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MODULE – 3 INFORMATION CHANNELS 

STRUCTURE 

1. Objectives  

2. Introduction  

3. Communication channel 

4. Channel model and channel capacity 

5. Mutual information 

6. Review questions. 

7. Outcomes. 

 

OBJECTIVES 

After completion of this module the student will be able  

1. To learn about different Communication channel in communication systems. 

2. To find channel capacity of different channels in communication system. 

3. To develop channel matrix and to find out mutual information in channel. 
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3.1 COMMUNICATION CHANNELS: 
 

Observe that the matrix is necessarily a square matrix. The principal diagonal 
entries are the self-impedances of the respective ports. The off diagonal entries 
correspond to the transfer or mutual impedances. For a passive network the 

impedance matrix is always symmetric i.e. Z
T 

= Z, where the superscript indicates 
transposition. 

 

Similarly, a communication network may be uniquely described by 
specifying the joint probabilities (JPM). Let us consider a simple communication 

network comprising of a transmitter (source or input) and a receiver (sink or 
output) with the interlinking medium-the channel as shown in Fig 4.1. 

 

Fig 4.1 A Simple Communication System 

 

This simple system may be uniquely characterized by the „ Joint probability 
matrix‟ ( JPM), 

P(X, Y) of the probabilities existent between the input and output ports. 
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For jointly continuous random variables, the joint density function satisfies the following: 

 


∫ ∫ f ( x, y)dxdy  1 






∫ f ( x, y)dy  f X ( 

x) 




∫ f ( x, y)dx  fY ( y) 



…………. (4.3) 

 

………     ………….. (4.4) 

We shall make use of their discrete counterpart as below:   

\ ∑∑ p( xk , y j )  1 ,Sum of all entries of JPM 
 

......... 

 
(4.5) 

k j   

∑ p( xk , y j )  p( xk ) , Sum of all entries of JPM in the k
th 

r 
 

…………..(4.6) 

 

j   

∑ p( xk , y j )  p( y j ) , Sum of all entries of JPM in the j
th

 

column 

 

 
............ 

 

 
(4.7) 

k   

And also   
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Thus the joint probabilities, as also the conditional probabilities (as we shall see shortly) form 

complete finite schemes. Therefore for this simple communication network there are five probability 

schemes of interest viz: P(X), P(Y), P(X, Y), P (X|Y) and P (Y|X). Accordingly there are five 

entropy functions that can be described on these probabilities: 

 

H(X): Average information per character or symbol transmitted by the source or the entropy of the 

source. 

 

H(Y): Average information received per character at the receiver or the entropy of the receiver. 

 

H(X, Y): Average information per pair of transmitted and received characters or the average 

uncertainty of the communication system as a whole. 

 

H (X|Y): A specific character yj being received. This may be the result of the transmission of one of the 

xk with a given probability. The average value of the Entropy associated with this scheme when yj covers 

all the received symbols i.e., E {H (X|yj)} is the entropy H (X|Y), called the „Equivocation‟, a measure of 

information about the source when it is known that Y is received. 

 

H (Y|X) : Similar to H (X|Y), this is a measure of information about the receiver. 

 

The marginal Entropies H(X) and H(Y) give indications of the probabilistic nature of the 

transmitter and receiver respectively. H (Y|X) indicates a measure of the „noise‟ or „error‟ in t he 

channel and the equivocation H(X |Y) tells about the ability of recovery or reconstruction of the 

transmitted symbols from the observed output symbols. 

 

The above idea can be generalized to an n- port communication system, problem being similar 

to the study of random vectors in a product space (n-dimensional random variables Theory). In each 

product space there are finite numbers of probability assignments (joint, marginal and conditional) of 

different orders, with which we may associate entropies and arrive at suitable physical interpretation. 

However, concepts developed for a two-dimensional scheme will be sufficient to understand and 

generalize the results for a higher order communication system. 

 

3.2 JOINT AND CONDITIONAL ENTROPIES: 
 

In view of Eq (4.2) to Eq (4.5), it is clear that all the probabilities encountered in a two 

dimensional communication system could be derived from the JPM. While we can compare the JPM, 

therefore, to the impedance or admittance matrices of an n-port electric network in giving a unique 

description of the system under consideration, notice that the JPM in general, need not necessarily be a 

square matrix and even if it is so, it need not be symmetric. 

 

We define the following entropies, which can be directly computed from the JPM. 
 1  1  1 

H(X, Y) = p(x1, y1) 

log 
p(x1 , y1 ) 

+ p(x1, y2) log p(x1 , y2 ) 
+…+ p(x1, yn) log p(x1 , yn ) 

 1  1  1 
+ p (x2, y1) log 

 
 + p(x2,y2) log  +…+ p(x2,yn) log 

 p(x2 , y1 )  p(x2 , y2 ) p(x1 , y1 ) 
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1 1 1 
+… p (xm, y1) log + p(xm,y2) log +… p(xm,yn) log or 

p(xm , y1 ) p(xm , y2 ) p(xm , yn ) 

m     n 

H(X, Y) = ∑∑p(x k , y j ) 

log 
 
 

k 1 j1 p(x k , y j ) 

 

………………(4.9) 

 

m 1 
H(X) = ∑ p(xk ) log 

k 1 p( xk ) 

Using Eq (4.6) only for the multiplication term, this equation can be re-written as: 
m n 1 

H(X) = ∑ ∑ p( xk , y j ) log …………………     (4.10) 

k 1 j1 p( xk ) 
n    m 1 

Similarly, H(Y) = ∑ ∑ p( xk , y j ) log ………………. (4.11) 

j1k 1 p( y j ) 

 
Next, from the definition of the conditional probability we have: 

 

P{X = xk | Y = yj} =
 P{X  xk ,Y  y j }

 

P{Y  y j  } 

i.e., p(xk | y j ) = p(xk , y j ) ) / p (yj) 

 
m 1 m 1 

Then  ∑ p(xk | y j ) = ∑ p(xk , y j ) = . p(y j ) =1 ………. (4.12) 

k 1 p( y j ) k 1 p( y j ) 
 

Thus, the set [X | yj] =  {x1 | yj, x2 | yj… xm | yj}; P [X | yj] = {p(x1 | yj), p(x2 | yj)… p (xm | yj)}, 
forms a 

complete finite scheme and an entropy function may therefore be defined for this scheme as below: 
m 1 

H(X | yj) = ∑ p(xk | y j )log . 

k 1 p(xk | y j ) 

Taking the average of the above entropy function for all admissible characters received, we have the 

average “ conditional Entropy” or “Equivocation”: 

 

H(X | Y) = E {H(X | yj)} j 
n    

=  ∑ p( y j ) H(X | 

yj) 
j1    

n m  1 
= ∑ p( y j ) ∑ p( xk | y j ) log 

 
 

p( xk | y j ) j1 k 1  

nm 
1 

  

Or H(X | Y) = ∑∑ p(xk , y j ) log 
 

(4.13) 
p(xk | y j ) 

……………… 

j 1 k 1   

 
Eq (4.13) specifies the “ Equivocation “. It specifies the average amount of information n eeded to 

specify an input character provided we are allowed to make an observation of the output produced by 

that input. Similarly one can define the conditional entropy H(Y | X) by: 

1 
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k j 

 

 

m   n 1  

H(Y | X) = ∑ ∑ p( xk , y j ) log ……………… (4.14) 

k 1 j1 p( y j | xk )  
 

Observe that the manipulations, made in deriving Eq 4.10, Eq 4.11, Eq 4.13 and Eq 4.14, are 
intentional. „ The entropy you want is simply the double summation of joint probability multiplied by 

logarithm of the reciprocal of the probability of interest‟ . For example, if you want joint entropy, then 
the probability of interest will be joint probability. If you want source entropy, probability of interest will 

be the source probability. If you want the equivocation or conditional entropy, H (X|Y) then probability 

of 

interest will be the conditional probability p (xK |yj) and so on. 

