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Module 2: ENERGY TRANSFER IN TURBOMACHINES 

2.1 Introduction: 

 In this chapter, general analysis of kinematic and dynamic factors for different types of 

turbomachines is made. Kinematics relates to movement (velocities, accelerations, etc.), without 

paying attention to what brought about the motion. Dynamics is related to detailed examination of the 

forces that bring about the motion described by kinematics. The kinematic and dynamic factors depend 

on the velocities of fluid flow in the machine as well as the rotor velocity itself and the forces of 

interaction due to velocity changes. 

2.2 Euler’s Turbine Equation: 

Question No 2.1: Derive Euler’s turbine equation for power generating or power absorbing 

turbomachines and clearly state the assumptions made.  (VTU, Jan/Feb-03, Dec-12, Jul-17) 

Answer: The figure 2.1 shows the rotor of a generalized turbomachine with axis of rotation 0-0, with 

an angular velocity ω. The fluid enters the rotor at radius r1 with an absolute velocity V1 and leaves the 

rotor at radius r2 with an absolute velocity V2. 

 

Fig. 2.1 Fluid flow through a rotor of a turbomachine. 

Assumptions: 

i. Fluid flow through the turbomachine is steady flow. 

ii. Mass flow rate is constant and the state of the fluid doesn’t vary with time. 

iii. Rate of energy transfer at the rotor is constant. 

iv. Losses due to leakage are neglected. 
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 The absolute velocity of the fluid can be resolved in to three mutually perpendicular velocity 

components: 

a. Axial component (Va), which is parallel to the axis of rotation of the rotor. 

b. Radial component (Vm), which is perpendicular to the axis of rotation of the rotor. 

c. Tangential component (Vu), which is along the tangential direction of the rotor. 

 The only velocity component which changes the angular momentum of the rotor is the 

tangential component (Vu) and by Newton’s second law of motion forces applied on the rotor is equal 

to rate of change of momentum of the fluid. 

Force applied on the rotor = Rate of change of momentum 

      𝐹 = ∆(
𝑚𝑉𝑢

𝑡
) = �̇�(𝑉𝑢1 − 𝑉𝑢2) 

But, Torque = Force × Radius 

𝝉 = 𝑭 × 𝒓 

Then, 𝜏 = �̇�(𝑉𝑢1𝑟1 − 𝑉𝑢2𝑟2) 

But, Rate of energy transfer = Torque × Angular velocity 

�̇� = 𝝉 × 𝝎 

Then,       �̇� = �̇�(𝑉𝑢1𝑟1𝜔1 − 𝑉𝑢2𝑟2𝜔2) 

But, tangential velocity of rotor   𝑈 = 𝑟 × 𝜔 

Then,       �̇� = �̇�(𝑈1𝑉𝑢1 − 𝑈2𝑉𝑢2) 

Energy transfer per unit mass flow of fluid is  

      𝑒 =
�̇�

�̇�
= (𝑈1𝑉𝑢1 − 𝑈2𝑉𝑢2)      (2.1) 

The equation (2.1) is the general Euler’s equation for all kind of turbomachines. 

For power generating turbomachine energy transfer is positive (i.e., 𝑈1𝑉𝑢1 > 𝑈2𝑉𝑢2) 

Therefore,      𝒆 = (𝑼𝟏𝑽𝒖𝟏 − 𝑼𝟐𝑽𝒖𝟐)      (2.2) 

For power absorbing turbomachine energy transfer is negative (i.e., 𝑈2𝑉𝑢2 > 𝑈1𝑉𝑢1) 

Therefore,      𝒆 = (𝑼𝟐𝑽𝒖𝟐 − 𝑼𝟏𝑽𝒖𝟏)     (2.3) 

Note: (a) The change in magnitude of axial velocity components give rise to an axial thrust which must be taken up by the 

thrust bearings. The change in magnitude of radial velocity components give rise to a radial thrust which must be taken up 

by the journal bearing. Neither of these forces causes any angular rotation nor has any effect on the torque exerted on the 

rotor. 

(b) The Euler’s turbine equation may be used for the flow of fluids like water, steam, air and combustion products, since 

their viscosities are reasonably small. For fluids of very large viscosity like heavy oils or petroleum products, errors in the 

calculated torque and power output may result due to: (i) non-uniformity of velocity profiles at the inlet and the exit and 

(ii) the boundary layers near the housing and the stator surfaces. Both these tend reduce the magnitude of the torque in 

comparison with the ideal torque predicted by Euler’s turbine equation. 
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2.2.1 Procedure to Draw Velocity Diagram: 

Question No 2.2: Explain the procedure to draw velocity triangles. Why velocity triangles are of 

utmost importance in the study of turbomachines? (VTU, Dec-10) 

Answer: In turbomachinery, a velocity triangle or a velocity diagram is a triangle representing the 

various components of velocities of the working fluid in a turbomachine. Velocity triangles may be 

drawn for both the inlet and outlet sections of any turbomachine. The vector nature of velocity is 

utilized in the triangles, and the most basic form of a velocity triangle consists of the tangential 

velocity, the absolute velocity and the relative velocity of the fluid making up three sides of the 

triangle. 

 Consider turbomachine consisting of a stator and a rotor. The three points that are very much 

important to draw the velocity triangles are entry to the stator, the gap between the stator and rotor and 

exit from the rotor. These points labelled 3, 1 and 2 respectively in figure 2.2 and combination of rotor 

and stator is called stage in turbomachines.  

 The fluid enters the stator at point 3 but as the stator is not moving there is no relative motion 

between the incoming flow and the stator so there is no velocity triangle to draw at this point. At point 

1 the flow leaves the stator and enters the rotor. Here there are two flow velocities, the absolute 

velocity of the flow (V) viewed from the point of view of stationary stator and relative velocity of flow 

(Vr) viewed from the point of view of moving rotor. The rotor is moving with a tangential velocity of 

magnitude U. At point 2 the flow leaves the rotor and exits the stage. Again there are two flow 

velocities, one by viewing from the moving rotor and another by viewing from outside the rotor where 

there is no motion. 

 

Fig.2.2 Velocity triangles for a turbomachine. 

 Therefore velocity triangles can be drawn for the point 1 and point 2 as shown in figure 2.2, the 

methodology for this is as follows: 

1. Draw the flow that is known 

2. Draw the blade speed 

http://en.wikipedia.org/wiki/Turbomachinery
http://en.wikipedia.org/wiki/Working_fluid
http://en.wikipedia.org/wiki/Turbomachinery
http://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)
http://en.wikipedia.org/wiki/Velocity
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3. Close the triangle with the remaining vector 

4. Check that the key rule applies: �⃗� = �⃗⃗� + 𝑉𝑟⃗⃗  ⃗ 

The velocity triangles at inlet and outlet of the rotor are utmost important in deciding the size 

of the turbomachine for the given power output. 

2.2.2 Energy components of Euler’s Turbine Equation: 

Question No 2.3: Derive an alternate (modified) form of Euler’s turbine equation with usual 

notations and identify each component contained in the equation. (VTU, Jun/Jul-09, Dec-13/Jan-14, 

Jun/Jul-14) Or, Draw the velocity triangle at inlet and exit of a turbomachine in general and show 

that the energy transfer per unit mass is given by  𝒆 =
𝟏

𝟐
[(𝑽𝟏

𝟐 − 𝑽𝟐
𝟐) + (𝑼𝟏

𝟐 − 𝑼𝟐
𝟐) − (𝑽𝒓𝟏

𝟐 −

𝑽𝒓𝟐
𝟐 )](VTU, Feb-06, Jul-13, Jun-12, Jan-14, Jul-14) 

Answer: Let us consider velocity diagram for generalised rotor as shown in figure 2.3. 

 

Fig. 2.3 Generalised velocity diagrams. 

Let V= Absolute velocity of fluid  

 α = Angle made by V wrt tangential direction or nozzle angle or guide vane angle 

 Vr= Relative velocity of the fluid 

 β = Rotor angle or blade angle wrt tangential direction 

 U= Tangential velocity of the rotor 

 Vu= Tangential component of the absolute velocity or whirl velocity 

 Vf =Vm=Va= Radial component or axial component of the absolute velocity or flow velocity. 

Suffix 1 and 2 represents the values at inlet and outlet of the rotor. 

