Key despatch.

Key translation. In this approach the KC simply translates an encrypted key from encryption

using one key to encryption using another. In this case the KC is acting as a

type of switch. This process is depicted in the below figure:

1. Alice generates a data key K, encrypts it using KAC and sends this to KC.

2. KC decrypts the encrypted K using KAC , re-encrypts it using KBC and then sends this

to Bob.

3. Bob decrypts the encrypted K using KBC .

Key translation

Key despatch. In this approach the KC generates the data key and produces two encrypted

copies of it, one for each user. This process is depicted in the below figure and runs as follows:

1. KC generates a data key K, encrypts one copy of it using KAC and another copy of it using KBC

, and then sends both encrypted copies to Alice.

2. Alice decrypts the first copy using KAC and sends the other copy to Bob.

3. Bob decrypts the second copy using KBC .

Module 4-Key Management

Key despatch

 Unique key per transaction schemes

Unique key per transaction (UKPT) schemes is a different way of establishing a

cryptographic key and they establish a new key each time that they are used.

MOTIVATION FOR UKPT SCHEMES

Previous key establishment mechanisms involves one, or both, of the following:

• Use of long-term (top-level) secret keys, for example, the use of master keys or key

encrypting keys in key hierarchies.

• A special transfer of data explicitly for the purposes of key establishment. This applies to

every technique except key predistribution.

 The first requires devices that can securely store and use long-term keys, and the

second introduces a communication overhead.

 One of the reasons that most of the previous schemes require above mentioned features

is that the new key that is being established has been generated independently, in the

sense that it has no relationship with any existing data.

 An alternative methodology is to generate new keys by deriving them from

information already shared by Alice and Bob.

 If key derivation is used to generate new keys then the processes of key generation and

key establishment essentially ‘merge’. This brings several advantages:

1. Alice and Bob do not need to store a long-term key;

2. Alice and Bob are not required to engage in any special communication

solely for the purpose of key establishment;

Module 4-Key Management

3. Key generation and establishment can be ‘automated’.

APPLICATION OF UKPT SCHEMES

UKPT schemes adopts the methodology where it updates the keys using a key derivation

process after each use.

A good example of an application of UKPT schemes is retail point-of-sale terminals, which are

used by merchants to verify PINs and approve payment card transactions.

The advantages of a UKPT scheme all apply to this scenario:

1) Terminals have limited security controls, since they must be cheap enough to deploy

widely.

 In addition, they are typically located in insecure public environments such as

stores and restaurants.

 They are also portable, so that they can easily be moved around, hence easily

stolen.

2) Transactions should be processed speedily to avoid delays, hence efficiency is

important.

3) Terminals may be managed and operated by unskilled staff, hence full automation of

the key establishment process is a necessity.

EXAMPLE UKPT SCHEMES :

 Consider a UKPT scheme operating between a merchant terminal and a host (a bank or

card payment server). The terminal maintains a key register, which is essentially the

running ‘key’ that will be updated after every transaction.

 A generic UKPT scheme in terms of the protocol that is run between the terminal and

the host during a transaction.

Note:

• We assume at the start of the protocol that the terminal and the host share an initial value that

is stored in the terminal key register. This may or may not be a secret.

• a simple protocol that uses a single transaction key to compute MACs on the exchanged

messages.

for example, an encryption key might also be needed to encrypt the PIN of the card.

Below figure illustrates generic UKPT scheme:

1. The terminal derives the transaction key using the contents of the key register and

shared information that will be available to the host.

Module 4-Key Management

2. The terminal sends a request message to the host. The transaction key is used to

compute a MAC on the request message.

3. The host derives the transaction key.

4. The host validates the MAC on the request message.

5. The host sends a response message to the terminal. The transaction key is used to

compute a MAC on the response message.

6. The terminal validates the MAC on the response message.

7. The terminal updates the contents of the key register.

Generic UKPT scheme

Two examples of real UKPT schemes are:

Racal UKPT scheme:

1. The initial value is a secret seed, which is agreed between the terminal and the host.

2. The host maintains an identical key register to the terminal. The transaction key is

derived from the key register and the card data (more precisely, the primary account

number on the card), both of which are known by the terminal and the host.

3. At the end of the protocol, the new key register value is computed as a function of the

old key register value, the card data (primary account number) and the transaction data

(more precisely, the two MAC residues of the MACs on the request and response

messages, both of which can be computed by the host and the terminal but neither of

which are transmitted during the protocol,

Both the terminal and the host conduct the same computation to update their key registers.

Module 4-Key Management

Derived UKPT scheme. This scheme is supported by Visa:

1. The initial value is a unique initial key that is installed in the terminal.

2. The transaction key is derived by the terminal from the contents of the terminal key

register, a transaction counter, and the terminal’s unique identifier. The host has a

special base (master) key. The host does not need to maintain a key register, but can

calculate this same transaction key from the base key, the transaction counter and the

terminal identifier.

3. At the end of the protocol the new terminal key register value is derived from the old

key register value and the transaction counter. The host does not need to store this value

because it can compute transaction keys directly.

 Key storage

Secret keys need to be protected from exposure to parties other than the intended ‘owners’. It is

thus very important that they are stored securely

 Key storage in hardware

HARDWARE SECURITY MODULES

 The securest hardware storage media for cryptographic keys are hardware security

modules (HSMs).

 These dedicated hardware devices that provide key management functionality are

known as tamper-resistant devices.

 Many HSMs can also perform bulk cryptographic operations, often at high speed. An

HSM can either be peripheral or can be incorporated into a more general purpose

device such as a point-of-sale terminal.

 HSMs are mechanisms for the secure storage of cryptographic keys, HSMs are often

used to enforce other phases of the key lifecycle.

 Keys stored on HSMs are physically protected by the hardware. If anyone attempts to

penetrate an HSM, for example, to extract a key from the device, tamper-resistant

circuitry is triggered and the key is normally deleted from the HSM’s memory.

 There are various techniques that can be used to provide tamper resistance. These

include:

Module 4-Key Management

 Micro-switches. A simple mechanism that releases a switch if an HSM is

opened. This is not particularly effective, since a clever attacker can always

drill a hole and use glue to force the switch off.

 Electronic mesh. A fine-gauge electronic mesh that can be attached to the

inside of an HSM case. This mesh surrounds the sensitive components. If

broken, it activates the tamper-detection circuitry. This mechanism is designed

to protect against penetrative attacks, such as drilling.

 Resin. A hard substance, such as epoxy resin, that can be used to encase

sensitive components. Sometimes electronic mesh is also embedded in resin.

Any attempt to drill through the resin, or dissolve the resin using chemicals,

will generally damage the components and trigger the tamper-detection

circuitry.

 Temperature detectors. Sensors that are designed to detect variations in

temperature outside the normal operating range. Abnormal temperatures may

be an indication of an attack. For example, one type of attack involves,

literally, freezing the device memory.

 Light-sensitive diodes. Sensors that can be used to detect penetration or

opening of an HSM casing.

 Movement or tilt detectors. Sensors that can detect if somebody is trying to

physically remove an HSM. One approach is to use mercury tilt switches,

which interrupt the flow of electrical current if the physical alignment of an

HSM changes.

 Voltage or current detectors. Sensors that can detect variations in voltage or

current outside the normal operating range. Such anomalies may be indication

of an attack.

 Security chips. Special secure microprocessors that can be used for

cryptographic processing within an HSM. Even if an attacker has penetrated

all the other defences of an HSM, the keys may still remain protected inside

the security chip.

KEY STORAGE ON AN HSM

Module 4-Key Management

There is at least one key, often referred to as a local master key (LMK), that resides inside the

HSM at all times. Some HSMs may store many LMKs, each having its own specific use. Any

other keys that need to be stored can either be:

1. stored inside the HSM;

2. stored outside the HSM, encrypted using an LMK.

 When a key stored outside the HSM needs to be used, it is first submitted to the HSM,

where it is recovered using the LMK and then used.

 This approach places a great deal of reliance on the LMK. It is thus extremely

important to back up the LMK in order to mitigate against loss of the LMK. Such loss

can occur if the HSM fails, or if it is attacked, since the tamper-resistance controls are

likely to delete the HSM memory.

 Indeed this applies to any keys that are only stored inside the HSM. Thus the issue of

whether to store a key inside or outside the HSM involves a tradeoff between:

Efficiency – storing keys inside the HSM is more efficient in terms of processing speed since

they do not need to be imported and then recovered before use.

Need for backups – since every key only stored inside the HSM needs to be securely backed

up, perhaps in component form.

Public-Key Management

 Certification of public keys

Module 4-Key Management

The main challenge for the management of public keys is providing assurance of purpose of

public keys. The most popular mechanism for providing this assurance of purpose, the public-

key certificate.

 Motivation for public-key certificates

A SCENARIO

Suppose that Bob receives a digitally signed message that claims to have been signed by Alice

and that Bob wants to verify the digital signature. This requires Bob to have access to Alice’s

verification key. Suppose that Bob is presented with a key that is alleged to be Alice’s

verification key.

Bob uses this key to ‘verify’ the digital signature and it appears to be correct. What guarantees

does Bob have that this is a valid digital signature by Alice on the message? And many more

questions:

 Does the verification key actually belong to Alice?

 Could Alice deny that this is her verification key?

 Is the verification key valid?

 Is the verification key being used appropriately?

PROVIDING ASSURANCE OF PURPOSE

The above scenario requires:

1. provide a ‘strong association’ between a public key and the owner of that key (the

entity whose identity is linked to the public key);

2. provide a ‘strong association’ between a public key and any other relevant data (such

as expiry dates and usage restrictions).

PROVIDING A POINT OF TRUST

The problem in designing any public-key management system is that we need to find a source

for the provision of the ‘strong association’ between a publickey value and its related data. In

public-key management systems this is provided by introducing points of trust in the form of

trusted third parties who ‘vouch’ for this association.

USING A TRUSTED DIRECTORY

Module 4-Key Management

An approach to providing assurance of purpose for public keys is to use a trusted ‘directory’,

which lists all public keys next to their related data (including the name of the owner). Anyone

requiring assurance of purpose of a public key, simply looks it up in the trusted directory.

This approach has several significant problems:

 Universality. The directory has to be trusted by all users of the public-key management

system.

 Availability. The directory has to be online and available at all times to users of the

public-key management system.

 Accuracy. The directory needs to be maintained accurately and protected from

unauthorised modification.

 Public-key certificates

A public-key certificate is data that binds a public key to data relating to the assurance of

purpose of that public key.

CONTENTS OF A PUBLIC-KEY CERTIFICATE

A public-key certificate contains four essential pieces of information:

 Name of owner:

The name of the owner of the public key. This owner could be a person, a device, or

even a role within an organisation. The format of this name will depend upon the

application, but it should be a unique identity that identifies the owner within the

environment in which the public key will be employed.

 Public-key value:

The public key itself. This is often accompanied by an identifier of the cryptographic

algorithm with which the public key is intended for use.

 Validity time period. This identifies the date and time from which the public key is

valid and, more importantly, the date and time of its expiry.

 Signature. The creator of the public-key certificate digitally signs all the data that

forms the public-key certificate, including the name of owner, public-key value and

validity time period. This digital signature not only binds all this data together, but is

also the guarantee that the creator of the certificate believes that all the data is correct.

This provides the ‘strong association’.

Example:

Module 4-Key Management

 Certificate creation

LOCATION OF KEY PAIR AND CERTIFICATE CREATION

 Key pair generation and Certificate creation two separate processes here:

 Key pair generation can be performed either by the owner of the public-key pair or a

trusted third party (who may or may not be the CA).

The choice of location for this operation results in different certificate creation

scenarios:

 Trusted third party generation. In this scenario, a trusted third party (which could

be the CA) generates the public-key pair. If this trusted third party is not the CA then

they must contact the CA to arrange for certificate creation.

Advantages:

 The trusted third party may be better placed than the owner to conduct the relatively

complex operations involved in generation of the public-key pair.

 The key pair generation process does not require the owner to do anything.

Disadvantages:

Module 4-Key Management

 The owner needs to trust the third party to securely distribute the private key to the

owner;

 The owner needs to trust the third party to destroy the private key after it has been

distributed to the owner

 Combined generation. In this scenario, the owner of the key pair generates the

public-key pair. The owner then submits the public key to a CA for generation of the

public-key certificate.

Advantages:

 The owner is in full control of the key pair generation process;

 The private key can be locally generated and stored, without any need for it to be

distributed.

Disadvantages:

 The owner is required to have the ability to generate key pairs;

 The owner may need to demonstrate to the CA that the owner knows the private key

that corresponds to the public key submitted to the CA for certification

 Self-certification. In this scenario, the owner of the key pair generates the key pair

and certifies the public key themselves. Since a public-key certificate generated by a

CA provides ‘independent’ assurance of purpose of a public key, whereas self-

certification requires relying parties to trust in the assurance of purpose provided by

the owner of the public key. However, if relying parties trust the owner then this

scenario may be justifiable.