 

All the five entropies so defined are all inter-related. For example, consider Eq (4.14). We have: 
 

∑∑ p(x k , y j ) 
1
 

H(Y | X) = 
k j 

log 
p(y j | x k ) 

 

1 

Since, p( y j | x k ) 
= 

We can straight away write: 

p(xk ) 

p(xk , y j ) 

H (Y|X) = ∑∑p(x k , y 
j 

1 
 ∑∑p(x 

1
 

)log 
k j p(y j 

k 

| x k ) k j 

, y j )log 
p(x k )

 

Or H(Y | X) = H(X, Y) – H(X) 

 

That is: H(X, Y) = H(X) + H(Y | X) ………………………..  (4.15)  

Similarly, you can show: H(X, Y) = H(Y) + H(X | Y) ………………. (4.16) 

Consider H(X) - H(X |Y). We have: 

 
H(X) - H(X |Y) = ∑∑p(x k , y j ) 

log 

1 1 

p(x  ) 
 log  

p(x  | y ) 

k j k k j 

= ∑∑ p(xk , y j 

)log 
k j 

    p(xk , y j )  

 
p(xk ) . p(y j ) 

 

 

 

 

 

 

 
……… 

 

(4.17) 

Using the logarithm inequality derived earlier, you can write the above equation as: 

H(X) - H(X |Y) =log e ∑∑ p(xk , y  p(xk , y j )  

j )ln 

k   j p(xk ) . p(y j ) 

p(xk ) . p(y j 

≥ log e ∑∑ p(xk , y j  ) 1 - 
p(x , y )

 

 
≥log e   ∑ ∑ p(xk , y j ) 

k j 

 

- ∑∑ p(xk).p(yj) 

k j k j 

 

≥log e  ∑ ∑ p(xk , y j ) - ∑ p(xk).∑ p(yj) ≥ 0 

k j k j 

Because ∑∑ p(xk , y j )  ∑ p(xk )  ∑ p(y j ) =1. Thus it follows that: 
k    j k j 

 
H(X) ≥ H (X|Y) ………. (4.18
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0.26 log 

 

 
 

Similarly, H(Y)  H (Y|X) ………….. (4.19) 

 
Equality in Eq (4.18) &Eq (4.19) holds iffy P (xk , yj) = p(xk) .p(yj); i.e., if and only if input symbols 
and output symbols are statistically independent of each other. 

 

NOTE : Whenever you write the conditional probability matrices you should bear  in  mind  the  property described in 

Eq.(4.12), i.e. For the CPM (conditional probability matrix ) P(X|Y), if you add all the elements in any 

column the sum shall be equal to unity. Similarly, if you add all elements along any row of the CPM, P 

(Y|X) the sum shall be unity 

 

Example 4.1 
 

Determine different entropies for the JPM given below and verify their relationships. 

 
0.2  0 0.2 0 

0.1 0.01 0.01 
 

0.01 

P(X, Y) = 0 0.02 0.02 0 
 

0.04 0.04 0.01 0.06 

 
0 0.06 0.02 0.2 

 
 n 

Using p (xk) = ∑ p(xk , y j) , we have, by adding entries of P(X, Y) row-wise we get: 
 j1 

P(X) = [0.4, 0.1, 0.04, 0. 15, 0.28] 
Similarly adding the entries column-wise we get: 

 

P(Y) = [0.34, 0.13, 0.26, 0.27] 
 

Hence we have: 

H(X,Y )  3  0.2 log 1  0.1 log 1  4  0.01 log 1 

0.2 0.1 0.01 

3  0.02 log   1   2  0.04 log  1  2  0.06 log 1  
0.02 0.04 0.06 

= 3.188311023 bits /sym 

 

H(X) = 0.4 log
 1 
 0.13 log

 1 
 0.04 log

 1 
 0.15 log

 1 
 0.28 log

 1
 

0.4 0.13 0.04 0.15 0.28 
= 2.021934821 bits / sym 

 

H(Y) = 0.34 log  
   1    

 0.13 log
   1  

 
 1 
 0.27 log

 1   
 

0.34 0.13 0.26 0.27 
= 1.927127708 bits / sym 

 

P(x k , y j ) 
Since p (xk | yj) = we have: 

P( y j )
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(Divide the entries in the j
th 

column of the JPM of p (yj) 
 
 

0.2 
0 

0.2 
0 

 

 

 

P (X| Y) = 
 

 

 
0.06 0.02  0.20 

0 
0.13 0.26 0.27 

 

 H(X | Y)  0.2log 0.34  0.2log 0.26   0.1log   0.34 

0.2 0.2 0.1 

+ 0.01log  0.13  0.01log 0.26  0.01log 0.27 

0.01 0.01 0.01 

+ 0.02log  0.13  0.02log 0.26  0.04log 0.34 

0.02 0.02 0.04 

+ 0.04log  0.13  0.01log 0.26  0.06 log 0.27 

0.04 0.01 0.06 

+ 0.06log  0.13     0.02log 0.26  0.2 log 0.27 

0.06 0.02 0.2 
 

=1.261183315 bits / symbol 

Similarly, dividing the entries in the k
th 

row of JPM by p (xk,), we obtain the CPM P (Y|X).Then we 

have: 

 
 0.2  

0 
 0.2  

0 
 0.4 0.4  

 0.1  0.01  0.01  0.01 
 0.13  0.13  0.13  0.13 

P(Y | X)  0 
 0.02  0.02  

0 
 0.04  0.04  

 0.04  0.04  0.01  0.06 

 0.15  0.15  0.15  0.15 
 

0 
 0.06  0.02  0.20 

   0.28  0.28  0.28 
 
 

Thus by actual computation we have 
 

H(X, Y) = 3.188311023 bits/Sym H(X)= 2.02193482 bit/Sym H(Y)= 1.927127708 bits/Sym 

 

H(X | Y) = 1.261183315 bits/Sym H(Y | X) = 1.166376202 bits/Sym 

 

Clearly, H(X, Y) = H(X) + H(Y | X) = H(Y) + H(X | Y) 

 

H(X) > H(X | Y) and H(Y) > H(Y | X) 

And H(Y | X)  2  0.2log 0.4  0.1log 0.13  3  0.01 log 0.13  2  0.02 log 0.04 

0.2 0.1 0.01 0.02 



 2  0.04 log 0.05  0.01 log 0.15  0.06 log 0.15  0.06 log 0.28 

    0.26  

0.1    0.01  0.01 

    0.26  0.27 

0 
 0.02 

0
 

    0.26   

      0.06 

    0.26  0.27 
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0.04 0.01 0.06 0.06 



 2  0.02 log 0.28  1.166376202 bits / sym . 
0.02 

 

 