 

Consider outlet velocity triangle, OBC 

     𝑉𝑓2
2 = 𝑉2

2 − 𝑉𝑢2
2        (2.4) 

From outlet velocity triangle, OAC 

    𝑉𝑓2
2 = 𝑉𝑟2

2 − (𝑈2 − 𝑉𝑢2)
2  (Because, U2 and Vu2 are in opposite direction)  

                                                                    𝑉𝑓2
2 = 𝑉𝑟2

2 − 𝑈2
2 − 𝑉𝑢2

2 + 2𝑈2𝑉𝑢2      (2.5) 
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Compare equations (2.4) and (2.5) 

                                                            𝑉2
2 − 𝑉𝑢2

2 = 𝑉𝑟2
2 − 𝑈2

2 − 𝑉𝑢2
2 + 2𝑈2𝑉𝑢2 

      2𝑈2𝑉𝑢2 = 𝑉2
2 + 𝑈2

2 − 𝑉𝑟2
2  

Or      𝑈2𝑉𝑢2 =
1

2
(𝑉2

2 + 𝑈2
2 − 𝑉𝑟2

2 )       (2.6) 

Similarly, for inlet velocity triangle 

                                                                     𝑈1𝑉𝑢1 =
1

2
(𝑉1

2 + 𝑈1
2 − 𝑉𝑟1

2 )       (2.7) 

Substitute equations (2.6) and (2.7) in Euler’s turbine equations (2.2) and (2.3) 

For power generating turbomachines, 

     𝒆 =
𝟏

𝟐
[(𝑽𝟏

𝟐 − 𝑽𝟐
𝟐) + (𝑼𝟏

𝟐 − 𝑼𝟐
𝟐) − (𝑽𝒓𝟏

𝟐 − 𝑽𝒓𝟐
𝟐 )]     (2.8) 

For power absorbing turbomachines, 

     𝒆 =
𝟏

𝟐
[(𝑽𝟐

𝟐 − 𝑽𝟏
𝟐) + (𝑼𝟐

𝟐 − 𝑼𝟏
𝟐) − (𝑽𝒓𝟐

𝟐 − 𝑽𝒓𝟏
𝟐 )]     (2.9) 

First component: 
(𝑉1

2−𝑉2
2)

2
 𝑜𝑟 

(𝑉2
2−𝑉1

2)

2
 change in the absolute kinetic energy and which causes a 

change in the dynamic head or dynamic pressure of the fluid through the machine. 

Second component: 
(𝑈1

2−𝑈2
2)

2
 𝑜𝑟

(𝑈2
2−𝑈1

2)

2
 change in the centrifugal energy of the fluid in the motion. 

This is due to the change in the radius of rotation of the fluid. This causes a change in the static head or 

static pressure of the fluid through the rotor. 

Third component: 
(𝑉𝑟1

2 −𝑉𝑟2
2 )

2
 𝑜𝑟 

(𝑉𝑟2
2 −𝑉𝑟1

2 )

2
 change in the relative kinetic energy and which causes a 

change in the static head or static pressure of the fluid across the rotor. 

Note: If directions of Vu1 and Vu2 are same then, 𝒆 = (𝑼𝟏𝑽𝒖𝟏 − 𝑼𝟐𝑽𝒖𝟐) and if directions of Vu1 and Vu2 are opposite to 

each other then, 𝒆 = (𝑼𝟏𝑽𝒖𝟏 + 𝑼𝟐𝑽𝒖𝟐). 

Dynamic pressure is the kinetic energy per unit volume of a fluid particle. The dynamic pressure is equal to the 

difference between the stagnation pressure and static pressure. Dynamic pressure sometimes called velocity pressure. 

Static pressure is the actual pressure of the fluid, which is associated not with its motion but with its state. Stagnation or 

total pressure is sum of static pressure and dynamic pressure. 

𝑷𝒐 = 𝑷 +
𝝆𝑽𝟐

𝟐
 

2.3 General Analysis of Turbomachines: 

2.3.1 Impulse and Reaction Tubomachines: In general, turbomachines may be classified into 

impulse and reaction types, depending upon the type of energy exchange that occurs in the rotor 

blades. An impulse stage is one in which the static pressure at the rotor inlet is the same as that at the 

rotor outlet (i.e.𝑉𝑟1 = 𝑉𝑟2 𝑎𝑛𝑑 𝑈1 = 𝑈2). In an impulse stage, the energy exchange is purely due to 

change in the direction of the fluid (i.e., change in dynamic pressure) and there is a negligible change 



Energy Transfer in Turbomachines                                                            
 

Page | 21  
 

in the magnitude of velocity as fluid flows over the rotor blades. The force exerted on the blades is due 

to change in the direction of the fluid during flow over the moving blade. 

 A reaction stage is one where a change in static pressure occurs during flow over each rotor 

stage. In a reaction stage, the direction and magnitude of the relative velocity are changed by shaping 

the blade passage as a nozzle (or as a diffuser, depending upon whether it is generating or absorbing 

power). The force exerted on the blades is due to both changes in magnitude and in direction of the 

fluid velocity. 

2.3.2 Degree of Reaction (R): The degree of reaction is a parameter which describes the relation 

between the energy transfer due to static pressure change and the energy transfer due to dynamic 

pressure change. The degree of reaction is the ratio of energy transfer due to the change in static 

pressure in the rotor to total energy transfer due to the change in total pressure in the rotor. 

Mathematically, 

𝑅 =

1
2
[(𝑈1

2 − 𝑈2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )]

1
2
[(𝑉1

2 − 𝑉2
2) + (𝑈1

2 − 𝑈2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )]

 

Or  

𝑅 =
𝑒 −

1
2
(𝑉1

2 − 𝑉2
2)

𝑒
 

2.3.3 Utilization Factor (ε): 

Question No 2.4: Define utilization factor and derive an expression for the same for a power 

developing turbomachines. (VTU, Jan/Feb-03)  

Answer: The utilization factor is the ratio of the ideal (Euler) work output to the energy available for 

conversion into work. Under ideal conditions, it should be possible to utilize all of the kinetic energy 

of the fluid at the rotor inlet and also the increase in kinetic energy obtained in the rotor due to static 

pressure drop (i.e. the reaction effect). Thus, the energy available for conversion into work in the 

turbine is: 𝑒𝑎 =
1

2
[𝑉1

2 + (𝑈1
2 − 𝑈2

2) − (𝑉𝑟1
2 − 𝑉𝑟2

2 )] 

On the other hand, Euler work output is: 𝑒 =
1

2
[(𝑉1

2 − 𝑉2
2) + (𝑈1

2 − 𝑈2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )] 

Mathematically, utilization factor is: 

𝜖 =

1
2
[(𝑉1

2 − 𝑉2
2) + (𝑈1

2 − 𝑈2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )]

1
2
[𝑉1

2 + (𝑈1
2 − 𝑈2

2) − (𝑉𝑟1
2 − 𝑉𝑟2

2 )]
 

Or  

𝜖 =
𝑒

𝑒 +
𝑉2

2

2
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Question No 2.5: Define utilization factor for a turbine. If the isentropic efficiency of a turbine is 

100% would its utilization factor also be 100%? Explain. 

Answer: The utilization factor is the ratio of the ideal (Euler) work output to the energy available for 

conversion into work. 

 Yes, because the isentropic efficiency (adiabatic efficiency) is the product of two factors, the 

first called the utilization factor (diagram efficiency), the second due to non-isentropic flow conditions 

caused by friction, turbulence, eddies and other losses. Therefore if the isentropic efficiency has to be 

100%, the utilization factor must be 100%. 

Question No 2.6: Derive an expression relating utilization factor with the degree of reaction. Or, 

Show that utilization factor is given by𝝐 =
𝑽𝟏

𝟐−𝑽𝟐
𝟐

𝑽𝟏
𝟐−𝑹𝑽𝟐

𝟐, where R is the degree of reaction. For what value 

of R this relation is invalid? Why? (VTU, Jan/Feb-03, Jul/Aug-05, Dec-08/Jan-09, Dec-12, Jul-13, Jan-15, Jul-

15, Jan-17) 

Answer: Degree of reaction for generalised turbomachine is given by:   

  

𝑅 =
[(𝑈1

2 − 𝑈2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )]

[(𝑉1
2 − 𝑉2

2) + (𝑈1
2 − 𝑈2

2) − (𝑉𝑟1
2 − 𝑉𝑟2

2 )]
 

𝑅(𝑉1
2 − 𝑉2

2) + 𝑅[(𝑈1
2 − 𝑈2

2) − (𝑉𝑟1
2 − 𝑉𝑟2

2 )] = (𝑈1
2 − 𝑈2

2) − (𝑉𝑟1
2 − 𝑉𝑟2

2 ) 

𝑅(𝑉1
2 − 𝑉2

2) = (1 − 𝑅)[(𝑈1
2 − 𝑈2

2) − (𝑉𝑟1
2 − 𝑉𝑟2

2 )] 

Then,     (𝑈1
2 − 𝑈2

2) − (𝑉𝑟1
2 − 𝑉𝑟2

2 ) =
𝑅

(1−𝑅)
(𝑉1

2 − 𝑉2
2)                (2.10) 

The utilization factor for any type of turbine is given by: 

𝜖 =
[(𝑉1

2 − 𝑉2
2) + (𝑈1

2 − 𝑈2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )]

[𝑉1
2 + (𝑈1

2 − 𝑈2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )]

 

From equation (2.10) 

𝜖 =
(𝑉1

2 − 𝑉2
2) +

𝑅
(1 − 𝑅)

(𝑉1
2 − 𝑉2

2)

𝑉1
2 +

𝑅
(1 − 𝑅)

(𝑉1
2 − 𝑉2

2)
 

𝜖 =
(1 − 𝑅)(𝑉1

2 − 𝑉2
2) + 𝑅(𝑉1

2 − 𝑉2
2)

(1 − 𝑅)𝑉1
2 + 𝑅(𝑉1

2 − 𝑉2
2)

 

𝝐 =
𝑽𝟏

𝟐 − 𝑽𝟐
𝟐

𝑽𝟏
𝟐 − 𝑹𝑽𝟐

𝟐
 

The above equation is the general utilization factor irrespective of any type of turbines whether it is 

axial or radial type. Clearly, it is invalid when R=1, since ϵ=1. Therefore the above equation is valid 

for all values of R in the range of 0≤R<1. 

