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MODULE 4 

CHAPTER 1: ERROR CONTROL CODING 

 

 

STRUCTURE 
 

 Rationale for Coding 

 Discrete memory less channel 

 Shannon‟s theorem on channel capacity Revisited 

 Types of errors 

  Types of codes 

  Example of Error Control Coding 

 Block codes 

  Minimum Distance Considerations 

 Standard Array and Syndrome Decoding 

 Hamming Codes 

  

 

OBJECTIVE 
 

 To analyze different types of erros 

 To develop procedures for designing efficient coding schemes for controlling various types of 

errors in digital communication system. 

 To Study various   methods of detecting and/or correcting error and compare different coding 

schemes. 
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INTRODUCTION 

 

The earlier chapters have given you enough background of Information theory and Source 

encoding. In this chapter you will be introduced to another important signal - processing 

operation, namely, “Channel Encoding”, which is used to provide „reliable‟ transmission of 

information over the channel. In particular, we present, in this and subsequent chapters, a survey 

of „Error control coding‟ techniques that rely on the systematic addition of „Redundant‟ symbols 

to the transmitted information so as to facilitate two basic objectives at the receiver: „Error- 

detection‟ and „Error correction‟. We begin with some preliminary discussions highlighting the 

role of error control coding. 

 

 

4.1 RATIONALE FOR CODING: 

 
 The main task required in digital communication is to construct „cost effective systems‟ for 

transmitting information from a sender (one end of the system) at a rate and a level of reliability that 

are acceptable to a user (the other end of the system). The two key parameters available are 

transmitted signal power and channel band width. These two parameters along with power spectral 

density of noise determine the signal energy per bit to noise power density ratio, Eb/N0 and this ratio, 

as seen in chapter 4, uniquely determines the bit error for a particular scheme and we would like to 

transmit information at a rate RMax = 1.443 S/N. Practical considerations restrict the limit on Eb/N0 

that we can assign. Accordingly, we often arrive at modulation schemes that cannot provide 

acceptable data quality (i.e. low enough error performance). For a fixed Eb/N0, the only practical 

alternative available for changing data quality from problematic to acceptable is to use “coding”. 

 

Another practical motivation for the use of coding is to reduce the required Eb/N0 for a fixed 

error rate. This reduction, in turn, may be exploited to reduce the required signal power or reduce the 

hardware costs (example: by requiring a smaller antenna size). 

 

The coding methods discussed in chapter 2 deals with minimizing the average word length of 

the codes with an objective of achieving the lower bound viz. H(S) / log r, accordingly, coding is 

termed “entropy coding”. However, such source codes cannot be adopted for direct transmission over 

the channel. We shall consider the coding for a source having four symbols with probabilities            

p (s1) =1/2, p (s2) = 1/4, p (s3) = p (s4) =1/8. The resultant binary code using Huffman‟s procedure is: 

 

s1………   0           s3……   1 1 0 

                                                      s2………   10          s4……   1 1 1 

 

Clearly, the code efficiency is 100% and L = 1.75 bints/sym = H(S). The sequence s3s4s1 will 

then correspond to 1101110. Suppose a one-bit error occurs so that the received sequence is 0101110. 

This will be decoded as “s1s2s4s1”, which is altogether different than the transmitted sequence. Thus 

although the coding provides 100% efficiency in the light of Shannon‟s theorem, it suffers a major 

disadvantage. Another disadvantage of a „variable length‟ code lies in the fact that output data rates 
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measured over short time periods will fluctuate widely. To avoid this problem, buffers of large length 

will be needed both at the encoder and at the decoder to store the variable rate bit stream if a fixed 

output rate is to be maintained. 

 

Some of the above difficulties can be resolved by using codes with “fixed length”. For 

example, if the codes for the example cited are modified as 000, 100, 110, and 111. Observe that even 

if there is a one-bit error, it affects only one “block” and that the output data rate will not fluctuate. 

The encoder/decoder structure using „fixed length‟ code words will be very simple compared to the 

complexity of those for the variable length codes. 

 

Here after, we shall mean by “Block codes”, the fixed length codes only. Since as discussed 

above, single bit errors lead to „single block errors‟, we can devise means to detect and correct these 

errors at the receiver. Notice that the price to be paid for the efficient handling and easy 

manipulations of the codes is reduced efficiency and hence increased redundancy.  

 

In general, whatever be the scheme adopted for transmission of digital/analog information, the 

probability of error is a function of signal-to-noise power ratio at the input of a receiver and the data 

rate. However, the constraints like maximum signal power and bandwidth of the channel (mainly the 

Governmental regulations on public channels) etc, make it impossible to arrive at a signaling scheme 

which will yield an acceptable probability of error for a given application. The answer to this problem 

is then the use of „error control coding‟, also known as „channel coding‟. In brief, “error control 

coding is the calculated addition of redundancy”. The block diagram of a typical data transmission 

system is shown in Fig. 4.1 

 

The information source can be either a person or a machine (a digital computer). The source 

output, which is to be communicated to the destination, can be either a continuous wave form or a 

sequence of discrete symbols. The „source encoder‟ transforms the source output into a sequence of 

binary digits, the information sequence u. If the source output happens to be continuous, this involves 

A-D conversion as well. The source encoder is ideally designed such that (i) the number of bints per 

unit time (bit rate, rb) required to represent the source output is minimized (ii) the source output can 

be uniquely reconstructed from the information sequence u. 
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Fig 4.1: Block diagram of a typical data transmission 

 

The „Channel encoder‟ transforms u to the encoded sequence v, in general, a binary 

sequence, although non-binary codes can also be used for some applications. As discrete symbols are 

not suited for transmission over a physical channel, the code sequences are transformed to waveforms 

of specified durations. These waveforms, as they enter the channel get corrupted by noise. Typical 

channels include telephone lines, High frequency radio links, Telemetry links, Microwave links, and 

Satellite links and so on. Core and semiconductor memories, Tapes, Drums, disks, optical memory 

and so on are typical storage mediums. The switching impulse noise, thermal noise, cross talk and 

lightning are some examples of noise disturbance over a physical channel. A surface defect on a 

magnetic tape is a source of disturbance. The demodulator processes each received waveform and 

produces an output, which may be either continuous or discrete – the sequence r. The channel 

decoder transforms r into a binary sequence, û  which gives the estimate of u, and ideally should be 

the replica of u. The source decoder then transforms û  into an estimate of source output and delivers 

this to the destination.  

 

Error control for data integrity may be exercised by means of „forward error correction‟ 

(FEC) where in the decoder performs error correction operation on the received information 

according to the schemes devised for the purpose. There is however another major approach known 

as „Automatic Repeat Request‟ (ARQ), in which a re-transmission of the ambiguous information is 

effected, is also used for solving error control problems. In ARQ, error correction is not done at all. 

The redundancy introduced is used only for „error detection‟ and upon detection, the receiver 

requests a repeat transmission which necessitates the use of a return path (feed back channel). 

 

In summary, channel coding refers to a class of signal transformations designed to improve 

performance of communication systems by enabling the transmitted signals to better withstand the 

effect of various channel impairments such as noise, fading and jamming. Main objective of error 

control coding is to reduce the probability of error or reduce the Eb/N0 at the cost of expending more 

bandwidth than would otherwise be necessary. Channel coding is a very popular way of providing 

performance improvement. Use of VLSI technology has made it possible to provide as much as         
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8 – dB performance improvement through coding, at much lesser cost than through other methods 

such as high power transmitters or larger Antennas. 

 

We will briefly discuss in this chapter the channel encoder and decoder strategies, our major 

interest being in the design and implementation of the channel „encoder/decoder‟ pair to achieve fast 

transmission of information over a noisy channel, reliable communication of information and 

reduction of the implementation cost of the equipment. 

 

4.2 Discrete memory less channel:  
 

Referring to the block diagram in Fig. 4.2 the channel is said to be memory less if the de-

modulator (Detector) output in a given interval depends only on the signal transmitted in the 

interval, and not on any previous transmission. Under this condition, we may model (describe) the 

combination of the modulator – channel – and the demodulator as a “Discrete memory less 

channel”. Such a channel is completely described by the set of transition probabilities p (yj | xk) 

where xk is the modulator input symbol. 

 

The simplest channel results from the use of binary symbols (both as input and output). When 

binary coding us used the modulator has only „0‟`s and „1‟`s as inputs. Similarly, the inputs to the 

demodulator also consists of „0‟`s and „1‟`s provided binary quantization is used. If so we say a 

„Hard decision‟ is made on the demodulator output so as to identify which symbol was actually 

transmitted. In this case we have a „Binary symmetric channel‟ (BSC). The BSC when derived 

from an additive white Gaussian noise (AWGN) channel is completely described by the transition 

probability „p‟. The majority of coded digital communication systems employ binary coding with 

hard-decision decoding due to simplicity of implementation offered by such an approach. 

 

The use of hard-decisions prior to decoding causes an irreversible loss of information in the 

receiver. To overcome this problem “soft-decision” coding is used. This can be done by including a 

multilevel quantizer at the demodulator output as shown in Fig. 4.2(a) for the case of binary PSK 

signals. The input-output characteristics and the channel transitions are shown in Fig. 4.2(b) and   

Fig. 4.2(c) respectively. Here the input to the demodulator has only two symbols „0‟`s and „1‟`s. 

However, the demodulator output has „Q‟ symbols. Such a channel is called a “Binary input-Q-ary 

output DMC”. The form of channel transitions and hence the performance of the demodulator, 

depends on the location of representation levels of the quantizer, which inturn depends on the signal 

level and variance of noise. Therefore, the demodulator must incorporate automatic gain control, if an 

effective multilevel quantizer is to be realized. Further the soft-decision decoding offers significant 

improvement in performance over hard-decision decoding. 
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Fig. 4.2 (a) - Reciever  

 
Fig 4.2  (b) Transfer characteristics   (c) Channel Diagram 

 

4.3 Shannon‟s theorem on channel capacity Revisited: 
 

The “Shannon‟s theorem on channel capacity” is re-stated here and call it the “Coding 

Theorem”. 

 

“It is possible in principle, to devise a means where by a communication system will transmit 

information with an arbitrarily small probability of error, provided the information rate R (=r I(X,Y) 

where r-is the symbol rate) is less than or equal to a rate „C‟ called the „channel capacity”. The 

technique used to achieve this goal is called “Coding”. For the special case of a BSC, the theorem 

tells us that if the code rate, Rc (defined later) is less than the channel capacity, then it is possible to 

find a code that achieves error free transmission over the channel. Conversely, it is not possible to 

find such a code if the code rate Rc is greater than C. 

The channel coding theorem thus specifies the channel capacity as a “Fundamental limit” on 

the rate at which reliable transmission (error-free transmission) can take place over a DMC. Clearly, 

the issue that matters is not the signal to noise ratio (SNR), so long as it is large enough, but how the 

input is encoded. 

 

The most un-satisfactory feature of Shannon‟s theorem is that it stresses only about the 

“existence of good codes”. But it does not tell us how to find them. So, we are still faced with the 
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task of finding a good code that ensures error-free transmission. The error-control coding techniques 

presented in this and subsequent chapters provide different methods of achieving this important 

system requirement. 

 

4.4 Types of errors: 
 

The errors that arise in a communication system can be viewed as „independent errors‟ and 

„burst errors‟. The first type of error is usually encountered by the „Gaussian noise‟, which is the 

chief concern in the design and evaluation of modulators and demodulators for data transmission. The 

possible sources are the thermal noise and shot noise of the transmitting and receiving equipment, 

thermal noise in the channel and the radiations picked up by the receiving antenna. Further, in 

majority situations, the power spectral density of the Gaussian noise at the receiver input is white. 

The transmission errors introduced by this noise are such that the error during a particular signaling 

interval does not affect the performance of the system during the subsequent intervals. The discrete 

channel, in this case, can be modeled by a Binary symmetric channel. These transmission errors due 

to Gaussian noise are referred to as „independent errors‟ (or random errors).  

 

The second type of error is encountered due to the „impulse noise‟, which is characterized by 

long quiet intervals followed by high amplitude noise bursts (As in switching and lightning). A noise 

burst usually affects more than one symbol and there will be dependence of errors in successive 

transmitted symbols. Thus errors occur in bursts  

 

4.5 Types of codes: 
 

There are mainly two types of error control coding schemes – Block codes and convolutional 

codes, which can take care of either type of errors mentioned above. 

In a block code, the information sequence is divided into message blocks of k bits each, 

represented by a binary k-tuple, u = (u1, u2 ….uk) and each block is called a message. The symbol u, 

here, is used to denote a k – bit message rather than the entire information sequence. The encoder 

then transforms u into an n-tuple v = (v1, v2 ….vn). Here v represents an encoded block rather than 

the entire encoded sequence. The blocks are independent of each other. 

 

The encoder of a convolutional code also accepts k-bit blocks of the information sequence u 

and produces an n-symbol block v. Here u and v are used to denote sequences of blocks rather than a 

single block. Further each encoded block depends not only on the present k-bit message block but 

also on m-pervious blocks. Hence the encoder has a memory of order „m‟. Since the encoder has 

memory, implementation requires sequential logic circuits. 

 

If the code word with n-bits is to be transmitted in no more time than is required for the 

transmission of the k-information bits and if τb and τc are the bit durations in the encoded and coded 

words, i.e. the input and output code words, then it is necessary that  

                               n.τc = k.τb  

 

We define the “rate of the code” by (also called rate efficiency) 
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n

k
Rc         

Accordingly, with 
b

bf


 1  and  
c

cf


 1  , we have  c

b

c

c

b R
n

k

f

f





                            

 

4.6 Example of Error Control Coding: 

 
Better way to understand the important aspects of error control coding is by way of an 

example. Suppose that we wish transmit data over a telephone link that has a useable bandwidth of 4 

KHZ and a maximum SNR at the out put of 12 dB, at a rate of 1200 bits/sec with a probability of 

error less than 10
-3

. Further, we have DPSK modem that can operate at speeds of 1200, 1400 and 

3600 bits/sec with error probabilities   2(10
-3

),
 
4(10

-3
) and 8(10

-3
) respectively. We are asked to 

design an error control coding scheme that would yield an overall probability of error < 10
-3

.
  

We 

have: 

               

   C = 16300 bits/sec, Rc = 1200, 2400 or 3600 bits/sec. 

 

[C=Blog2 (1+
N

S
). 85.15ordB12

N

S
 , B=4KHZ], p = 2(10

-3)
,
 
4(10

-3
) and 8(10

-3
) respectively.  

Since Rc < C, according to Shannon‟s theorem, we should be able to transmit data with   arbitrarily 

small probability of error. We shall consider two coding schemes for this problem.  

 

(i) Error detection: Single parity check-coding. Consider the (4, 3) even parity check code. 