3.3 Mutual information: 
 

On an average we require H(X) bits of information to specify one input symbol. However, if 

we are allowed to observe the output symbol produced by that input, we require, then, only H (X|Y) 
bits of information to specify the input symbol. Accordingly, we come to the conclusion, that on an 

average, observation of a single output provides with [H(X) – H (X|Y)] bits of information. This 

difference is called „ Mutual Information‟ or „ Transinformation‟ of the channel, denoted by I(X, 

Y). Thus: 
 

I(X, Y)  H(X) - H (X|Y) ………………………….. (4.20) 

 

Notice that in spite of the variations in the source probabilities, p (xk) (may be due to noise in 
the channel), certain probabilistic information regarding the state of the input is available, once the 

conditional probability p (xk | yj) is computed at the receiver end. The difference between the initial 

uncertainty of the source symbol xk, i.e. log 1/p(xk) and the final uncertainty about the same source 

symbol xk, after receiving yj, i.e. log1/p(xk |yj) is the information gained through the channel. This 

difference we call as the mutual information between the symbols xk and yj. Thus 
 

 
I(x k , y j ) 

1 

 log 
p(x k )

 

1 

 log 
p(x k| y j ) 

 log
 p(xk | y j ) 

p(xk ) 

 

……………………(4.21 a) 

OrI (xk, yj)    log 
  p(x k  .y j ) 

……………… (4.21 b) 

p(x k ).p(y j ) 

Notice from Eq. (4.21a) that 

I (xk) = I (xk, xk) = log p(x k | x k )  log  1  

p(x k ) p(xk ) 
 

This is the definition with which we started our discussion on information theory! Accordingly I (xk) 

is also referred to as „Self Information
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It is clear from Eq (3.21b) that, as 
 p(xk , y j ) 

 p(y j | xk ) , 
p(xk  ) 

p(y j | x k ) 1 1 
I (x k  , y j )  log = log  log 

p(y j ) p(y j ) p(y j | x k ) 

Or I (xk, yj) = I (yj) – I (y j |xk) …………… (4.22) 

Eq (4.22) simply means that “the Mutual information ‟ is symmetrical with respect to its 

arguments.i.e. 

I (xk, yj) = I (yj, xk) …………… (4.23) 

Averaging Eq. (4.21b) over all admissible characters xk and yj, we obtain the average information 
gain of the receiver: 

 

I(X, Y) = E {I (xk, yj)} 

= 
∑∑ 

I(x
k 

, y 

j ). p(xk , y j ) 
k j 

= 
∑∑ 

p(x
k 

, y    p(xk , y j ) 

 

j 

k j 

(4.24) we have: 

).log  
p(xk )p(y j ) 

…………. (4.24) From Eq 

 

1) I(X, Y) = ∑∑ p(xk , y 
j 

 
) log 

1 1 

p(x   ) 
.  log 

p(x | y ) 

 
= H(X) – H(X | Y) 

k j k k j 

…… (4.25) 

I(X, Y) = ∑∑ p(xk , y 1 1 

2) j ) [log .  log 

k   j p(y j ) p(y j | xk ) 

= H(Y) – H(Y | X) ……………………. (4. 26) 

I(X,Y)  ∑∑ p(xk , 1  .∑∑ p(xk , y j 1 

3)y j 
k j 

∑∑ p(xk , 

)log ) 
p(xk ) k j 

1 

log 
p(y j ) 

y j ) log 
K J 

 

 

p(xk y j ) 

Or  I(X, Y) = H(X) + H(Y) – H(X, Y) ………………….. (4.27 ) 

 

Further, in view of Eq.(4.18) & Eq.(4.19) we conclude that, “ even though for a particular received 

symbol, yj, H(X) – H(X | Yj) may be negative, when all the admissible ou tput symbols are covered, the 

average mutual information is always non- negative”. That is to say, we cannot loose information on an 

average by observing the output of a channel. An easy method, of remembering the various relationships, 

is given in Fig 4.2.Althogh the diagram resembles a Venn-diagram, it is not, and the diagram is only a 

tool to remember the relationships. That is all. You cannot use this diagram for proving any result. 
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The entropy of X is represented by the circle on the left and that of Y by the circle on the right. The 

overlap between the two circles (dark gray) is the mutual information so that the remaining (light 

gray) portions of H(X) and H(Y) represent respective equivocations. Thus we have 

 

H(X | Y) = H(X) – I(X, Y) and H (Y| X) = H(Y) – I(X, Y) 

 

The joint entropy H(X,Y) is the sum of H(X) and H(Y) except for the fact that the overlap is added 

twice so that 

H(X, Y) = H(X) + H(Y) - I(X, Y) 

 

Also observe H(X, Y) = H(X) + H (Y|X) 

= H(Y) + H(X |Y) 
 

For the JPM given in Example 4.1, I(X, Y) = 0.760751505 bits / sym 

 

Shannon Theorem: Channel Capacity: 
Clearly, the mutual information I (X, Y) depends on the source probabilities apart from the 

channel probabilities. For a general information channel we can always make I(X, Y) = 0 by choosing 

any one of the input symbols with a probability one or by choosing a channel with independent input 

and output. Since I(X, Y) is always nonnegative, we thus know the minimum value of the 

Transinformation. However, the question of max I(X, Y) for a general channel is not easily answered. 

 
Our intention is to introduce a suitable measure for the efficiency of the channel by making a 

comparison between the actual rate and the upper bound on the rate of transmission of information. 
Shannon‟s contribution in this respect is most significant. Without botheration about the proof, let us 

see what this contribution is. 

 

Shannon’s theorem: on channel capacity(“coding Theo rem”) 

 
It is possible, in principle, to device a means where by a communication system will transmit 

information with an arbitrary small probability of error, provided that the information rate R(=r×I 

(X,Y),where r is the symbol rate) is less than or equal to a rate „ C‟ called “channel capacity”. 

 
The technique used to achieve this objective is called coding. To put the matter more 

formally, the theorem is split into two parts and we have the following statements. 
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Positive statement: 

 

“ Given a source of M equally likely messages, with M>>1, which is generating information at a 

rate R, and a channel with a capacity C. If R ≤ C, then there exists a coding technique such that the 

output of the source may be transmitted with a probability of error of receiving the message that can be 

made arbitrarily small”. 

 

This theorem indicates that for R< C transmission may be accomplished without error even in 

the presence of noise. The situation is analogous to an electric circuit that comprises of only pure 

capacitors and pure inductors. In such a circuit there is no loss of energy at all as the reactors have the 

property of storing energy rather than dissipating. 

 

Negative statement: 

 

“ Given the source of M equally likely messages with M>>1, which is generating information at a 

rate R and a channel with capacity C. Then, if R>C, then the probability of error of receiving the message 

is close to unity for every set of M transmitted symbols”. 

 

This theorem shows that if the information rate R exceeds a specified value C, the error probability 

will increase towards unity as M increases. Also, in general, increase in the complexity of the coding 

results in an increase in the probability of error. Notice that the situation is analogous to an electric 

network that is made up of pure resistors. In such a circuit, whatever energy is supplied, it will be 

dissipated in the form of heat and thus is a “lossy network”. 

You can interpret in this way: Information is poured in to your communication channel. You 
should receive this without any loss. Situation is similar to pouring water into a tumbler. Once the 

tumbler is full, further pouring results in an over flow. You cannot pour water more than your 
tumbler can hold. Over flow is the loss. 