2.3.4 Condition for Maximum Utilization Factor:  
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Question No 2.7: In a turbomachine, prove that the maximum utilization factor is given by 

 𝝐𝒎𝒂𝒙 =
𝟐𝝋𝒄𝒐𝒔𝜶𝟏

𝟏+𝟐𝑹𝝋𝒄𝒐𝒔𝜶𝟏
 , where φ is speed ratio, R is degree of reaction and α1 is nozzle angle. 

(VTU, Jan/Feb-05, Dec-11) 

Answer: For maximum utilization, the value of V2 should be the minimum and from the velocity 

triangle, it is apparent that V2 is having minimum value when it is axial or radial (i.e., V2=Vf2). Then 

the velocity diagram of generalized turbomachine for maximum utilization is as shown in figure 2.4.  

Energy transfer of a generalized turbomachine is given by: 

𝑒 =
1

2
[(𝑉1

2 − 𝑉2
2) + (𝑈1

2 − 𝑈2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )] = (𝑈1𝑉𝑢1 − 𝑈2𝑉𝑢2)  

 

Fig. 2.4 Velocity diagram of generalized turbomachine for maximum utilization  

For maximum utilization Vu2=0, 

1

2
[(𝑉1

2 − 𝑉2
2) + (𝑈1

2 − 𝑈2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )] = 𝑈1𝑉𝑢1 

From equation (2.10), (𝑈1
2 − 𝑈2

2) − (𝑉𝑟1
2 − 𝑉𝑟2

2 ) =
𝑅

(1−𝑅)
(𝑉1

2 − 𝑉2
2)  

Then,  

1

2
[(𝑉1

2 − 𝑉2
2) +

𝑅

(1 − 𝑅)
(𝑉1

2 − 𝑉2
2)] = 𝑈1𝑉𝑢1 

For maximum utilization V2=Vf2 and from inlet velocity diagram Vu1= V1cosα1, 

1

2
[(𝑉1

2 − 𝑉𝑓2
2 ) +

𝑅

(1 − 𝑅)
(𝑉1

2 − 𝑉𝑓2
2 )] = 𝑈1𝑉1𝑐𝑜𝑠𝛼1 

(𝑉1
2 − 𝑉𝑓2

2 )

2(1 − 𝑅)
= 𝑈1𝑉1𝑐𝑜𝑠𝛼1 

(1 −
𝑉𝑓2

2

𝑉1
2)

2(1 − 𝑅)
=

𝑈1

𝑉1
𝑐𝑜𝑠𝛼1 

But blade speed ratio 𝜑 =
𝑈

𝑉1
 

(1 −
𝑉𝑓2

2

𝑉1
2) = 2(1 − 𝑅)𝜑 𝑐𝑜𝑠𝛼1 
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Or,  

𝑉𝑓2
2

𝑉1
2 = 1 − 2(1 − 𝑅)𝜑 𝑐𝑜𝑠𝛼1                                                     (2.11a) 

Utilization factor is given by: 

𝜖 =
𝑉1

2 − 𝑉2
2

𝑉1
2 − 𝑅𝑉2

2 

For maximum utilization V2=Vf2, 

𝜖𝑚𝑎𝑥 =
𝑉1

2 − 𝑉𝑓2
2

𝑉1
2 − 𝑅𝑉𝑓2

2  

𝜖𝑚𝑎𝑥 =

1 −
𝑉𝑓2

2

𝑉1
2

1 − 𝑅
𝑉𝑓2

2

𝑉1
2

 

From equation (2.11a) 

𝜖𝑚𝑎𝑥 =
1 − [1 − 2(1 − 𝑅)𝜑 𝑐𝑜𝑠𝛼1]

1 − 𝑅[1 − 2(1 − 𝑅)𝜑 𝑐𝑜𝑠𝛼1]
 

𝜖𝑚𝑎𝑥 =
2(1 − 𝑅)𝜑 𝑐𝑜𝑠𝛼1

(1 − 𝑅) + 2𝜑𝑅(1 − 𝑅)𝑐𝑜𝑠𝛼1
 

𝝐𝒎𝒂𝒙 =
𝟐𝝋 𝒄𝒐𝒔𝜶𝟏

𝟏 + 𝟐𝝋𝑹𝒄𝒐𝒔𝜶𝟏
                                                      (2.11b) 

2.4 General Analysis of Turbines: 

 Power generating turbomachines are generally referred to as turbines. Turbines may run with 

compressible fluids like air or steam or with incompressible fluids like water. The quantity of interest 

in the power generating device is the work output. These machines are divided into axial, radial and 

mixed flow devices depending on the flow direction in the rotor blades. 

2.4.1 Axial Flow Turbines: Axial flow machine are those in which the fluid enters and leaves the 

rotor at the same radius as shown in figure 2.5. Hence, for axial flow turbines U1=U2. In these kinds of 

machines, the flow velocity (Vf or Va) is assumed to be constant from inlet to outlet. Axial flow 

turbines comprise the familiar steam turbines, gas turbines etc. 

Energy transfer for axial flow turbine is: 

𝑒 =
1

2
[(𝑉1

2 − 𝑉2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )] 

Degree of reaction for axial flow turbine is: 

𝑅 =
[(𝑉𝑟2

2 − 𝑉𝑟1
2 )]

[(𝑉1
2 − 𝑉2

2) + (𝑉𝑟2
2 − 𝑉𝑟1

2 )]
 

Utilization factor for axial flow turbine is: 
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𝜖 =
[(𝑉1

2 − 𝑉2
2) − (𝑉𝑟1

2 − 𝑉𝑟2
2 )]

[𝑉1
2 − (𝑉𝑟1

2 − 𝑉𝑟2
2 )]

 

 

 

Fig. 2.5 Axial flow turbine 

Question No 2.8(a): Explain why turbines with reaction R>1 and R<0 are not in practical use?  

(VTU, Dec-10) 

Answer: Degree of reaction can be given as: 

𝑅 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑆𝑡𝑎𝑡𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
=

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑆𝑡𝑎𝑡𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑆𝑡𝑎𝑡𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
 

𝐼𝑓 𝑅 > 1,   

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑆𝑡𝑎𝑡𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
> 1 

Or, 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑆𝑡𝑎𝑡𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 > 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 , this is not practically possible. 

Therefore turbine with reaction R>1 is not in practical use. 

Degree of reaction can also be given as: 

𝑅 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
 

𝐼𝑓 𝑅 < 0 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
< 0 

(𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 − 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) < 0 

Or, 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 < 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 , this is not practically possible. 

Therefore turbine with reaction R<0 is not in practical use. 

2.4.1.1 Velocity Diagrams: 

Question No 2.8(b): Sketch velocity diagrams for R=0, R=0.5 and R=1 and label. (VTU, Dec-12) 



Energy Transfer in Turbomachines                                                            
 

Page | 26  
 

Answer: For impulse axial flow turbine, R=0, thus Vr1 should be equal to Vr2 and if the blades are 

equiangular then, β1=β2 as shown in figure 2.6 (a). Here energy transfer is purely due to change in 

dynamic pressure. 

 

Fig. 2.6 Velocity triangles for axial flow turbine R = 0, R = 0.5 and R = 1 

For 50% reaction axial flow turbine, R=0.5, thus (𝑉1
2 − 𝑉2

2) = (𝑉𝑟2
2 − 𝑉𝑟1

2 ) and if the stator and 

rotor blades are symmetric (two blades are identical but orientations are different) then, α1=β2 and 

α2=β1 and also V1=Vr2 and V2=Vr1 as shown in figure 2.6 (b). Here energy transfer due to change in 

dynamic pressure is equal to energy transfer due to change in static pressure. 

 For fully (100%) reaction axial flow turbine, R=1, thus V1 should be equal to V2 and also α1=α2 

as shown in figure 2.6 (c). Here stator acts purely as a directional device and doesn’t take part in the 

energy conversion process. The rotor acts both as the nozzle and as the energy transfer device, so 

energy transfer is purely due to change in static pressure. 

2.4.1.2 Utilization Factor for R = 0 and R = 1: 

Question No 2.9: Derive an expression for the utilization factor for an axial flow impulse turbine 

stage which has equiangular rotor blades, in terms of the fixed blade angle at inlet and speed ratio 

and show the variation of utilization factor and speed ratio in the form of a graph. (VTU, May/June-10) 
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Answer: The velocity diagram for an axial flow impulse turbine stage with equiangular rotor blades is 

shown in figure 2.7. 

 

Fig. 2.7 Velocity diagram for axial flow impulse turbine. 

For this machine, R=0 and Vr1=Vr2 and β1=β2 (equiangular blades). 