 

Message 000 001 010 011 100 101 110 111 

Parity 0 1 1 0 1 0 0 1 

Codeword 0000 0011 0101 0110 1001 1010 1100 1111 

                           Parity bit appears at the right most symbol of the codeword. 

 This code is capable of „detecting‟ all single and triple error patterns. Data comes out of the channel 

encoder at a rate of 3600 bits/sec and at this rate the modem has an error probability of 8(10
-3

). The 

decoder indicates an error only when parity check fails. This happens for single and triple errors only.  

                        pd = Probability of error detection. 

                            = p(X =1) + p(X = 3), where X = Random variable of errors. 

Using binomial probability law, we have with p = 8(10
-3

): 
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P(X = k) = knk
)p1(p

k

n 







 

           4C4
3

4
,4C4

1

4
),p1(p

3

4
)p1(p

1

4
p 31

33
d 





































 

 Expanding we get 432
d p8p16p12p4p     

 Substituting the value of p we get:       

            pd = 32 (10
-3

) - 768 (10
-6

) +8192 (10
-9

) – 32768 (10
-12

) = 0.031240326 > > (10
-3

) 

However, an error results if the decoder does not indicate any error when an error indeed has 

occurred. This happens when two or 4 errors occur. Hence probability of a detection error = pnd 

(probability of no detection) is given by: 

        4320422
nd p7p12p6)p1(p

4

4
)p1(p

2

4
)4X(P)2X(Pp 

















   

Substituting the value of p we get pnd=0.410
-3

    10
-3

   

Thus probability of error is less than 10
-3

 as required. 

 

(ii) Error Correction: The triplets 000 and 111 are transmitted whenever 0 and 1 are 

inputted. A majority logic decoding, as shown below, is employed assuming only single 

errors. 

  

Received 

Triplet 

000 001 010 100 011 101 110 111 

Output 

message 

0 0 0 0 1 1 1 1 

 

Probability of decoding error, pde= P (two or more bits in error) 

                                                      = 








2

3
 p

2
 (1-p) + 









3

3
 p

3
 (1-p)

 0
 =3p

2
-2p

3
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                                                      =190.464 x 10
-6

=0.19x 10
-3

 < p= 10
-3

  

  Probability of no detection, pnd =P (All 3 bits in error)  = p
3 

=512 x 10
-9

 < < pde! 

In general observe that probability of no detection, pnd < < probability of decoding error, pde. 

The preceding examples illustrate the following aspects of error control coding. Note that in 

both examples with out error control coding the probability of error =8(10
-3

) of the modem. 

1. It is possible to detect and correct errors by adding extra bits-the check bits, to the message 

sequence. Because of this, not all sequences will constitute bonafied messages. 

      2. It is not possible to detect and correct all errors. 

      3. Addition of check bits reduces the effective data rate through the channel. 

      4. Since probability of no detection is always very much smaller than the decoding error 

probability, it appears that the error detection schemes, which do not reduce the rate efficiency 

as the error correcting schemes do, are well suited for our application. Since error detection 

schemes always go with ARQ techniques, and when the speed of communication becomes a 

major concern, Forward error correction (FEC) using error correction schemes would be 

desirable. 

4.7 Block codes: 

We shall assume that the output of an information source is a sequence of Binary digits. In 

„Block coding‟ this information sequence is segmented into „message‟ blocks of fixed length, say k. 

Each message block, denoted by u then consists of k information digits. The encoder transforms 

these k-tuples into blocks of code words v, each an n- tuple „according to certain rules‟. Clearly, 

corresponding to 2
k
 information blocks possible, we would then have 2

k 
code words of length n  > k. 

This set of 2
k 

code words is called a “Block code”. For a block code to be useful these 2
k
 code words 

must be distinct, i.e. there should be a one-to-one correspondence between u and v. u and v are also 

referred to as the „input vector‟ and „code vector‟ respectively. Notice that encoding equipment 

must be capable of storing the 2
k
 code words of length n > k. Accordingly, the complexity of the 

equipment would become prohibitory if n and k become large unless the code words have a special 

structural property conducive for storage and mechanization. This structural is the „linearity‟. 

4.7.1 Linear Block Codes:   

   A block code is said to be linear (n ,k) code if and only if the 2
k
 code words from a k- 

dimensional sub space over a vector space of all n-Tuples over the field GF(2). 

Fields with 2
m

 symbols are called „Galois Fields‟ (pronounced as Galva fields), GF (2
m

).Their 

arithmetic involves binary additions and subtractions. For two valued variables, (0, 1).The modulo – 

2 addition and multiplication is defined in Fig 4.3. 



Error Control Coding And Binary Cyclic Code                                                                                                           15EC54 

 

 11 

 

Fig 4.3 

The binary alphabet (0, 1) is called a field of two elements (a binary field and is denoted by 

GF (2). (Notice that  represents the EX-OR operation and  represents the AND operation).Further 

in binary arithmetic, X=X and X – Y = X  Y. similarly for 3-valued variables, modulo – 3 

arithmetic can be specified as shown in Fig 6.4. However, for brevity while representing polynomials 

involving binary addition we use + instead of  and there shall be no confusion about such usage. 

Polynomials f(X) with 1 or 0 as the co-efficients can be manipulated using the above 

relations. The arithmetic of GF(2
m

) can be derived using a polynomial of degree „m‟, with binary co-

efficients  and using a new variable  called the  primitive  element,  such that p() = 0.When p(X) is 

irreducible (i.e. it does not have a factor of degree  m and >0, for example X
3
 + X

2
 + 1, X

3 
+ X +  1, 

X
4
  +X

3
  +1, X

5
   +X

2
   +1 etc. are irreducible polynomials, whereas f(X)=X

4
+X

3
+X

2
+1 is not as     

f(1) = 0 and  hence has a factor X+1) then p(X) is said to be a „primitive polynomial‟. 

If vn represents a vector space of all n-tuples, then a subset S of  vn is called a subspace if (i) 

the all Zero vector is in S (ii) the sum of any two vectors in S is also a vector in S. To be more 

specific, a block code is said to be linear if the following is satisfied. “If v1 and v2 are any two code 

words of length n of the block code then v1  v2 is also a code word length n of the block code”. 

Example 4.1: Linear Block code with k= 3, and n =6 

 

Observe the linearity property: With v3 = (010 101) and v4 = (100 011), v3  v4 = (110 110) = v7. 
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Remember that n represents the word length of the code words and k represents the number 

of information digits and hence the block code is represented as (n, k) block code. 

Thus by definition of a linear block code it follows that if g1, g2…gk are the k linearly 

independent code words then every code vector, v, of our code is a combination of these code words, 

i.e. 

            v = u1 g1u2 g2 … uk gk                    ………………                                                   (4.1)

   

  Where uj= 0 or 1, kj1    

Eq (6.1) can be arranged in matrix form by nothing that each gj is an n-tuple, i.e. 

                                   gj= (gj1, gj2,….gjn)                    ……………………                                   (4.2) 

  Thus we have           v = u G    ……………………                                      (4.3)                                             

Where:                         u = (u1, u2…uk)                      ……………………                                      (4.4)  

represents the data vector and 

                 







































kn2k1k

n22221

n11211

3

2

1

ggg

ggg

ggg

g

g

g

G









                   ……………………                                    (4.5)  

is called the “generator matrix”. 

Notice that any k linearly independent code words of an (n, k) linear code can be used to form 

a Generator matrix for the code. Thus it follows that an (n, k) linear code is completely specified by 

the k-rows of the generator matrix. Hence the encoder need only to store k rows of G and form linear 

combination of these rows based on the input message u.  

Example 4.2: The (6, 3) linear code of Example 6.1 has the following generator matrix: 





































011100

101010

110001

g

g

g

G

3

2

1

 

If u = m5 (say) is the message to be coded, i.e. u = (011) 

  We have v = u .G = 0.g1 + 1.g2 +1.g3 

                  = (0,0,0,0,0,0) + (0,1,0,1,0,1) + (0,0,1,1,1,0) = (0, 1, 1, 0, 1, 1) 

Thus   v = (0 1 1 0 1 1) 
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“v can be computed simply by adding those rows of G which correspond to the locations of 

1`s of u.” 

4.7.2 Systematic Block Codes (Group Property): 

A desirable property of linear block codes is the “Systematic Structure”. Here a code word is 

divided into two parts –Message part and the redundant part. If either the first k digits or the last k 

digits of the code word correspond to the message part then we say that the code is a “Systematic 

Block Code”. We shall consider systematic codes as depicted in Fig.4.5. 

 

Fig 4.5 Systematic format of code word 

In the format of Fig.4.5 notice that: 

 v1 = u1, v2 = u2, v3 = u3 … vk = uk                                                  ……………                          (4.6 a) 

 

p u .. p u  pu  pu  v 

                                

p u  p u p u  p u  v

                 p u  p u p u  p u  v

k-n k,kk-n3,3k-n2,2k-n1,1n

k2k323222121 2 k

k1k3132121111  k
























            ………………                      (4.6 b) 

Or in matrix from we have   

        

 

 































kn,k2k1k

kn,22221

kn,11211

k21

n2k1kk21

p...pp1...000

p...pp0...010

p...pp0...001

u...uu

v...vvv...vv



 …….                       (4.7)

      

 i.e., v = u.G                                     

 

Where G = [Ik, P]                                            ……………….                                       (4.8)  

Where    P =  



























kn2,k1,k

kn22221

kn11211

,pkpp

,ppp

,ppp









           ……………….                                   (4.9) 
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Ik is the k  k identity matrix (unit matrix), P is the k  (n – k) „parity generator matrix‟, in 

which pi, j are either 0 or 1 and G is a k  n matrix. The (n  k) equations given in Eq (4.6b) are 

referred to as parity check equations. Observe that the G matrix of Example 4.2 is in the systematic 

format.The n-vectors a = (a1, a2…an) and b = (b1, b2 …bn) are said to be orthogonal if their inner 

product defined by: 

  

a.b = (a1, a2…an) (b1, b2 …bn)
 T

 = 0. 

 

where, „T‟ represents transposition. Accordingly for any kn matrix, G, with k linearly independent 

rows there exists a (n-k)  n matrix H with (n-k) linearly independent rows such that any vector in 

the row space of G is orthogonal to the rows of H and that any vector that is orthogonal to the rows 

of H is in the row space of G. Therefore, we can describe an (n, k) linear code generated by G 

alternatively as follows: 

 

   “An n – tuple, v is a code word generated by G, if and only if v.H
T
 = O”.   ………           (4.9a) 

     (O represents an all zero row vector.) 

 

This matrix H is called a “parity check matrix” of the code. Its dimension is (n – k) n. 

 

If the generator matrix has a systematic format, the parity check matrix takes the following form. 

  H = [P
T
.In-k] = 





















 1...000p...pp

0...010p...pp

0...001p...pp

kn,kkn,2kn,1

2k2212

1k2111


             ………                 (4.10)             

 

 

The i
th

 row of G is: 

   

                   gi = (0 0 …1 …0…0    pi,1    pi,2…pi,j…pi, n-k) 

                                                                          

            i 
th 

element                     (k + j) 
th

 element 

                                                      

The j
th

 row of H is:                                                  

                                           i 
th 

element            (k + j) 
th

 element 

                                                                           

                       hj = ( p1,j p2,j …pi,j ...pk, j 0 0 … 0 1 0 …0)                                                                         
 

Accordingly the inner product of the above n – vectors is:   

 

  gihj = (0 0 …1 …0…0    pi,1    pi,2…pi,j…pi, n-k) ( p1,j p2,j …pi,j ...pk, j 0 0 … 0 1 0 …0)
T
 

                                                                                                                         
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                  i
th

 element                       (k + j) 
th

 element         i
th

 element             (k + j) 
th

 element            

                                                                                           

                                                               
  

   = pij + pij. = 0 (as the pij are either 0 or 1 and in modulo – 2 arithmetic X + X = 0) 

  

This implies simply that: 

  

              G. H
T
 = Ok (n – k)                   ………………………….           (4.11) 

  

Where Ok (n – k) is an all zero matrix of dimension k (n – k). 

 

Further, since the (n – k) rows of the matrix H are linearly independent, the H matrix of      

Eq. (4.10) is a parity check matrix of the (n, k) linear systematic code generated by G. Notice that the 

parity check equations of Eq. (4.6b) can also be obtained from the parity check matrix using the fact 

                            v.H
T
 = O. 

 

Alternative Method of proving v.H
T
 = O.: 

  

We have v = u.G = u. [Ik: P]= [u1, u2… uk, p1, p2 …. Pn-k] 

 

Where pi =( u1 p1,i + u2 p2,i + u3 p3,i  …+ uk pk, i)
 
are the parity bits found from Eq (4.6b). 

 

  Now   









kn

T

I

P
H  

  v.H
T
 = [u1 p11 + u2 p21 +…. + …. + uk pk1 + p1, u1 p12 + u2 p22 + ….. + uk pk2 + p2,  … 

                  u1 p1, n-k + u2 p2, n-k + …. + uk pk, n-k + pn-k] 

          

         = [p1 + p1, p2 + p2… pn-k + pn-k] 
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         = [0, 0… 0] 

  

Thus v. H
T
 = O. This statement implies that an n- Tuple v is a code word generated by G if and only 

if 

                       v H
T
 = O  

 

Since v = u G, This means that:   u G H
T
 = O 

 

If this is to be true for any arbitrary message vector v then this implies: G H
T
 = Ok (n – k) 

 

Example 4.3:  

 

Consider the generator matrix of Example 4.2, the corresponding parity check matrix is 

   

                     

                                       H =  

















100011

010101

001110

 

 

4.7.3 Circuit implementation of Block codes: 

 

         The implementation of Block codes is very simple. We need only combinational logic circuits. 

Implementation of Eq (4.6) is shown in the encoding circuit of Fig.4.6. Notice that pij is either a „0‟ 

or a „1‟ and accordingly  pij    indicates a connection if pij = 1 only (otherwise no connection). 

The encoding operation is very simple. The message u = (u1, u2 … uk) to be encoded is shifted into 

the message register and simultaneously into the channel via the commutator. As soon as the entire 

message has entered the message register, the parity check digits are formed using modulo -2 adders, 

which may be serialized using, another shift register – the parity register, and shifted into the channel. 