Examples:

 The owner is a CA; it is not uncommon for CAs to self-certify their own

public-keys.

 All relying parties have an established relationship with the owner and

hence trust the owner’s certification;

for example, a small organisation using a self-certified public key to

encrypt content on an internal website.

REGISTRATION OF PUBLIC KEYS

 If either trusted third-party generation or combined generation of a publickey pair

is undertaken then the owner of the public-key pair must engage in a registration

process with the CA before a public-key certificate can be issued.

 This is when the owner presents their credentials to the CA for checking.

Module 4-Key Management

 These credentials not only provide a means of authenticating the owner, but also

provide information that will be included in some of the fields of the public-key

certificate.

 Registration process that varies greatly between different applications.

In many application environments a separate entity known as a Registration Authority (RA)

performs this operation.

The roles of RA and CA can be separated for several reasons:

 Registration involves a distinct set of procedures that generally require an amount of

human intervention, whereas certificate creation and issuance can be automated.

 Checking the credentials of a public-key certificate applicant is the most complex part

of the certificate creation process.

o Centralised checking of credentials represents a major bottleneck in the process,

particularly for large organisations.

o Distributing the registration activities across a number of local RAs, which

perform the checking and then report the results centrally.

What credentials should be presented to the RA during registration?

Some examples of credentials:

 A very low level of public-key certificate might simply require a valid email address to

be presented at registration. The registration process might include checking that the

applicant can receive email at that address.

 Registration for public-key certificates for use in a closed environment, such as an

organisation’s internal business environment, might involve presentation of an

employee number and a valid internal email address.

 Commercial public-key certificates for businesses trading over the Internet might

require a check of the validity of a domain name and the confirmation that the applicant

business is legally registered as a limited company.

 Public-key certificates for incorporation into a national identity card scheme require a

registration process that unambiguously identifies a citizen. Credentials might include

birth certificates, passports, domestic utility statements, etc.

PROOF OF POSSESSION

If a public key and its certificate are created using combined generation then, strictly speaking,

it is possible for an attacker to attempt to register a public key for which they do not know the

Module 4-Key Management

corresponding private key. Such an ‘attack’ on a verification key for a digital signature

scheme might work as follows:

1. The attacker obtains a copy of Alice’s verification key. This is a public piece of information,

so the attacker can easily obtain this.

2. The attacker presents Alice’s verification key to an RA, along with the attacker’s legitimate

credentials.

3. The RA verifies the credentials and instructs the associated CA to issue a publickey

certificate in the name of the attacker for the presented verification key.

4. The CA issues the public-key certificate for the verification key to the attacker.

Problem:

o The attacker now has a public-key certificate issued in their name for a verification key

for which they do not know the corresponding signature key.

o A problem arises if Alice now digitally signs a message with her signature key, since

the attacker will be able to persuade relying parties that this is actually the attacker’s

digital signature on the message.

o This is because the attacker’s name is on a public-key certificate containing a

verification key that successfully verifies the digital signature on the message.

o This attack can be prevented if the CA conducts a simple check that the publickey

certificate applicant knows the corresponding private key.

o This type of check is referred to as proof of possession (of the corresponding private

key).

If the public key is an encryption key then one possible proof of possession is as follows:

 The RA encrypts a test message using the public key and sends it to the certificate

applicant, along with a request for the applicant to decrypt the resulting ciphertext.

 If the applicant is genuine, they decrypt the ciphertext using the private key and return

the plaintext test message to the RA. An applicant who does not know the

corresponding private key will not be able to perform the decryption to obtain the test

message.

GENERATING CA PUBLIC-KEY PAIRS

Public-key certificates involve a CA digitally signing the owner’s public key together with

related data. This in turn requires the CA to possess a public-key pair. This raises the question

of how assurance of purpose of the CA’s verification key will be provided.

Module 4-Key Management

Solution: is to create a public-key certificate for the CA’s public key.

But who will sign the public-key certificate of the CA?

The two most common methods of certifying the CA’s verification key are:

Use a higher-level CA. If the CA is part of a chain of CAs then the CA may choose to have

their public key certified by another CA.

Self-certification. A top-level CA has no choice other than self certification.

As an example, CAs who certify public keys that are used in web-based commercial

applications need to have their public-key certificates incorporated into leading web browsers,

or have them certified by a higher-level CA who has done this.

 Key pair change

REVOCATION OF PUBLIC-KEY CERTIFICATES

Withdrawing an existing public key is very difficult. This process is referred to as revoking the

public key. Revoking a public key essentially means revoking the public-key certificate.

REVOCATION TECHNIQUES

Three ways of Revocation of public-key certificates are:

Blacklisting.

 This involves maintaining a database that contains serial numbers of public-key

certificates that have been revoked.

 This type of database is referred to as a certificate revocation list (or CRL).

 These CRLs need to be maintained carefully, normally by the CA who is responsible

for issuing the certificates, with clear indications of how often they are updated.

 The CRLs need to be digitally signed by the CA and made available to relying parties.

Whitelisting.

 This involves maintaining a database that contains serial numbers of public-key

certificates that are valid.

 This database can then be queried by a relying party to find out if a public-key

certificate is valid.

An example is the Online Certificate Status Protocol (OCSP).

Rapid expiration. This removes the need for revocation by allocating very short lifetimes to

public-key certificates. This, of course, comes at the cost of requiring certificates to be reissued

on a regular basis.

Module 4-Key Management

Blacklisting is a common technique when real-time revocation information is not required.

There are many different ways of implementing the blacklisting concept, often involving

networks of distributed CRLs rather than one central CRL.

The main problem with blacklisting is one of synchronisation. i.e:

 Reporting delays between the time that a public-key certificate should be revoked (for

example, the time of a private key compromise) and the CA being informed;

 CRL issuing delays between the time that the CA is informed of the revocation of a

public-key certificate and the time that the next version of the CRL is signed and made

publicly available.

Thus a relying party could rely on a public-key certificate in the gap period between the time

the public-key certificate should have been revoked and the publication time of the updated

CRL. This issue must be ‘managed’ through suitable processes and procedures.

For example:

• The CA should inform all relying parties of the update frequency of CRLs.

• The CA should clarify who is responsible for any damage incurred from misuse of a public

key in such a gap period.

Address these issues by:

– the CA accepting limited liability during gap periods;

– relying parties accepting full liability if they fail to check the latest CRL before relying on a

public-key certificate.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

Cryptographic Applications

Cryptographic Applications are:

1. Cryptography on the Internet.

2. Cryptography for wireless local area networks.

3. Cryptography for mobile telecommunications.

4. Cryptography for secure payment card transactions.

5. Cryptography for video broadcasting.

 Cryptography on the Internet

 Cryptography on the internet uses SSL protocol.

 SSL is most important cryptographic protocols for establishing a secure network channel.

 The Internet is often modeled as a four-layer Internet Protocol Suite. SSL operates at the

Transport Layer of the Internet Protocol Suite, secure channels can also be established at

the higher Application Layer using the Secure Shell (SSH) protocol and at the lower

Internet Layer using the Internet Protocol Security (IPsec) suite.

 SSL was developed by Netscape in the mid-1990s for use with their Navigator browser. It

subsequently became the responsibility of the Internet Engineering Task Force (IETF).

 SSL security requirements

SSL is designed to establish a ‘secure channel’ between two entities. The main security

requirements are:

1. Confidentiality. Data transferred over the secure channel should only be accessible tothe

entities at either end of the channel, and not by any attacker who monitors the channel.

2. Data origin authentication. Data transferred over the secure channel should be integrity-

protected against an attacker who can conduct active attacks on the channel.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

3. Entity authentication. In order to set up the secure channel, it should be possible to

establish the identity of each communicating entity.

 Cryptography used in SSL

SSL uses a wide range of cryptographic primitives:

1. Public-key cryptography is used to enable symmetric key establishment.

2. Digital signatures are used to sign certificates and facilitate entity authentication.

3. Symmetric encryption is used to provide confidentiality.

4. MACs are used to provide data origin authentication and facilitate entity authentication.

5. Hash functions are used as components of MACs and digital signatures, and for key

derivation.

SSL supports a range of different algorithms, which include:

• Many well-known block ciphers, such as AES, normally in CBC mode.

• HMAC, implemented using a choice of well-known hash functions such as SHA-256.

• Digital signature algorithms such as RSA and DSA.

 SSL protocols

SSL consists of two cryptographic protocols:

1. Handshake Protocol. This protocol performs all the tasks that require agreement between

the two entities before they set up the secure SSL channel. This protocol can be used to:

 Agree on the cryptographic algorithms to be used to establish the secure Channel.

 Establish entity authentication.

 Establish the keys that will be needed to secure the channel.

2. Record Protocol. This protocol implements the secure channel. This includes:

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 Formatting the data.

 Computing MACs on the data.

 Encrypting the data.

SIMPLE SSL HANDSHAKE PROTOCOL DESCRIPTION

The message flow of the simplified SSL Handshake Protocol is indicated in Figure 12.1.

i. Client Request: This message from the client initiates the communication session and

requests the establishment of an SSL-protected channel. The client sends some data,

including:

o A session ID, which acts as a unique identifier for the session.

o a pseudorandom number rC , which will be used for the provision of freshness.

o a list of cipher suites that the client supports.

ii. Server Response: The server responds by sending some initialization data, including:

 the session ID.

 a pseudorandom number rS, which is the server’s freshness contribution to the
protocol.

 the particular cipher suite that the server has decided to use.

 a copy of the server’s public-key certificate, including details of any certificate chain

required to verify this certificate.

iii. Pre-master Secret Transfer:

The client now generates another pseudorandom number KP, which encrypts using

the server’s public key and sends to the server.

A) rC and rS are nonces used to provide freshness, hence they are not encrypted

when they are exchanged.

B) KP will be used to derive the keys that are used to secure the session. This

value KP is referred to as the pre-master secret and is a value known only by the

client and the server.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

iv. Client Finished: The client computes a MAC on the hash of all the messages sent thus

far. This MAC is then encrypted and sent to the server.

v. Server Finished: The server checks the MAC received from the client. The server then

computes a MAC on the hash of all the messages that have been sent. This MAC is then

encrypted and sent to the client. The client checks the MAC received from the server.

ANALYSIS OF THE SIMPLE SSL HANDSHAKE PROTOCOL

The simple SSL Handshake Protocol achieves its three main goals:

Agreement of cryptographic algorithms. This is achieved at the end of the second protocol

message, when the server informs the client which cipher suite has been selected from the list

provided by the client.

Entity authentication of the server. This relies on the following argument, assuming that the

protocol run has been successful and that all checks (including certificate validity checks) have

been correctly made:

1. The entity who sent the Server Finished message must know the master secret KM, since

the final check was correct and relied on knowledge of KM.

2. Any entity other than the client who knows KM must also know the pre-master secret KP ,

since KM is derived from KP .

Module 5 : CRYPTOGRAPHIC APPLICATIONS

3. Any entity other than the client who knows KP must know the private decryption key

corresponding to the public-key certificate sent in the message Server Response, since this

public key was used to encrypt KP in the message Pre- master Secret Transfer.

4. Theonlyentitywith the ability to use the privatedecryptionkey is the genuine server, since the

public-key certificate provided by the server in the message Server Response was checked

and found to be valid.

5. The server is currently ‘alive’ because KM is derived from fresh pseudorandom values (KP

andrC)generatedbytheclientandthuscannotbeanoldvalue.

Key establishment. SSL establishes several keys, as we will shortly discuss. These are all derived

from the master secret KM, which is a value that is established during the SSL Handshake

Protocol. The master secret is derived from the pre-master secret KP, which is a value that only the

client and the server know.

SSL HANDSHAKE PROTOCOL WITH CLIENT AUTHENTICATION

The simple SSL Handshake Protocol does not provide mutual entity authentication, only entity

authentication of the server. This is reasonable because many applications do not require client

authentication at the network layer where SSL is deployed.

For example, when a user purchases goods from an online store, the merchant may not care

about who they are communicating with, so long as they get paid at the end of the transaction. In

this scenario, client authentication is more likely to be performed at the application layer, perhaps

by using a password-based mechanism.

The simple SSL Handshake Protocol can be modified by adding an extra message from the client

to the server after the message Pre-master Secret Transfer, as follows:

Client Authentication Data:

The client sends a copy of its public-key certificate to the server. The public key in this certificate

is used as a verification key. The certificate includes any details of the certificate chain required

for verification. In addition, the client hashes all the protocol messages so far and digitally signs

the hash using the client’s signature key.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

The server should now check that the client’s public-key certificate (chain) is valid. The server

should also verify the client’s digital signature. If these checks are successful then the server has

entity authentication assurance of the client by the following argument:

1. The entity who sent the Client Authentication Data message must know the signature key

corresponding to the public key in the client’s certificate, since the digital signature verified

correctly.