Utilization factor is given by: 

𝜖 =
𝑉1

2 − 𝑉2
2

𝑉1
2 − 𝑅𝑉2

2 

But R=0, 

𝜖 =
𝑉1

2 − 𝑉2
2

𝑉1
2  

From outlet velocity diagram, 𝑉2
2 = 𝑉𝑟2

2 + 𝑈2 − 2𝑈𝑉𝑟2𝑐𝑜𝑠𝛽2 

But Vr1=Vr2 and β1=β2, then   𝑉2
2 = 𝑉𝑟1

2 + 𝑈2 − 2𝑈𝑉𝑟1𝑐𝑜𝑠𝛽1 

From inlet velocity diagram, 𝑉1
2 = 𝑉𝑟1

2 + 𝑈2 − 2𝑈𝑉𝑟1𝑐𝑜𝑠(180 − 𝛽1) 

Or,     𝑉1
2 = 𝑉𝑟1

2 + 𝑈2 + 2𝑈𝑉𝑟1𝑐𝑜𝑠𝛽1 

Then,     𝑉1
2 − 𝑉2

2 = 4𝑈𝑉𝑟1𝑐𝑜𝑠𝛽1 

 

 

Fig.2.8 Variation of ε with φ for an impulse turbine 
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From inlet velocity diagram, 𝑐𝑜𝑠𝛽1 =
(𝑉𝑢1−𝑈)

𝑉𝑟1
 and c𝑜𝑠𝛼1 =

𝑉𝑢1

𝑉1
 

Then,     𝑉1
2 − 𝑉2

2 = 4𝑈(𝑉𝑢1 − 𝑈) 

Or,     𝑉1
2 − 𝑉2

2 = 4𝑈(𝑉1𝑐𝑜𝑠𝛼1 − 𝑈) 

Then, 

𝜖 =
4𝑈(𝑉1𝑐𝑜𝑠𝛼1 − 𝑈)

𝑉1
2  

But  𝜑 =
𝑈

𝑉1
, then          𝝐 = 𝟒𝝋(𝒄𝒐𝒔𝜶𝟏 − 𝝋) 

This means that utilization factor (ε) varies parabolically with the speed ratio (φ) and is zero both at 

φ=0 and at φ=cosα1. The variation of ε with φ is as shown in figure 2.8. 

Question No 2.10: Derive an expression for the utilization factor for an fully reaction axial flow 

turbine stage, in terms of the fixed blade angle at inlet and speed ratio and show the variation of 

utilization factor and speed ratio in the form of a graph. 

Answer: Figure 2.7 gives the velocity diagram for the axial flow turbine. For fully reaction axial flow 

turbine, R=1 and V1=V2 and also α1=α2. 

 

Fig.2.9 Variation of ε with φ for an fully reaction turbine 

Utilization factor is given by: 

𝜖 =
𝑒

𝑒 +
𝑉2

2

2

=
𝑈(𝑉𝑢1 + 𝑉𝑢2)

𝑈(𝑉𝑢1 + 𝑉𝑢2) +
𝑉1

2

2

 

From inlet velocity diagram, 𝑐𝑜𝑠𝛼1 =
𝑉𝑢1

𝑉1
⟹ 𝑉𝑢1 = 𝑉1𝑐𝑜𝑠𝛼1 

And, from outlet velocity diagram, 𝑐𝑜𝑠𝛼2 =
𝑉𝑢2

𝑉2
⟹ 𝑉𝑢2 = 𝑉2𝑐𝑜𝑠𝛼2 = 𝑉1𝑐𝑜𝑠𝛼1 

Then, 
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𝜖 =
2𝑈𝑉1𝑐𝑜𝑠𝛼1

2𝑈𝑉1𝑐𝑜𝑠𝛼1 +
𝑉1

2

2

=
1

1 +
𝑉1

4𝑈𝑐𝑜𝑠𝛼1

 

 

Or, 

𝝐 =
𝟏

𝟏 +
𝟏

𝟒𝝋𝒄𝒐𝒔𝜶𝟏

 

The variation of ε with φ for fully reaction axial flow turbine stage is as shown in figure 2.9. When 

α1=90o, the utilization factor becomes zero irrespective of the speed ratio. 

2.4.1.3 Variation of Maximum Utilization Factor with Nozzle (Stator) Angle: The general velocity 

diagram of axial flow turbine for maximum utilization is as shown if figure 2.10. 

 

Fig. 2.10 General velocity diagram for maximum utilization (Common apex method) 

Utilization factor is given by: 

𝜖 =
𝑉1

2 − 𝑉2
2

𝑉1
2 − 𝑅𝑉2

2 

From triangle OAC, 𝑠𝑖𝑛𝛼1 =
𝑂𝐶

𝑂𝐴
=

𝑉2

𝑉1
⟹ 𝑉2 = 𝑉1𝑠𝑖𝑛𝛼1 
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Fig. 2.11 Variation of ϵmax with α1 in an axial flow turbine stage 

 

Then, 

𝜖𝑚𝑎𝑥 =
𝑉1

2 − 𝑉1
2𝑠𝑖𝑛2𝛼1

𝑉1
2 − 𝑅𝑉1

2𝑠𝑖𝑛2𝛼1

=
𝑉1

2(1 − 𝑠𝑖𝑛2𝛼1)

𝑉1
2(1 − 𝑅𝑠𝑖𝑛2𝛼1)

 

𝝐𝒎𝒂𝒙 =
𝒄𝒐𝒔𝟐𝜶𝟏

𝟏 − 𝑹𝒔𝒊𝒏𝟐𝜶𝟏
 

For an axial flow impulse turbine R=0, then 

      𝝐𝒎𝒂𝒙 = 𝒄𝒐𝒔𝟐𝜶𝟏                (2.12) 

For a 50% reaction axial flow turbine R=0.5, then 

      𝝐𝒎𝒂𝒙 =
𝒄𝒐𝒔𝟐𝜶𝟏

𝟏−𝟎.𝟓 𝒔𝒊𝒏𝟐𝜶𝟏
               (2.13) 

 The variation of ϵmax with α1, using R as a parameter is exhibited in figure 2.11, for all values 

of R, ϵmax is unity when α1=0 and becomes zero when α1=90o. 

2.4.1.4 Zero-angle Turbine: When α1=0 and if the requirements for maximum utilization are 

maintained (𝑉2 = 𝑉1𝑠𝑖𝑛𝛼1 = 0), the velocity diagram collapse into a straight line, results in Zero-angle 

turbine. The shape of the rotor blade which theoretically achieves ϵmax=1 is shown in figure 2.12. 

Evidently the blade is semi-cylindrical in shape, with a turning angle of 180o. This turbine cannot work 

in practice, since a finite velocity V2 with an axial component is necessary to produce a steady flow at 

the wheel exit. However this shows that the nozzle angle should be as small as possible. The turbine 

that has a rotor-bucket with its shape approximately semi-cylindrical is the Pelton wheel, a hydraulic 

turbine. Even here, the bucket turns the water through 165o instead 180o so that the utilization factor is 

never unity in any real turbine. 
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Fig. 2.12 Shape of blade needed to produce ϵmax=1 

2.4.1.5 Optimum Blade Speed Ratio for R = 0 and R = 0.5: 

Question No 2.11: Draw the velocity diagram of an axial flow impulse turbine for maximum 

utilization and show that the optimum blade speed ratio for an axial flow impulse turbine is 𝝋𝒐𝒑𝒕 =

𝒄𝒐𝒔𝜶𝟏

𝟐
, where α1 is the nozzle angle at inlet. Or 

For an axial flow impulse turbine obtain the condition for maximum utilization factor. 

(VTU, Jul/Aug-02) 

Answer: The velocity diagram of an axial flow impulse turbine for maximum utilization is as shown 

in figure 2.13. For an axial flow impulse turbine Vr1=Vr2 and β1=β2. 

From triangle OAC, 

𝑐𝑜𝑠𝛼1 =
𝐴𝐶

𝑂𝐴
=

𝐴𝐵 + 𝐵𝐶

𝑂𝐴
 

Velocity triangles OBC and OCD are congruent, hence BC=CD=U 

Then, 

𝑐𝑜𝑠𝛼1 =
𝑈 + 𝑈

𝑉1
=

2𝑈

𝑉1
 

 

Fig. 2.13 Velocity diagram of an axial flow impulse turbine for maximum utilization 

But blade speed ratio 𝜑 =
𝑈

𝑉1
 

Then,       c𝑜𝑠𝛼1 = 2𝜑 

Or, the optimum blade speed ratio 
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      𝝋𝒐𝒑𝒕 =
𝒄𝒐𝒔𝜶𝟏

𝟐
                (2.14) 

The optimum blade speed ratio is the blade speed ratio at which utilization factor will be the 

maximum. 

From equation (2.11b), 

𝜖𝑚𝑎𝑥 =
2𝜑 𝑐𝑜𝑠𝛼1

1 + 2𝜑𝑅𝑐𝑜𝑠𝛼1
 

Substitute for axial flow impulse turbine R=0 and for maximum utilization condition 𝜑 =
𝑐𝑜𝑠𝛼1

2
, then 

                                                                                   𝝐𝒎𝒂𝒙 = 𝒄𝒐𝒔𝟐𝜶𝟏     

The above equation same as equation (2.12) 

Note: Congruent triangles are exactly the same, that is their side lengths are the same and their interior/exterior angles are 

also same. We can create congruent triangles by rotating, translating or reflecting the original. 