Notice that the complexity of the encoding circuit is directly proportional to the block length of the 

code. The encoding circuit for the (6, 3) block code of Example 2 is shown in Fig 4.7 
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Fig 4.6 Encoding circuit for systematic block code 

 

 
Fig 4.7 Encoder for the (6,3) block code of example 4.2 

 

4.7.4 Syndrome and Error Detection: 

  

Suppose v = (v1, v2… vn) be a code word transmitted over a noisy channel and let:   

 r = (r1, r2 ….rn) be the received vector. Clearly, r may be different from v owing to the channel 

noise. The vector sum  

            

            e = r – v = (e1, e2… en)                     ……………………                 (4.12) 

 

is an n-tuple, where ej = 1 if rj  vj and ej = 0 if rj = vj. This n – tuple is called the “error vector” or 

“error pattern”. The 1‟s in e are the transmission errors caused by the channel noise. Hence from    

Eq (4.12) it follows: 

          

                            r = v  e                                     ……………………………….                      (4.12a) 

Observer that the receiver noise does not know either v or e. Accordingly, on reception of r 

the decoder must first identify if there are any transmission errors and, then take action to locate these 



Error Control Coding And Binary Cyclic Code                                                                                                           15EC54 

 

 18 

errors and correct them (FEC – Forward Error Correction) or make a request for re–transmission 

(ARQ). When r is received, the decoder computes the following (n-k) tuple: 

 

                     s = r. H
T
                                            ……………………..         

  
        (4.13) 

                       = (s1, s2… sn-k) 

  

It then follows from Eq (4.9a), that s = 0 if and only if r is a code word and s  0 iffy r is not 

a code word. This vector s is called “The Syndrome” (a term used in medical science referring to 

collection of all symptoms characterizing a disease). Thus if s = 0, the receiver accepts r as a valid 

code word. Notice that there are possibilities of errors undetected, which happens when e is identical 

to a nonzero code word. In this case r is the sum of two code words which according to our linearity 

property is again a code word. This type of error pattern is referred to an “undetectable error 

pattern”. Since there are 2
k
 -1 nonzero code words, it follows that there are 2

k
 -1 error patterns as 

well. Hence when an undetectable error pattern occurs the decoder makes a “decoding error”.  

Eq. (4.13) can be expanded as below: 

 

From which we have   

























nknkkknknkn

kkk

kkk

rprprprs

rprprprs

rprprprs

,,22,11

222221212

112121111

....

....

....


         …………              (4.14) 

                   

A careful examination of Eq. (4.14) reveals the following point. The syndrome is simply the vector 

sum of the received parity digits (rk+1, rk+2 ...rn) and the parity check digits recomputed from the 

received information digits (r1, r2 … rn). Thus, we can form the syndrome by a circuit exactly similar 

to that of Fig.6.6 and a general syndrome circuit is as shown in Fig. 4.8. 

 

Example 4.4: 

                     We shall compute the syndrome for the (6, 3) systematic code of Example 4.2. We have 

 

                  s = (s1, s2, s3) = (r1, r2, r3, r4, r5, r6)   



























100

010

001

011

101

110
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                                  or   s1 = r2 +r3 + r4 

                                        s2 = r1 +r3 + r5 

                                        s3 = r1 +r2 + r6  

 

The syndrome circuit for this code is given in Fig.4.9.  

 

 
Fig 4.8 Syndrome circuit for the (n,k) Linear systematic block code 

 

 
Fig 4.8 Syndrome circuit for the (6,3) systematic block code 

  

In view of Eq. (4.12a), and Eq. (4.9a) we have  

                                         

                                                 s = r.H
T
 = (v e) H

T
  

                                                      

                                                   = v .H
T
  e.H

T
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                                            or s = e.H
T
                               ……………                                  (4.15)  

 

as v.H
T
= O. Eq. (4.15) indicates that the syndrome depends only on the error pattern and not on the 

transmitted code word v. For a linear systematic code, then, we have the following relationship 

between the syndrome digits and the error digits. 

                        













 e + pe + ..…+ pe + pe=  s 

 

e +   pe + … +    pe +   pe=  s   

e + pe +  .… +   pe +    pe=  s

   

nk-n k,kk-n 2,2k-n 1,1k-n

2+k 2k,k2221212

1+k1 k,k2121111


              ……………           (4.16) 

 

 Thus, the syndrome digits are linear combinations of error digits. Therefore they must provide 

us information about the error digits and help us in error correction. 

 

          Notice that Eq. (4.16) represents (n-k) linear equations for n error digits – an under-determined 

set of equations. Accordingly it is not possible to have a unique solution for the set. As the rank of the 

H matrix is k, it follows that there are 2
k
 non-trivial solutions. In other words there exist 2

k 
error 

patterns that result in the same syndrome. Therefore to determine the true error pattern is not any easy 

task 

  

Example 4.5:  

 

 For the (6, 3) code considered in Example 4.2, the error patterns satisfy the following equations: 

                    

                             s1 = e2 +e3 +e4 ,   s2 = e1 +e3 +e5 ,   s3 = e1 +e2 +e6  

 

 Suppose, the transmitted and received code words are v = (0 1 0 1 0 1), r = (0 1 1 1 0 1) 

 

                       Then s = r.H
T
 = (1, 1, 0) 

 

Then it follows that:     

                                 e2 + e3 +e4 = 1 

                                 e1 + e3 +e5   =1 

                                 e1 + e2 +e6   = 0 

 

There are 2
3 

= 8 error patterns that satisfy the above equations. They are: 

 

{0 0 1 0 0 0, 1 0 0 0 0, 0 0 0 1 1 0, 0 1 0 0 1 1, 1 0 0 1 0 1, 0 1 1 1 0 1, 1 0 1 0 1 1, 1 1 1 1 1 0} 

 

           To minimize the decoding error, the “Most probable error pattern” that satisfies Eq (4.16) is 

chosen as the true error vector. For a BSC, the most probable error pattern is the one that has the 

smallest number of nonzero digits. For the Example 4.5, notice that the error vector (0 0 1 0 0 0) has 
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the smallest number of nonzero components and hence can be regarded as the most probable error 

vector. Then using Eq. (4.12) we have  

          

         v̂ = r  e 

 

               = (0 1 1 1 0 1) + (0 0 1 0 0 0) = (0 1 0 1 0 1) 

 

Notice now that v̂ indeed is the actual transmitted code word. 

 

 4.8 Minimum Distance Considerations: 

        

            The concept of distance between code words and single error correcting codes was first 

developed by R .W. Hamming. Let the n-tuples, 

 

                                            = (1, 2 … n),  = (1, 2 … n) 

 

be two code words. The “Hamming distance” d (,) between such pair of code vectors is defined 

as the number of positions in which they differ. Alternatively, using Modulo-2 arithmetic, we have 

                                     


n

1j
jj )(),(d                   …………………….                      (4.17) 

  (Notice that  represents the usual decimal summation and   is the modulo-2 sum, the EX-OR 

function). 

              The “Hamming Weight” () of a code vector  is defined as the number of nonzero 

elements in the code vector. Equivalently, the Hamming weight of a code vector is the distance 

between the code vector and the „all zero code vector‟. 

 

Example 4.6:   Let      = (0 1 1 1 0 1),  = (1 0 1 0 1 1) 

Notice that the two vectors differ in 4 positions and hence d (,) = 4. Using Eq (4.17) we find 

 d (,) = (0   1) + (1   0) + (1   1) + (1   0) + (0   1) + (1   1)      

             =      1       +      1       +       0      +       1      +      1       +       0 

             = 4 …..   (Here + is the algebraic plus not modulo – 2 sum) 

Further,   () = 4 and () = 4. 

             The “Minimum distance” of a linear block code is defined as the smallest Hamming 

distance between any pair of code words in the code or the minimum distance is the same as the 
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smallest Hamming weight of the difference between any pair of code words. Since in linear block 

codes, the sum or difference of two code vectors is also a code vector, it follows then that “the 

minimum distance of a linear block code is the smallest Hamming weight of the nonzero code 

vectors in the code”. 

             The Hamming distance is a metric function that satisfies the triangle inequality. Let, and   

be three code vectors of a linear block code. Then      

                       

                   d (,) + d (, )   d(,)                      …………….                                            (4.18)

       

             From the discussions made above, we may write 
                               

                                                     
d (,) =  (  )                 ………………….                                       (4.19)

       

Example 4.7:  For the vectors  and  of Example 4.6, we have: 

   

                       = (01), (10), (11) (10), (01) (11)= (11 0 1 1 0) 

 

 ( ) = 4 = d (,) 

 

If    = (1 0 1 01 0), we have d (,) = 4; d (,) = 1; d (,) = 5 

 

           Notice that the above three distances satisfy the triangle inequality: 

                           

                           d (,) + d (,) = 5 = d (,) 

    

                           d (,) + d (,) = 6 > d (,) 

 

                           d (,) + d (,) = 9 > d (,) 

 

           Similarly, the minimum distance of a linear block code, „C‟ may be mathematically 

represented as below: 

 

                       dmin =Min {d (,):,  C,     }                 ………….                                (4.20) 

    

                              =Min {( ):,  C,     }     

  

                              =Min {(v), v  C, v   0}                           ……………….                       (4.21) 

 

                That is minmind  . The parameter min  is called the “minimum weight” of the linear 

code C.The minimum distance of a code, dmin, is related to the parity check matrix, H, of the code in 

a fundamental way. Suppose v is a code word. Then from Eq. (4.9a) we have:  
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                         0 =   v.H
T
 

    

                         = v1h1  v2h2  ….  vnhn 

 

            Here h1, h2 … hn represent the columns of the H matrix. Let vj1, vj2 …vjl be the „l‟ nonzero 

components of v i.e. vj1 = vj2 = …. vjl = 1. Then it follows that:  

 

                hj1 hj2 …  hjl = O
T
                           ………………….           (4.22) 

 

           That is “if v is a code vector of Hamming weight „l‟, then there exist „l‟ columns of H such 

that the vector sum of these columns is equal to the zero vector”. Suppose we form a binary n-

tuple of weight „l‟, viz.  x = (x1, x2 … xn) whose nonzero components are xj1, xj2 … xjl. Consider the 

product:  

 

              x.H
T 

= x1h1  x2h2 …. xnhn = xj1hj1  xj2hj2  ….  xjlhjl = hj1  hj2  …  hjl 

 

 If Eq. (4.22) holds, it follows x.H
T 

= O and hence x is a code vector. Therefore, we conclude 

that “if there are „l‟ columns of H matrix whose vector sum is the zero vector then there exists a 

code vector of Hamming weight „l‟ ”. 

From the above discussions, it follows that: 

 

i) If no (d-1) or fewer columns of H add to O
T
, the all zero column vector, the code has a 

minimum weight of at least„d‟. 

 

ii) The minimum weight (or the minimum distance) of a linear block code C, is the smallest 

number of columns of H that sum to the all zero column vector. 

  

          For the H matrix of Example 6.3, i.e. H =

















100011

010101

001110

, notice that all columns of H are non 

zero and distinct. Hence no two or fewer columns sum to zero vector. Hence the minimum weight of 

the code is at least 3.Further notice that the 1
st
, 2

nd
 and 3

rd
 columns sum to O

T
. Thus the minimum 

weight of the code is 3. We see that the minimum weight of the code is indeed 3 from the table of 

Example 4.1. 

 

4.8.1 Error Detecting and Error Correcting Capabilities: 

 

  The minimum distance, dmin, of a linear block code is an important parameter of the code. To 

be more specific, it is the one that determines the error correcting capability of the code. To 

understand this we shall consider a simple example. Suppose we consider 3-bit code words plotted at 

the vertices of the cube as shown in Fig.4.10. 
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Fig 4.10 The distance concept 

 

  Clearly, if the code words used are {000, 101, 110, 011}, the Hamming distance between the 

words is 2. Notice that any error in the received words locates them on the vertices of the cube which 

are not code words and may be recognized as single errors. The code word pairs with Hamming 

distance = 3 are: (000, 111), (100, 011), (101, 010) and (001, 110). If a code word (000) is received 

as (100, 010, 001), observe that these are nearer to (000) than to (111). Hence the decision is made 

that the transmitted word is (000). 

 

Suppose an (n, k)   linear block code is required to detect and correct all error patterns (over a 

BSC), whose Hamming weight,   t. That is, if we transmit a code vector   and the received vector 

is  =   e, we want the decoder out put to be ̂ =  subject to the condition (e)  t. 

  

Further, assume that 2
k
 code vectors are transmitted with equal probability. The best decision 

for the decoder then is to pick the code vector nearest to the received vector  for which the 

Hamming distance is the smallest. i.e., d (,) is minimum. With such a strategy the decoder will be 

able to detect and correct all error patterns of Hamming weight (e)  t provided that the minimum 

distance of the code is such that:  

 

                              dmin  (2t + 1)                                ………………….                                 (4.23) 

 

 dmin   is either odd or even. Let „t‟ be a positive integer such that  

 

                         2t + 1      dmin   2t + 2               …………………                                       (4.24)

       

Suppose  be any other code word of the code. Then, the Hamming distances among  

, and  satisfy the triangular inequality:  

                

                     d(,) + d(, )   d(,)               …………………                                       (4.25)
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Suppose an error pattern of „t ‟ errors occurs during transmission of . Then the received vector   

differs from   in „t ‟ places and hence d(,)   = t. Since  and  are code vectors, it follows from 

Eq. (6.24). 

 

                d(,)  dmin  2t + 1                             ……………….                                         (4.26) 

 

Combining Eq. (4.25) and (4.26) and with the fact that d(,) = t, it follows that:  

                  

                d (,   )  2t + 1- t 
 
                            ………………                                           (4.27) 

 

Hence if t t, then: d (, ) > t                            ………………                                           (4.28)

  

  Eq 4.28 says that if an error pattern of „t‟ or fewer errors occurs, the received vector  is 

closer (in Hamming distance) to the transmitted code vector   than to any other code vector  of the 

code. For a BSC, this means P (|) > P (|) for    . Thus based on the maximum likelihood 

decoding scheme,  is decoded as  , which indeed is the actual transmitted code word and this 

results in the correct decoding and thus the errors are corrected. 

 On the contrary, the code is not capable of correcting error patterns of weight l>t. To show 

this we proceed as below: 

Suppose        d (,) = dmin, and let e1 and e2 be two error patterns such that:  

i) e1  e2 =         

ii) e1 and  e2  do not have nonzero components in common places. Clearly,  

             (e1)  + (e2) = ( ) = d( ,) = dmin                  …………………                        (4.29)  

Suppose,  is the transmitted code vector and is corrupted by the error pattern e1. Then the received 

vector is:  

                        =    e1                    ………………………..                                                     (4.30)

                  

and        d (,) = (   ) = (e1)  ………………………           (4.31)

  

               d (,) = () 

                           = (    e1) = (e2)   ……………………….                              (4.32) 
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     If the error pattern e1 contains more than„t‟ errors, i.e. (e1) > t, and since 2t + 1  dmin    2t + 2, 

it follows  

                 (e2)  t- 1                      …………………………                                                    (4.33)        

           d (,)  d (,)                ………………………….                                                   (4.34) 

         This inequality says that there exists an error pattern of l > t errors which results in a received 

vector closer to an incorrect code vector i.e. based on the maximum likelihood decoding scheme 

decoding error will be committed. 