2. The only entity who knows the signature key is the genuine client, since the public-key

certificate provided by the client was checked and found to be valid.

3. The client is currently ‘alive’ because the digital signature was computed on a hash of some

data that included the fresh pseudorandom value rS generated by the server, and thus cannot be a

replay.

SSL RECORD PROTOCOL

The SSL Record Protocol is the protocol used to instantiate the secure channel after the SSL

Handshake Protocol has successfully completed. Before running the SSL Record Protocol, both

the client and the server derive the cryptographic data that they will need to secure the session.

This includes symmetric session keys for encryption, symmetric MAC keys and any required IVs.

These are all generated using a key derivation function to compute a key block. This key

derivation function uses KM as a key and takes as input, amongst other data, rC and rS. The key

block is then ‘chopped up’ to provide the necessary cryptographic data. In particular, the

following four symmetric keys are extracted from the key block:

• KECS for symmetric encryption from the client to the server;

• KESC for symmetric encryption from the server to the client;

• KMCS for MACs from the client to the server;

• KMSC for MACs from the server to the client.

The SSL Record Protocol specifies the process for using these keys to protect traffic exchanged

between the client and the server. For example, for data sent from the client to the server, the

process is:

Module 5 : CRYPTOGRAPHIC APPLICATIONS

1. compute a MAC on the data (and various other inputs) using key KMCS;

2. append the MAC to the data and then pad, if necessary, to a multiple of the block length;

3. encrypt the resulting message using key KECS.

Upon receipt of the protected message, the server decrypts it using KECS and then verifies the

recovered MAC using KMCS.

 SSL key management KEY

MANAGEMENT SYSTEM

SSL essentially relies on two ‘separate’ key management systems:

Public-key management system. Since SSL is designed for use in open environments, it relies

on an external key management system that governs the public-key pairs that are required by SSL

users. This key management system is beyond the scope of an SSL specification and is relied on

to establish and maintain publickey certificates and information concerning their validity. If this

system fails then the security provided by SSL is undermined.

Symmetric key management system. Within SSL is a self-contained symmetric key

management system. SSL is used to generate symmetric sessions keys, which are designed to

have limited lifetimes.

KEY GENERATION

There are two types of keys deployed in SSL:

Asymmetric keys. These are generated using the public-key management system, which is not

governed by the specification of SSL.

Symmetric keys. These are all generated within SSL. The session keys are all derived from the

master secret that is established following the SSL Handshake Protocol. Key derivation is a

suitable technique for key generation because:

 it is a lightweight key generation technique, which does not impose significant overheads;

 it allows several different session keys to be established from just one shared secret;

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 as the SSL Handshake Protocol is relatively expensive to run (it requires the use of public-

key cryptography), the shared master secret can be used to establish several batches of

session keys, should this be desirable.

KEY ESTABLISHMENT

The most important key establishment process in SSL is the establishment of the pre-master

secret during the SSL Handshake Protocol. Probably the most common technique for

conducting this is to use RSA public-key encryption during the protocol message Pre-master

Secret Transfer. However, a variant based on Diffie–Hellman is also supported by SSL.

KEY STORAGE

Key storage is beyond the scope of SSL, but it relies on both the client and the server securely

storing relevant secret keys. The most sensitive keys to store are the private keys, since they are

relied upon across multiple SSL sessions. In contrast, the symmetric keys negotiated during the

SSL Handshake Protocol are only used for a relatively short period of time. Nonetheless, if they

are compromised then so are any sessions that they are used to protect.

KEY USAGE

Separate encryption and MAC keys are derived from the master secret, which are then used to

establish the secure channel. However, SSL takes this principle a step further by deploying

separate keys for each communication direction, which provides security against reflection

attacks. The cost of this is low because these separate keys are derived from the common master

secret.

 SSL security issues

1. Process failures. The most common ‘failure’ of SSL arises when a client does not perform

the necessary checks to validate the server’s public-key certificate.

 A web user who is presented with a dialogue box warning them of their browser’s

inability to verify a public-key certificate is quite likely to disregard it and proceed

with establishing an SSL session.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 A particularly common manifestation of this problem on the Internet is when a

rogue webserver, holding a legitimate public-key certificate in it so wnname,tries to

pass itself off as another webserver.

 Even if the client web browser successfully verifies the rogue webserver’s certificate

chain, if the client does not notice that the public-key certificate is not in the name of

the expected webserver then the rogue webserver will succeed in establishing an

SSL protected channel with the client.

 This is an entity authentication failure because the client has succeeded in setting up

an SSL session, but it is not with the server that they think it is with.

 This failure is often exploited during phishing attacks.

 It is a failure in the surrounding processes that support the protocol. In this case the

client has failed to conduct a protocol action (validating the server’s certificate

chain) with a sufficient degree of rigour.

2 Implementation failures.

Because it is an open protocol that can be adopted for many different applications, on

different platforms, by anyone, SSL is particularly vulnerable to implementation

failures. Even if the protocol specification is followed correctly, it could fail if a

supporting component is weak.

For example, if the client uses a weak deterministicgenerator to generate the pre-

master secret KP then the protocol can be compromised because the session keys become

too predictable.

3 Key management failures. If either the client or the server mismanages their

cryptographic keys then the protocol can be compromised.

For example, if an attacker obtains the server’s private key then the attacker can recover

the pre-master secret. The attacker can then compute all the resulting session keys and

hence undermine any secure channel that these session keys are used to establish.

4 Usage failures. SSL has such a high profile that it runs the risk of being used

inappropriately. Alternatively it may be appropriately deployed, but its security properties

overestimated under the misapprehension that use of SSL ‘guarantees’ security.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

SSL design issues

Support for a range of publicly known cryptographic algorithms.

Since SSL(in this case were ally mean TLS) is an open standard targeted at wide-scale

public use, it is fundamental that it supports not just publicly known algorithms, but a range

of publicly known algorithms. This supports cross-platform use and has helped to foster

confidence in SSL as a protocol.

Flexibility. SSL is not only flexible in terms of the components that can be used to implement

it, but it is also flexible in the ways in which it can be used (for example, to provide

unilateral or mutual entity authentication). This, again, is because SSL has been targeted at a

wide range of application environments.

Minimal use of public-key operations. The use of hybrid encryption restricts the number of

public-key operations to the minimum necessary to establish a secure channel. Although we

have not discussed this in any detail, SSL is also designed so that the relatively expensive

SSL Handshake Protocol may not need to be rerun if a client requires another session with

the same server within a specified time period.

Unbalanced computational requirements: In the SSL Handshake Protocol it is the client who

is required to generate the pre-master secret and send it encrypted to the server. This means that

the client performs one public- key encryption operation and the server performs one public-key

decryption operation. Onereason for this is that some public-key cryptosystems, and RSA is a

good example, have certain public keys that are considerably more computationally efficient

to use than others.

 Cryptography for wireless local area networks

 WLAN background

Module 5 : CRYPTOGRAPHIC APPLICATIONS

A simple WLAN architecture is shown in Figure 12.2.

 A wireless access point is a piece of hardware that acts as a bridge between the wireless

network and a wired network (for example, the wired network that delivers a connection

to the Internet from a home).

 The access point consists of a radio, an interface with the wired network and bridging

software.

 A device is any computer (for example, a desktop PC, laptop or PDA) which has a

wireless network interface card that allows it to communicate over a wireless network.

 A WLAN may consist of many devices all communicating with the one access point, or

indeed may involve several different access points.

 The original 802.11 standard defined the Wired Equivalent Privacy (WEP) mechanism to

protect WLAN communication. WEP was designed to provide security at the data link

layer, which means that it operates at a virtual networking layer that is close to being the

equivalent of physical wires in a wired network.

 An improved security mechanism known as Wi-Fi Protected Access (WPA) was designed

as a solution.

 WLAN security requirements

The security requirements for a WLAN are:

Confidentiality. Data transferred over the WLAN should be kept confidential..

Mutual entity authentication. Communicating entities can identify one another when setting up

a WLAN connection. This is motivated by the fact that a degree of inherent (very weak) ‘entity

authentication’ is provided by physical wires, but there are no such guarantees once we are in a

wireless environment.

Data origin authentication. The source of all data transferred over the WLAN should be

assured. This is because an attacker could easily modify data transmitted during a WLAN session

after the initial entity authentication has been conducted. The original WLAN security standard

WEP only provides a weak level of data integrity, which is not good enough.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 WEP

There are three cryptographic design decisions that are common to all of the WLAN security

mechanisms

• Since WLANs may be comprised of many different types of device, from different

manufacturers, it is important that the cryptography used in a WLAN is widely available. Hence

it would not be wise to deploy proprietary cryptographic algorithms.

• Since these mechanisms are dedicated to WLAN security and do not require the full flexibility

of the likes of SSL, it makes sense to decide which cryptographic algorithms to use in advance

and then deploy them universally, rather than require an expensive equivalent of the SSL

Handshake Protocol to negotiate them.

• Since speed and efficiency are important, and WLANs are usually linked to some sort of fixed

infrastructure, symmetric cryptography is a natural choice.

CONFIDENTIALITY AND INTEGRITY MECHANISMS IN WEP

The first WEP design decision was to use a shared, fixed symmetric key in each WLAN. This

same key is used by all devices, for several different purposes, when communicating using a

WEP-secured WLAN. This almost eliminates any issues regarding key establishment, however, it

introduces considerable risks. In particular, if one of the devices is compromised then this key

may become known to an attacker, and hence the entire network will be compromised. The

original version of WEP only used a 40-bit key, but later adaptations allow much longer keys.

One problem with deploying a stream cipher such as RC4 is the need for synchronisation,

especially in a potentially noisy channel such as a wireless one. Thus WEP requires each packet

of data to be encrypted separately, so that loss of a packet does not affect the rest of the data

being sent. This introduces a new problem. the negative consequences of re-using keystream for

more than one plaintext. It follows that WEP requires a mechanism for making sure that the same

keystream is not reused for subsequent packets.

The solution to this problem in WEP was to introduce an initialisation vector (IV), which just

like the IVs used in several of the modes of operation of a block cipher, varies each time the WEP

key is used to encrypt a packet. However, RC4 does not easily allow an IV to be incorporated

into the encryption process, hence the WEP IV is directly appended to the key. In this way WEP

defines a ‘per-packet’ key, which consists of a 24-bit IV appended to the WEP key. If Alice

Module 5 : CRYPTOGRAPHIC APPLICATIONS

wants to set up a secure WLAN connection with Bob, based on the shared, fixed WEP key K, the

encryption process for each packet of data to be sent is depicted in Figure 12.3 and is as follows.

ENTITY AUTHENTICATION IN WEP

The WEP entity authentication technique is very simple. It is based on the challenge–response

principle If Alice (a device) wants to identify herself to Bob (a wireless access point):

1. Alice sends a request to authenticate to Bob;

2. Bob sends a nonce rB to Alice;

3. Alice uses WEP encryption to encrypt rB (importantly for later, note from our above

explanation of the WEP encryption process that this also involves Alice generating an IV that is

used to ‘extend’ the WEP key).

4. Alice sends the IV and the resulting ciphertext to Bob;

5. Bob decrypts the ciphertext and checks that it decrypts to rB; if it does, he authenticates Alice.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 Attacks on WEP

WEP KEY MANAGEMENT WEAKNESSES

There are several serious problems with WEP key management:

 Use of a shared fixed key: The WEP key K acts as an overall ‘master key’ for the

WLAN and, as such, is a single point of failure. If the WEP key can be compromised

(and it suffices that this compromise arises on just one of the entities forming the WLAN)

and an attacker learns the WEP key then the entire WLAN security is compromised.

 Exposure of the WEP key. In its role as a master key, the WEP key is unnecessarily

‘exposed’ through direct use as a component of an encryption key. It is also exposed in

this way each time an authentication attempt is made.

 No key separation.WEP abuses the principle of key separation by using the WEP key for

multiple purposes.

 Key length. While WEP does allow the WEP key length to vary, the smallest RC4 key

length is 40 bits, which is far too short to be secure against contemporary exhaustive key

searches. Many WEP implementations allow WEP keys to be generated from passwords

which, if not long enough, reduce the effective keyspace that an attacker needs to search.

WEP ENTITY AUTHENTICATION WEAKNESSES

Attacks concerning the entity authentication mechanism.

Rogue wireless access point. WEP only provides unilateral entity authentication from a device

(Alice) to a wireless access point (Bob). This means that an attacker could set up a rogue access

point and allow Alice to authenticate to it, without Alice realising that she was not dealing with

the genuine access point.

Lack of session key. WEP does not establish a session key during entity authentication that is

later used to protect the communication session. As a result, WEP entity authentication is only

valid for the ‘instant in time’ at which it is conducted. WEP thus suffers from the potential for a

‘hijack’ of the communication session.