 

Shannon defines “ C” the channel capacity of a communication channel a s the maximum 

value of Transinformation, I(X, Y): 
 

C = ∆ Max I(X, Y) = Max [H(X) – H (Y|X)] …………. (4.28) 

The maximization in Eq (4.28) is with respect to all possible sets of probabilities that could be 

assigned to the input symbols. Recall the maximum power transfer theorem: „In any network, 
maximum power will be delivered to the load only when the load and the source are properly 

matched‟. The device used for this matching purpose, we shall call a “transducer “. For example, in a 

radio receiver, for optimum response, the impedance of the loud speaker will be matched to the 
impedance of the output power amplifier, through an output transformer. 

 

This theorem is also known as “The Channel Coding Theorem” (Noisy Coding Theorem). It may 

be stated in a different form as below: 
 

R ≤ C or rs H(S) ≤ rc I(X,Y)Max or{ H(S)/Ts} ≤{ I(X,Y)Max/Tc} 

“If a discrete memoryless source with an alphabet „S‟ has an entropy H(S) and produces 

symbols every „T s‟ seconds; and a discrete memoryless channel has a capacity I(X,Y)Max and is 

used once every Tc seconds; then if 
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There exists a coding scheme for which the source output can be transmitted over the channel and 

be reconstructed with an arbitrarily small probability of error. The parameter C/Tc is called the 

critical rate. When this condition is satisfied with the equality sign, the system is said to be 
signaling at the critical rate. 

 

Conversely, if 
H ( S ) 

 
I ( X ,Y )Max 

, it is not possible to transmit information over the Ts Tc 

channel and reconstruct it with an arbitrarily small probability of error 

 
 

A communication channel, is more frequently, described by specifying the source 

probabilities P(X) & the conditional probabilities P (Y|X) rather than specifying the JPM. The CPM, P 

(Y|X), is usually refereed to as the „ noise characteristic‟ of the channel. Therefore unless otherwise 

specified, we shall understand that the description of the channel, by a matrix or by a „Channel diagram‟ 

always refers to CPM, P (Y|X). Thus, in a discrete communication channel with pre-specified noise 

characteristics (i.e. with a given transition probability matrix, P (Y|X)) the rate of information 

transmission depends on the source that drives the channel. Then, the maximum rate corresponds to a 

proper matching of the source and the channel. This ideal characterization of the source depends in turn 

on the transition probability characteristics of the given channel. 

 
 

Redundancy and Efficiency: 

 
A redundant source is one that produces „dependent‟ symbols. (Example: The Markov 

source). Such a source generates symbols that are not absolutely essential to convey information. As 

an illustration, let us consider the English language. It is really unnecessary to write “U” following 
the letter “Q”. The redundancy in English text is e stimated to be 50%(refer J Das etal, Sham 

Shanmugam, Reza, Abramson, Hancock for detailed discussion.) This implies that, in the long run, 
half the symbols are unnecessary! For example, consider the following sentence. 

 

“ Y.u sh..ld b. abl. t. re.d t.is ev.n tho… sev.r.l l.t..rs .r. m.s..ng ” 

 
However, we want redundancy. Without this redundancy abbreviations would be impossible 

and any two dimensional array of letters would form a crossword puzzle! We want redundancy even 
in communications to facilitate error detection and error correction. Then how to measure 

redundancy? Recall that for a Markov source, H(S) < H(S), where S is an ad- joint, zero memory 
source. That is, when dependence creeps in, the entropy of the source will be reduced and this can be 
used as a measure indeed! 

“ The redundancy of a sequence of symbols is measured by noting the amount by which the entropy 

has been reduced”. 

 

When there is no inter symbol influence the entropy at the receiver would be H(X) for any 

given set of messages {X} and that when inter symbol influence occurs the entropy would be H (Y|X). 

The difference [H(X) –H (Y|X) ] is the net reduction in entropy and is called “ Absolute Redundancy”. 

Generally it is measured relative to the maximum entropy and thus we have for the “ Relative 

Redundancy” or simply, „ redundancy‟ , E 

 

E = (Absolute Redundancy) ÷ H(X) 
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Or E  1 
H(Y | X) 

………………………. ( 4.29) 
H(X) 

 

Careful observation of the statements made above leads to the following alternative definition for 
redundancy, 

 
 

E  1 
 R 

………………………… (4.30) 
C 

 

Where R is the actual rate of Transinformation (mutual information) and C is the channel 

capacity. From the above discussions, a definition for the efficiency, η for the channel immediately 

follows: 

η  Actual rate of mutual information 
maximum possible rate 

 
 

That is. η 
 R    

C  
……… ……………………. (4.31) 

and η  1  E 

 

 

 

……………………………… (4.32) 

 

3.4 Capacity of Channels: 

 
While commenting on the definition of „Channel capacity‟, Eq. (4.28), we have said that 

maximization should be with respect to all possible sets of input symbol probabilities. Accordingly, 

to arrive at the maximum value it is necessary to use some Calculus of Variation techniques and the 
problem, in general, is quite involved. 

 

Example 3.2: Consider a Binary channel specified by the following noise characteristic (channel matrix): 

 
 1   1 

P(Y | X ) 2  2  

 1  3  

4  4 

The source probabilities are: p(x1) = p, p(x2) = q =1-p 

 

Clearly, H(X) = - p log p - (1 - p) log (1 - p) 
 

We shall first find JPM and proceed as below: 

p p 
p(x1 ). p(y1 | x1 ) p(x1 ). p(y2 | x1 ) 2 2 

P(X,Y)   
p(x2). p(y1 | x 2   ) p(x2). p(y2 | x2  )  

= 
1      p 3(1  p) 

)  

4 4 

Adding column-wise, we get: 
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p (y1) =  p  1 - p   1  p and p (y2) = p 3(1 - p)   3  p 

2 4 4   2 4 4 
1  p 4 3 - p 4 

Hence H(Y) = log  log 

4 1  p 4 3 - p 

And H (Y|X) =   p log 2    p  log 2    1  p log 4  3(1  p) log 4 

2   2  4  4 3 

I(X, Y) = H(Y) – H (Y|X) = 1  
3 log 3 

p  
3log3 

 
1 p 

log(1  p)  
3(1 - p) 

log (3  p ) 

4 4 4 4 

Writing log x = loge× ln x and setting 
dI 

= 0 yields straight away: 
dp 

p   3a  1  0.488372093 , Where a =2
(4-3log3) 

= 0.592592593 

1  a 

With this value of p, we find I(X, Y) Max = 0.048821 bits /sym 

 

For other values of p it is seen that I(X, Y) is less than I(X, Y) max 

 

Although, we have solved the problem in a straight forward way, it will not be the case 
 

p . 0.2 . 0.4 .0.5 .0.6 .0.8     
I(X,Y) .0.32268399 .0.04730118 .0.04879494 .0.046439344 .0.030518829  
Bits / sym  

 
When the dimension of the channel matrix is more than two. We have thus shown that the channel 
capacity of a given channel indeed depends on the source probabilities. The computation of the 
channel capacity would become simpler for certain class of channels called the „symmetric „or 
„uniform‟ channels. 

 

Muroga‟s Theorem : 
 

The channel capacity of a channel whose noise characteristic, P (Y|X), is square and non- 

singular, the channel capacity is given by the equation: 
i n 

C  log ∑2 Qi 

i 1 

…………………. (4 .33) 

Where Qi are the solutions of the matrix equation P (Y|X).Q = [h], where h= [h1, h2, h3, h4… h n] 
t
 

are the row entropies of P (Y|X). 
 