 To make the point clear, we shall give yet another illustration. The code vectors and the 

received vectors may be represented as points in an n- dimensional space. Suppose we construct two 

spheres, each of equal radii,„t‟ around the points that represent the code vectors  and . Further let 

these two spheres be mutually exclusive or disjoint as shown in Fig.4.11 (a). 

 For this condition to be satisfied, we then require d (,)  2t + 1.In such a case if d (,) t, 

it is clear that the decoder will pick  as the transmitted vector.  

 

Fig. 4.11(a) 

On the other hand, if d (,)  2t, the two spheres around   and   intersect and if „‟ is located as in 

Fig. 4.11(b), and   is the transmitted code vector it follows that even if d (,) t, yet  is as close to 

 as it is to. The decoder can now pick  as the transmitted vector which is wrong. Thus it is 

imminent that “an (n, k) linear block code has the power to correct all error patterns of weight„t‟ or 

less if and only if d (,)  2t + 1 for all  and”. However, since the smallest distance between any 

pair of code words is the minimum distance of the code, dmin , „guarantees‟ correcting all the error 

patterns of 

                           t  








 )1d(
2

1
min                            ………………………….            (4.35)  



Error Control Coding And Binary Cyclic Code                                                                                                           15EC54 

 

 27 

where  








 )1d(
2

1
min    denotes the largest integer no greater than the number









 )1d(
2

1
min . The 

parameter„t‟ = 








 )1d(
2

1
min   is called the “random-error-correcting capability” of the code and 

the code is referred to as a “t-error correcting code”. The (6, 3) code of Example 4.1 has a 

minimum distance of 3 and from Eq. (6.35) it follows t = 1, which means it is a „Single Error 

Correcting‟ (SEC) code. It is capable of correcting any error pattern of single errors over a block of 

six digits.  

 For an (n, k) linear code, observe that, there are 2
n-k

 syndromes including the all zero 

syndrome. Each syndrome corresponds to a specific error pattern. If „j‟ is the number of error 

locations in the n-dimensional error pattern e, we find in general, there are jnC
j

n









 multiple error 

patterns. It then follows that the total number of all possible error patterns =









t

j j

n

0

, where„t‟ is the 

maximum number of error locations in e. Thus we arrive at an important conclusion. “If an (n, k) 

linear block code is to be capable of correcting up to„t‟ errors, the total number of syndromes 

shall not be less than the total number of all possible error patterns”, i.e. 

                             2
n-k 

   









t

j j

n

0

                               ……………………….                           (4.36)  

Eq (6.36) is usually referred to as the “Hamming bound”. A binary code for which the Hamming 

Bound turns out to be equality is called a “Perfect code”. 

.9 Standard Array and Syndrome Decoding:  

 The decoding strategy we are going to discuss is based on an important property of the 

syndrome. 

 Suppose vj , j = 1, 2… 2
k
,
 
be the 2

k 
distinct code vectors of an (n, k) linear block code. 

Correspondingly let, for any error pattern e, the 2
k 

distinct error vectors, ej, be defined by  

              ej = e  vj , j = 1, 2… 2
k                   

……………………….                                              (4.37) 

 The set of vectors   {ej, j = 1, 2 … 2
k
} so defined is called the “co- set” of the code. That is, a 

„co-set‟ contains exactly 2
k 

elements that differ at most by a code vector. It then fallows that there are 

2
n-k 

co- sets for an (n, k) linear block code. Post multiplying Eq (4.37) by H
T
, we find  

              ej H
T 

=  eH
T 

  vj H
T 

                       = e H
T
                     ……………………………………………….                         (4.38)  
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 Notice that the RHS of Eq (4.38) is independent of the index j, as for any code word the term 

vj H
T
 = 0. From Eq (4.38) it is clear that “all error patterns that differ at most by a code word 

have the same syndrome”. That is, each co-set is characterized by a unique syndrome. 

 Since the received vector r may be any of the 2
n 

n-tuples, no matter what the transmitted code 

word was, observe that we can use Eq (4.38) to partition the received code words into 2
k 

disjoint sets 

and try to identify the received vector. This will be done by preparing what is called the “standard 

array”. The steps involved are as below: 

           Step1: Place the 2
k
 code vectors of the code in a row, with the all zero vector                                         

v1 = (0, 0, 0… 0) = O as the first (left most) element. 

Step 2: From among the remaining (2
n
 – 2

k
) - n – tuples, e2 is chosen and placed below the 

all-zero vector, v1. The second row can now be formed by placing (e2  vj),                              

j = 2, 3… 2
k 

under vj 

            Step 3: Now take an un-used n-tuple e3 and complete the 3
rd

 row as in step 2. 

 Step 4: continue the process until all the n-tuples are used. 

            The resultant array is shown in Fig. 4.12. 

 

Fig 4.12: Standard Array for an (n,k) linear block code 

 Since all the code vectors, vj, are all distinct, the vectors in any row of the array are also 

distinct. For, if two n-tuples in the l-th row are identical, say el  vj = el  vm, j  m; we should have 

vj = vm which is impossible. Thus it follows that “no two n-tuples in the same row of a slandered 

array are identical”.  

Next, let us consider that an n-tuple appears in both l-th row and the m-th row. Then for some 

j1 and j2 this implies el  vj1 = em  vj2, which then implies el = em  (vj2  vj1); (remember that         

X  X = 0 in modulo-2 arithmetic) or el = em  vj3 for some j3. Since by property of linear block 

codes vj3 is also a code word, this implies, by the construction rules given, that el must appear in the 

m-th row, which is a contradiction of our steps, as the first element of the m-th row is em and is an 

unused vector in the previous rows. This clearly demonstrates another important property of the 

array: “Every n-tuple appearance in one and only one row”.  
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 From the above discussions it is clear that there are 2
n-k 

disjoint rows or co-sets in the standard 

array and each row or co-set consists of 2
k
 distinct entries. The first n-tuple of each co-set, (i.e., the 

entry in the first column) is called the “Co-set leader”. Notice that any element of the co-set can be 

used as a co-set leader and this does not change the element of the co-set - it results simply in a 

permutation. 

 Suppose Dj
T 

is the j
th

 column of the standard array. Then it follows  

              Dj = {vj, e2  vj, e3  vj… e2
n-k 

 vj}     …………………..                                  (4.39)

   

where vj is a code vector and e2, e3, … e2
n-k

 are the co-set leaders. 

 The 2
k
 disjoints columns D1

T
, D2

T
… 

T

2kD can now be used for decoding of the code. If vj is 

the transmitted code word over a noisy channel, it follows from Eq (5.39) that the received vector r is 

in Dj
T
 if the error pattern caused by the channel is a co-set leader. If this is the case r will be decoded 

correctly as vj. If not an erroneous decoding will result for, any error pattern ê which is not a co-set 

leader must be in some co-set and under some nonzero code vector is, say, in the i-th co-set and under 

v  0. Then it follows  

   ê  = ei  vl  , and the received vector is r = vj  ê  = vj  (ei  vl ) = ei  vm   

Thus the received vector is in Dm
T
 and it will be decoded as vm and a decoding error has been 

committed. Hence it is explicitly clear that “Correct decoding is possible if and only if the error 

pattern caused by the channel is a co-set leader”. Accordingly, the 2
n-k

 co-set leaders (including 

the all zero vector) are called the “Correctable error patterns”, and it follows “Every (n, k) linear 

block code is capable of correcting 2
n-k

 error patterns”.  

 So, from the above discussion, it follows that in order to minimize the probability of a 

decoding error, “The most likely to occur” error patterns should be chosen as co-set leaders. For a 

BSC an error pattern of smallest weight is more probable than that of a larger weight. Accordingly, 

when forming a standard array, error patterns of smallest weight should be chosen as co-set leaders. 

Then the decoding based on the standard array would be the „minimum distance decoding‟ (the 

maximum likelihood decoding). This can be demonstrated as below.  

 Suppose a received vector r is found in the j
th

 column and l
th

 row of the array. Then r will be 

decoded as vj. We have 

                    d(r, vj) = (r  vj ) = (el  vj  vj ) = (el )  

where we have assumed vj indeed is the transmitted code word. Let vs be any other code word, other 

than vj. Then 

                  d(r, vs ) = (r vs ) = (el  vj  vs ) (el ) = (el  vi )  
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as vj and vs are code words, vi = vj  vs is also a code word of the code. Since el and (el  vi ) are in 

the same co set and, that el has been chosen as the co-set leader and has the smallest weight it follows 

(el )   (el  vi ) and hence d(r, vj )  d(r, vs ). Thus the received vector is decoded into a closet 

code vector. Hence, if each co-set leader is chosen to have minimum weight in its co-set, the standard 

array decoding results in the minimum distance decoding or maximum likely hood decoding. 

 

Suppose “a0, a1, a2 …, an” denote the number of co-set leaders with weights 0, 1, 2… n. This 

set of numbers is called the “Weight distribution” of the co-set leaders. Since a decoding error will 

occur if and only if the error pattern is not a co-set leader, the probability of a decoding error for a 

BSC with error probability (transition probability) p is given by  

              



n

0j

jnj
j )p1(pa1)E(P                      ……………………                               (4.40) 

Example 4.8:  

 

 For the (6, 3) linear block code of Example 4.1 the standard array, along with the syndrome 

table, is as below: 

 

 

The weight distribution of the co-set leaders in the array shown are a0 = 1, a1 = 6, a2 = 1, a3 = a4 = a5 

= a6 = 0.From Eq (5.40) it then follows:  

              P (E) = 1- [(1-p)
 6

 +6p (1-p)
 5
 + p

2
 (1-p)

 4
] 

With p = 10
-2

, we have P (E) = 1.3643879  10
-3

 

A received vector (010 001) will be decoded as (010101) and a received vector (100 110) will be 

decoded as (110 110). 

 Notice that an (n, k) linear code is capable of detecting (2
n
 -2

k
) error patterns while it is 

capable of correcting only 2
n-k

 error patterns. Further, as n becomes large 2
n-k

/ (2
n
-2

k
) becomes 
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smaller and hence the probability of a decoding error will be much higher than the probability of an 

undetected error.  

 Let us turn our attention to Eq (5.35) and arrive at an interpretation. Let x1and x2 be two n-

tuples of weights„t‟ or less. Then it follows 

               (x1  x2)   (x1) + (x2)  2t  dm-n 

 Suppose x1 and x2 are in the same co-set then it follows that (x1  x2) must be a nonzero code 

vector of the code. This is impossible because the weight of (x1  x2) is less than the minimum 

weight of the code. Therefore, “No two n-tuples, whose weights are less than or equal to„t‟, can 

be in the same co-set of the code and all such n-tuples can be used as co-set leaders”. 

 Further, if v is a minimum weight code vector, i.e. (v) = dmin   and if the n-tuples, x1 and x2 

satisfy the following two conditions:   

i) x1  x2 = v 

ii)  x1 and x2 do not have nonzero components in common places  

      It follows from the definition, x1 and x2 must be in the same co-set and  

                   (x1) + (x2) = (v) = dmin 

Suppose we choose x2 such that (x2) = t + 1. Since 2t+1 dmin  2t+2, we have  (x1) = t or (t+1).   

If x1 is used as a co-set leader then x2 cannot be a co-set leader. 

 The above discussions may be summarized by saying “For an (n , k) linear block code with 

minimum distance dmin, all n-tuples of weight 







 )1d(

2

1
t min  can be used as co-set leaders of 

a standard array. Further, if all n-tuples of weight  t are used as co-set leaders, there is at least 

one n-tuple of weight (t + 1) that cannot be used as a co-set leader”. 

 These discussions once again re-confirm the fact that an (n, k) linear code is capable of 

correcting error patterns of   







 )1d(

2

1
min   or fewer errors but is incapable of correcting all the 

error patterns of weight (t + 1). 

 We have seen in Eq. (4.38) that each co-set is characterized by a unique syndrome or there is 

a one- one correspondence between a co- set leader (a correctable error pattern) and a syndrome. 

These relationships, then, can be used in preparing a decoding table that is made up of 2
n-k 

co-set 

leaders and their corresponding syndromes. This table is either stored or wired in the receiver. The 

following are the steps in decoding: 

Step 1:  Compute the syndrome s = r.H
T  
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Step 2: Locate the co-set leader ej whose syndrome is s. Then ej is assumed to be the error            

pattern caused by the channel.                     

Step 3:  Decode the received vector r into the code vector v = r  ej  

 This decoding scheme is called the “Syndrome decoding” or the “Table look up decoding”. 

Observe that this decoding scheme is applicable to any linear (n, k) code, i.e., it need not necessarily 

be a systematic code. However, as (n-k) becomes large the implementation becomes difficult and 

impractical as either a large storage or a complicated logic circuitry will be required.  

 For implementation of the decoding scheme, one may regard the decoding table as the truth 

table of n-switching functions: 

        e1 = f1 (s1, s2... sn-k); e2 = f2 (s1, s2... sn-k); … en = fn (s1, s2... sn-k) 

where s1, s2... sn-k   are the syndrome digits and are regarded as the switching variables and e1, e2 … en 

are the estimated error digits. The stages can be released by using suitable combinatorial logic 

circuits as indicated in Fig 4.13. 

 

Fig. 4.13 General Decoding scheme for an (n,k) linear block code 

Example 4.9: 

From the standard array for the (6, 3) linear block code of Example 4.8, the following truth table can 

be constructed. 
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                  The two shaded portions of the truth table are to be observed carefully. The top shaded 

one corresponds to the all-zero error pattern and the bottom one corresponds to a double error patter 

which cannot be corrected by this code. From the table we can now write expressions for the 

correctable single error patterns as below:  

                        
321632153214

321332123211 .

sssesssessse

sssesssessse




   

The implementation of the decoder is shown in Fig.4.14. 

   
Fig 4.14: Decoding circuit for (6,3) code  
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Comments:  

1) Notice that for all correctable single error patterns the syndrome will be identical to a 

column of the H matrix and indicates that the received vector is in error corresponding to 

that column position. 

For Example, if the received vector is (010001), then the syndrome is (100). This is identical 

withthe4
th 

column of the H- matrix and hence the 4
th 

– position of the received vector is in error. 

Hence the corrected vector is 010101. Similarly, for a received vector (100110), the syndrome is 101 

and this is identical with the second column of the H-matrix.  Thus the second position of the 

received vector is in error and the corrected vector is (110110). 

                2) A table can be prepared relating the error locations and the syndrome. By suitable 

combinatorial circuits data recovery can be achieved. For the (6, 3) systematic linear code we have 

the following table for r = (r1 r2 r3 r4 r5 r6.). 

 

Notice that for the systematic encoding considered by us (r1 r2 r3) corresponds to the data digits and 

(r4 r5 r6) are the parity digits.  