Keystream replay attack. Another serious problem is that there is no protection against replays

of the WEP authentication process. An attacker who observes Alice authenticating to Bob is able

Module 5 : CRYPTOGRAPHIC APPLICATIONS

to capture a plaintext (the challenge rB and its CRC checksum) and the resulting ciphertext (the

encrypted response). Since WEP uses the stream cipher RC4, the keystream can be recovered by

XORing the plaintext to the ciphertext. We will denote this keystream by KS(IV || K), since it is

the keystream produced by RC4 using the encryption key IV || K. Good stream ciphers are

designed to offer protection against an attacker who knows corresponding plaintext/ciphertext

pairs, and hence can recover keystream from this knowledge. However, this relies on the same

keystream not being reused in a predictable manner . This is where WEP fails, since the attacker

can now falsely authenticate to Bob as follows (and depicted in Figure 12.4):

This attack works because WEP allows the attacker to ‘force’ Bob to use the same IV that Alice

used in the genuine authentication session, and hence use the same encryption key IV || K, which

in turn validates the use of the previous keystream. Of course, having authenticated to the access

point, the attacker cannot do much more since the attacker still does not know the WEP key K

and hence cannot perform valid encryptions and decryptions. Nonetheless, the authentication

process has been successfully attacked.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 WPA and WPA2

MUTUAL ENTITY AUTHENTICATION AND KEY ESTABLISHMENT

In order to avoid all the problems relating to use of a shared, fixed WEP key, a key hierarchy is

employed. The top key in this key hierarchy is known as the pairwise master key PMK, which is

a key that is shared between a device and a wireless access point. There are two ways in which

this key PMK can be established:

1. During an AKE protocol that is run between a device and a central authentication server. Both

WPA and WPA2 support the use of a central authentication server to provide authentication in a

way that is scalable and can be tailored to fit the needs of the specific application environment. A

wide range of authentication techniques are supported by the Extensible Authentication Protocol

(EAP), which is a suite of entity authentication mechanisms that includes methods that deploy

SSL to secure a connection to an authentication server.

2. As a pre-shared key that is programmed directly into the device and the wireless access point.

This is most suitable for small networks. The most common method for generating PMK is by

deriving it from a password. Any users requiring access to the WLAN must be made aware of

this password. A home user who purchases a wireless router may be provided with a (weak)

default password from the manufacturer or service provider. It is important that this is changed on

first installation to something less predictable.

The master key PMK is also used to derive session keys using the following AKE protocol that

runs between Alice (a device) and Bob (a wireless access point) and is shown in Figure 12.5:

1. Alice generates a nonce rA and sends rA to Bob.

2. Bob generates a nonce rB. Bob then uses rA, rB and PMK to derive the following four 128-bit

session keys:

• an encryption key EK;

• a MAC key MK;

• a data encryption key DEK;

• a data MAC key DMK

3. Bob then sends rB to Alice, along with a MAC computed on rB using MAC key MK.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

4. Alice uses rA, rB and PMK to derive the four session keys. She then checks the MAC that she

has just received from Bob.

5. Alice sends a message to Bob stating that she is ready to start using encryption. She computes

a MAC on this message using MAC key MK.

6. Bob verifies the MAC and sends an acknowledgement to Alice.

12.2.7

WLAN

design

issues

The main cryptographic design issues concerning WLAN security are as follows:

 Use of symmetric cryptography. This is a sensible decision because WLANs transfer

bulk traffic between networked devices, hence speed of encryption is important. For small

networks, such as a home network, key establishment is straightforward. Larger enterprise

WLANs may optionally choose to use public-key mechanisms as part of the initial

authentication between a device and a central authentication server, but the core WPA2

security protocol CCMP uses only symmetric cryptography.

 Use of recognised cryptographic mechanisms. This was not adhered to in WEP, where

the cryptographic design was rather ad hoc. WEP thus provides a useful lesson regarding

the potential folly of adopting unconventional mechanisms. In contrast, WPA2 adopts

more widely accepted cryptographic mechanisms.

 Flexibility, but only when appropriate. While WLANs may be deployed in quite

different environments, they do not require the same cryptographic flexibility as open

applications such as SSL. Thus it makes sense to ‘lock down’ the cryptographic

mechanisms, where appropriate. WPA2 does this for the confidentiality and data origin

authentication services. However, WPA2 allows for flexibility in choosing the initial

Module 5 : CRYPTOGRAPHIC APPLICATIONS

entity authentication mechanism (between the device and a centralised authentication

server), recognising that different environments may well have different approaches to

identifying network users.

 The potential need to cater for migration. When the flaws in WEP became apparent, it

was clear that due to the difficulty of upgrading a widely deployed technology, any

complete redesign of the WLAN security mechanisms could not be rolled out quickly. It

was thus necessary to design a ‘fix’ that was based on the existing cryptographic

mechanisms, which would provide ‘good enough’ security. The ‘fix’ is WPA, which is

based on RC4. The ‘complete redesign’ is WPA2, which is based on AES.

 Cryptography for mobile telecommunications

 GSM and UMTS background

 The shift from analogue to digital communications brought with it the opportunity to use cryptographic

techniques to provide security. In doing so, the development of the Global System for Mobile

Communication (GSM) standard by the European Telecommunications Standards Institute (ETSI) brought

security to mobile telecommunications.

 Third generation, or 3G, mobile phones are characterised by higher data transmission rates and a much

richer range of services. The enhanced security of GSM’s successor for 3G phones, the Universal Mobile

Telecommunications System (UMTS).

 The basic architecture of a mobile telecommunications network is shown in Figure 12.6. The network is

divided into a large number of geographic cells, each of which is controlled by a base station. A mobile

phone first connects with its nearest base station, which directs communications either to the home network

of the mobile phone user or to other networks in order to transfer call data.

 GSM security requirements

Module 5 : CRYPTOGRAPHIC APPLICATIONS

The following are the specific security requirements:

 Entity authentication of the user. Mobile operators need to have strong assurance of the

identity of users connecting with their services in order to reduce fraud. This issue is

much simpler to deal with in traditional telephone networks, since a user needs to have

physical access to the end of a telephone wire in order to use the services.

 Confidentiality on the radio path. In simple terms, a mobile connection passes ‘over the

air’ (the radio path) between the handset and a base station, after which it is passed

through a switching centre and enters the traditional PSTN (see Figure 12.6). Thus in

order to provide ‘PSTN-equivalent security’, the main link for which GSM needs to

provide additional security is the radio path. Since this path is easily intercepted by

anyone with a suitable receiver it is necessary to provide confidentiality on this radio path.

 Anonymity on the radio path. GSM provides a degree of anonymity (confidentiality of

the identity of users) on the radio path in order to prevent an attacker from linking the

source of several intercepted calls. This is handled by using temporary user identities for

each call, rather than permanent ones.

 Cryptography used in GSM

The main cryptographic design decisions for GSM were:

 A fully symmetric cryptographic architecture.GSM is an entirely closed system. All

key material can be loaded onto the necessary equipment prior to it being issued to

users, so there is no need to use public-key cryptography for this purpose.

 Stream ciphers for data encryption. The requirement for fast real-time encryption

over a potentially noisy communication channel means that, a stream cipher is the most

appropriate primitive.

 Fixing the encryption algorithms. It is necessary that the mobile operators agree on

which encryption algorithms to use, so that the devices on which they operate can be

made compatible with one another. However, other cryptographic algorithms, such as

those used in GSM authentication, donot have to be fixed. In the case of authentication,

an individual mobile operator is free to choose the cryptographic algorithm that it

Module 5 : CRYPTOGRAPHIC APPLICATIONS

deploys to authenticate its own users(since users of another mobile operator are not

directly impacted by this decision).

 Proprietary cryptographic algorithms. The designers of GSM chose to develop some

proprietary cryptographic algorithms, rather than use open standards. While the use of

proprietary algorithms is not wise in many application environments, in the case of

GSM there were three factors that favoured at least considering this option:

 GSM is a closed system, hence deploying proprietary algorithms is feasible.

 ETSI have a degree of cryptographic expertise, and maintain links with the open research

community.

 The need for fast real-time encryption means that an algorithm designed explicitly to run

on the hardware of a mobile phone will probably perform better than an ‘off-the-shelf’

algorithm.

SIM: The fundamental component involved in GSM security is the Subscriber Identification

Module (SIM) card, which is a smart card that is inserted into the mobile phone of the user.

This SIM card contains all the information that distinguishes one user account from another.

As a result, a user can potentially change phone equipment simply by removing the SIM

and inserting it into a new phone. The SIM contains two particularly important pieces of

information:

1. The International Mobile Subscriber Identity (IMSI), which is a unique number that maps

a user to a particular phone number;

2. A unique 128-bit cryptographic key Ki, which is randomly generated by the mobile

operator.

These two pieces of data are inserted onto the SIM card by the mobile operator before the SIM

card is issued to the user. The key Ki forms the basis for all the cryptographic services relating to

the user. The SIM card also contains implementations of some of the cryptographic algorithms

required to deliver these services.

GSM AUTHENTICATION

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 Entity authentication of the user in GSM is provided using a challenge–response protocol,

This is implemented as part of an AKE protocol, which also generates a key Kc for

subsequent data encryption.

 GSM does not dictate which cryptographic algorithms should be used as part of this AKE

protocol, but it does suggest one candidate algorithm and defines the way in which

algorithms should be used.

 As indicated in Figure12.7, an algorithm A3 is used in the challenge–response protocol and

an algorithm A8 is used to generate the encryption key Kc.

 Both of these algorithms can be individually selected by the mobile operator and are

implemented on the SIM and in the operator’s network.

 Both A3 and A8 can be loosely considered as types of key derivation function, since their

main purpose is to use Ki to generate pseudorandom values.

The notation A3K (data) to denote the result of computing algorithm A3 on the input data using

key K (the notation A8K (data) should be similarly interpreted). If Alice (a mobile) is able to

directly authenticate to Bob (the authentication centre of a mobile operator) then the GSM AKE

protocol is as follows:

1. Alice sends an authentication request to Bob.

2. Bob generates a 128-bit randomly generated challenge number RAND and sends it Alice.

3. Alice’s SIM card uses Ki and RAND to compute a response RES using algorithmA3:

RES = A3Ki (RAND).

The response RES is sent back to Bob.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

4. Bob, who maintains a database of all the user keys, selects the appropriate key Ki for Alice

and then computes the expected response in the same way. If the result matches the

received RES then Alice is authenticated.

5. Alice and Bob both use Ki and RAND to compute an encryption key Kc using algorithm

A8:

Kc = A8 Ki (RAND).

This simple protocol relies on the belief that only the mobile user and the mobile operator

authentication centre can possibly know the key Ki that has been installed on the user’s SIM

card.

GSM ENCRYPTION

 While authentication is a service that is ‘private’ to a mobile user and their mobile operator,

encryption must be provided using a mechanism that is common to all mobile operators, in

order to facilitate cross-network calls.

 Thus the encryption algorithm A5/1 is fixed by the GSM standard (in fact GSM offers three

different versions of A5, but A5/1 is the most commonly deployed). As indicated in Figure

12.7, it is implemented on the mobile phone itself, not the SIM card, since the phone has

more computation power than the SIM.

 The A5/1 algorithm is a stream cipher with a 64-bit key. It was designed toibmeplemented

very efficiently in the hardware of a mobile phone.

 In GSM, A5/1 is used to encrypt all radio path communication (both signalling

information and the message data) using the key Kc. Potentially, this key maybe freshly

generated each time a user makes a mobile call.

 Encryption is also used to protect the transfer of temporary identification numbers,

which are used instead of the IMSI to provide user anonymity.

FACILITATING GSM ROAMING

Scenario : when a mobile user is traveling outside the area serviced by their mobile operator,

for example, overseas (this is referred to as roaming). Although different mobile operators are in

some sense part of a wider ‘closed’ GSM network, they are still individual businesses with their

Module 5 : CRYPTOGRAPHIC APPLICATIONS

own private user relationships. It would thus be unacceptable for one operator to share its

security critical data (particularly key Ki) with another for the purpose of facilitating roaming.

On the other hand, it is equally unacceptable from a practical perspective for every

authentication request from a roaming user to be referred back to the user’s mobile operator,

since this might result in extensive delays.

Solution: GSM has a solution to this problem, through the use of authentication triplets. When a

roaming mobile user Alice first connects with Charlie, a local mobile operator with whom she

has no direct business relationship, the following procedure is followed:

 UMTS

The main cryptographic improvements over GSM are as follows:

 Mutual entity authentication. GSM offers entity authentication only of the mobile user.

Since the development of GSM, so-called false base station attacks have become much

more feasible due to reductions in the costs of suitable equipment. In one example of such

an attack, a mobile user connects to the false base station, which immediately suggests to

Module 5 : CRYPTOGRAPHIC APPLICATIONS

the user that encryption is turned off. By additionally requiring the user to authenticate to

the mobile base station, such attacks are prevented.