 Similar triangles look the same but their side lengths are proportional to each other and their interior/exterior 

angles are same. We can create similar triangles by dilating the original figure (in other words making it smaller or larger 

by a scale factor). 

Question No 2.12: Draw the velocity diagram of an axial flow 50% reaction turbine for maximum 

utilization and show that the optimum blade speed ratio for an axial flow 50% reaction turbine is 

𝝋𝒐𝒑𝒕 = 𝒄𝒐𝒔𝜶𝟏, where α1 is the nozzle angle at inlet. 

Answer: For an axial flow 50% reaction turbine V1=Vr2 and V2=Vr1 and also α1=β2 and α2=β1. The 

velocity diagram of this turbine for maximum utilization is as shown in figure 2.14. 

 

Fig. 2.14 Velocity diagram of an axial flow 50% reaction turbine for maximum utilization 

From triangle OAB, 

𝑐𝑜𝑠𝛼1 =
𝐴𝐵

𝑂𝐴
=

𝑈

𝑉1
 

But blade speed ratio 𝜑 =
𝑈

𝑉1
 

Then,       c𝑜𝑠𝛼1 = 𝜑 

Or, the optimum blade speed ratio 

                                                                                 𝝋𝒐𝒑𝒕 = 𝒄𝒐𝒔𝜶𝟏                (2.15) 
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The optimum blade speed ratio is the blade speed ratio at which utilization factor will be the 

maximum. 

From equation (2.11b), 

𝜖𝑚𝑎𝑥 =
2𝜑 𝑐𝑜𝑠𝛼1

1 + 2𝜑𝑅𝑐𝑜𝑠𝛼1
 

Substitute for a 50% reaction axial flow turbine R=0.5 and for maximum utilization condition 𝜑 =

𝐶𝑜𝑠𝛼1, then  

𝜖𝑚𝑎𝑥 =
2𝑐𝑜𝑠2𝛼1

1 + 2(0.5) 𝑐𝑜𝑠2𝛼1
 

𝜖𝑚𝑎𝑥 =
𝑐𝑜𝑠2𝛼1

1
2 [1 + 2(0.5)𝑐𝑜𝑠2𝛼1]

 

𝜖𝑚𝑎𝑥 =
𝑐𝑜𝑠2𝛼1

1
2 [1 + 2(0.5)(1 − 𝑠𝑖𝑛2𝛼1)]

 

𝝐𝒎𝒂𝒙 =
𝒄𝒐𝒔𝟐𝜶𝟏

𝟏 − 𝟎. 𝟓 𝒔𝒊𝒏𝟐𝜶𝟏
 

The above equation same as equation (2.13) 

2.4.1.6 Comparison between Impulse Turbine and 50% Reaction Turbine: 

Question No 2.13: Show that for maximum utilization the work output per stage of an axial flow 

impulse machine (with equiangular rotor blades) is double that of a 50% reaction stage which has 

the same blade speed. Assume that axial velocity remains constant for both machines.  

(VTU, Dec-08/Jan-09) 

Answer: Let UI and UR be the blade speed of an axial flow impulse turbine and 50% reaction turbine 

respectively. 

Work output per stage or energy transfer per stage by impulse turbine is given by, 

𝑒𝐼 = 𝑈𝐼(𝑉𝑢1 − 𝑉𝑢2) 

For maximum utilization factor, 𝑉𝑢2 = 0 

Then,     𝑒𝐼 = 𝑈𝐼𝑉𝑢1 

From impulse turbine velocity diagram for maximum utilization (Fig. 2.13) 

𝐴𝐶 = 𝐴𝐵 + 𝐵𝐶 ⟹ 𝑉𝑢1 = 𝑈𝐼 + 𝑈𝐼 = 2𝑈𝐼 

Then,     𝒆𝑰 = 𝟐𝑼𝑰
𝟐                    (2.16) 

Work output per stage or energy transfer per stage by impulse turbine is given by, 

𝑒𝑅 = 𝑈𝑅𝑉𝑢1 

From 50% reaction turbine velocity diagram for maximum utilization (Fig. 2.14) 

𝐴𝐵 = 𝑉𝑢1 = 𝑈𝑅 
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Then,     𝒆𝑹 = 𝑼𝑹
𝟐                     (2.17) 

From equations (2.16) and (2.17), for same blade speed 𝑈𝐼 = 𝑈𝑅 

𝒆𝑰 = 𝟐𝒆𝑹 

For the maximum utilization the energy transfer in axial flow impulse turbine is double than that of 

axial flow 50% reaction turbine for the same blade speed. 

Question No 2.14: Show that for maximum utilization and for same amount of energy transfer in an 

axial flow impulse turbine and axial flow reaction turbine with 50% degree of reaction 𝑼𝑹 = √𝟐𝑼𝑰
𝟐, 

where UR and UI are blade speeds of reaction turbine and impulse turbine respectively. 

 (VTU, Feb-06) 

Answer: From equation (2.16), for axial flow impulse turbine 

𝑒𝐼 = 2𝑈𝐼
2 

From equation (2.17), for axial flow 50% reaction turbine 

𝑒𝑅 = 𝑈𝑅
2 

For same energy transfer, 𝑒𝑅 = 𝑒𝐼 

𝑈𝑅
2 = 2𝑈𝐼

2 

Or,        𝑼𝑹 = √𝟐𝑼𝑰
𝟐 

Question No 2.15: Show that for maximum utilization and for same absolute velocity and inlet 

nozzle angle, the blade speed of axial flow 50% reaction turbine is double that of axial flow impulse 

turbine. (VTU, Jul-07) 

Answer: From equation (2.13), optimum speed ratio for axial flow impulse turbine is 

     𝜑𝑜𝑝𝑡 =
𝑐𝑜𝑠𝛼1

2
=

𝑈𝐼

𝑉1
 

Or,        𝑉1𝑐𝑜𝑠𝛼1 = 2𝑈𝐼 

From equation (2.14), optimum speed ratio for axial flow 50% reaction turbine is 

𝜑𝑜𝑝𝑡 = 𝑐𝑜𝑠𝛼1 =
𝑈𝑅

𝑉1
 

Or,      𝑉1𝑐𝑜𝑠𝛼1 = 𝑈𝑅 

For same absolute velocity (V1) and inlet nozzle angle (α1), 

𝑼𝑹 = 𝟐𝑼𝑰 

For same absolute velocity and inlet nozzle angle, the blade speed of axial flow 50% reaction turbine 

is double that of axial flow impulse turbine. 

Question No 2.16: Derive relations for maximum energy transfer and maximum utilization factor in 

case of axial flow impulse turbine and 50% reaction turbine. (VTU, May/Jun-10) 
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Answer: From equation (2.16), maximum energy transfer for axial flow impulse turbine is 

       𝑒𝐼 = 2𝑈𝐼
2   

From equation (2.17), maximum energy transfer for axial flow 50% reaction turbine is 

                 𝑒𝑅 = 𝑈𝑅
2 

From equation (2.12), maximum utilization factor for an axial flow impulse turbine is 

      𝜖𝑚𝑎𝑥 = 𝑐𝑜𝑠2𝛼1                 

From equation (2.13), maximum utilization factor for an axial flow 50% reaction turbine is 

      𝜖𝑚𝑎𝑥 =
𝑐𝑜𝑠2𝛼1

1−0.5 𝑠𝑖𝑛2𝛼1
   

Question No 2.17: Show that maximum utilization factor of an axial flow turbine with degree of 

reaction ¼, the relationship of blade speed U to absolute velocity at rotor inlet V1(speed ratio) is 

given by 𝝋 =
𝑼

𝑽𝟏
=

𝟐

𝟑
𝒄𝒐𝒔𝜶𝟏, where α1 is the nozzle angle with respect to tangential direction at inlet. 

(VTU, Jun/Jul-09, Jun/Jul-11, Jan-16) 

Answer: The velocity diagram of axial flow turbine for maximum utilization is given in figure 2.10. 