 

 

p 

p 

p 

 

 

 

 

 

 

 

 
p11 

 
 

 
 

 

..... 
 

 

 
22 

 
 ..... 

    

 
n1 

 
n2 

 
n3 

 
..... 

 

Q1   h1 
1n 

    
2n     

 

M   

nn Q 
n 

   
 
n 
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From this we can solve for the source probabilities (i.e. Input symbol probabilities): 

[p1, p2, p3 … p  n] = [p1, p2, p3… p  n ] P-1 
[Y|X], provided the inverse exists. 

However, although the method provides us with the correct answer for Channel capacity, this 

value of C may not necessarily lead to physically realizable values of probabilities and if P
-1 

[Y|X] 

does not exist ,we will not have a solution for Qi`s as well. One reason is that we are not able to 

incorporate the inequality constraints 0≤ pi ≤ 1 .Still, within certain limits; the method is indeed very 
useful. 

Example 3.2: Consider a Binary channel specified by the following noise characteristic (channel matrix): 

 

1 1 

P(Y | X )  2 2 
 1  3 

4 4 

 
The row entropies are: 

h  1 log 2  1 log 2  1 bit / symbol . 
1 2 2 

h  1 log 4 3 log 4  0.8112781 bits / symbol . 
2 4 4 3 

3  1 

P 1 Y | X 

Q 
1  P 1

 
Q 

2 

 

 1 

Y | X 

 
2 
h 1.3774438 

. 1 


h

2 0.6225562 

C  log2Q1    2 Q 2  0.048821 bits / symbol , as before. 

Further , p 
 
 2

Q1 C  0.372093 and p   2
Q2 C  0.627907. 

1 2 

p p p p   .P 1  Y | X 0.488372   0.511628 

 1 2   1 2       
Giving us p = 0.488372 
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Example 3.3: 
 

Consider a 33 channel matrix as below: 

 

PY | X 
0.4 0.6 0 
 

0.5 0 0.5 

 
0 0.6 0.4 

The row entropies are: 

 

h1 = h3 = 0.4 log (1/0.4) + 0.6 log (1/0.6) = 0.9709505 bits / symbol. 

h2 = 2  0.5 log (1/0.5) = 1 bit / symbol. 

1.25 1  1.25 

P 
1 

Y | X  5 6 2 3 5 6 
 

 1.25 

Q1 1 

1 1.25 

Q  1.0193633 
2 

Q 
3 1 

C = log {2
-1 

+ 2
-1.0193633 

+ 2
-1

} = 0.5785369 bits / symbol. 

p1 =2
-Q1 –C 

=0.3348213 = p3, p2 = 2
-Q2 –C 

=0.3303574. 

Therefore, p1 = p3 =0.2752978 and p2 = 0.4494043. 

 

Suppose we change the channel matrix to: 
 

PY | X 
0.8 0.2 0   

Y | X 
0.625 1  0.625 

 

0 0.5 P 
1 

2.5  4 2.5 0.5  

 
0 0.2 0.8 

   
 0.625 1 0.625 

We have: 

 h1 = h3 =0.721928 bits / symbol, and h2 = 1 bit / symbol. 

This results in: 

 Q1 = Q3 = 1; Q2 =  0.39036. 

C = log {2  21 
+ 2

+0.39036
} = 1.2083427 bits / symbol. 

p1 =2-Q1 –C 
=0.2163827 =  p3,  p2  =  2

-Q2 –C  
=0.5672345 

Giving: p1 = p3 =1.4180863 and p2 = Negative! 
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Thus we see that, although we get the answer for C the input symbol probabilities computed are not 
physically realizable. However, in the derivation of the equations, as already pointed out, had we 
included the conditions on both input and output probabilities we might have got an excellent result! 
But such a derivation becomes very formidable as you cannot arrive at a numerical solution! You will 
have to resolve your problem by graphical methods only which will also be a tough proposition! The 
formula can be used, however, with restrictions on the channel transition probabilities. For example, 

in the previous problem, for a physically realizable p1, p11 should be less than or equal to 0.64. 

(Problems 4.16 and 4.18 of Sam Shanmugam to be solved using this method) 

 
Symmetric Channels: 

The Muroga‟s approach is useful only when the noise characteristic P [X|Y] is a square and 

invertible matrix. For channels with m ≠ n, we can determine the Channel capacity by simple 
inspection when the channel is “ Symmetric” or “Uniform”. 

Consider a channel defined by the noise characteristic: 

 

p 

 

 

 

 
 

This channel is said to be Symmetric or Uniform if the second and subsequent rows of the 
channel matrix are certain permutations of the first row. That is the elements of the second and 
subsequent rows are exactly the same as those of the first row except for their locations. This is 
illustrated by the following matrix: 

 
 p1 p2 p3 ... pn  
 p 

n 1 
p2 pn ... p4  

P [Y | X ]  p3 p2 p1 ... p5 …………… (4.35) 

  
M 

 
M 

 
M 

 
M M  

  

pn 
P 

n 1 

p 
n 2 

 
... 

 

p1 

 

Remembering the important property of the conditional probability matrix, P [Y|X], that the sum of 
all elements in any row should add to unity; we have: 

 
n 

∑ p j  1 ……………… (4.36) 
j 1 

 
The conditional entropy H (Y|X) for this channel can be computed from: 

m   n 1 

H ( Y | X )  ∑ ∑ p( xk , y j )log 
k 1 j 1 p( xk , y j ) 

m n 1 
 ∑ p( xk ).∑ p( y j | xk )log 

k 1 j 1 p( y j | xk ) 

However, for the channel under consideration observe that: 

 

 
 

 
 

 

 
 

 

 

 
 

 
 

  

 

 

 

p 
 

 

 
p 

 
p 

 

 

 

p 
 

…………… 
(4.34) 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 

 
nn 
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m n 

  1  
n 

   1 
 

∑ p( xk ).∑ p( y j | xk )log  ∑ p j log  h……… (4.37) 

k 1 j 1 p( y j | xk ) j 1 p j  

is a constant, as the entropy function is symmetric with respect to its arguments and depends only on 
the probabilities but not on their relative locations. Accordingly, the entropy becomes: 

m 

H (Y | X )  ∑ p( xk ).h  h ……………..(4.38) 

k 1 

as the source probabilities all add up to unity. 

 
Thus the conditional entropy for such type of channels can be computed from the elements of any 
row of the channel matrix. Accordingly, we have for the mutual information: 

 

I(X, Y) = H(Y) – H (Y|X) 

= H(Y) – h 

Hence, C = Max I(X, Y) =Max 

{H(Y) – h} = 
Max H(Y) – h 

 
Since, H(Y) will be maximum if and only if all the received symbols are equally probable and as 

there are n – symbols at the output, we have: 

H(Y) Max = log n 
 

Thus we have for the symmetric channel: 

 

C = log n –  h …………… (4.39) 

 
The channel matrix of a channel may not have the form described in Eq (3.35) but still it can 

be a symmetric channel. This will become clear if you interchange the roles of input and output. That 
is, investigate the conditional probability matrix P (X|Y). 

 

We define the channel to be symmetric if the CPM, P (X|Y) has the form: 

 
p1 pm p2 ..

. 

pm  

p 
m 1 

p 
m 1 

 

p2 p6 ..
. 

P( X | Y )  p3 p4 pm ..