 Prevention of triplet reuse. A GSM triplet can be reused many times for the particular

mobile that it was generated for. In UMTS this is prevented by upgrading authentication

triplets to quintets, which additionally include a sequence number that prevents successful

replay and a MAC key.

 Use of publicly known algorithms. UMTS adopts cryptographic algorithms based on

well-established and well-studied techniques. While it does not quite use ‘off-the-shelf’

algorithms, due to the desire to tailor algorithms to the underlying hardware, the algorithms

deployed are very closely based on standard algorithms and the modifications have been

publicly evaluated.

 Longer key lengths. Following the relaxation of export restrictions that were in place at

the time of GSM development, the key lengths of the underlying cryptographic algorithms

were increased to 128 bits.

 Integrity of signalling data. UMTS provides additional integrity protection to the critical

signalling data. This is provided using a MAC, whose key is established during the UMTS

authentication (AKE) protocol.

 GSM and UMTS key management

KEY MANAGEMENT SYSTEM

GSM and UMTS have an entirely symmetric key management system, facilitated by the fact

that a mobile operator is completely in control of all keying material relating to their users.

Underlying key management system as a very simple key hierarchy with the user keys K i acting

as individual user ‘master keys’ and the encryption keys Kc acting as data (session) keys.

KEY GENERATION

The user keys Ki are randomly generated, normally by the SIM manufacturer (on behalf of the

mobile operator) using a technique of their choice. The encryption keys Kc are derived from the

user keys Ki, using the mobile operator’s chosen cryptographic algorithm.

KEY ESTABLISHMENT

Module 5 : CRYPTOGRAPHIC APPLICATIONS

The establishment of user key Ki is under the control of the SIM manufacturer (on behalf of the

mobile operator) who installs Ki on the user’s SIM card before it is issued to the user. The

significant key management advantage that is being exploited here is that a mobile service has

no utility until a customer obtains a physical object from the mobile operator (in this case a SIM

card), hence key establishment can be tied to this process. The keys Kc are established during the

AKE protocol used for entity authentication. It is clearly very important that the SIM

manufacturer transfers all the keys Ki to the mobile operator using highly secure means, perhaps

in the form of an encrypted database.

KEY STORAGE

The critical user keys Ki are stored in the hardware of the user’s SIM card, which offers a

reasonable degree of tamper-resistance. Only the encryption key Kc, and in UMTS a MAC key

derived from Ki, leave the SIM card. These are session keys that are discarded after use.

KEY USAGE

Both GSM and UMTS enforce a degree of key separation by making sure that the long-term

user key Ki is only ever indirectly ‘exposed’ to an attacker through its use to compute the short

responses to the mobile operator’s challenges. The key Kc that is used for bulk data encryption,

and is thus most ‘exposed’ to an attacker, is a derived key that is not used more than once. In

UMTS, separate keys for encryption and MACs are derived from Ki. The use of a SIM also

makes key change relatively straightforward.

12.3.7 GSM and UMTS design issues

The main design issues emerging from our study of GSM and UMTS are the following:

Use of symmetric cryptography. The closed nature of the application environment lends itself

to adoption of a fully symmetric solution. The properties of stream ciphers are highly suited to

mobile telecommunications.

Adaptation to evolving constraints. GSM was designed under several constraints, including

cryptographic export restrictions and the apparent lack of a need for mobile operator

authentication. As the environment determining these constraints evolved, the redesigned

security mechanisms of UMTS took these into account.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

Shift from proprietary to publicly known algorithms. Mobile telecommunications provide a

plausible environment for the adoption of proprietary cryptographic algorithms. However,

subsequent weaknesses in some of the original GSM algorithms may well have influenced the

use of publicly known algorithms in UMTS.

Flexibility, but only when appropriate. GSM and UMTS only prescribe particular

cryptographic algorithms when this is essential, leaving a degree of flexibility to mobile

operators. That said, in UMTS mobile operators are strongly encouraged to follow central

recommendations.

 Cryptography for secure payment card transactions

 Financial sector organisations are the most established commercial users of cryptography.

 They oversee global networks that use cryptographic services to provide security for

financial transactions.

 Background to payment card services

A payment card organisation (PCO), such as Visa and MasterCard, essentially operates as a

‘club’ of member banks who cooperate in order to facilitate transactions. Figure 12.8 indicates

the key players in this cooperative organisation. Issuing banks issue payment cards to

customers. Acquiring banks have relationships with merchants of goods. PCOs run networks

that connects these banks and facilitate payments from issuing bank customers to acquiring

bank merchants. The two main uses of a payment card network are to:

1. Authorize payments;

2. Arrange clearing and settlement of payments.

PCOs oversee the use of both credit and debit cards. The main difference between the two is

the process by which the issuing bank decides to bill the customer. From a cryptographic

perspective we will not distinguish between these two types of payment card.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 Magnetic stripe cards

Most payment cards have magnetic stripes. Even payment cards with chips often retain the

magnetic stripe and may resort to using it when they are deployed in environments that do not

support EMV. The following description of cryptography used by magnetic stripe cards is

based on the practices of Visa and MasterCard.

PIN PROTECTION

Consider example of cryptography being used by payment cards concerns online authentication

of a user who inserts their magnetic stripe payment card into an ATM. Before releasing any

funds, the ATM needs to know whether the user is genuine and whether they are entitled to

make the requested withdrawal.

The process begins when the user is asked to enter their PIN into the ATM. The ATM

clearly cannot verify this PIN on its own, so it needs to refer the PIN to the user’s issuing bank.

Since PINs are sensitive, this information should be encrypted. It is impractical for every ATM

to share an encryption key with every issuing bank, so a process of key translation is used:

 The ATM encrypts the PIN and the authentication request message using a key shared by

the ATM and the acquiring bank responsible for that ATM (each ATM should have a

unique key of this type).

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 The acquiring bank decrypts the cipher text and then re-encrypts it under a key known as

the acquirer working key, which is a key shared by the acquiring bank and the PCO.

 The PCO decrypts the cipher text and re-encrypts it using an issuer working key, which is

a key that the PCO shares with the issuing bank.

 The issuing bank decrypts the cipher text and makes the necessary checks of the PIN and

the authentication request message. The response is then relayed back to the ATM.

It would be dangerous simply to encrypt the PIN directly during this process, since the

limited number of PINs will result in a limited number of possible cipher texts representing

encrypted PINs. If the same key were to be used to encrypt several PINs then an attacker could

conduct a dictionary attack that matched a cipher rtext representing an unknown PIN against a

‘dictionary’ of cipher rtexts corresponding to known PINs. This threat is prevented by two

important mechanisms:

Use of a PIN block. The PIN is never encrypted directly. Instead a PIN block is formed, one

example of which consists of a 64-bit string containing the PIN being XORed to a 64-bit

string containing the Personal Account Number (PAN) corresponding to the card. This means

that two cards with the same PIN will not be encrypted to the same ciphertext under the same

encryption key.

Session key encryption. Further security is provided by ensuring that ATMs use session keys,

which are generated for a single PIN encryption event and then destroyed.

CARD VERIFICATION VALUES

 One major problem with magnetic stripe cards is that they are relatively easy to clone.

 Early payment cards only included routine information such as the PAN and expiry date on

the magnetic stripe. Since this information is easily obtained by a potential attacker (most of

it is even displayed on the card itself, or can be obtained from receipts), it was very easy for

an attacker to forge such a card.

 The problem was alleviated by the inclusion of a cryptographic value known as the

Card Verification Value (CVV) on the magnetic stripe .

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 The CVV consists of three digits that are extracted from a hex ciphertext, which is

computed by encrypting the routine card information using a key known only to the

issuer. The CVV is not displayed on the card and can only be created and verified by the

card issuer.

 The CVV can be obtained by an attacker who has read off all the informatiocnontained on

the magnetic stripe, for example, a rogue merchant.

 Payment cards thus include a second CVV value, CVV2, which is a cryptographic

value computed in a similar (but slightly different) way to the CVV.

 The CVV2 is displayed on the reverse of the payment card, but is not included in the

magnetic stripe. The CVV2 is primarily used as a simple check of the physical presence

of a card, particularly in transactions made over the telephone or online.

PIN VERIFICATION VALUE

 In order to improve availability, PCOs also provide a service which allows PINs to be

verified when the card issuer is unable to process PIN verification requests.

 This is conducted using a PIN Verification Value (PVV), which is computed in a similar

way to the CVVs, except that the PIN itself forms part of the plaintext that is encrypted in

order to generate the PVV.

 The issuing bank needs to share the key that it uses to compute this PVV with the PCO.

 The PVV is four digits long, so that its security is ‘equivalent’ to that of the PIN itself.

 Like the CVV, the PVV is normally stored on the magnetic stripe but not displayed on the

card. During a PIN verification request, the PCO recomputes the PVV using the PIN that has

been offered by the customer and checks whether this value matches the PVV on the

magnetic stripe .If It does then the PIN verification is accepted.

PAYMENT CARD AUTHORISATION

 When a payment card is inserted into a terminal, the main goal of the terminal is normally

to determine the validity of the card and decide whether the transaction that is being

requested is likely to go through.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 Prior to magnetic stripe cards, this process required a merchant to make a telephone call to

the issuer.

 The ability for a terminal to extract data from the magnetic stripe and automatically contact

the issuer in order to authorise a transaction certainly makes this process easier.

 However, it is important to note that with magnetic stripe cards this process still requires

direct (online) communication with the card issuer.

 This requirement has restricted the adoption of payment cards of this type in countries with

poor communication infrastructures.

EMV cards

EMV cards were introduced for two main reasons.

 The first reason was in order to improve the security of payment card transactions.

 The other reason was to lower telecommunication costs by introducing a secure means of

authorising a transaction offline, hence reducing the number of times that a merchant might

have to contact a card issuer.

PIN VERIFICATION

PIN verification becomes much more straightforward for EMV than for magnetic stripe

cards, since the PIN can be stored on the chip itself. This allows a terminal to easily verify

the PIN without having to contact the card issuer, or use a service based on a PVV.

OFFLINE DATA AUTHENTICATION

 In order to authorise an EMV card transaction, a terminal must first decide whether to do

an offline check, or whether to conduct a stronger online check that involves

communicating with the card issuer.

 The decision as to which check to conduct depends on the transaction amount and the

number of transactions conducted since the last online check.

 Offline data authentication does not involve the card issuer. In its most basic form, it

provides a means of gaining assurance that the information stored on an EMV card has not

been changed since the payment card was created by the card issuer.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 In other words, it provides data origin authentication of the fundamental card data. The

stronger mechanisms also provide entity authentication of the card.

 Offline data authentication of a payment card can be conducted directly by a terminal that

the card has been inserted into.

 It is impractical to provide this offline service using symmetric cryptography, since each

terminal would need to share a symmetric key with every possible issuer.

 The use of key translation, for magnetic stripe PIN verification, requires the issuer to be

online.

 Thus public-key cryptography, in the form of a digital signature scheme, is used to provide

offline data authentication.

 For space efficiency reasons, EMV cards use a type of RSA digital signature scheme with

message recovery to provide this assurance.

 EMV provides three offline data authentication mechanisms:

 Static Data Authentication (SDA) is the simplest technique. All that is checked is

the digital signature on the card data that is stored on the card. Verification of this

digital signature requires access to the issuer’s verification key. Clearly it is not

reasonable to expect every terminal to have direct access to every issuer’s

verification key. Thus EMV employs a simple certificate hierarchy. In this case the

card stores a public-key certificate containing the verification key of the issuer.

This certificate is signed by the PCO, and the PCO’s verification key is installed in

every terminal supporting EMV.

 Dynamic Data Authentication (DDA) goes one step further and provides this

assurance in a dynamic way that differs for each transaction, hence providing

another layer of security against card counterfeiting. During DDA, a challenge–

response protocol is run that provides entity authentication of the card. In this case

each card has its own RSA key pair and includes a public-key certificate for the

card’s verification key, signed by the issuer, as well as the issuer’s public-key

Module 5 : CRYPTOGRAPHIC APPLICATIONS

certificate, signed by the PCO. We thus have a three-level public-key certificate

chain. The card computes a digital signature on the card data as well as some

information unique to the current authentication session. The terminal uses the

certificates offered by the card to verify this digital signature.

 Combined Data Authentication (CDA) is similar to DDA, except that the card

also signs the transaction data, thus providing assurance that the card and terminal

have the same view of the transaction. This protects against man-in-the-middle

attacks that seek to modify the transaction data communicated between card and

terminal. In contrast, DDA can take place before the transaction details have been

established.