Accordingly the correction for the data digits would be 

                 1v̂ = r1 + (s2. s3), 2v̂ = r2 + (s1. s3), 3v̂ = r3 + (s1. s2) 

Hence the circuit of Fig 6.14 can be modified to have data recovery by removing only the 

connections of the outputs .ˆˆ,ˆ
654 vandvv  

4.10 Hamming Codes:  

Hamming code is the first class of linear block codes devised for error correction. The single error 

correcting (SEC) Hamming codes are characterized by the following parameters. 

                                            Code length: n = (2
m

-1) 

            Number of Information symbols: k = (2
m

 – m – 1) 

  Number of parity check symbols :( n – k) = m 
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                       Error correcting capability: t = 1, (dmin= 3) 

The parity check matrix H of this code consists of all the non-zero m-tuples as its columns.  In 

systematic form, the columns of H are arranged as follows 

     H = [Q   Im] 

Where Im is an identity (unit) matrix of order m  m and Q matrix consists of   

(2
m

-m-1) columns which are the m-tuples of weight 2 or more. As an illustration for k=4 we have 

from k = 2
m

 – m – 1.     

         m=1     k=0, m=2     k=1, m=3     k=4 

Thus we require 3 parity check symbols and the length of the code 2
3
 – 1 = 7. This results in the      

(7, 4) Hamming code. 

The parity check matrix for the (7, 4) linear systematic Hamming code is then 

                            

The generator matrix of the code can be written in the form 

                             T

m
QIG m 

12 
   

And for the (7, 4) systematic code it follows:  

                           

A non systematic Hamming code can be constructed by placing the parity check bits at 2
l,
 l=0, 1, 

2…locations. It was the conventional method of construction in switching and computer applications 

(Refer, for example „Switching circuits and applications -Marcus).One simple procedure for 

construction of such code is as follows: 

Step 1: Write the BCD of length (n – k) for decimals from 1 to n. 

Step 2: Arrange the sequences in the reverse order in a matrix form. 

Step 3: Transpose of the matrix obtained in step 2 gives the parity check matrix H for the code. 
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The code words are in the form 

1    2     3     4     5     6      7     8     9     10     11     12     13     14     15     16     17 

p1   p2   m1   p3   m2   m3    m4   p4   m5   m6      m7    m8     m9     m10   m11    p5     m12 

Where p1, p2, p3…are the parity digits and m1, m2, m3…are the message digits. For example, let us 

consider the non systematic (7, 4) Hamming code. 

Step1:      

                     

Step2:                   H
T
= 





























111

110

101

100

011

010

001

                    

 Step3:             H= 

















1111000

1100110

1010101

 

Notice that the parity check bits, from he above H matrix apply to positions.  

                     p1 = 1, 3, 5, 7, 9, 11, 13, 15…  

                     p2 = 2, 3, 6, 7, 10, 11, 14, 15 … 

                     p3 = 4, 5, 6, 7, 12, 13, 14, 15… 

                     p4 = 8, 9, 10, 11, 12, 13, 14, 15 and so on 

 Accordingly, the check bits can be represented as linear combinations of the message bits.   

For the (7, 4) code under consideration we have 
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                    p1 = m1 + m2 +m4 

                    p2 = m1 + m3 +m4 

                    p3 = m2 + m3 + m4 

Accordingly, the generator matrix can written as  

 

             Notice that the message bits are located at the positions other than 2
l
, l = 0, 1, 2, 3…. 

locations. i.e., they are located in the positions of 3, 5, 7, 9, 11, 13, 15, 17, 18….. The k- columns of 

the identity matrix Ik   are distributed successively to these locations. The Q sub-matrix in the H 

matrix can be identified to contain those columns which have weights more than one. The transpose 

of this matrix then gives the columns to be filled, in succession, in the G- matrix. For the Example of 

the (7, 4) linear code considered, the Q- sub-matrix is:  

                 Q =    

















1110

1101

1011

 , and hence   Q
T 

=    



















111

110

101

011

 

The first two columns of this matrix then are the first two columns of the G: matrix and the third 

column is the Forth column of the G matrix. Table below gives the codes generated by this method. 
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 Observe that the procedure outlined for the code construction starts from selecting the H 

matrix which is unique and hence the codes are also unique. We shall consider the correctable error 

patterns and the corresponding syndromes listed in the table below. 

  Table: Error patterns and syndromes for the (7, 4) linear non-systematic code 

 

 

 

               

 

 

 

 

 

Error Pattern 

 

Syndrome 

  e1    e2    e3    e4   e5   e6   

e7 

     s1        s2          s3 

1     0     0     0    0    0     

0 

 

1        0           0 

 0     1     0     0    0    0      

0 

 

0         1          0 

 0     0     1    0     0    0      

0 

 

1         1          0 

 0     0     0    1     0    0      

0 

 

0         0          1 

 0     0     0     0    1    0      

0 

 

1         0         1 

 0      0    0      0   0    1      

0 

 

0         1        1 

 0      0    0      0   0    0       

1 

 

1         1        1 
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If the syndrome is read from right to left i.e. if the sequence is arranged as „s3 s2 s1‟ it is interesting to 

observe that the decimal equivalent of this binary sequence corresponds to the error location. Thus if 

the code vector 1 0 1 1 0 1 0 is received as        1 0 1 0 0 1 0, the corresponding syndrome is „0 0 1‟, 

which is exactly the same as the 4
th 

column of the H-matrix and also the sequence 100 corresponds to 

decimal 4. 

            It can be verified that (7, 4), (15, 11), (31, 26), (63, 57) are all single error correcting 

Hamming codes and are regarded quite useful. 

           An important property of the Hamming codes is that they satisfy the condition of Eq. (4.36) 

with equality sign, assuming that t=1.This means that Hamming codes are “single error correcting 

binary perfect codes”. This can also be verified from Eq. (4.35) 

          We may delete any „l‟columns from the parity check matrix H of the Hamming code resulting 

in the reduction of the dimension of H matrix to m  (2
m

-l-1).Using this new matrix as the parity 

check matrix we obtain a “shortened” Hamming code with the following parameters. 

                                        Code length: n = 2
m

-l-1 

        Number of Information symbols:           k=2
m

-m-l-1 

       Number of parity check symbols:           n – k = m 

                             Minimum distance:           dmin   3 

Notice that if the deletion of the columns of the H matrix is proper, we may obtain a Hamming code 

with dmin = 4.For example if we delete from the sub-matrix Q all the columns of even weight, we 

obtain an m    2
m-1

 matrix 

                           mIQH :   

Where Q  contains (2
m-1

 -m) columns of odd weight.  Clearly no three columns add to zero as all 

columns have odd weight .However, for a column in Q , there exist three columns in Im such that four 

columns add to zero .Thus the shortened Hamming codes with H  as the parity check matrix has 

minimum distance exactly 4. The distance – 4 shortened Hamming codes   can be used for correcting 

all single error patterns while simultaneously detecting all double error patterns. Notice that when 

single errors occur the syndromes contain odd number of one‟s and for double errors it contains even 

number of ones. Accordingly the decoding can be accomplished in the following manner. 

(1) If s = 0, no error occurred. 

(2) If s contains odd number of ones, single error has occurred .The single error pattern pertaining 

to this syndrome is added to the received code vector for error correction.  
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(3)  If s contains even number of one‟s an uncorrectable error pattern has been detected. 

Alternatively the SEC Hamming codes may be made to detect double errors by adding an extra 

parity check in its (n+1) 
Th 

position. Thus (8, 4), (6, 11) etc. codes have dmin = 4 and correct single 

errors with detection of double errors. 

 

RECOMMENDATION QUESTIONS 
  

1.  Consider a (7, 4) linear code whose generator matrix is 

               G = 



















0111000

0110100

1110010

1010001

 

         a) Find all code vectors of this code    b) Find the parity check matrix for this code 

         c) Find the minimum weight of this code 

 

2. For linear (n, k) block code, C, prove that CH
T
 = O, where H is the parity check matrix. 

 

3. The parity check bits of a ( 8,4) block code are generated by  

                c5 = d1 + d2 + d4 

                c6 = d1 + d2 + d3 

                c7 = d1 + d3 + d4 

                c8 = d2 + d3 + d4 

 

          Where d1, d2, d3, and d4 are the message bits 

a) Find the generator matrix and parity check matrix for this code. 

b) Find the minimum  weight of this code 

c) Find the error detecting  and error correcting capabilities of this code 

d) Show through an example that this code can detect 3 errors/code word. 

 

4. Construct an encoder for the code given in problem 3. 

 

5. Construct a syndrome circuit for the code given in problem 3. 

 

6. Let H be the parity check matrix of an (n, k) linear code C that has both odd and even weight 

code vectors. Construct new linear codes C1 and C2 with the following parity check matrices 

respectively. 

 
          

      (Note that the last row of H1 (H2) consists of all 1‟s)  

      a)   Show that C1 and C2, called extensions of C, are (n+1, k) linear block codes. 
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b)   Show that every code vector of C1 (C2) has an even weight. 

c) Show that the minimum distance of C1 (C2) is (d+1),), where d is the minimum distance of C. 

d) Show that C1 can be obtained from C by adding an extra parity check digit denoted by vo to  

the left of each code vector v as follows (1) If v has odd weight then vo = 1 and (2) If v has even 

weight vo = 0. The parity check digit vo is called an “overall parity check digit”. 

 

7. Let C be a linear code with both even and odd-weight code words. Show that the number of 

even weight code vectors is equal to the number of odd weight code vectors.   

                                           

8. Since the (8, 4) linear code of problem 3 has a minimum distance 4, it is capable of correcting all 

the single error patterns and simultaneously detecting any combination of double errors. 

Construct a decoder for this code. The decoder must be capable of correcting any single error 

and detecting any double error. 

 

9. The (8, 4) linear code of problem 3 is capable of correcting 16 error patterns (The co-set leaders 

of a standard array). Suppose that this code is used for a BSC. Device a decoder for this code 

based on the table-look up decoding scheme. The decoder is designed to correct the 16 most 

probable error patterns. 

 

10. Verify whether the dual code of the (8, 4) linear code of problem 3 is identical to the code itself. 

Is the code self dual? 

 

11. Form a parity check matrix for a (15, 11) systematic Hamming code. Device a decoder for this 

code. 

 

12. Let C1 be an (n1, k) linear systematic code with dmin = d1 and generator matrix G1 = [P1, Ik]. Let 

C2 be an (n2, k) linear systematic code with dmin = d2 and Generator matrix G2 = [P2, Ik]. 

Consider an (n1 + n2, k) linear code with the following parity check matrix. 

                                               
       Show that this code has minimum distance at least (d1 +d2). 

 

13. The “design distance” of an (n, k) linear block code is defined as being equal to (n - k +1). 

Show that the minimum distance of the code can never exceed its design distance. 

 

14. “Repetition codes” represent the simplest type of linear block codes. The generator       matrix 

of a (5, 1) repetition code is given as G = [1 1 1 1| 1] 

      a)   Write its parity check matrix. 

      b)   Evaluate the syndrome for: 

           i)  All five possible single error patterns. ii) All 10 possible double error patterns. 

 

15. Show that the decoder for a Hamming code fails if there are two or more than two transmission 

errors in the received sequence. 
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OUTCOMES 
 

• Detection of the errors. 

• Correction of the errors using different techniques. 

 

 

RESOURCES 

• https://en.wikipedia.org/wiki/Block_code 
• www.inference.phy.cam.ac.uk/mackay/itprnn/1997/l1/node7.html 
• web.ntpu.edu.tw/~yshan/intro_lin_code.pdf 
• users.ece.cmu.edu/~koopman/des_s99/coding/ 
• elearning.vtu.ac.in/P4/EC63/S11.pdf 
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CHAPTER 2 - BINARY CYCLIC CODES 

 
 

STRUCTURE 
 

 Generator Polynomial for Cyclic Codes 

 Multiplication Circuits   

 Dividing Circuits     

 Systematic Cyclic Codes   

 Generator Matrix for Cyclic Codes 

 Syndrome Calculation - Error Detection and Error 

Correction 

 

OBJECTIVE 
 

 Discuss about cyclic codes and also study about implementation methods using feedback shift 

registers.  

 Study about syndrome calculator for cyclic codes. 
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INTRODUCTION 

                       
 "Binary cyclic codes” form a sub class of linear block codes. Majority of important linear 

block codes that are known to-date are either cyclic codes or closely related to cyclic codes. Cyclic 

codes are attractive for two reasons: First, encoding and syndrome calculations can be easily 

implemented using simple shift registers with feed back connections. Second, they posses well 

defined mathematical structure that permits the design of higher-order error correcting codes. 

 

A binary code is said to be "cyclic" if it satisfies: 

 

1. Linearity property – sum of two code words is also a code word. 

2. Cyclic property – Any lateral shift of a code word is also a code word. 

 

The second property can be easily understood from Fig, 4.1. Instead of writing the code as a 

row vector, we have represented it along a circle. The direction of traverse may be either clockwise or 

counter clockwise (right shift or left shift). 

 

For example, if we move in a counter clockwise direction then starting at „A‟ the code word is 

110001100 while if we start at B it would be 011001100. Clearly, the two code words are related in 

that one is obtained from the other by a cyclic shift. 

 

 
Fig 4.1: Illustrating the cyclic property  

 

If the n - tuple, read from „A‟ in the CW direction in Fig 4.1, 

                

                         v = (vo, v1, v2, v3, vn-2, vn-1)                         ……………………                          (4.1)

  

is a code vector, then the code vector, read from B, in the CW direction, obtained by a one bit cyclic 

right shift: 

 

                         v
(1)

 = (vn-1  , vo, v1, v2, … vn-3,vn-2,)              ……………………                           (4.2) 
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is also a code vector. In this way, the n - tuples obtained by successive cyclic right shifts: 

  

                        v
(2)

 = (vn-2, vn-1, vn, v0, v1…vn-3)           …………………                               (4.3a) 

  

                        v
(3)

 = (vn-3 ,vn-2, vn-1, vn, ... vo, v1, vn-4) …………………                               (4.3b) 

                           

                        v
(i)

 = (vn-i, vn-i+1,…vn-1, vo, v1,…. vn-i-1)         ……………                                     (4.3c) 

 

are all code vectors. This property of cyclic codes enables us to treat the elements of each code vector 

as the co-efficients of a polynomial of degree (n-1). 

 

This is the property that is extremely useful in the analysis and implementation of these codes. 

Thus we write the "code polynomial' V(X) for the code in Eq (6.1) as a vector polynomial as: 

 

V(X) = vo + v1 X + v2 X
2
 + v3 X

3
 +…+ vi-1 X

i-1
 +... + vn-3 X

n-3
 + vn-2 X

n-2
 + vn-1 X

n-1           
…..    (4.4) 

 

Notice that the co-efficients of the polynomial are either '0' or '1' (binary codes), i.e. they belong to 

GF (2) as discussed in sec 5.7.1. 