 

For axial flow turbine, degree of reaction is: 

𝑅 =
[(𝑉𝑟2

2 − 𝑉𝑟1
2 )]

[(𝑉1
2 − 𝑉2

2) + (𝑉𝑟2
2 − 𝑉𝑟1

2 )]
=

1

4
 

     (𝑉1
2 − 𝑉2

2) + (𝑉𝑟2
2 − 𝑉𝑟1

2 ) = 4(𝑉𝑟2
2 − 𝑉𝑟1

2 )        

Or,      (𝑉1
2 − 𝑉2

2) = 3(𝑉𝑟2
2 − 𝑉𝑟1

2 )                  (2.18) 

From triangle OAC, 𝑠𝑖𝑛𝛼1 =
𝑂𝐶

𝑂𝐴
=

𝑉2

𝑉1
⟹ 𝑉2 = 𝑉1𝑠𝑖𝑛𝛼1 

Or,      𝑉2
2 = 𝑉1

2𝑠𝑖𝑛2𝛼1 

From triangle OCD,    𝑉𝑟2
2 = 𝑉2

2 + 𝑈2 

Or,      𝑉𝑟2
2 = 𝑉1

2𝑠𝑖𝑛2𝛼1 + 𝑈2 

By applying cosine rule to triangle OAB, 

      𝑉𝑟1
2 = 𝑉1

2 + 𝑈2 − 2𝑈𝑉1𝑐𝑜𝑠𝛼1 

Substitute the values of 𝑉2
2, 𝑉𝑟2

2  𝑎𝑛𝑑 𝑉𝑟1
2  in equation (2.18), 



Energy Transfer in Turbomachines                                                            
 

Page | 36  
 

𝑉1
2 − 𝑉1

2𝑠𝑖𝑛2𝛼1 = 3[𝑉1
2𝑠𝑖𝑛2𝛼1 + 𝑈2 − (𝑉1

2 + 𝑈2 − 2𝑈𝑉1𝑐𝑜𝑠𝛼1)] 

4(𝑉1
2 − 𝑉1

2𝑠𝑖𝑛2𝛼1) = 6𝑈𝑉1𝑐𝑜𝑠𝛼1 

4𝑉1
2𝑐𝑜𝑠2𝛼1 = 6𝑈𝑉1𝑐𝑜𝑠𝛼1 

Or, 

𝝋 =
𝑼

𝑽𝟏
=

𝟐

𝟑
𝒄𝒐𝒔𝜶𝟏 

2.4.2 Radial Flow Turbines: Radial flow turbines are radial inward flow turbomachines, here fluid 

flows across the rotor blades radially from outer radius (tip radius) to inner radius (hub radius) of the 

rotor as shown in figure 2.15. Therefore radial turbines are also known as centripetal turbomachines. 

Since the fluid enters and leaves the rotor at different radius U1≠U2.  

Question No 2.18: A radial turbomachine has no inlet whirl. The blade speed at the exit is twice that 

of the inlet. Radial velocity is constant throughout. Taking the inlet blade angle as 45o, show that 

energy transfer per unit mass is given by 𝒆 = 𝟐𝑽𝒎
𝟐 (𝒄𝒐𝒕𝜷𝟐 − 𝟐), where β2 is the blade angle at exit 

with respect to tangential direction. (VTU, Jun/Jul-11) 

 

Answer: The data given in the problem are: 

𝑉𝑢1 = 0,𝑈2 = 2𝑈1, 𝑉𝑚1 = 𝑉𝑚2 = 𝑉𝑚, 𝛽1 = 45𝑜(∴ 𝑈1 = 𝑉𝑚1)  

 

Fig. 2.15 Radial flow turbine 

The velocity diagram for the above conditions is as follows 
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Energy transfer of general radial flow turbomachine is given by, 

𝑒 = (𝑈1𝑉𝑢1 − 𝑈2𝑉𝑢2) 

But 𝑉𝑢1 = 0, 

          𝑒 = −𝑈2𝑉𝑢2                 (2.19) 

From outlet velocity triangle,  𝑉𝑢2 = 𝑈2 − 𝑥2 

But, 𝑐𝑜𝑡𝛽2 =
𝑥2

𝑉𝑚2
⟹ 𝑥2 = 𝑉𝑚2𝑐𝑜𝑡𝛽2 

Then, 𝑉𝑢2 = 𝑈2 − 𝑉𝑚2𝑐𝑜𝑡𝛽2 

Substitute Vu2 in equation (2.19)  

         𝑒 = −𝑈2(𝑈2 − 𝑉𝑚2𝑐𝑜𝑡𝛽2) 

From given data, 𝑈2 = 2𝑈1 = 2𝑉𝑚1 = 2𝑉𝑚2 = 2𝑉𝑚 

𝑒 = −2𝑉𝑚(2𝑉𝑚 − 𝑉𝑚𝑐𝑜𝑡𝛽2) 

     𝒆 = 𝟐𝑽𝒎
𝟐 (𝒄𝒐𝒕𝜷𝟐 − 𝟐)                (2.20) 

 

 

Question No 2.19: A radial turbomachine has no inlet whirl. The blade speed at the exit is twice that 

of the inlet. Radial velocity is constant throughout. Taking the inlet blade angle as 45o, show that 

degree of reaction is given by 𝑹 =
(𝟐+𝒄𝒐𝒕𝜷𝟐)

𝟒
, where β2 is the blade angle at exit with respect to 

tangential direction. (VTU, Jun/Jul-11, Dec-12, Jun/Jul-13, Jul-16, Jul-17) 

Answer: The data given in the problem are: 

𝑉𝑢1 = 0,𝑈2 = 2𝑈1, 𝑉𝑚1 = 𝑉𝑚2 = 𝑉𝑚, 𝛽1 = 45𝑜(∴ 𝑈1 = 𝑉𝑚1)  

The velocity diagram for the above conditions is as same as the Question No 2.18. 

Degree of reaction for general radial flow turbomachine is given by: 

𝑅 =
𝑒 −

1
2
(𝑉1

2 − 𝑉2
2)

𝑒
 

But,  𝑒 = 2𝑉𝑚
2(𝑐𝑜𝑡𝛽2 − 2) 

From inlet velocity triangle, 𝑉1
2 = 𝑉𝑚1

2 = 𝑉𝑚
2 

By applying cosine rule to outlet velocity triangle, 𝑉2
2 = 𝑈2

2 + 𝑉𝑟2
2 − 2𝑈2𝑉𝑟2𝑐𝑜𝑠𝛽2 

But, 𝑠𝑖𝑛𝛽2 =
𝑉𝑚2

𝑉𝑟2
⟹ 𝑉𝑟2 =

𝑉𝑚2

𝑠𝑖𝑛𝛽2
 

Then, 𝑉2
2 = 𝑈2

2 +
𝑉𝑚2

2

𝑠𝑖𝑛2𝛽2
− 2𝑈2

𝑉𝑚2

𝑠𝑖𝑛𝛽2
𝑐𝑜𝑠𝛽2 

From given data, 𝑈2 = 2𝑈1 = 2𝑉𝑚1 = 2𝑉𝑚2 = 2𝑉𝑚 

Then, 𝑉2
2 = 4𝑉𝑚

2 + 𝑉𝑚
2𝑐𝑜𝑠𝑒𝑐2𝛽2 − 4𝑉𝑚

2𝑐𝑜𝑡𝛽2 

Or, 𝑉2
2 = 4𝑉𝑚

2 + 𝑉𝑚
2(1 + 𝑐𝑜𝑡2𝛽2) − 4𝑉𝑚

2𝑐𝑜𝑡𝛽2 
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𝑉2
2 = 5𝑉𝑚

2 + 𝑉𝑚
2𝑐𝑜𝑡2𝛽2 − 4𝑉𝑚

2𝑐𝑜𝑡𝛽2  

Then, 

𝑅 =
2𝑉𝑚

2(𝑐𝑜𝑡𝛽2 − 2) −
1
2 [𝑉𝑚

2 − (5𝑉𝑚
2 + 𝑉𝑚

2𝑐𝑜𝑡2𝛽2 − 4𝑉𝑚
2𝑐𝑜𝑡𝛽2 )]

2𝑉𝑚2(𝑐𝑜𝑡𝛽2 − 2)
 

𝑅 =
4𝑉𝑚

2(𝑐𝑜𝑡𝛽2 − 2) − [𝑉𝑚
2 − (5𝑉𝑚

2 + 𝑉𝑚
2𝑐𝑜𝑡2𝛽2 − 4𝑉𝑚

2𝑐𝑜𝑡𝛽2 )]

4𝑉𝑚2(𝑐𝑜𝑡𝛽2 − 2)
 

𝑅 =
𝑉𝑚

2𝑐𝑜𝑡2𝛽2 − 4𝑉𝑚
2

4𝑉𝑚2(𝑐𝑜𝑡𝛽2 − 2)
 

𝑹 =
𝟐 + 𝒄𝒐𝒕𝜷𝟐

𝟒
 

Question No 2.20: Why the discharge blade angle has considerable effect in the analysis of a 

turbomachine? Give reasons. (VTU, Dec-10,Jun/Jul-11) 

Answer: The energy transfer for radial flow turbomachines in terms of discharge blade angle is 𝑒 =

2𝑉𝑚
2(𝑐𝑜𝑡𝛽2 − 2). This equation gives that, for 𝛽2 > 26.5𝑜 ‘e’ is negative and continuously increases 

with 𝛽2. As ‘e’ negative for these values of 𝛽2, the machine will acts as pump or compressor. For 𝛽2 <

26.5𝑜 ‘e’ is positive and machine will act as a turbine.  

 The degree of reaction for radial flow turbomachine in terms of discharge blade angle is 𝑅 =

2+𝑐𝑜𝑡𝛽2

4
. This equation gives that, for 𝛽2 in the range of 26.5o to 153.5o, the value of R decreases 

linearly from near unity to very small positive value. For 𝛽2 = 153.5𝑜, R=0 and hence machine will 

act as impulse turbine. 