ONLINE AUTHENTICATION

Online authentication is the stronger check, which requires communication with the card

issuer. As with DDA, the objective of online card authentication is for a terminal to gain entity

authentication assurance of a payment card that is involved in a transaction. This is provided

by means of a simple challenge– response protocol, based on a symmetric key that is shared by

the card issuer and the payment card, which stores it on the chip. The only complication is that

the terminal does not share this key, hence the issuer must be contacted online in order to

verify the response. More specifically:

1. The terminal generates transaction data (which includes the payment card details) and a

randomly generated challenge, which it then sends to the card.

2. The card computes a MAC on this data with the key that it shares with the issuer. This

MAC is called the authorisation request cryptogram, and is passed on to the issuer.

3. The issuer computes its own version of the authorisation request cryptogram and compares

it with the value received from the card. The issuer is also able to conduct a check that there

are sufficient funds in the account to proceed with the transaction.

TRANSACTION CERTIFICATES

At the end of each transaction a transaction certificate (TC) is generated. This is a MAC

computed on the details and outcome of the transaction and is passed back to the card issuer.

The TC is computed using the key shared by the card and the card issuer. The TC is normally

Module 5 : CRYPTOGRAPHIC APPLICATIONS

only required as evidence in the event of a subsequent dispute about certain aspects of the

transaction.

SECURITY OF MANAGEMENT FUNCTIONS

A number of important management functions concerning security features of the payment

card can be remotely managed by sending instructions to the card.

These include PIN changes, PIN unblocking instructions and changes to card data items (such

as credit limits). These instructions are sent by the card issuer to the card (via a terminal). They

are authorised by computing and verifying a MAC on the instruction, which is generated using

a symmetric key that is shared by the card issuer and the card. Since this is a very different use

of symmetric cryptography, in line with the principle of key separation this key is different

from the one used in online authentication.

Using EMV cards online

 An increasing number of transactions are conducted when the card is remote from the

merchant, most commonly when a customer makes an online transaction. These are

referred to as card-not-present (CNP) transactions.

 The potential for fraud in such transactions is high, since the most common information

used to authenticate CNP transactions is simple card data (PAN, expiry date, CCV2),

which is relatively easily acquired by a determined attacker.

 From the card holder perspective, the counter to this fraud threat has been the ability to

challenge fraudulent transactions. However, this brings significant costs to the

merchants, as well as being an inconvenience to the PCOs and cardholders when new

cards have to be reissued to customers who have been fraud victims.

 Secure Electronic Transactions (SET) was a standard that proposed a heavy

architecture and set of procedures for securing CNP transactions. It relied on an

overarching public-key management system and required all merchants to acquire

special supporting equipment. Its complexity prevented it from being successful and so

Visa and Mastercard developed a more lightweight approach known as 3DSecure.

 The two main goals of 3DSecure are:

Module 5 : CRYPTOGRAPHIC APPLICATIONS

1. The card issuer is able to authenticate its payment card holders during a

CNP transaction.

2. A merchant gains assurance that it will not later be financially punished

because of a fraudulent transaction.

3DSecure relies on the following process:

1. A merchant that is 3DSecure-enabled puts in a request for authorisation of the card.

2. The card issuer contacts the card holder and requests authentication information. While EMV-CAP

provides a natural way to enable this, a common instantiation is for the card issuer and card holder to have

preagreed a password, which the card holder must enter into a form presented to them in an embedded

frame on their browser.

3. 3. If authentication is successful, the card issuer computes a MAC on the critical transaction data, using a

symmetric key known only to them. This MAC is known as a Cardholder Authentication Verification

Value (CAVV) and acts as sort of ‘signature’, vouching for the authentication of the card holder and the

transaction data. The CAVV will be used to resolve any subsequent disputes about the transaction.

Using EMV cards for authentication

Since EMV cards have cryptographic capability, and EMV-supporting bank customers have

such a card by default, it is natural to consider using the EMV card as part of an entity

authentication mechanism. This is precisely the thinking behind the Chip Authentication

Program (CAP), which specifies a range of entity authentication options (EMV-CAP explicitly

refers to MasterCard technology, while Visa have a similar scheme known as Dynamic

Passcode Authentication). These are supported by a CAP reader, which is a handheld device

with a display and keypad. The customer authenticates directly to the CAP reader by means of a

PIN. The CAP reader can then support several different entity authentication mechanisms:

 Identify. This option displays a number on the CAP reader that is computed from a

symmetric key on the EMV card and an EMV customer transaction counter, which is

also stored and updated on the card. This mechanism is a type of sequence-number-

based dynamic password scheme. The cryptographic computation essentially involves

computing a CBC-MAC on the input.

 Response. In this case the bank provides the customer with a randomly generated

challenge. The customer types the challenge into the CAP reader, which computes a

Module 5 : CRYPTOGRAPHIC APPLICATIONS

response using the symmetric key on the EMV card (again, based on CBC-MAC).

Finally, the customer provides the bank with the displayed response.

 Sign. This is stronger version of the response mechanism, which involves the CBC-

MAC being computed on basic transaction data (amount and recipient account) as well

as the challenge value. This can be used to provide a type of ‘digital signature’ on the

transaction. This is an example of the ‘asymmetric trust relationship’ use of MACs to

provide non-repudiation.

 Payment card key management KEY

MANAGEMENT SYSTEM

While the cryptography used by magnetic stripe cards is entirely symmetric, EMV uses a

hybrid of symmetric and public-key cryptography. While PCOs allow issuing and acquiring

banks to manage the keys of their own customers, the PCOs provide overarching key

management services that link up these banks and facilitate secure transactions. The model

depicted in Figure 12.8 that underlies payment card transactions is essentially the same as the

connected certification model.. It is thus a good model to adopt given the distributed nature of

a PCO’s network of banks.

KEY GENERATION

A PCO generates its own master public-key pair. PCOs maintain master RSA key pairs of

different lengths in order to cope with potential improvements in factorisation techniques.

Individual banks are responsible for the genealso maintained on the card and is communicated

to relying parties during a transaction.

KEY ESTABLISHMENT

The advantage of a closed system of this type is that the keys stored on a card can be pre-

installed during the manufacturing (or personalisation) process. This is slightly more complex

for RSA key pairs, since they cannot be mass generated as efficiently as symmetric keys. The

session keys used in individual transactions are established on the fly during the transaction, as

just discussed. A PCO’s verification key is installed into terminals during their manufacture.

PCOs also oversee an important symmetric key hierarchy. At the top level are zone control

Module 5 : CRYPTOGRAPHIC APPLICATIONS

master keys, which are manually established using component form. These are used to

establish the acquirer working keys and issuer working keys.

KEY STORAGE

All the long-term secret or private keys used in EMV payment card systems are protected in

tamper-resistant hardware, either in the form of an issuer’s hardware security module or the

chip on the payment card.

KEY USAGE

In general, key separation is enforced in EMV. The two main security functions that involve

encryption using keys stored on a card are conducted using separate symmetric keys.

12.4.8 Payment card cryptographic design issues

The main cryptographic design issues concerning payment card cryptographic security

mechanisms are:

Use of well-respected cryptographic algorithms. Payment cards use 2TDES and RSA,

which are well-established algorithms.

Targeted use of public-key cryptography. Payment cards uses public-key cryptography

precisely when it delivers substantial benefits, namely in simplified key management for the

support of offline data authentication.

Balance of control and flexibility. PCOs strictly control the part of the key management

infrastructure that they need to, but otherwise devolve control to participating banks. This

provides scalable key management and allows banks to develop their own relationships with

their customers.

Efficient use of related data. Payment cards use data in a number of imaginative ways. For

example, PANs are used to derive keys, and items of transaction data are used as challenges in

authentication protocols. This is both efficient and clever.

 Cryptography for video broadcasting

 Video broadcasting background

Module 5 : CRYPTOGRAPHIC APPLICATIONS

Commercial television broadcasters have traditionally financed the provision of their services

either through government subsidy or advertising revenue. This is primarily because most

analogue broadcast content can be received by anyone with access to a suitable device, such as

a television set. This makes alternative business models, such as those based on annual

subscription, hard to enforce.

An alternative option is to ‘encrypt’ analogue content using special techniques that are

developed for particular broadcast technologies. This process is often referred to asscrambling.

This requires a consumer of content to acquire dedicated hardware in order to use decryption

to recover the content. This requirement thus presents an opportunity for revenue collection.

Digital video broadcast networks process digital content, thus making it possible to use the full

range of modern cryptographic mechanisms to protect content. This, in turn, enables a wide

variety of different business models. Most of these require consumers to obtain specific

hardware (or occasionally software) in order to recover content. Common models include full

subscription services that allow consumers to access all broadcast content for a specific period

of time, package subscription services that allow consumers to access ‘bundles’ of predefined

broadcast content, and pay-per-view services that allow the purchase of specific broadcast

content (for example, a live broadcast of a sports event). The compression of digital video

broadcasts also allows more content to be broadcast than that of analogue over a similar

bandwidth. It thus creates the opportunity for a much more diverse provision environment.

 Figure 12.9 shows a simple example of a possible infrastructure for a digital video

broadcast network.

 The broadcast source transmits the broadcast content, and is under the control of the

broadcast provider. The broadcast content is transmitted to the consumer of the content,

who requires access to a suitable broadcast receiver in order to receive the signal.

 In the example in Figure 12.9, the communication channel is over the air via a satellite

link, hence the broadcast receiver takes the form of a satellite dish.

 However, a digital video broadcast could just as well be transmitted by other media,

such as a fibre optic cable, in which case the broadcast receiver is any hardware device

capable of receiving the content.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 As well as receiving the data transmitted by the broadcast source, the consumer

requires a content access device, which has the capability of decrypting to recover the

broadcast content. While this can be implemented in software, most content access

devices are hardware devices that contain a smart card.

 The critical data that is required to control access to the broadcast content, such as

cryptographic keys, will normally be stored on the smart card, thus allowing the

potential for a content access device to be used to obtain content from different

broadcast providers.

 In such cases choose to regard the ‘content access device’ as the hardware and the

smart card, unless otherwise specified.

 Video broadcasting security requirements

Two important constraints on the broadcast network environment:

One-way channel. The broadcast communication channel only operates in one direction: from

broadcast source to broadcast receiver. There is no means by which a consumer can send

information back to the broadcast source on this communication channel.

Uncontrolled access. Just as for analogue broadcasts, digital video broadcast content can be

received by anyone with the right broadcast receiver technology (a satellite dish in our

example in Figure 12.9).

The security requirement for digital video broadcast is thus, simply:

Confidentiality of the broadcast content. In order to control the revenue stream the broadcast

provider must make the broadcast content essentially ‘worthless’ to anyone who has not

Module 5 : CRYPTOGRAPHIC APPLICATIONS

purchased the necessary content access device. In other words, confidentiality is required on

the broadcast channel, with only authorised consumers having access to the necessary

decryption keys.

Entity authentication. Most of our previous applications required some level of entity

authentication, which would be one way of controlling which consumers get access to

broadcast video content. However, this requires the consumer to be able to communicate with

the broadcast source, which in this case is not possible. Entity authentication of the broadcast

source is possible, but unnecessary, since the threat of an attacker posing as a broadcast source

and sending false video broadcasts is not particularly relevant to most commercial broadcast

environments.

Data integrity. A video broadcast channel is potentially prone to errors in the transmission

channel. However, the threat against data integrity is more likely to be accidental errors rather

than deliberate ones introduced by a malicious attacker. Hence the solutions lie in the area of

error-correcting codes and not cryptographic mechanisms.

 Cryptography used in video broadcasting

The cryptographic design decisions for GSM encryption namely:

A fully symmetric cryptographic architecture. Video broadcast networks are closed

systems.

Stream ciphers for data encryption. Video broadcasts involve streaming data in real time

over potentially noisy communication channels.

Fixing the encryption algorithm. Agreeing on use of a fixed encryption algorithm allows this

algorithm to be implemented in all broadcast receivers, aiding interoperability.

Proprietary encryption algorithm. Choosing to design a proprietary encryption algorithm

was justifiable for the same reasons as for GSM. In this case the expertise lay with members of

the Digital Video Group (DVB), which is a consortium of broadcasters, manufacturers,

network operators, software developers, and regulatory bodies with interests in digital video

broadcasting. As for GSM, one of the influences behind the design was to make decryption as

efficient as possible, since content access devices are less powerful than broadcast sources.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

The proprietary encryption algorithm that was designed was CSA. While CSA was

standardised by ETSI. The CSA was implemented in a software application and subsequently

reverse-engineered. The CSA is essentially a double stream cipher encryption. The first

encryption is based on a proprietary block cipher deployed in CBC mode, which means that it

operates as a stream cipher . The second layer of encryption uses a dedicated stream cipher to

encrypt the ciphertext produced during the first encryption (this is a slight simplification). The

key length is 64 (only 48 of the bits are actually used for encryption) and the same encryption

key is used for both encryption processes.