. 

p 
m 2 ……………….(4.40) 

 

M 
 

M 
 

M 
 

M 
 

M  

 
pm 

 
p1 

p 
m 3 

 
..
. 

 
p1 

 

That is, the second and subsequent columns of the CPM are certain permutations of the first column. 

In other words entries in the second and subsequent columns are exactly the same as in the first 
column but for different locations. In this case we have: 

 

n m 

H ( X | Y )  ∑∑ p( xk , y j 
1 n m 1 

 ∑ p( y j )∑ p( xk | y j )log 

)log 
j 1 k 1 

p( xk | y j )   j 1 k 1 p( xk | y j ) 

n 

Since ∑ p( y j )  1 and 
m     

p( x   | y   )log  1  
m 

p log    1  h is  a  constant,  because 
j 1 k  1 p( xk | y j ) k 1 pk 

all entries in any column are exactly the same except for their locations, it then follows that: 

k 
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m 

p log 
k 

 

*Remember that the sum of all entries in any column of Eq (3.40) should be unity. 
 

As a consequence, for the symmetry described we have: 

 

C = Max [H(X) – H ( X|Y)] = Max H(X) - h′ 

 

Or C = log m - h′ …………(4.42) 

 

Thus the channel capacity for a symmetric channel may be computed in a very simple and 

straightforward manner. Usually the channel will be specified by its noise characteristics and the 

source probabilities [i.e. P (Y|X) and P(X)]. Hence it will be a matter of simple inspection to identify 

the first form of symmetry described. To identify the second form of symmetry you have to first 

compute P (X|Y) – tedious! 

 

Example 3.4: 
 

Consider the channel represented by the channel diagram shown in Fig 3.3: 

The channel matrix can be read off from the channel diagram as: 

 

 

 
 

 

Clearly, the second row is a permutation of the first row (written in the reverse order) and hence the 
channel given is a symmetric channel. Accordingly we have, for the noise entropy, h (from either of 

the rows): 
 

H (Y|X) = h =2× 
 1 

log 3 + 2× 
 1 

log 6 = 1.918295834 bits / symbol. 
3 6 

 

C = log n – h = log 4 – h =0.081704166 bits / symbol. 

Example 4.5: 
 

A binary channel has the following noise characteristic:

        
 

   1 
 

  
    

 k 1   

 

1   1  1  1 

P( Y | X )  3 3 6 6  

        

6   6  3  3 
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2 

 

 

0  1 

0 2  1 

3  3 
       2 

1   

1  

3  3 
 

(a) If the input symbols are transmitted with probabilities 3 / 4 and 1 / 4 respectively, find H(X), 
H(Y), H(X, Y), H (Y|X) and I(X, Y). 

(b) Find the channel capacity, efficiency and redundancy of the channel. 

(c) What are the source probabilities that correspond to the channel capacity? 
 

To avoid confusion, let us identify the input symbols as x1 and x2 and the output symbols by y1 and 

y2. Then we have: 
 

 

 

 

 

 

 

 

 

 

 

3 4 1 3 3 
H ( X )     log        log4  log4     log 3  2      log 3  0.811278125 bits / symbol . 4 

3 4 4 4 
 

Multiplying first row of P (Y|X) by p(x1) and second row by p(x2) we get: 

 
2 


3  1 


3 1   1 
 

3 4  3 4 
 

2  4 P( X ,Y )    

  1  1   2  3    1    1 
 3  4  3  4 1 2  6 

Adding the elements of this matrix columnwise, we get: p (y1) = 7/12, p (y2) = 5/12. 

Dividing the first column entries of P (X, Y) by p (y1) and those of second column by 

p (y2), we get: 
6 3 

P( X | Y )   
7 5 

 

1 
 

7 5 
From these values we have: 

H ( Y )  
7 

log 
12 

 
5 

log 
12 

 0.979868756 bits / symbol . 

 
 

12  7  12  5        

H ( X ,Y )   log 2   log4    1  log12   log6  1.729573958 bits / symbol . 
               

H ( X | Y )   log     log   
   1 log7   log    0.74970520 bits / symbol 

   6  4   12    2  

 

P(x1) = 3 /4 and p(x2) = 1 / 4 

 
2 

 
1 

      

P( X | Y )   3        

 2        

3  3       

H ( Y | X )  h   log  
   log 3  log 3    0.918295833 bits / symbol . 

 3  2  3  3  
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

H ( Y | X )  1 log 3   1log 3  1 log 3  1 log 3  log 3  2  h ( asbefore ). 

2 2 4 12 6 2 3 

I ( X ,Y )  H ( X )  H ( X | Y )  0.061572924 bits / symbol . 

 H ( Y )  h  0.061572923 bits / symbol . 

C  log n  h  log 2  h  1  h  0.081704167 bits / symbol . 

Efficiency ,  I ( X ,Y )  0.753608123 or 75.3608123% 

C 

Re dundancy , E  1   0.246391876 or 24.6391876% 

 

To find the source probabilities, let p(x1) = p and p(x2) = q = 1 – p .Then the JPM becomes: 

 
 2 

p, 
1 

p
 

P( X ,Y )  3 3 
 1 ( 1  p ),   2 

3 3 

Adding columnwise we get: p( y1 )  1 (1  p) and p( y2)  1 (2  p) 
3 3 

For H(Y) = H(Y) max, we want p (y1) = p (y2) and hence 1+p = 2-p or p  
1 
2 

Therefore the source probabilities corresponding to the channel capacity are: p(x1) =1/2 = p(x2). 

 

Binary Symmetric Channels (BSC): (Problem 2.6.2 – S imon Haykin) 
 

The channel considered in Example 3.6 is called a „Binary Symmetric Channel‟ or ( BSC). It 
is one of the most common and widely used channels. The channel diagram of a BSC is shown in Fig 

3.4. Here „ p‟ is called the error probability. 
 

For this channel we have: 
 

H (Y | X )  p log  1  q log 1  H ( 
p) 

(4.43) 

 p  q   

    1 1 
H (Y )  [ p  ( p  

q)]log 
     [q  ( p  q)]log …(4.44) 

  [ p  ( p  q)] [q  ( p  q)] 
I(X, Y) = H(Y) – H (Y|X) and the channel capacity is: 

C=1 + p log p +q log q …………(4.45) 

 

This occurs when α = 0.5 i.e. P(X=0) = P(X=1) = 0.5 

 

In this case it is interesting to note that the equivocation, H (X|Y) =H (Y|X).
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An interesting interpretation of the equivocation may be given if consider an idealized 
communication system with the above symmetric channel as shown in Fig 4.5. 

 

 

The observer is a noiseless channel that compares the transmitted and the received symbols. 

Whenever there is an error a „ 1‟ is sent to the receiver as a correction signal and appropriate 
correction is effected. When there is no error the observer transmits a „ 0‟ indicating no change. Thus 

the observer supplies additional information to the receiver, thus compensating for the noise in the 

channel. Let us compute this additional information .With P (X=0) = P (X=1) = 0.5, we have: 

 

Probability of sending a „1‟ = Probability of error in the channel . 