 

. Each power of X in V(X) represents a one bit cyclic shift in time. 

 

. Therefore multiplication of V(X) by X maybe viewed as a cyclic shift or rotation to the right subject 

to the condition X
n
 = 1. This condition (i) restores XV(X) to the degree (n-1) (ii) Implies that right 

most bit is fed-back at the left. 

 

. This special form of multiplication is called "Multiplication modulo “X
n
 + 1”  

 

. Thus for a single shift, we have 

 

XV(X) = voX + v1 X
2
 + v2 X

3
 + ...... + vn-2 X

n-l
 + vn-l X

n
 

  

                        (+ vn-1 + vn-1) … (Manipulate A + A =0 Binary Arithmetic) 

 

           = vn-1 + v0 X + v1 X
2
 + + vn-2 X

n-1
 + vn-1(X

n
 + 1) 

 

           =V
 (1)

 (X) = Remainder obtained by dividing XV(X) by X
n 

+ 1
 

(Remember: X mod Y means remainder obtained after dividing X by Y) 

 

Thus it turns out that 

 

 V
 (1)

 (X) = vn-1 + vo X + v1 X
2
 + ... + vn-2 X

n-1
                    ………………                                 (4.5) 

I is the code polynomial for v
(1)

 . We can continue in this way to arrive at a general format: 
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X 
i
 V(X) = V

 (i)
 (X) + q (X) (X

n
 + 1)                                     ……………………                         (4.6) 

                    

   Remainder   Quotient 

Where 

 

V
 (i)

 (X) = vn-i + vn-i+1X + vn-i+2X
2 
+ …vn-1X 

i
+ …v0X

i
 +v1X

i+1
+…vn-i-2X

n-2
 +vn-i-1X

n-     
……        (4.7) 

 

4.1    GENERATOR POLYNOMIAL FOR CYCLIC CODES: 

 

An (n, k) cyclic code is specified by the complete set of code polynomials of degree  (n-1) 

and contains a polynomial g(X), of degree (n-k) as a factor, called the "generator polynomial" of 

the code. This polynomial is equivalent to the generator matrix G, of block codes. Further, it is the 

only polynomial of minimum degree and is unique. Thus we have an important theorem 

 

Theorem 4.1 "If g(X) is a polynomial of degree (n-k) and is a factor of (X
n
 +1) then g(X) generates 

an (n, k) cyclic code in which the code polynomial V(X) for a data vector u = (u0, u1… uk-1) is 

generated by 

 

                            V(X) = U(X) g(X)                                    …………………                               (4.8) 

 

Where                 U(X) = u0 + u1 X + u2 X
2
 + ... + uk-1 X

k-I
      ………………..                             (4.9) 

 

is the data polynomial of degree (k-1). 

 

The theorem can be justified by Contradiction: - If there is another polynomial of same degree, then 

add the two polynomials to get a polynomial of degree < (n, k) (use linearity property and binary 

arithmetic). Not possible because minimum degree is (n-k). Hence g(X) is unique 

 

Clearly, there are 2
k
 code polynomials corresponding to 2

k
 data vectors. The code vectors 

corresponding to these code polynomials form a linear (n, k) code. We have then, from the theorem 

 

                       





1

1

1)(
kn

i

kni
i XXgXg                                ……………………                   (4.10) 

 

          As      g(X) = go + g1 X + g2 X
2
 +…….+ gn-k-1 X

n-k-1
 + gn-k X

n-k
      …………                 (4.11) 

 

is a polynomial of minimum degree, it follows that g0 = gn-k = 1 always and the remaining co-

efficients may be either' 0' of '1'. Performing the multiplication said in Eq (4.8) we have: 

 

               U (X) g(X) = uo g(X) + u1 X g(X) +…+uk-1X
k-1

g(X)                 ………….                 (4.12) 

 



Error Control Coding And Binary Cyclic Code                                                                                                           15EC54 

 

 47 

Suppose u0=1 and u1=u2= …=uk-1=0. Then from Eq (4.8) it follows g(X) is a code word polynomial 

of degree (n-k). This is treated as a „basis code polynomial‟ (All rows of the G matrix of a block 

code, being linearly independent, are also valid code vectors and form „Basis vectors‟ of the code). 

Therefore from cyclic property X
i
 g(X) is also a code polynomial. Moreover, from the linearity 

property - a linear combination of code polynomials is also a code polynomial. It follows therefore 

that any multiple of g(X) as shown in Eq (4.12) is a code polynomial. Conversely, any binary 

polynomial of degree  (n-1) is a code polynomial if and only if it is a multiple of g(X). The code 

words generated using Eq (4.8) are in non-systematic form. Non systematic cyclic codes can be 

generated by simple binary multiplication circuits using shift registers. . 

 

In this book we have described cyclic codes with right shift operation. Left shift version can 

be obtained by simply re-writing the polynomials. Thus, for left shift operations, the various 

polynomials take the following form 

 

                     U(X) = uoX
k-1

 + u1X
k-2

 +…… + uk-2X + uk-1            ………………..                  (4.13a) 

 

                     V(X) = v0 X
n-1

 + v1X
n-2

 +…. + vn-2X + vn-1             ………………                    (4.13b) 

 

                     g(X) = g0X
n-k

 + g1X
n-k-1

 +…..+gn-k-1 X + gn-k               ……………                       (4.13c) 

 

                             = 







 
kn

i

kn
ikn

ikn gXgX
1

                               …………………               (4.13d) 

  

Other manipulation and implementation procedures remain unaltered. 

 

4.2    MULTIPLICATION CIRCUITS 
 

Construction of encoders and decoders for linear block codes are usually constructed with 

combinational logic circuits with mod-2 adders. Multiplication of two polynomials A(X) and B(X) 

and the division of one by the other are realized by using sequential logic circuits, mod-2 adders and 

shift registers. In this section we shall consider multiplication circuits. 

 

As a convention, the higher-order co-efficients of a polynomial are transmitted first. This is 

the reason for the format of polynomials used in this book. 

 

For the polynomial: A(X) = a0 + a1 X + a2 X
2
 +...+ an-1X

n-1
              …………                         (4.14) 

 

where ai‟s are either a ' 0' or a '1', the right most bit in the sequence (a0, a1, a2 ... an-1) is transmitted 

first in any operation. The product of the two polynomials A(X) and B(X) yield: 

 

C(X) = A(X) B(X) 
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        = (a0 + a1 X + a2 X
2
 +… .................. + an-1X

n-1
) (b0 + b1 X + b2X

2
 +…+ bm-1 X

m-1
) 

   = a0b0+ (a1b0+a0b1) X + (a0b2 + b0a2+a1b1) X
2
 +…. + (an-2bm-1+ an-1bm-2) X

n+m -3
 +an-1bm-1X

n+m -2
 

 

This product may be realized with the circuits of Fig 4.2 (a) or (b), where A(X) is the input and the 

co-efficient of B(X) are given as weighting factor connections to the mod - 2 .adders. A '0' indicates 

no connection while a '1' indicates a connection. Since higher order co-efficients are first sent, the 

highest order co-efficient an-1 bm-1 of the product polynomial is obtained first at the output of        

Fig 6.2(a). Then the co-efficient of X
n+m-3

 is obtained as the sum of {an-2bm-1 + an-1 bm-2}, the first 

term directly and the second term through the shift register SR1. Lower order co-efficients are then 

generated through the successive SR's and mod-2 adders. After (n + m - 2) shifts, the SR's contain     

{0, 0… 0, a0, a1} and the output is (a0 b1 + a1 b0) which is the co-efficient of X. After (n + m-1) 

shifts, the SR's contain (0, 0, 0,0, a0) and the out put is a0b0. The product is now complete and the 

contents of the SR's become (0, 0, 0 …0, 0). Fig 4.2(b) performs the multiplication in a similar way 

but the arrangement of the SR's and ordering of the co-efficients are different (reverse order!). This 

modification helps to combine two multiplication operations into one as shown in Fig 4.2(c). 

 

From the above description, it is clear that a non-systematic cyclic code may be generated using 

 (n-k) shift registers. Following examples illustrate the concepts described so far. 

  

 
Fig 4.2: Multiplication circuits 

 

Example 4.1: Consider that a polynomial A(X) is to be multiplied by 

                      

                   B(X) = 1 + X + X
3
 + X

4
 + X

6
 

 

 The circuits of Fig 4.3 (a) and (b) give the product C(X) = A(X). B(X) 
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Fig 4.3: Circuit to perform C(X)*(1+X

2
+X

3
+X

4
+X

6
) 

 

Example 4.2: Consider the generation of a (7, 4) cyclic code. Here (n- k) = (7-4) = 3 and we have to 

find a generator polynomial of degree 3 which is a factor of X
n
 + 1 = X

7
 + 1. 

 

To find the factors of‟ degree 3, divide X
7
+1 by X

3
+aX

2
+bX+1, where 'a' and 'b' are binary 

numbers, to get the remainder as abX
2
+ (1 +a +b) X+ (a+b+ab+1). Only condition for the remainder 

to be zero is a +b=1 which means either a = 1, b = 0 or a = 0, b = 1. Thus we have two possible 

polynomials of degree 3, namely 

                            

                               gl (X) = X
3
+ X

2
+ 1 and g2 (X) = X

3
+X+1 

 

In fact, X
7
 + 1 can be factored as: 

 

                  (X
7
+1) = (X+1) (X

3
+X

2
+1) (X

3
+X+1) 

 

Thus selection of a 'good' generator polynomial seems to be a major problem in the design of cyclic 

codes. No clear-cut procedures are available. Usually computer search procedures are followed. 

 

 Let us choose g (x) = X
3
+ X + 1 as the generator polynomial. The encoding circuits are shown 

in Fig 4.4(a) and (b). 

 

 
Fig 4.4 Generation of Non-systematic cyclic codes 
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To understand the operation, Let us consider u = (10 1 1) i.e. 

 

                           U (X) = 1 +X
2
+X

3
. 

 

We have             V (X) = (1 +X
2
+X

3
) (1 +X+X

3
). 

                        

                                     = 1 +X
2
+X

3
+X+X

3
+X

4
+X

3
+X

5
+X

6
 

                         

                                     = 1 + X + X
2
+ X

3
+ X

4
+ X

5
+ X

6
   because (X

3
+ X

3
=0) 

                  

                               => v = (1 1 1 1 1 1 1) 

 

The multiplication operation, performed by the circuit of Fig 6.4(a), is listed in the Table below step 

by step. In shift number 4, „000‟ is introduced to flush the registers. As seen from the tabulation the 

product polynomial is: 

                                   V (X) = 1 +X+X
2
+X

3
+X

4
+X

5
+X

6
, 

 and hence out put code vector is v = (1 1 1 1 1 1 1), as obtained by direct multiplication. The reader 

can verify the operation of the circuit in Fig 4.4(b) in the same manner. Thus the multiplication 

circuits of Fig 6.4 can be used for generation of non-systematic cyclic codes.  

 

Table showing sequence of computation 

 

Shift 

Number 

Input 

Queue 

Bit 

shifted 

    IN 

Contents of shift              

registers. 

Ou

t 

put 

Remarks 

SRI  SR2 SR3 

0 0001011 - 0 0 0    - Circuit In reset 

mode 

1 000101 1 1 0 0 1 Co-efficient of  X
6
 

2 00010 1 1 1 0 1 Co-efficient of X
5
 

3 0001 0 0 1 1 1 X
4 

co-efficient 

    *4 000 1 1 0 1 1 X
3
 co-efficient 

5 00 0 0 1 0 1 X
2
 co-efficient 

6    0 0 0 0 1 1 X
1 

co-efficient 

7 - 0 0 0 0   1 X
0
co-efficient 

 

  4.3    DIVIDING CIRCUITS: 

  

 As in the case of multipliers, the division of A (X) by B (X) can be accomplished by using 

shift registers and Mod-2 adders, as shown in Fig 4.5. In a division circuit, the first co-efficient of the 

quotient is (an-l (bm-1) = q1, and q1.B(X) is subtracted from A (X). This subtraction is carried out by 

the feed back connections shown. This process will continue for the second and subsequent terms. 
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However, remember that these coefficients are binary coefficients. After (n-1) shifts, the entire 

quotient will appear at the output and the remainder is stored in the shift registers. 

 

 
Fig 4.5: Dividing circuit 

It is possible to combine a divider circuit with a multiplier circuit to build a “composite 

multiplier-divider circuit” which is useful in various encoding circuits. An arrangement to accomplish 

this is shown in Fig 4.6(a) and an illustration is shown in Fig 4.6(b). 

 

We shall understand the operation of one divider circuit through an example. Operation of 

other circuits can be understood in a similar manner. 

 

Example 4.3:  

 

Let A(X) = X
3
+X

5
+X

6
, A= (0001011), B(X) = 1 +X+X

3
. We want to find the quotient and 

remainder after dividing A(X) by B(X). The circuit to perform this division is shown in Fig 4.7, 

drawn using the format of Fig 4.5(a). The operation of the divider circuit is listed in the table:  

 

 
Fig 4.6 Circuits for Simultaneous Multiplication and division 
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Fig 4.7 Circuits for dividing A(x) by (1 + X + X

3
) 

 

Table Showing the Sequence of Operations of the Dividing circuit 

 

Shift 

Numbe

r 

Input 

Queue 

Bit 

shifted 

IN 

Contents of shift           

Registers. 

Ou

t 

put 

Remarks 

SRI  SR

2 

SR

3 

0 0001011 - 0 0 0 - Circuit in reset 

mode 

1 000101 1 1 0 0 0 Co-efficient of X
6
 

2 00010 1 1 1 0 0 Co-efficient of X
5
 

3 0001 0 0 1 1 0 X
4
 co-efficient 

4 *000 1 0 1 1 1 X
3
 co-efficient 

5 00 0 1 1 1 1 X
2
 co-efficient 

6 0 0 1 0 1 1 X
1
 co-efficient 

7 - 0 1 0 0 1  X
o
 co-efficient 

 

The quotient co-efficients will be available only after the fourth shift as the first three shifts 

result in entering the first 3-bits to the shift registers and in each shift out put of the last register, SR3, 

is zero. 

 

 The quotient co-efficient serially presented at the out put are seen to be (1111) and hence the 

quotient polynomial is Q(X) =1 + X + X
2
 + X

3
. The remainder co-efficients are (1 0 0) and the 

remainder polynomial is R(X) = 1.  