 Key management for video broadcasting

The primary key management task for digital video broadcasting is simple to state: the keys

required to recover broadcast content should be available only to those consumers who are

authorised to view the broadcast content. However, there are several complications:

The number of potential consumers. A digital video broadcast network is likely to have a

large number of consumers (in some cases this could be several million), hence the key

management system design must be sufficiently scalable that it works in practice.

Dynamic groups of authorised consumers. The groups of consumers who are authorised to

view digital broadcast content is extremely dynamic. Payper-view services provide the extreme

example of this, where the group of authorised consumers is likely to be different for every

content broadcast.

Constant service provision. In many applications a broadcast source will be constantly

streaming digital video content that needs to be protected. There are no break periods in which

key management operations could be conducted. Most key management must therefore be

conducted on the fly.

Precision of synchronisation. Stream ciphers require the keys at each end of the

communication channel to be synchronised. In digital video broadcasting this synchronisation

has to happen between the broadcast source and all (and as we have just pointed out, this could

be ‘millions of ’) authorised consumers. This synchronisation must be close to being perfect,

otherwise some consumers may incur a temporary loss of service.

Instant access. Consumers normally want instant access to broadcast content and will not

tolerate delays imposed by key management tasks.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

VIDEO BROADCAST KEY MANAGEMENT SYSTEM DESIGN

 All video broadcast content must be encrypted during transmission. A symmetric key,

which will be refer to as the content encryption key (CEK). Since the broadcast source

only transmits one version of an item of broadcast content, the content encryption key

used to encrypt a specific item of content must be the same for all consumers.

 Since consumers have different access rights to digital content, the CEK for two

different items of broadcast content must be different.

 The challenge is thus to make sure that only consumers who are authorised to access

content can obtain the appropriate CEK.

The following key management design decisions:

 Encrypted CEK is transmitted in the broadcast signal. The CEK is transmitted

along with the content itself and is made ‘instantly available’ by being continuously

repeated, perhaps every 100 milliseconds or so. Clearly the CEK cannot be transmitted

in the clear, otherwise anyone receiving the broadcast signal could obtain it and hence

recover the content. Thus the CEK is transmitted in encrypted form. We will refer to

the key used to encrypt the CEK as the key encrypting key (KEK).

 CEK is frequently changed. Once someone has access to the CEK, they can use it to

recover all broadcast content that is encrypted using it. Thus it is important to

frequently change the CEK. In most video broadcast systems the CEK typically

changes every 30 seconds, but this can happen as often as every five seconds.

 CEK is transmitted in advance. In order to aid synchronisation and instant access,

the CEK is issued in advance of the transmission of any content broadcast using it.

Clearly this cannot be too far in advance because of the dynamic nature of the

authorised consumer base. The compromise is to constantly transmit two (encrypted)

CEKs, which consist of:

1. the current CEK that is being used to encrypt the current broadcast content;

Module 5 : CRYPTOGRAPHIC APPLICATIONS

2. the ‘next’ CEK that will be used to encrypt the next broadcast content. Hence the

content access device has time to recover the next CEK and have it instantly available

as soon as the CEK is changed.

 Use of symmetric key hierarchies. Video broadcast schemes uses KEKs to encrypt the

CEKs. This of course just ‘transfers’ the access problem to making sure that only

authorised consumers have access to the required KEKs.

VIDEO BROADCAST KEY ESTABLISHMENT

 A video broadcast scheme establishes the KEKs that are necessary for authorised consumers to obtain

the CEKs that they are entitled to.

 A video broadcast schemes use symmetric key hierarchies. At the ‘top’ of each these hierarchies are

keys that are shared only by the broadcast provider and a particular consumer, which we refer to as

consumer keys (CKs).

 In a simple system, with relatively few consumers, these CKs could be used to encrypt the KEKs.

However, there are two reasons why this is not very practical:

1. Most video broadcast systems have so many consumers that sending an encrypted KEK in this

way would require too much bandwidth, since a unique ciphertext would have to be sent for each

consumer.

2. Each KEK itself must be frequently changed, for similar reasons to the CEKs. This might happen,

say, on a daily basis. Thus the bandwidth problems are further exacerbated by the need to frequently

update the KEKs.

 The compromise is to deploy zone keys (ZKs), which are keys shared by groups of

consumers. Zone keys have longer lifetimes than KEKs, but shorter lifetimes than CKs.

 A relevant ZK is initially sent to a consumer encrypted using their CK. The consumer

then uses the ZK to recover KEKs, which are used to recover CEKs.

 When a ZK needs to be changed, the new ZK does need to be sent to every consumer

who requires it, but this event occurs much less frequently than for KEKs (which in turn

occurs much less frequently than for CEKs).

 The consumer keys, which sit at the top of these key hierarchies, are stored on the smart

cards of the content access devices. They are thus established prior to the issuing of the

smart cards to the consumers.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 A simple example set of key hierarchies is shown in Figure 12.10. In this example there

are are five consumers, divided into two zones. In practice, multiple layers of zone keys

can be deployed in order to enhance scalability.

12.5.6 Video broadcast design issues

Use of symmetric cryptography. The closed nature of a video broadcast scheme facilitates the

use of a fully symmetric cryptosystem.

Use of a symmetric key hierarchy. Video broadcast schemes provide a good example of the

benefits of deploying a key hierarchy to support symmetric key management.

The influence of operational constraints. While the security requirements for video broadcast

networks are fairly straightforward, the operational constraints require some innovative key

management controls.

Partially standardised infrastructure. Video broadcast schemes follow some common

standards, for example, for content encryption, while leaving other aspects such as higher-level

key establishment open to custom design by individual broadcast providers. While this provides

the opportunity for a diverse market of interoperable schemes, it also presents a potential source

of vulnerability in specific systems.

 Cryptography for identity cards

 eID background

Within a specific context, such as a workplace, most people accept cards that contain and/or

display data relating to the identity of the holder. However, the attitude towards national identity

Module 5 : CRYPTOGRAPHIC APPLICATIONS

card schemes is surprisingly diverse and, to an extent, cultural. In some countries, such as the

UK, there is a great deal of hostility to such schemes. This is largely due to concerns over

privacy issues, costs of deployment, data management and doubts about the utility of such a

scheme. In many other countries, such as Belgium, national identity card schemes have been

rolled out and are integrated into daily life.

The main application of national identity cards is to present independently issued evidence of

the identity of the card holder. Such cards typically display a photograph of the card holder and

some personal details, which may include a handwritten signature. However, the progress in

smart card technology and the development of cryptographic applications has presented the

opportunity for national identity cards to provide additional functionality and thus, perhaps,

become more useful.

 The eID card scheme was motivated by the establishment of the 1999 European

Directive on Electronic Signatures, which created a framework that enabled electronic

signatures to become legally binding.

 The first eID cards were issued to Belgian citizens in 2003 and from 2005 all newly

issued identity cards were eID cards.

 The eID card has four core functions:

Visual identification. This allows the card holder to be visually identified by displaying

a photograph on the card alongside a handwritten signature and basic information such

as date of birth (see Figure 12.11). This functionality is also provided by previous

Belgian identity cards.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

Digital data presentation. This allows the data on the eID card to be presented in

electronic form to a verifying party. The card data has a specific format and includes:

• a digital photograph of the card holder;

• an identity file which consists of:

 personal data such as name, national identity number, date of birth, and

special status (for example, whether the card holder has a disability);

 a hash of the digital photograph of the card holder;

 card-specific data such as chip number, card number and validity

period;

• an address file which consists of the card holder’s registered address.

Applications of digital data presentation include access control to facilities such as

libraries, hotel rooms and sports halls.

Digital card holder authentication. This allows a card holder to use the eID card to

‘prove’ their identity in real time to a verifying party. In other words, it facilitates entity

authentication of the card holder. The many listed applications of digital card holder

authentication include remote access to various internet services, including official

document requests (for example, birth certificates), access to an online tax declaration

application, and access to patient record information.

Digital signature creation. This allows the card holder to use the eID card to digitally

sign some data. Applications of digital signature creation include signing of electronic

contracts and social security declarations. Digital signatures created using an eID card

are legally recognised.

eID security requirements

Data origin authentication of the card data. In order to provide digital data presentation,

assurance that the card data has not been changed since the card was issued must be provided.

Ability to provide a data origin authentication service. In order to support digital card

holder authentication, it is necessary for an eID card to be used as part of an entity

authentication service. The eID card’s role in this is to provide a data origin authentication

Module 5 : CRYPTOGRAPHIC APPLICATIONS

service, which can then be used to support an entity authentication protocol between the card

holder and a verifying party.

Ability to provide a non-repudiation service. In order to support digital signature creation,

an eID card must be able to provide non-repudiation.

Cryptography used in eID cards

The cryptography in the eID card is relatively straightforward. The following design issues are

important in determining the eID card’s cryptographic capability:

Use of public-key cryptography. The open nature of the potential application space for eID

cards dictates that public-key cryptography must be supported. It is impractical for an eID card

to contain pre-loaded symmetric keys that will be ‘meaningful’ to all unknown future

applications.

A digital signature scheme suffices. All three of the security requirements for eID cards can

be met by using a digital signature scheme. The first requirement does not even require the

digital signature scheme to be implemented on the eID card, however, the second and third

requirements do need this. Note that the eID card is not required to have the capability to

encrypt or decrypt data.

Use of a publicly known digital signature scheme. In order to encourage use of the eID card

and aid interoperability, it is imperative that the digital signature scheme that is deployed is

widely respected and supported.

 Provision of the eID card core functions

The eID card scheme is governed by an entity called the National Register (NR). The NR can be

considered as a trusted third party that facilitates the scheme. The NR is responsible for issuing

eID cards and hence also takes ‘ownership’ of the personal data contained on them.

Each eID card contains two signature key pairs and one additional signature key:

Authentication key pair. This key pair is used to support digital card holder authentication.

Non-repudiation key pair. This key pair is used to support digital signature creation.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

Card signature key. This signature key can be used to authenticate the card, rather than the

card holder. Only the NR knows the verification key that corresponds to a particular eID card.

This signature key is only used for administrative operations between the card and the NR.

DIGITAL DATA PRESENTATION

This involves a verifying party reading the card data and then gaining assurance that the data on

the card is correct. To gain this assurance, the verifying party needs to verify two digital

signatures that are created by the NR and stored on the eID card:

Signed identity file. This is a digital signature generated by the NR on the identity file.

Signed identity and address file. This is a digital signature generated by the NR on a

concatenation of the signed identity file and the address file. In other words, this takes the form:

 A verifying party can then verify the card data by first using the

verification key of the NR to verify the signed identity file. If this

check is fine then they can proceed to verify the signed identity and

address file.

 The reason that the NR does not simply sign all the card data is that

address changes are much more frequent than changes to the content of

the identity file. Thus the NR can update an address on the card

without having to reissue a new eID card.

DIGITAL CARD HOLDER AUTHENTICATION

Each eID card holder can activate the signature keys on the eID card through the use of a PIN.

The card holder also requires access to an eID card reader, which may include a PIN pad. This

provides an interface between the eID card and the card holder’s computer. A typical card

holder authentication process is illustrated in Figure 12.12. In this example, a visited web server

is requesting authentication of the card holder:

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 eID key management

eID CERTIFICATES The eID card scheme key management is based on the closed certification

model. It uses a certification hierarchy, in order to provide a scalable approach to certificate

issuing. This certification hierarchy is indicated in Figure 12.13. The main CAs involved are:

Belgium Root CA. This CA is the root CA that oversees all the eID scheme certification. It

possesses a 2048-bit RSA verification key certificate that is both self-signed and signed by a

commercial CA.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

Citizen CAs. These CAs issue certificates to card holders and are responsible for signing the eID

card authentication and non-repudiation verification key certificates. Citizen CAs have a 2048-bit

RSA verification key signed by the Belgium Root CA.

Card Admin CA. This CA issues certificates to organisations carrying out administrative

operation of the eID card scheme, such as those managing address changes and key pair

generation. The Card Admin CA has a 2048-bit RSA verification key signed by the Belgium

Root CA.

Government CA. This CA issues certificates to government organisations and web servers,

including the NR. The Government CA has a 2048-bit RSA verification key signed by the

Belgium Root CA.

eID CARD ISSUING PROCESS

Module 5 : CRYPTOGRAPHIC APPLICATIONS

The process of issuing an eID card is quite complex and involves several different

organisations. It serves as a good illustration of the intricacies of generating public- key

certificates,. The process is indicated in Figure12.14 and consists of the following steps:

1. Either after requesting, or being invited to apply for, an eID card, the eID applicant attends

a local government office. This office essentially acts as the RA. The applicant presents a

photograph to the RA, which then verifies the personal details of the applicant and

formally signs an eID card request.

2. The eID card request is sent from the local government office to the card

personaliser(CP), and the NR is notified. The CP checks the eID card request. For

simplicity we will assume the existence of a single CP, who is responsible for creating the

physical aspects of the card and for inputting the relevant data onto the chip on the card.