 

Probability of error = P (Y=1|X=0).P(X=0) + P (Y=0|X=1).P(X=1) 

= p × 0.5 + p × 0.5 = p 

Probability of no error = 1 – p = q 

Thus we have P (Z = 1) = p and P (Z = 0) =q 

 

Accordingly, additional amount of information supplied is: 

 

 p log 
 1 
 q log 

1 
 H ( X | Y )  H ( Y | X ) …….. (4.46) 

p q 

 
Thus the additional information supplied by the observer is exactly equal to the equivocation of the 
source. Observe that if „ p‟ and „ q‟ are interchanged in the channel matrix, the trans -information of 

the channel remains unaltered. The variation of the mutual information with the probability of error is
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shown in Fig 3.6(a) for P (X=0) = P (X=1) = 0.5. In Fig 4.6(b) is shown the dependence of the mutual 

information on the source probabilities. 
 

 
 

 

Binary Erasure Channels (BEC): 
 

The channel diagram and the channel matrix of a BEC are shown in Fig 3.7. 

 
 

BEC is one of the important types of channels used in digital communications. Observe that 

whenever an error occurs, the symbol will be received as „ y‟ and no decision will be made about the 

information but an immediate request will be made for retransmission, rejecting what have been received 

(ARQ techniques), thus ensuring 100% correct data recovery. Notice that this channel also is a symmetric 

channel and we have with P(X = 0) =, P(X = 1) = 1 - . 

 

H (Y | X )  

plog 

 1 
 qlog 

1  
……………… (4.47) 

p q 

H ( X )  log 
 1 
 ( 1   )log 

  1  
……………. (4.48) 

 ( 1   ) 

The JPM is obtained by multiplying first row of P (Y|X) by  and second row by (1– ). 

We get: 

qP( X ,Y ) 
p 0 

…………….. (4.49)    

0 
p( 1   ) q( 1   ) 

  

Adding column wise we get: P (Y) = [q, p, q (1– )] ……………. (4.50) 
From which the CPM P (X|Y) is computed as:   
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P( X | Y ) 

1  0 
……………… (4.51) 

0 
( 1   ) 1 

 H ( X | Y )  q log1  p log 1  ( 1   ) p log  1  ( 1   )q log1 



 pH ( X ) 

( 1   ) 

 
I(X, Y) =H(X)– H (X|Y) = (1 – p) H(X) = q 

H(X) 

 

………… (4.52) 

C = Max I (X, Y) = q bits / symbol. 
 

…………… (4.53) 
 

In this particular case, use of the equation I(X, Y) = H(Y) – H(Y | X) will not be correct, as H(Y) 

involves „ y‟ and the information given by „ y‟ is rejected at the receiver. 

 

Deterministic and Noiseless Channels: (Additional Information) 
 

Suppose in the channel matrix of Eq (3.34) we make the following modifications. 

 

a) Each row of the channel matrix contains one and only one nonzero entry, which necessarily 
should be a „ 1‟. That is, the channel matrix is symmetric and has the property, for a given k 

and j, P (yj|xk) = 1 and all other entries are „ 0‟. Hence given xk, probability of receiving it as yj is 
one. For such a channel, clearly 

H (Y|X) = 0 and I(X, Y) = H(Y) ……………. (4.54) 
 

Notice that it is not necessary that H(X) = H(Y) in this case. The channel with such a property will 

be called a „ Deterministic Channel‟. 

 

Example 4.6: 
 

Consider the channel depicted in Fig 3.8. Observe from the channel diagram shown that the 

input symbol xk uniquely specifies the output symbol yj with a probability one. By observing the 
output, no decisions can be made regarding the transmitted symbol!! 

b) Each column of the channel matrix contains one and only one nonzero entry. In this case, 

since each column has only one entry, it immediately follows that the matrix P(X|Y) has also 

one and only one non zero entry in each of its columns and this entry, necessarily be a „ 1‟ 

because: 

If p (yj|xk) =, p (yj | xr) = 0, r  k, r = 1, 2, 3… m. 

Then p (xk, yj) = p (xk) × p (yj|xk) =α × p (xk), 
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p (xr, yj) = 0, r  k, r = 1, 2, 3… m. 
m 

 p (yj) = ∑ p( xr , y j ) = p (xk, yj) = α p (xk) 
   r 1   

 p( xk | y j ) 
 
 
p( xk , y j )  1, and p( xr | y j )  0 , r  k ,r  1,2 ,3,...m . 

   p( y j )   

It then follows that H (X|Y) = 0 and I (X, Y) = 
H(X) 

……... (4.55) 

Notice again that it is not necessary to have H(Y) = H(X). However in this case, converse of (a) 

holds. That is one output symbol uniquely specifies the transmitted symbol, whereas for a given 

input symbol we cannot make any decisions about the received symbol. The situation is exactly 

the complement or mirror image of (a) and we call this channel also a deterministic channel 

(some people call the channel pertaining to case (b) as „Noiseless Channel‟, a classification can be 

found in the next paragraph). Notice that for the case (b), the channel is symmetric with respect to 

the matrix P (X|Y). 

 

Example 3.7: 
Consider the channel diagram, the associated channel matrix, P (Y|X) and the conditional 

probability matrix P (X|Y) shown in Fig 3.9. For this channel, let 

 

p (x1)=0.5, p(x2) = p(x3) = 0.25. 
 

Then p (y1) = p (y2) = p(y6) =0.25, p(y3) = p(y4) =0.0625 and p(y5) = 0.125. 
 

It then follows I(X, Y) = H(X) =1.5 bits / symbol, 

 

H(Y) = 2.375 bits / symbol, H (Y|X) = 0.875 bits / symbol and H (X|Y) = 0. 

 
 

c) Now let us consider a special case: The channel matrix in Eq (3.34) is a square matrix and all 
entries except the one on the principal diagonal are zero. That is: 

p (yk|xk) = 1 and p(yj|xk)=0kj 

Or in general, p (yj|xk) =jk, where jk, is the „ Kronecker delta‟, i.e. jk =1 if j = k 

=0 if j k. 

 

That is, P (Y|X) is an Identity matrix of order „ n‟ and that P (X|Y) = P (Y|X) and 

p(xk, yj) = p(xk) = p(yj) can be easily verified.
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For such a channel it follows:  

H (X|Y) = H (Y|X) = 0 and I(X, Y) = H(X) = H(Y) = H(X, Y) 
....… 

(4.56) 

 

We call such a channel as “ Noiseless Channel”. Notice that for the channel to be noiseless, it 

is necessary that there shall be a one-one correspondence between input and output symbols. No 

information will be lost in such channels and if all the symbols occur with equal probabilities, it 

follows then: 

 

C =I(X, Y) Max=H(X) Max=H(Y) Max=log n bits / symbol. 
 

Thus a noiseless channel is symmetric and deterministic with respect to both descriptions 

P (Y|X) and P (X|Y). 

 

Finally, observe the major concept in our classification. In case (a) for a given transmitted 

symbol, we can make a unique decision about the received symbol from the source end. In case 

(b), for a given received symbol, we can make a decision about the transmitted symbol from the 

receiver end. Whereas for case (c), a unique decision can be made with regard to the transmitted 

as well as the received symbols from either ends. This uniqueness property is vital in calling the 

channel as a „Noiseless Channel‟. 

 
d) To conclude, we shall consider yet another channel described by the following JPM: 

p1 

P( X ,Y )  
p2

 

M 

p 
m 

with  ∑ pk 
 1

 

k   1 
n 

 

This means that there is no correlation between xk and yj and an input xk may be received as any 

one of the yj‟s with equal probability. In other words, the input-output statistics are independent!! 