 

4.4    SYSTEMATIC CYCLIC CODES: 
  
 Let us assume a systematic format for the cyclic code as below: 
 
                                 v = (p0, p1, p2 … pn-k-1, u0, u1, u2… uk-1)                        ……………                (4.15) 
 

The code polynomial in the assumed systematic format becomes: 

 

V(X) = p0 + p1X + p2X
2
 + … +pn-k-1X

n-k-1 
+u0X

n-k
 + u1X

n-k+1 
+… +uk-1X

n-1
 ………...               (4.16) 

 

         = P(X) + X
n-k

U(X)                                  ……………………                                            (4.17) 

 
Since the code polynomial is a multiple of the generator polynomial we can write: 
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             V (X) = P (X) +X

n-k
 U (X) = Q (X) g (X)                      .......................                            (4.18) 

 

                      
)(

)(
)(

)(

)(

Xg

XP
XQ

Xg

XUX
kn




                         ……………….                            (4.19) 

 

Thus division of X
n-k

 U (X) by g (X) gives us the quotient polynomial Q (X) and the 

remainder polynomial P (X). Therefore to obtain the cyclic codes in the systematic form, we 

determine the remainder polynomial P (X) after dividing X
n-k

 U (X) by g(X). This division process 

can be easily achieved by noting that "multiplication by X
n-k

 amounts to shifting the sequence by   

(n-k) bits". Specifically in the circuit of Fig 4.5(a), if the input A(X) is applied to the Mod-2 adder 

after the (n-k)
 th

 shift register the result is the division of   X
n-k

 A (X) by B (X). 

 
 Accordingly, we have the following scheme to generate systematic cyclic codes. The 
generator polynomial is written as: 
 
          g (X) = 1 +glX+g2X

2
+g3X

3
+…+gn-k-1 X

n-k-1 
+X

n-k
                       …………                      (4.20) 

 
The circuit of Fig 4.8 does the job of dividing X

n-k
U (X) by g(X). The following steps describe the 

encoding operation. 

  

 
Fig 4.8 Syndrome encoding of cyclic codes using (n-k) shift register stages 

 

1. The switch S is in position 1 to allow transmission of the message bits directly to an 

out put shift register during the first k-shifts. 

2. At the same time the 'GATE' is 'ON' to allow transmission of the message bits into the 

(n-k) stage encoding shift register    

3. After transmission of the k
th

 message bit the GATE is turned OFF and the switch S is 

moved to position 2. 

4. (n-k) zeroes introduced at "A" after step 3, clear the encoding register by moving the 

parity bits to the output register 

5. The total number of shifts is equal to n and the contents of the output register is the 

code word polynomial V (X) =P (X) + X
n-k

 U (X). 

6. After step-4, the encoder is ready to take up encoding of the next message input 

 

Clearly, the encoder is very much simpler than the encoder of an (n, k) linear block code and the 

memory requirements are reduced. The following example illustrates the procedure.  
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Example 4.4: 
 
Let u = (1 0 1 1) and we want a (7, 4) cyclic code in the systematic form. The generator polynomial 

chosen is g (X) = 1 + X + X3 

 

For the given message, U (X) = 1 + X
2
+X

3
 

  

 X
n-k

 U (X) = X
3
U (X) = X

3
+ X

5
+ X

6 

 

We perform direct division X
n-k

U (X) by g (X) as shown below. From direct division observe that 

p0=1, p1=p2=0.  Hence the code word in systematic format is: 

 

    v = (p0, p1, p2; u0, u1, u2, u3) = (1, 0, 0, 1, 0, 1, 1)                      

                                   
 

 
Fig 4.9 Encoder for the (7,4) cyclic code 

The encoder circuit for the problem on hand is shown in Fig 4.9. The operational steps are as follows:  

 

Shift Number Input 

Queue 

Bit shifted IN Register 

contents 

Output 

0 1011 - 000 - 

1 101 1 110 1 

2 10 1 101 1 

3 1 0 100 0 

4 - 1 100 1 

 

After the Fourth shift GATE Turned OFF, switch S moved to position 2, and the parity bits 

contained in the register are shifted to the output. The out put code vector is    v = (100 1011) which 
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agrees with the direct hand calculation. 

 

4.5    GENERATOR MATRIX FOR CYCLIC CODES: 

 
 The generator polynomial g(X) and the parity check polynomial h(X) uniquely specify the 

generator matrix G and the parity check matrix H respectively. We shall consider the construction of 

a generator matrix for a (7, 4) code generated by the polynomial g(X) = 1 +X+X
3
. 

 

We start with the generator polynomial and its three cyclic shifted versions as below: 

                       g(X) = 1 + X + X
3
 

                  X g(X) = X + X
2
 + X

4
  

                  X
2
g(X) = X

2 
+ X

3
 + X

5
  

                  X
3
g(X) = X

3
 + X

4
 + X

6
 

The co-efficients of these polynomials are used as the elements of the rows of a (47) matrix to get 

the following generator matrix: 

 

                           





















1011000

0101100

0010110

0001011

G  

 

Clearly, the generator matrix so constructed is not in a systematic format. We can transform this into 

a systematic format using Row manipulations. The manipulations are: 

       

First row = First row; Second row = Second row; Third row = First row + Third row; and Fourth row 

= First row + second row + Fourth row. 

 

These operations give the following result: 

 

                           ]IP[

1000101

0100111

0010110

0001011

G 4



















  

 

Using this generator matrix, which is in systematic form the code word for u = (1 0 1 1) is      

v = (1 0 0 1 0 1 1) (obtained as sum of 1st row + Third row + Fourth row of the G-matrix). The result 

agrees with direct hand calculation. 

 To construct H-matrix directly, we start with the reciprocal of the parity check 

polynomial defined by X
k
h(X

-1
). Observe that the polynomial X

k
h(X

-1
) is also a factor of the 

polynomial X
n
+ 1. For the polynomial (X

7
+1) we have three primitive factors namely, (X + 1), 

(X
3
+X+1) and (X

3
+X

2
+1). Since we have chosen (X

3
+X+1) as the generator polynomial the 

other two factors should give us the parity check polynomial.  

h(X) = (X +1) (X
3
+X

2
+1) = X

4
+X

2
+X+1 

 

There fore with h(X) = 1 +X+X
2
+X

4
, we have 
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        h(X
-1

) = 1 +X
-1

+X
-2

+X
-4

, and   

 

   X
k
 h(X

-1
) = X

4
h(X

-1
) = X

4
+X

3
+X

2
+1 

 

The two cyclic shifted versions are: 

 

         X
5
h(X

-1
) = X

5
 + X

4
 +X

3
 + X 

 

        X
6
P(X

-1
) = X

6
 + X

5
 + X

4
 + X

2
 

 

 

Or    X
4
h(X

-1
) = X

4
+X

3
+X

2
+1 

 

        X
5
h(X

-1
) = X

5
 + X

4
 +X

3
 + X 

 

       X
6
h(X

-1
) = X

6
 + X

5
 + X

4
 + X

2
 

 

Using the co-efficients of these polynomials, we have: 

 

              



















1110100

0111010

0011101

H  

 

Clearly, this matrix is in non systematic form. It is interesting to check that for the non-

systematic matrixes obtained GH
T
 = O. We can obtain the H matrix in the systematic format            

H = ][ 3
T

PI  , by using Row manipulations. The manipulation in this case is simply.                    

'First row = First row + Third row'. The result is 

 

                                  



















1110100

0111010

1101001

H  

 

Observe the systematic format adopted: ][][
T

knk PIHandIPG    

 

4.6 SYNDROME CALCULATION - ERROR DETECTION AND ERROR 

CORRECTION : 
 

 Suppose the code vector v= (v0, v1, v2 …vn-1) is transmitted over a noisy channel. Hence the 

received vector may be a corrupted version of the transmitted code vector. Let the received code 

vector be r = (r0, r1, r2…rn-1). The received vector may not be anyone of the 2
k
 valid code vectors. 

The function of the decoder is to determine the transmitted code vector based on the received vector. 

 The decoder, as in the case of linear block codes, first computes the syndrome to check 

whether or not the received code vector is a valid code vector. In the case of cyclic codes, if the 

syndrome is zero, then the received code word polynomial must be divisible by the generator 

polynomial. If the syndrome is non-zero, the received word contains transmission errors and needs 



Error Control Coding And Binary Cyclic Code                                                                                                           15EC54 

 

 57 

error correction. Let the received code vector be represented by the polynomial 

                   

                       R(X) = r0+r1X+r2X
2
+…+rn-1X

n-l
 

 

Let A(X) be the quotient and S(X) be the remainder polynomials resulting from the division 

of R(X) by g(X) i.e.  

                                   

                                       
)(

)(
)(

)(

)(

Xg

XS
XA

Xg

XR
                           ………………..                       (4.21) 

 

The remainder S(X) is a polynomial of degree (n-k-1) or less. It is called the "Syndrome 

polynomial". If E(X) is the polynomial representing the error pattern caused by the channel, then we 

have:                                  

                                       R(X) =V(X) + E(X)                     ………………..                               (4.22) 

 

And it follows as V(X) = U(X) g(X), that: 

 

                          E(X) = [A(X) + U(X)] g(X) +S(X)           ……………….                                               (4.23) 
 

That is, the syndrome of R(X) is equal to the remainder resulting from dividing the error pattern by 

the generator polynomial; and the syndrome contains information about the error pattern, which can 

be used for error correction. Fig 4.5. A “Syndrome calculator” is shown in Fig 4.10. 

 

 
Fig 4.10 Syndrome calculator using (n-k) shift register 

 

The syndrome calculations are carried out as below: 

 

 1 The register is first initialized. With GATE 2 -ON and GATE1- OFF, the received    vector is 

entered into the register 

 

2 After the entire received vector is shifted into the register, the contents of the register will be 

the syndrome, which can be shifted out of the register by turning GATE-1 ON and GATE-2 

OFF. The circuit is ready for processing next received vector. 

 

    Cyclic codes are extremely well suited for 'error detection' .They can be designed to 

detect many combinations of likely errors and implementation of error-detecting and error correcting 

circuits is practical and simple. Error detection can be achieved by employing (or adding) an 

additional R-S flip-flop to the syndrome calculator. If the syndrome is nonzero, the flip-flop sets and 

provides an indication of error. Because of the ease of implementation, virtually all error detecting 

codes are invariably 'cyclic codes'. If we are interested in error correction, then the decoder must be 

capable of determining the error pattern E(X) from the syndrome S(X) and add it to R(X) to 
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determine the transmitted V(X). The following scheme shown in Fig 6.11 may be employed for the 

purpose. The error correction procedure consists of the following steps: 

 

Step1. Received data is shifted into the buffer register and syndrome registers with switches 

SIN closed and SOUT open and error correction is   performed with SIN open and SOUT 

closed. 

 

Step2.  After the syndrome for the received code word is calculated and placed in the 

syndrome register, the contents are read into the error detector. The detector is a 

combinatorial circuit designed to output a „1‟ if and only if the syndrome corresponds 

to a correctable error pattern with an error at the highest order position X
n-l

. That is, if 

the detector output is a '1' then the received digit at the right most stage of the buffer 

register is assumed to be in error and will be corrected. If the detector output is '0' then 

the received digit at the right most stage of the buffer is assumed to be correct. Thus 

the detector output is the estimate error value for the digit coming out of the buffer 

register. 

 
Fig 4.11 General decoder for cyclic code 

 

Step3.  In the third step, the first received digit in the syndrome register is shifted right once. 

If the first received digit is in error, the detector output will be '1' which is used for 

error correction. The output of the detector is also fed to the syndrome register to 

modify the syndrome. This results in a new syndrome corresponding to the „altered 

„received code word shifted to the right by one place. 

 

           Step4.  The new syndrome is now used to check and correct the second received digit, which 

is now at the right most position, is an erroneous digit. If so, it is corrected, a new 

syndrome is calculated as in step-3 and the procedure is repeated. 

Step5. The decoder operates on the received data digit by digit until the entire                  
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received code word is shifted out of the buffer. 

  

At the end of the decoding operation, that is, after the received code word is shifted out of the 

buffer, all those errors corresponding to correctable error patterns will have been corrected, and the 

syndrome register will contain all zeros. If the syndrome register does not contain all zeros, this 

means that an un-correctable error pattern has been detected. The decoding schemes described in Fig 

6.10 and Fig6.11 can be used for any cyclic code. However, the practicality depends on the 

complexity of the combinational logic circuits of the error detector. In fact, there are special classes 

of cyclic codes for which the decoder can be realized by simpler circuits. However, the price paid for 

such simplicity is in the reduction of code efficiency for a given block size.  

 

 A decoder of the form described above operates on the received data bit by bit; and each bit is 

tested in turn for error and is corrected whenever an error is located. Such a decoder is called 

a“Meggitt decoder”.  

 

 For illustration let us consider a decoder for a (7, 4) cyclic code generated by   

                                       

                                                         g(X) = 1 + X + X 
3
  

 

The circuit implementation of the Meggitt decoder is shown on Fig 6.12. The entire received 

vector R(X) is entered in to the SR‟s bit by bit and at the same time it is stored in the buffer memory. 

The division process will start after the third shift and after the seventh shift the syndrome will be 

stored in the SR‟s. If S(X) = (000) then E(X) = 0 and R(X) is read out of the buffer. Since S(X) can 

be found from E(X) with nonzero coefficients, suppose E(X) = (000 0001). Then the SR contents are 

given as: (001, 110, 011, 111, 101) showing that S(X) = (101) after the seventh shift. At the eighth 

shift, the SR content is (100) and this may be used through a coincidence circuit to correct the error 

bit coming out of the buffer at the eighth shift. On the other hand if the error polynomial were      

E(X) = (000 1000) then the SR content will be (100) at he eleventh shift and the error will be 

corrected when the buffer delivers the error bit at the eleventh shift. The SR contents for different 

shifts, for two other error patterns are as shown in the table below: 

SR contents for the error patterns (1001010) and (1001111) 

 Shift 

Number 

Input SR-content for 

(1001010) 

Input SR- content  for 

(1001111) 

1 0 000 1 100 

2 1 100 1 110 

3 0 010 1 111 

4 1 101 1 001 

5 0 100 0 110 

6 0 010 0 011 

7 1 101 1 011 *Indicates an error 

8 0 100 0 111 

9 - - 0 101 

10 - - 0 100 
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Fig 4.12 Meggitt decoder for (7,4) cyclic code 

 

 For R(X) = (1001010), the SR content is (100) at the 8-th shift and the bit in X
6
 position of 

R(X) is corrected giving correct V(X) = (1001011). On the other hand , if R(X) = (1001111), then it 

is seen from the table that at the 10-th shift the syndrome content will detect the error and correct the 

X
4 

bit of R(X) giving V(X) = (1001011). 

 

 The decoder for the (15, 11) cyclic code, using g(X) = 1 + X + X 
4
, is shown in Fig 6.13. It is 

easy to check that the SR content at the 16-th shift is (1000) for E(X) =X 
14

. Hence a coincidence 

circuit gives the correction signal to the buffer out put as explained earlier. 

 Although the Meggitt decoders are intended for Single error correcting cyclic codes, they may 

be generalized for multiple error correcting codes as well, for example (15, 7) BCH code.  