 The effect of discharge blade angle on energy transfer and degree of reaction of turbomachine 

is shown in figure 2.16. 
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Fig. 2.16 Effect of discharge blade angle on energy transfer and degree of reaction 

Question No 2.21: An inward flow radial reaction turbine has radial discharge at outlet with outlet 

blade angle is 45o. The radial component of absolute velocity remains constant throughout and 

equal to √𝟐𝒈𝑯 where 𝒈 is the acceleration due to gravity and H is the constant head. The blade 

speed at inlet is twice that at outlet. Express the energy transfer per unit mass and the degree of 

reaction in terms of α1, where α1 is the direction of the absolute velocity at inlet. At what value of α1 

will be the degree of reaction zero and unity? What are the corresponding values of energy transfer 

per unit mass? (VTU, Jan/Feb-06) 

Answer: The data given in the problem are: 

𝛼2 = 90𝑜 (∴ 𝑉𝑢2 = 0), 𝛽2 = 45𝑜(∴ 𝑈2 = 𝑉𝑚2), 𝑉𝑚1 = 𝑉𝑚2 = √2𝑔𝐻,𝑈1 = 2𝑈2,    

The velocity diagram for the above conditions is as follows 

 

Energy transfer of inward radial flow reaction turbine is given by, 
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𝑒 = (𝑈1𝑉𝑢1 − 𝑈2𝑉𝑢2) 

But 𝑉𝑢2 = 0, 

          𝑒 = 𝑈1𝑉𝑢1 

From inlet velocity triangle, 𝑐𝑜𝑡𝛼1 =
𝑉𝑢1

𝑉𝑚1
⟹ 𝑉𝑢1 = 𝑉𝑚1𝑐𝑜𝑡𝛼1 

Then,      𝑒 = 𝑈1𝑉𝑚1𝑐𝑜𝑡𝛼1 

From given data, 𝑈1 = 2𝑈2 = 2𝑉𝑚2 = 2𝑉𝑚1 

Then,      𝑒 = 2𝑉𝑚1
2 𝑐𝑜𝑡𝛼1 

From given data, 𝑉𝑚1 = 𝑉𝑚2 = √2𝑔𝐻 

Then,      𝒆 = 𝟒𝒈𝑯𝒄𝒐𝒕𝜶𝟏 

Degree of reaction for inward radial flow reaction turbine is given by: 

𝑅 =
𝑒 −

1
2
(𝑉1

2 − 𝑉2
2)

𝑒
 

But, 𝑒 = 4𝑔𝐻𝑐𝑜𝑡𝛼1 

From inlet velocity triangle, 𝑠𝑖𝑛𝛼1 =
𝑉𝑚1

𝑉1
⟹ 𝑉1 =

√2𝑔𝐻

𝑠𝑖𝑛𝛼1
⟹ 𝑉1

2 =
2𝑔𝐻

𝑠𝑖𝑛2𝛼1
 

From outlet velocity triangle, 𝑉2 = 𝑉𝑚2 ⟹ 𝑉2
2 = 𝑉𝑚2

2 = 2𝑔𝐻 

Then, 

𝑅 =
4𝑔𝐻𝑐𝑜𝑡𝛼1 −

1
2 [

2𝑔𝐻
𝑠𝑖𝑛2𝛼1

− 2𝑔𝐻]

4𝑔𝐻𝑐𝑜𝑡𝛼1
 

𝑅 =
4𝑐𝑜𝑡𝛼1 − [

1 − 𝑠𝑖𝑛2𝛼1

𝑠𝑖𝑛2𝛼1
]

4𝑐𝑜𝑡𝛼1
=

4𝑐𝑜𝑡𝛼1 − [
𝑐𝑜𝑠2𝛼1

𝑠𝑖𝑛2𝛼1
]

4𝑐𝑜𝑡𝛼1
 

𝑅 =
4𝑐𝑜𝑡𝛼1 − 𝑐𝑜𝑡2𝛼1

4𝑐𝑜𝑡𝛼1
 

𝑂𝑟,                                                                    𝑹 =
𝟒 − 𝒄𝒐𝒕𝜶𝟏

𝟒
 

At  𝛼1 = 14.04𝑜 , 𝑅 = 0 then 𝑒 = 16𝑔𝐻 𝐽 𝑘𝑔⁄  

At  𝛼1 = 90𝑜 , 𝑅 = 1 then 𝑒 = 0  

Question No 2.22: For a centripetal turbine with guide blade angle α1 and radial blades at the inlet. 

The radial velocity is constant and there is no whirl velocity at discharge. Show that the degree of 

reaction is 0.5. Also derive an expression for utilization factor in terms of α1. Or Show that 

maximum blade efficiency ηblade max=
𝟐𝒄𝒐𝒔𝟐𝜶𝟏

𝟏+𝒄𝒐𝒔𝟐𝜶𝟏
 for a 50 % reaction Parson’s. (VTU, Jun/Jul-08,Jan 15) 

Answer: The data given in the problem are: 

𝛽1 = 90𝑜 , 𝑉𝑚1 = 𝑉𝑚2, 𝑉𝑢2 = 0(∴ 𝛼2 = 90𝑜 ) 
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The velocity diagram for the above conditions is as follows 

 

Degree of reaction for a centripetal turbine is given by: 

𝑅 =
𝑒 −

1
2
(𝑉1

2 − 𝑉2
2)

𝑒
 

Energy transfer of a centripetal turbine is given by, 𝑒 = (𝑈1𝑉𝑢1 − 𝑈2𝑉𝑢2) 

But 𝑉𝑢2 = 0,       𝑒 = 𝑈1𝑉𝑢1 

From inlet velocity triangle, 𝑉𝑢1 = 𝑈1  

Then,        𝑒 = 𝑈1
2 

From inlet velocity triangle, 𝑉1
2 − 𝑉𝑚1

2 = 𝑈1
2 

But 𝑉𝑚1 = 𝑉𝑚2 = 𝑉2, then 𝑉1
2 − 𝑉2

2 = 𝑈1
2 

Thus, 

𝑅 =
𝑈1

2 −
1
2
(𝑈1

2)

𝑈1
2  

𝑹 = 𝟎. 𝟓 

Utilization factor for centripetal turbine is given by, 

𝜖 =
𝑒

𝑒 +
𝑉2

2

2

 

From inlet velocity triangle, 𝑡𝑎𝑛𝛼1 =
𝑉𝑟1

𝑈1
⟹ 𝑉𝑟1 = 𝑈1𝑡𝑎𝑛𝛼1 

But 𝑉2 = 𝑉𝑚2 = 𝑉𝑚1 = 𝑉𝑟1 = 𝑈1𝑡𝑎𝑛𝛼1 

Then, 

𝜖 =
𝑈1

2

𝑈1
2 +

𝑈1
2𝑡𝑎𝑛2𝛼1

2

 

𝝐 =
𝟐

𝟐 + 𝒕𝒂𝒏𝟐𝜶𝟏
 

Or, 
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𝜖 =
2

2 +
𝑠𝑖𝑛2𝛼1

𝑐𝑜𝑠2𝛼1

=
2𝑐𝑜𝑠2𝛼1

2𝑐𝑜𝑠2𝛼1 + 𝑠𝑖𝑛2𝛼1
 

𝝐 =
𝟐𝒄𝒐𝒔𝟐𝜶𝟏

𝟏 + 𝒄𝒐𝒔𝟐𝜶𝟏
 

Question No 2.23: In an inward flow radial hydraulic turbine, degree of reaction is R and 

utilization factor is ϵ. Assuming the radial velocity component is constant throughout and there is 

no tangential component of absolute velocity at outlet, show that the inlet nozzle angle is given by 

𝜶𝟏 = 𝒄𝒐𝒕−𝟏√
(𝟏−𝑹)𝝐

(𝟏−𝝐)
  (VTU, Jan-04, Dec-12) 

Answer: The data given in the problem are: 

𝑉𝑚1 = 𝑉𝑚2 = 𝑉𝑚, 𝑉𝑢2 = 0 (∴ 𝛼2 = 90𝑜) 

The velocity diagram for the above conditions is as follows 

 

Utilization factor is given by: 

𝜖 =
𝑉1

2 − 𝑉2
2

𝑉1
2 − 𝑅𝑉2

2 

From inlet velocity triangle, 𝑠𝑖𝑛𝛼1 =
𝑉𝑚1

𝑉1
⟹ 𝑉𝑚1 = 𝑉1𝑠𝑖𝑛𝛼1 

From outlet velocity triangle, 𝑉2 = 𝑉𝑚2 = 𝑉𝑚1 = 𝑉1𝑠𝑖𝑛𝛼1 

Then, 

𝜖 =
𝑉1

2 − 𝑉1
2𝑠𝑖𝑛2𝛼1

𝑉1
2 − 𝑅𝑉1

2𝑠𝑖𝑛2𝛼1

=
𝑐𝑜𝑠2𝛼1

1 − 𝑅𝑠𝑖𝑛2𝛼1
 

𝜖 =

𝑐𝑜𝑠2𝛼1

𝑠𝑖𝑛2𝛼1

1
𝑠𝑖𝑛2𝛼1

− 𝑅
=

𝑐𝑜𝑡2𝛼1

𝑐𝑜𝑠𝑒𝑐2𝛼1 − 𝑅
=

𝑐𝑜𝑡2𝛼1

1 + 𝑐𝑜𝑡2𝛼1 − 𝑅
 

𝜖(1 + 𝑐𝑜𝑡2𝛼1 − 𝑅) = 𝑐𝑜𝑡2𝛼1 

𝜖 − 𝜖𝑅 = 𝑐𝑜𝑡2𝛼1 − 𝜖𝑐𝑜𝑡2𝛼1 

Or,      𝑐𝑜𝑡2𝛼1(1 − 𝜖) = 𝜖(1 − 𝑅) 
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𝜶𝟏 = 𝒄𝒐𝒕−𝟏√
(𝟏 − 𝑹)𝝐

(𝟏 − 𝝐)
 

2.5 General Analysis of Power-absorbing Turbomachines: 

 Compressors and pumps are power absorbing turbomachines, since they raise the stagnation 

pressure or enthalpy of a fluid through mechanical energy intake. The quantity of interest in the power 

absorbing device is the stagnation enthalpy or pressure rise of the flowing fluid due to the work. In 

power absorbing machines, the reference direction to define the various angles is often the axis than 

the tangent to the rotor-tip. Like turbines, these machines may be divided into axial, radial and mixed 

flow devices depending on the flow direction in the rotor blades. 