This can be verified, as we have p (xk, yj) = pk 

 

 
 p(xk|yj) = npk and p(yj|xk) = 1/n 

Thus we have: 

m 

=npk. ∑ pk = p (xk).p (yj) 
k 1 

m 
 1 m 

 1 m 
 1  1 

H ( X ,Y )  n. ∑ pk log, H ( X )  ∑ npk log  n  ∑ pk log  log 

k 1 pkk                         1 

n  1 
H ( Y )  ∑ p( y j )log  logn, 

npk k 1 pk n 

j 1 p( y j ) 

H ( X | Y )  H ( X ), H ( Y | X )  H ( Y ) and I ( X ,Y )  

  ...  p1 

  ...  p2 

     

 pm ... 
  

m 

i .e . p( yj ) 
1 

,  j  1,2 ,3 ,...n. 
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Such a channel conveys no information whatsoever. Thus a channel with independent input- 

output structure is similar to a network with largest internal loss (purely resistive network), in 

contrast to a noiseless channel which resembles a lossless network. 

 

Some observations: 

 
For a deterministic channel the noise characteristics contains only one nonzero entry, 

which is a „ 1‟, in each row or only one nonzero entry in each of its columns. In either case there 

exists a linear dependence of either the rows or the columns. For a noiseless channel the rows as 

well as the columns of the noise characteristics are linearly independent and further there is only 
one nonzero entry in each row as well as each column, which is a „ 1‟ that appears only on the 

principal diagonal (or it may be on the skew diagonal). For a channel with independent input- 
output structure, each row and column are made up of all nonzero entries, which are all equal and 

equal to 1/n. Consequently both the rows and the columns are always linearly dependent!! 

 

Franklin.M.Ingels makes the following observations: 

 

1) If the channel matrix has only one nonzero entry in each column then the channel is termed 

as “ loss-less channel”. True, because in this case H (X|Y) = 0 and I(X, Y) =H(X), i.e. the 

mutual information equals the source entropy. 

 
2) If the channel matrix has only one nonzero entry in each row (which necessarily should be a 

„ 1‟ ), then the channel is called “ deterministic channel”. In this case there is no ambiguity 

about how the transmitted symbol is going to be received although no decision can be made 
from the receiver end. In this case H (Y|X) =0, and I(X, Y) = H(Y). 

 

3) An “ Ideal channel” is one whose channel matrix has only one nonzero element in each row 

and each column, i.e. a diagonal matrix. An ideal channel is obviously both loss-less and 

deterministic. Lay man‟s knowledge requires equal number of inputs and outputs-you 

cannot transmit 25 symbols and receive either 30 symbols or 20 symbols, there shall be no 

difference between the numbers of transmitted and received symbols. In this case 

 

I(X,Y) = H(X) =H(Y); and H(X|Y) =H(Y|X) =0 

 

4) A “ uniform channel” is one whose channel matrix has identical rows ex cept for 

permutations OR identical columns except for permutations. If the channel matrix is square, 

then every row and every column are simply permutations of the first row. 

 
Observe that it is possible to use the concepts of “ sufficient reductions” and make the 

channel described in (1) a deterministic one. For the case (4) observe that the rows and 
columns of the matrix (Irreducible) are linearly independent. 
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Additional Illustrations: 
 

 

Example 3.9 

 
 

Consider two identical BSC„s cascaded as shown in Fig 4.10. Tracing along the transitions indicated 

we find: 
 

p (z1|x1) = p
2 

+ q
2 

= (p + q) 
2 

– 2pq =(1 – 2pq) = p(z 2|x2) and p(z1|x2) = 2pq = p(z2|x1) 

Labeling ˆp  1  2 pq , qˆ  2 pq it then follows that: 

 
I(X, Y) = 1 – H (q) =1 + p log p + q log q 

I(X, Z) = 1 – H (2pq) = 1 + 2pq log 2pq + (1 – 2pq) log (1 – 2pq). 
 

If one more identical BSC is cascaded giving the output (u1, u2) we have: 

I(X, U) = 1 – H (3pq 
2 

+ p
3
) 

The reader can easily verify that I(X, Y)  I(X, Z)  I(X, U) 

Example 4.9: 

 

Let us consider the cascade of two noisy channels with channel matrices: 

 
      1   1 

0 
 

1   1  2  2  2 

P( Y | X )  6  6  3 P( Z | Y )  1   2 0 , with p(x1) = p(x2) =0.5 

3  3   1   1   1    

2   4  4  
0 
  1  2  

         3 3  

 

 

 

 

 

 

 

 

 

 
The above cascade can be seen to be equivalent to a single channel with channel matrix: 
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5 5  4 

P( Z | X )  36 12 9 
1 1   1 

3 2  6 
 

The reader can verify that: I(X, Y) = 0.139840072 bits / symbol. 
 

I(X, Z) = 0.079744508 bits / symbol. 

Clearly I(X, Y) > I(X, Z). 
 

Example 3.10: Let us consider yet another cascade of noisy channels described by: 
 

 

 

2 
P( Z | Y )  0 

 

 

 

 

The channel diagram for this cascade is shown in Fig 4.12. The reader can easily verify in this case 
that the cascade is equivalent to a channel described by: 

 
1   1  1  

P( Z | X )  
3
   3  3  P(Y | X ) ; 

0   1   1  
   2  2  

 

Inspite of the fact, that neither channel is noiseless, here we have I(X, Y) = I(X, Z). 

 

       
 

  
    

    
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Review Questions: 
 

1. What are important properties of the codes? 

 

2. what are the disadvantages of variable length coding? 

 

3. Explain with examples: 

4. Uniquely decodable codes, Instantaneous codes 

 

5. Explain the Shannon-Fano coding procedure for the construction of an optimum code 

 

6. Explain clearly the procedure for the construction of compact Huffman code. 

 

7. A discrete source transmits six messages symbols with probabilities of 0.3, 0.2, 0.2, 0.15, 0.1, 

0.5. Device suitable Fano and Huffmann codes for the messages and determine the average 
length and efficiency of each code. 

 
8. Consider the messages given by the probabilities 1/16, 1/16, 1/8, ¼, ½. Calculate H. Use the 

Shannon-Fano algorithm to develop a efficient code and for that code, calculate the average 

number of bits/message compared with H. 

 

9. Consider a source with 8 alphabets and respective probabilities as shown: 

A B C D E F G H 

0.20 0.18 0.15 0.10 0.08 0.05 0.02 0.01 

Construct the binary Huffman code for this. Construct the quaternary Huffman and code 
and show that the efficiency of this code is worse than that of binary code 

 

10. Define Noiseless channel and deterministic channel. 

 
11. A source produces symbols X, Y,Z with equal probabilities at a rate of 100/sec. Owing to 

noise on the channel, the probabilities of correct reception of the various symbols are as 

shown: 

P (j/i) X Y z 

X ¾ ¼ 0 

y ¼ ½ ¼ 

z 0 ¼ ¾ 

Determine the rate at which information is being received. 

 
12. Determine the rate of transmission l(x,y) through a channel whose noise characteristics is 

shown in fig. P(A1)=0.6, P(A2)=0.3, P(A3)=0.1 
 

A1  0.5 B1 

T    

R 
  0.5  

A2 0.5 B2  

   

0.5 
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OUTCOME:  

1. Able to understand different Communication channel in communication systems. 

2. Capable of finding channel capacity of different channels in communication system. 

3. Able to develop channel matrix and mutual information in channel. 

 