An error trapping decoder is a modification of a Meggitt decoder that is used for certain cyclic 

codes. 

 
Fig 4.13 Meggitt decoder for (15,11) cyclic code 

 

 The syndrome polynomial is computed as: S(X) = Remainder of [E(X) / g(X)]. If the error 

E(X) is confined to the (n-k) parity check positions (1, X, X
2
…  X

n-k-1
) of R(X), then E(X) = S(X), 

since the degree of E(X) is less than that of g(X). Thus error correction can be carried out by simply 

adding S(X) to R(X). Even if E(X) is not confined to the (n-k) parity check positions of R(X) but has 

nonzero values clustered together such that the length of the nonzero values is less than the syndrome 

length, then also the syndrome will exhibit an exact replica of the error pattern after some cyclic 

shifts of E(X). For each error pattern, the syndrome content S(X) (after the required shifts) is 

subtracted from the appropriately shifted R(X), and the corrected V(X) recovered.  

  

 “If the syndrome of R(X) is taken to be the remainder after dividing X
n-k

 R(X) by g(X), 

and all errors lie in the highest-order (n-k) symbols of R(X), then the nonzero portion of the 

error pattern appears in the corresponding positions of the syndrome”. Fig 4.14 shows an error 

trapping decoder for a (15, 7) BCH code based on the principles described above. A total of 45 shifts 
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are required to correct the double error, 15 shifts to generate the syndrome, 15 shifts to correct the 

first error and 15 shifts to correct the second error. 

 
Fig 4.14 Error trapping decoder for (15,7) BCH code 

 

 Illustration: 

 

 U(X) = X
6
 + 1; g(X) = X

8
 + X

7
 + X

6
 + X

4
 + 1 

 

            V(X) = X
14

 + X
13

 + X
12

 + X
10

 + X
8
 + X

7
 + X

4
 + 1 

 

            E(X) = X
11

 + X 

 

            R(X) = X
14

 + X
13

 + X
12

 + X
11

 + X
10

 + X
8
 + X

7
 + X

4
 + X + 1 

             

r = (110010011011111) 

Shift 

Number 

Syndrome  

Generator 

Register 

Shift  

Number 

Middle 

Register 

Shift  

Number 

Bottom 

Register 

1 10001011 16 01100011 31 00000100 

2 01000101 17 10111010 32 00000010 

3 00100010 18 01011101 33 00000001 

4 10011010 19 10100101 34 00000000 

5 11000110 20 11011001 35       ; 

6 01100011 21 11100111 36       : 

7 00110001 22 11111000 37       : 

8 00011000 23 01111100 38 All zeros 

9 00001100 24 00111110 39       : 

10 00000110 25 00011111 40       : 

11 10001000 26 10000100 41       : 

12 01000100 27 01000010 42       : 
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13 00100010 28 00100001 43       : 

14 10011010 29 00010000 44       : 

15 11000110 30 00001000 45       : 

Errors trapped at shift numbers 28 and 33. 
  

Some times when error trapping cannot be used for a given code, the test patterns can be 

modified to include the few troublesome error patterns along with the general test. Such a modified 

error trapping decoder is possible for the (23, 12) Golay code in which the error pattern E(X) will be 

of length 23 and weight of 3 or less (t  3). The length of the syndrome register is 11 and if E(X) has 

a length greater than 11the error pattern is not trapped by cyclically shifting S(X). In this case, it is 

shown that one of the three error bits must have at least five zeros on one side of it and at least six 

zeros the other side. Hence all error patterns can be cyclically shifted into one of the following three 

configurations (numbering the bit positions, e0, e1, e2 … e22): 

 

(i) All errors (t  3 ) occur in the 11 high-order bits 

 

(ii) One error occurs in position e5 and the other two errors occur in the 11 

high-order bits. 

 

(iii) One error occurs in position e6 and the remaining two errors occur in the 

11 high-order bits. 

 

In the decoder shown in Fig 4.15, the received code vector R(X) is fed at the rightmost stage 

of the syndrome generator (as was done in Fig 6.14), equivalent to multiplying R(X) by X
11

. Then the 

syndrome corresponding to e5 and e6 are obtained (using g1(X) as the generator polynomial) as: 

 

      S (e5) = Remainder of [X 
16

 /g1(X)] = X + X
2
 + X

5
 + X

6
 + X

8
 + X

9
   and  

      S (e6) = Remainder of [X 
17

 /g1(X)] = X
2
 + X

3
 + X

6
 + X

7
 + X

9
 + X

10
    

 

 
Fig 4.15 Error trapping decoder for (23,12) Golay code 

 

The syndrome vectors for the errors e5 and e6 will be (01100110110) or (00110011011) 

respectively. Two more errors occurring in the 11 high-order bit positions will cause two 1‟s in the 
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appropriate positions of the syndrome vectors, thereby complementing the vector for e5 or e6. Based 

on the above relations, the decoder operates as follows: 

 

 (i).The entire received vector is shifted into the syndrome generator (with switch G1 closed) 

and the syndrome S(X) corresponding to X 
11

 R(X) is formed. 

 

(ii).If all the three or less errors are confined to X 
12

, X 
13

 … X
22

 of R(X), then the syndrome 

matches the errors in these positions. The weight of the syndrome is now 3 or less. This is 

checked by a threshold gate and the gate output T0 switches G2 ON and G1 OFF. R(X) is now 

received from the buffer and corrected by the syndrome bits (as they are clocked bit by bit) 

through the modulo-2 adder circuit. 

 

        (iii).If the test in (ii) fails then it is assumed that one error is either at e5 or at e6, and the other 

two errors are in the 11 high-order bits of R(X). Then if the weight of S(X) is more than 3 (in 

test (ii)), then the weights of [S(X) + S (e5)] and      [S(X) + S (e6)] are tested. The decisions 

are:  

                        1.   If weight of [S(X) + S (e5)]  2 then the decision (T1 = 1) is that one error                     

is at position e5 and two errors are at positions where [S(X) + S (e5)] are nonzero. 

 

                        2. If weight of [S(X) + S (e6)]  2 then the decision (T2 = 1) is that one error                     

is at position e6 and two errors are at positions where [S(X) + S (e6)] are nonzero. 

The above tests are arranged through combinatorial switching circuits and the 

appropriate corrections in R(X) are made as R(X) is read from the buffer. 

               (iv). If the above tests fail then with G1 and G3 ON and G2 OFF, the syndrome and buffer 

contents are shifted by one bit. Tests (ii) and (iii) are now repeated. Bit by bit shifting of S(X) 

and R(X) is continued till the errors are located, and then corrected. A maximum of 23 shifts 

will be required to complete the process. After correction of R(X), the corrected V(X) is 

further processed through a divider circuit to obtain the message U(X) = V(X) / g(X). 

 

  Assuming that upon shifting the block of 23 bits with t  3 cyclically, „at most one error will 

lie outside the 11 high-order bits of R(X)‟ at some shift, an alternative decoding procedure can be 

devised for a Golay coder – The systematic search decoder. Here the test (ii) is first carried out. If the 

test fails, then first bit of R(X) is inverted and a check is made to find if the weight of S(X)  2. If 

this test is successful, then the nonzero positions of S(X) give the two error locations (similar to test 

(iii) above) and the other error is at first position. If this test fails, then the syndrome content is 

cyclically shifted, each time testing for weight of S(X)  3; and if not, invert 2
nd

, 3
rd

 ……and 12
th

 bit 

of R(X) successively and test for weight of S(X)  2. Since all errors are not in the parity check 

section, an error must be detected in one of the shifts. Once one error is located and corrected, the 

other two errors are easily located and corrected by test (ii). Some times the systematic search 

decoder is simpler in hardware than the error trapping decoder, but the latter is faster in operation. 

The systematic search decoder can be generalized for decoding other multiple-error-correcting cyclic 

codes. It is to be observed that the Golay (23, 12) code cannot be decoded by majority-logic 

decoders.  
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RECOMMENDATION QUESTIONS 
 

1. Sketch the shift register circuit for multiplying A(X) by B(X) = 1 + X
3
 + X

4
 + X

5
 + X

6
. Compute     

the circuit output for A(X) = 1 + X + X
4
 by examining the shift register contents at each shift. 

 

2. Draw a shift register circuit for simultaneous multiplication by B(X) and division by D(X), where               

B(X) = 1 + X
2
 + X

5
 + X

6
 and D(X) = 1 + X

3
 + X

4
 + X

5
 + X

8
 

      If the input to the circuit is A(X) = 1 + X
7
, calculate the quotient and the remainder. 

  

3. Determine which, if any, of the following polynomials can generate a cyclic code with code word 

length n  7. Find the (n, k) values of any such codes that can be generated. 

 

            (a)  1 + X
3
 + X

4                                          
(d) 1 + X + X

2
 + X

4
 

 (b)  1 + X
2
 + X

4                                           
(e) 1 + X

3
 + X

5 
 

 (c)  1 + X + X
3
 +X

4
 

 

4. A (15, 5) linear cyclic code has a generator polynomial: g(X) = 1+X+X
2
+X

4
+X

5
+X

8
+X

10
 

 

a) Draw block diagrams of an encoder and syndrome calculator for this code. 

b) Find the code polynomial for the message polynomial U(X) =1+X
2
+X

4 
in systematic form. 

c) Is V(X) =1+X
4
+X

6
+X

8
+X

14
 a code polynomial? If not, find the syndrome of v (X). 

d) Hard-decision detection gives the received code word as: 

 

                          R(X) = 1 + X
4
 + X

7
 + X

8
 + X

9
 + X

10
 +X

14
.  Locate the errors. 

 

5. Write the H Matrix for the (15, 11) cyclic code using g(X) = 1 + X + X
2
 + X

3
 + X

4
 determine the    

code polynomial for U(X) = 1 + X
3
 + X

7
 + X

10
. Construct the decoder for the code. 

 

6. Write the generator polynomial for (31, 26) SEC cyclic code. Write the G and H matrices for the 

code. Find the code polynomial for the message:   

 

     U(X) =1 + X + X
4
 + X

20
. Draw the Meggitt decoder circuit for the code. 

  

7. Write the G matrix for the (15, 11) SEC code. Show that by successively removing some of the     

rows of G, one obtains (14, 10), (13, 9), (12, 8), (11, 7), (10, 6) etc. SEC codes. Write H matrix 

for the (10, 6) code. Construct the coder and decoder for the code.  

 

8. Construct a Meggitt decoder for the (15, 7) BCH code. What are the error patterns which will 

form the test syndromes for the decoder? Is it possible to reduce the test syndromes to only 8 

error patterns as below: 

 

0 0 0 0 0 0 0 1, 0 0 0 0 0 0 1 1 

0 0 0 0 0 1 0 1, 0 0 0 0 1 0 0 1 

0 0 0 1 0 0 0 1, 0 0 1 0 0 0 0 1 

0 1 0 0 0 0 0 1, 1 0 0 0 0 0 0 1 

 

What is the modification required in the new decoder? What is the total number of shifts required 

to complete the decoding of a block? 
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9. The generator polynomial for a cyclic code is g(X) =1+X
4
+X

6
+X

7
+X

8
 

a) Show that its length is 15. 

b) Find the generator matrix and parity check matrix in systematic form. 

c) Devise two shift register encoder circuits using k = 7 stages and (n – k) = 8 stages. 

d) Find the code vector (In systematic form) for the message polynomial 

                               U(X) =1+X
2
+X

3
+X

4
 

e) Assume that the first and last bits of the code vector V(X) for U(X) given in (a) 

Suffer transmission errors. Find the syndrome of V(X). 

        

10. The decoder for a class of single error correcting cyclic codes (Hamming codes) is shown in Fig 

P7.1 Show by way of an example, that single error in a (15, 11) Hamming code generated by         

g(X) = 1+X+X
4
 can be decoded using the decoder shown in the figure. 

 

 
 

11. A t-error correcting code is said to be a “perfect code” if it is possible to form a standard array, 

with all patterns of„t‟ or fewer errors and no others as co-set leaders. Show that a (7, 4) linear 

block code generated by g(X) =1+X+X
3
 is a perfect code. 

           

12. The “Expurgated (n, k-1) Hamming code” is obtained from the original (n, k) Hamming code 

by discarding some of the code words. Let g(X) Denote the generator polynomial of the original 

code. The most common expurgated code is the one generated by g1(X) = (1+X) g(X), where 

(1+X) is a factor of (1+X
n
). Consider the    (7, 4) Hamming code generated by    g(X) =1+X

2
+X

3
. 

 

a) Construct the eight code words in the expurgated (7, 3) Hamming code, assuming a 

systematic format. Hence show that the minimum distance of the code is 4. 

b) Determine the generator matrix G and the parity check matrix H of the expurgated 

Hamming code. 

c) Device the encoder and syndrome calculator for the expurgated Hamming code. 

Hence determine the syndrome for the received sequence 0111110. 

 

13. A systematic (7, 4) cyclic code is generated by g(X) = 1 + X
2
 + X

3
. The message is                 

U(X) =1+X+X
3
, and after detection the effective error polynomial is E(X) = X

4
. Find the first 

syndrome word generated by a Meggitt decoder for decoding the first received symbol. 
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14. For the (7, 4) cyclic code generated by g(X) of problem 9, write the generator matrix and the 

parity check matrices. Delete the last three columns in the H matrix in order to generate a (4, 1) 

shortened cyclic code. If the code word v = (1101) is received as r = (1111), show that the 

decoder corrects the error on the fifth clock pulse. 

 

15. Show that a binary cyclic code of length n generated by g(X) has minimum weight of at least 3 if 

n is the smallest integer for which g(X) divides (X
n
 + 1). 

 

16. Let G = [I: P] be the generator matrix of a cyclic code. If  h(X)=1+h1X+h2X
2
+…+hk –1X

k–1
+X

k
 

is the parity check polynomial of the code, show that the last column of the matrix P is:  

                                        (hk – 1, hk – 2 …..h2, h1, 1) 
 

17. A (31, 21) binary double error correcting code has the generator polynomial: 

 

g(X) = 1 + X
3
 + X

5
 + X

6
 + X

8
 + X

9
 + X

10
 

 

i. Show that an error-trapping decoder cannot decode this code to the designed distance. 

ii. Show a simple modification of the error-trapping decoder that will decode to the 

designed distance. 

 

18. The triple-error-correcting Golay (23, 12) code may be constructed with the generator 

polynomial: g(X) = 1 + X + X
5
 + X

6
 + X

7
 + X

9
 + X

11
. Find the parity check polynomial h(X). 

Construct a decoder for the code. What are the test syndromes to be checked in the decoder? 

 

 

OUTCOMES 
 

 How the cyclic codes can be implemented using feedback shift registers. 

 How the errors can be detected and corrected. 
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