3. The CP creates a new eID card and generates the required key pairs on the card itself. The

CP then sends are quest for certificates to the relevant Citizen CA via the NR, who issues a

certificate serial number for each certificate.

4. The Citizen CA generates certificates and sends them to the CP, who stores the month

ecard. The CA then immediately suspends these certificates.

5. The CP writes all the remaining card data onto the card and then deactivates the card.

6. The CP sends:

• The first part of an activation code AC1 to the NR;

• These cond part of the activation code AC2 and a PIN to the applicant;

• The inactive eID card to the RA.

7. The applicant revisits the RA and presents AC2. This is then combined with AC1, which

the RA requests from the database of the NR.

8. The CA activates the suspended card certificates and the active eID card is issued to the

applicant.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

eID CERTIFICATE REVOCATION

There are two special situations in which an eID card certificate has the status of being revoked:

1. the eID card non-repudiation verification key certificate is revoked for juveniles under the age

of 18;

2. the eID card authentication verification key certificate is revoked for children under the age of

6.

 The main technique used to manage certificate revocation in the eID card scheme is

CRLs .

 A significant problem of the eID card scheme is that the potential size of CRLs is

considerable.

 The eID card scheme Citizen CAs issue new base CRLs every three hours. During

the period between updates of the base CRL, much smaller delta CRLs are issued,

which identify changes to the last base CRL.

 In this way anyone who wishes to maintain their own local copy of the complete

CRLs for the eID card scheme does not have to regularly download the full database.

 All CRLs are digitally signed by the issuing Citizen CA using 2048-bit RSA.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

eID SIGNATURE VALIDITY

the potential validity of digital signatures during two specific periods of time:

Digital signatures created after an incident but before revocation. A potential problem arises

if a relying party verifies an eID card signature in the period between occurrence of a security

incident (of a type that invalidates the eID card non-repudiation verification key certificate) and

the revocation of that certificate. If the time of the incident can be precisely verified then,

technically speaking, a digital signature created during this period is unlikely to be valid.

Applications need to be aware of this potential problem and have procedures for coping with it.

The Citizen CAs assist this process by frequently issuing base and delta CRLs.

Validity of digital signatures after expiry or revocation of the eID card (nonrepudiation

verification key certificate). So long as a digital signature is verified before expiry or revocation

of the eID card (or its non-repudiation verification key certificate) then it should still be regarded

as valid (and, indeed, may be legally binding) after the expiry or revocation date. One method for

making this more explicit is for the signer who signs some data to obtain a digital signature from

a trusted third party that attests to the validity of that signature at a specific point in time. Namely,

the signer Alice presents her digital signature sigA(data) to the TTP, who verifies this signature at

time t and then generates the digital signature:

The TTP thus acts as an archiving service. After the expiry or revocation of her eID card, Alice

can still present the archived signature as evidence of its validity. Note that any future relying

party does not need to verify Alice’s original signature, but does have to trust the TTP. This

process assumes that:

• The TTP’s verification key has a longer lifetime than Alice’s. On expiry of the TTP’s

verification key, Alice can always ask the TTP to resign the archived signature with its new

signature key.

• No flaws are subsequently found in any of the processes or algorithms used to generate or

validate Alice’s digital signature.

12.6.7 Design issues

Module 5 : CRYPTOGRAPHIC APPLICATIONS

The main design issues concerning the eID card scheme are as follows:

Use of public-key cryptography. While eID cards are issued within a closed environment, they

are intended for use in open environments. Thus the use of public-key cryptography is

appropriate.

Use of publicly known algorithms. To increase confidence and support interoperability, the eID

card scheme uses the well-respected RSA digital signature scheme.

Use of certification hierarchies. The eID card scheme’s national reach lends itself very naturally

to a certification hierarchy, with central CAs supporting regional registration authorities.

Specific data handling. The eID card design demonstrates that in real applications different data

items may require different management. This is reflected in the way that card data is digitally

signed, which recognises that address data normally changes much more frequently than other

types of personal data.

Flexibility. The eID card scheme is primarily an enabler for cryptographic applications. It

therefore leaves specific applications a degree of flexibility on how they manage security of

applications interacting with eID cards. In particular, applications must manage their own

certificate revocation processing.

 Cryptography for home users

 File protection

There are two main reasons for a home user wanting to use cryptography to protect a file:

Additional storage protection. Most computer systems, including desktops, laptops, PDAs and

smart phones, have basic security controls that provide some protection against unauthorised

parties from accessing the files that are stored on them. Most home users rely on basic user access

control mechanisms for this protection. The commonest such control is to provide entity

authentication to the computer itself through the use of a passwordbased mechanism. However,

such controls do not normally provide strong protection, since it is relatively easy to overcome

them. In addition, different types of portable media exist for storing files, such as DVDs, memory

cards and USB tokens, many of which have no default file storage protection mechanisms.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

File transfer security. A user may wish to transfer a file from one computer system to another.

While the end computer systems may be protected, the communication channel is potentially

insecure.

FULL DISK ENCRYPTION

 One option for a home user who is concerned about the security of files stored on their

desktop or laptop is to deploy full disk encryption, which encrypts every bit of data

contained on the computer system.

 Full disk encryption mechanisms are available both in hardware and software, with

hardware mechanisms typically offering greater security and performance.

 Full disk encryption is particularly attractive for laptops, which are at risk of becoming

lost or stolen.

 The ‘classical’ physical attack on a stolen computer is for an attacker to remove the disk

and reinstall it on a computer for which the attacker has administrator access.

 There are two constraints which motivate the type of encryption deployed in full disk

encryption mechanisms:

 Performance. Encryption and decryption operations need to take place as fast as

possible, ideally without any apparent delay. Thus most full disk encryption

mechanisms encrypt each disk sector, which typically consist of around 512 bytes,

independently.

 Avoidance of storage overhead. In order to use disk space efficiently, the

encryption operation should not result in significantly more data being stored than

would otherwise have been stored without full disk encryption.

VIRTUAL DISK ENCRYPTION

 An alternative to encrypting an entire disk is to use virtual disk encryption mechanisms,

which can be used to encrypt chunks of data, usually referred to as containers.

 Virtual disk encryption can be deployed on devices such as USB tokens, as well as on

desktops and laptops.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 In most solutions the user is required to authenticate to the device, usually by means of a

password, in order to access the encrypted files within the container.

 There are several advantages of virtual disk encryption over full disk encryption:

 Virtual disk encryption can be used to encrypt selected data on a disk, rather than the

full disk.

 An encrypted container is normally portable, in the sense that it can be copied onto

media such as a DVD. Thus virtual disk encryption can provide security for data transfer,

as well as storage, in cases where the data can be physically transferred using portable

media. Just as for full disk encryption, care needs to be taken to make sure that the

mechanisms and processes used to support user (entity) authentication to the device and

key management are adequately addressed.

FILE ENCRYPTION

 The greatest granularity of control over data encryption is to deploy file encryption, which

encrypts individual files (or folders).

 One of the other main advantages of file encryption is that it can protect a file on a

running computer system that an attacker has gained access to.

 Contrast this situation with, for example, a full disk encryption mechanism running on a

computer that the user has authenticated to and then (foolishly) walked off and left

unattended.

 Unlike full and virtual disk encryption, however, file (and folder) encryption do not

normally prevent an attacker from learning data associated with the file, such as file size,

file type and the folder name in which the file resides.

 Some operating systems provide in-built file encryption, such as the Encrypting File

System (EFS) deployed in many Microsoft operating systems.

 EFS uses hybrid encryption to protect a file by first encrypting it with a unique symmetric

key, which is then itself encrypted using the user’s public key. The user’s private key is

then required in order to decrypt.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 One issue with in-built file encryption of this type is that the protection is not always

maintained when the encrypted file is transferred to another storage medium.

 However, there are many third-party software applications providing general file

encryption capability, some of which support transfer of encrypted data.

 File encryption is also appropriate for a user who only occasionally needs to encrypt a

file, usually for transfer purposes.

 An example of encryption software for casual encryption of this type is GNU Privacy

Guard (GPG). This uses hybrid encryption to encrypt files, as well as supporting digital

signatures.

 A range of patent-free symmetric and public-key algorithms are supported. Users

generate their own key pairs locally, using a passphrase to generate, and later activate, a

key encrypting key that is used to protect the decryption key.

 Public-key management is lightweight and left at the user’s discretion. Users could, for

example, exchange public keys directly with known contacts or use a web of trust .

 Finally, some application software supports encryption for specific data formats. For

example, Adobe software allows users to encrypt pdf files. Adobe originally used RC4 but

now also supports AES. The key is activated using a password, which can be sent to the

recipient of an encrypted file in order to allow them to decrypt and view it.

 Email security

EMAIL SECURITY REQUIREMENTS

There are two potential concerns about the security of email:

Confidentiality. By default, email messages are unprotected during their transfer from the email

sender’s device to the email receiver’s device. During that transfer the email message resides on

several email servers and internet routers, as well as passing through various potentially

unprotected networks. There are many points at which, at least in theory, the contents of an email

message could be viewed by someone other than the intended recipient. In addition, users

sometimes mistakenly send email to the wrong recipient, for example, by replying to all the

recipients of an email rather than just the original sender. Thus there is certainly a case that could

be made for requiring confidentiality of some types of email message.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

Data origin authentication. Email messages are structured using a simple protocol that

facilitates their transfer. This protocol includes fields for specifying the sender, recipient and

subject, as well as the message itself. An informed attacker can fairly easily generate forged

emails. In addition, at most of the points at which an attacker can read a genuine email, the

attacker could intercept and make changes to the email message before forwarding it on to the

recipient. This also makes a case for requiring data origin authentication of email messages.

Indeed, for some email messages we might even want to go further and require non-repudiation,

but data origin authentication probably suffices for most traffic.

EMAIL SECURITY APPLICATIONS

 There are two well-known standards for protection of email, each of which are

implemented by a wide range of email security applications.

 Both Open Pretty Good Privacy (OpenPGP) and Secure/Multipurpose Internet Mail

Extensions (S/MIME) broadly work in the same way, although precise implementations

may have minor differences.

 They both provide confidentiality and data origin authentication (non-repudiation)

through support for encryption and digital signatures.

 They are either supported by default in certain email clients or can be installed through

plug-ins.

 There are three ways in which email messages can be protected using these applications:

 Confidentiality only. This is provided by hybrid encryption. The symmetric

encryption key is either generated using a deterministic generator or a software-

based non-deterministic generator. The body of the email message is then

encrypted using this symmetric key, and the symmetric key is encrypted using the

public key of the recipient. Data origin authentication only. This is provided by a

digital signature scheme with appendix .The email message is first hashed and

then signed using the signature key of the sender. The receiver will need to obtain

the corresponding verification key in order to verify the resulting digital signature.

 Confidentiality and data origin authentication. This is typically provided by

following the MAC-then-encrypt construction. In other words, a symmetric

Module 5 : CRYPTOGRAPHIC APPLICATIONS

encryption key is generated and the email message is digitally signed, as described

above. The email message and the resulting signature are then both encrypted

using the symmetric encryption key. Finally the symmetric encryption key is itself

encrypted using the public encryption key of the recipient.

The main differences between OpenPGP and S/MIME are with respect to:

Cryptographic algorithms supported. OpenPGP implementations support a range of

cryptographic algorithms. On the other hand, S/MIME is more restrictive and specifies the use

of AES or Triple DES for symmetric encryption and RSA for digital signatures and public-key

encryption (the original S/MIME proposal came from RSA Data Security Inc.).

Public-key management. Again, OpenPGP is more flexible and can be supported by almost

any form of public-key management system. The default public key management model for

OpenPGP is to use a web of trust, although more formal public-key management can also be

supported. On the other hand, S/MIME is based on the use of X.509 Version 3 certificates

supported by a structured public-key management system relying on Certificate Authorities.

AN ALTERNATIVE APPROACH TO EMAIL SECURITY

 Since the approaches to email security rely on the use of public-key cryptography, the

problem of assurance of purpose of public keys needs to be addressed by whichever

public-key management system is used to support an email security application.

 The IDPKC concept requires unique identifiers that can be associated with users of the

system.

 In email security applications such a potential unique identifier exists in the form of the

email address of the recipient. Thus, using IDPKC, an email sender is potentially able to

send an encrypted email to any recipient simply by encrypting the email using the

recipient’s email address.

 The advantages offered by this concept have resulted in the commercial development of

email security applications based on IDPKC.

Module 5 : CRYPTOGRAPHIC APPLICATIONS

 one of the potential drawbacks with IDPKC is the need for an online centrally-trusted

key centre (TKC). Thus IDPKC is most suited to large organisations where such a TKC

can easily be provided, rather than home users.

 However, a home user could well receive encrypted email from such an organisation

without needing any formal relationship with the sender. In this case:

Module 5 : CRYPTOGRAPHIC APPLICATIONS