2.5.1 Axial Flow Compressors and Pumps: In axial flow machines, the blade speed is the same at the 

rotor inlet and outlet. Each compressor stage consists usually of a stator and a rotor just as in a turbine. 

Further, there is diffuser at the exit to recover part of the exit kinetic energy of the fluid to produce an 

increase in static pressure. The pressure at the compressor exit will have risen due to the diffusive 

action in rotors and stators. If stator blades are present at the inlet they are called inlet guide-vanes. 

The blades at the exit section in the diffuser are called exit guide-vanes. 

 

Fig. 2.17 Axial flow compressor 

Energy transfer for axial flow compressor or pump is: 

𝑒 =
1

2
[(𝑉2

2 − 𝑉1
2) − (𝑉𝑟2

2 − 𝑉𝑟1
2 )] 

Degree of reaction for axial flow compressor or pump is: 

𝑅 =
[(𝑉𝑟1

2 − 𝑉𝑟2
2 )]

[(𝑉2
2 − 𝑉1

2) − (𝑉𝑟2
2 − 𝑉𝑟1

2 )]
=

𝑒 −
1
2
(𝑉2

2 − 𝑉1
2)

𝑒
 

Question No 2.24: Draw the set of velocity triangles for axial flow compressor stage and show that, 

∆𝒉𝒐 = 𝑼𝑽𝒂(𝒕𝒂𝒏𝜸𝟏 − 𝒕𝒂𝒏𝜸𝟐), where Va is axial velocity, U is blade speed and γ1 and γ2 are the inlet 

and outlet blade angles with respect to axial direction. Or,  
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Draw the set of velocity triangles for axial flow compressor stage and show that,  ∆𝒉𝒐 =

𝑼𝑽𝒂 [
𝒕𝒂𝒏𝜷𝟐−𝒕𝒂𝒏𝜷𝟏

𝒕𝒂𝒏𝜷𝟏𝒕𝒂𝒏𝜷𝟐
], where Va is axial velocity, U is blade speed and β1 and β2 are the inlet and outlet 

blade angles with respect to tangential direction. 

Answer: The general velocity diagram for axial flow compressor stage is as shown in figure 2.18. For 

axial flow machines the blade speed and the axial velocity may assume to be constant. That is, 𝑈1 =

𝑈2 = 𝑈 𝑎𝑛𝑑 𝑉𝑎1 = 𝑉𝑎2 = 𝑉𝑎 

 

Fig. 2.18 General velocity diagram for axial flow compressor stage 

Usually in an axial flow turbomachines the working fluid is either combustion gas or air. Whenever, 

the energy transfer occurs in these machines, then pressure energy or enthalpy of the working fluid 

changes. Therefore energy transfer of an axial flow compressor is given as: 

𝑒 = ∆ℎ𝑜 = 𝑈(𝑉𝑢2 − 𝑉𝑢1) 

From inlet velocity triangle, 

𝑡𝑎𝑛𝛾𝑜 =
𝑉𝑢1

𝑉𝑎1
⟹ 𝑉𝑢1 = 𝑉𝑎1𝑡𝑎𝑛𝛾𝑜 = 𝑉𝑎𝑡𝑎𝑛𝛾𝑜 

𝑡𝑎𝑛𝛾1 =
𝐴𝐵

𝑉𝑎1
⟹ 𝐴𝐵 = 𝑉𝑎1𝑡𝑎𝑛𝛾1 = 𝑉𝑎𝑡𝑎𝑛𝛾1 

𝑈 = 𝐴𝐵 + 𝑉𝑢1 = 𝑉𝑎(𝑡𝑎𝑛𝛾1 + 𝑡𝑎𝑛𝛾𝑜) 

From outlet velocity triangle, 

𝑡𝑎𝑛𝛾3 =
𝑉𝑢2

𝑉𝑎2
⟹ 𝑉𝑢2 = 𝑉𝑎2𝑡𝑎𝑛𝛾3 = 𝑉𝑎𝑡𝑎𝑛𝛾3 

𝑡𝑎𝑛𝛾2 =
𝐴𝐵

𝑉𝑎2
⟹ 𝐴𝐵 = 𝑉𝑎2𝑡𝑎𝑛𝛾2 = 𝑉𝑎𝑡𝑎𝑛𝛾2 

𝑈 = 𝐴𝐵 + 𝑉𝑢2 = 𝑉𝑎(𝑡𝑎𝑛𝛾2 + 𝑡𝑎𝑛𝛾3) 

Then,     𝑈 = 𝑉𝑎(𝑡𝑎𝑛𝛾1 + 𝑡𝑎𝑛𝛾𝑜) = 𝑉𝑎(𝑡𝑎𝑛𝛾2 + 𝑡𝑎𝑛𝛾3) 

Or,     (𝒕𝒂𝒏𝜸𝟏 − 𝒕𝒂𝒏𝜸𝟐) = (𝒕𝒂𝒏𝜸𝟑 − 𝒕𝒂𝒏𝜸𝒐) 

Then,    ∆ℎ𝑜 = 𝑈(𝑉𝑢2 − 𝑉𝑢1) = 𝑈(𝑉𝑎𝑡𝑎𝑛𝛾3 − 𝑉𝑎𝑡𝑎𝑛𝛾𝑜) = 𝑈𝑉𝑎(𝑡𝑎𝑛𝛾3 − 𝑡𝑎𝑛𝛾𝑜) 

Or,     ∆𝒉𝒐 = 𝑼𝑽𝒂(𝒕𝒂𝒏𝜸𝟏 − 𝒕𝒂𝒏𝜸𝟐) 
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Where γ1 and γ2 are the inlet and outlet blade angles with respect to axial direction are also known as 

Air angles. 

Or,     ∆ℎ𝑜 = 𝑈𝑉𝑎[tan (90
𝑜 − 𝛽1) − tan (90𝑜 − 𝛽2)] 

∆𝒉𝒐 = 𝑼𝑽𝒂[𝐜𝐨𝐭 𝜷𝟏 − 𝐜𝐨𝐭 𝜷𝟐] 

Or,      ∆ℎ𝑜 = 𝑈𝑉𝑎 [
1

tan 𝛽1
−

1

tan 𝛽2
] 

∆𝒉𝒐 = 𝑼𝑽𝒂 [
𝒕𝒂𝒏𝜷𝟐 − 𝒕𝒂𝒏𝜷𝟏

𝒕𝒂𝒏𝜷𝟏𝒕𝒂𝒏𝜷𝟐
] 

Where β1 and β2 are the inlet and outlet blade angles with respect to tangential direction. 

Question No 2.25: With the help of inlet and outlet velocity triangles, show that the degree of 

reaction for axial flow compressor as 𝑹 =
𝑽𝒂

𝑼
𝒕𝒂𝒏𝜸𝒎, where Va is axial velocity, U is blade speed 

and 𝒕𝒂𝒏𝜸𝒎 =
𝒕𝒂𝒏𝜸𝟏+𝒕𝒂𝒏𝜸𝟐

𝟐
 γ1 and γ2 are the inlet and outlet blade angles with respect to axial 

direction. (VTU, Jun-12, Dec-06/Jan-07, Jun/Jul-13) Or, 

With the help of inlet and outlet velocity triangles, show that the degree of reaction for axial flow 

compressor as 𝑹 =
𝑽𝒂

𝑼
𝒄𝒐𝒕𝜷𝒎, where Va is axial velocity, U is blade speed and 𝒄𝒐𝒕𝜷𝒎 =

𝒄𝒐𝒕𝜷𝟏+𝒄𝒐𝒕𝜷𝟐

𝟐
 

β1 and β2 are the inlet and outlet blade angles with respect to tangential direction. Or, 

Draw the velocity triangles for an axial flow compressor and show that for an axial flow compressor 

having no axial thrust, the degree of reaction is given by: 𝑹 =
𝑽𝒂

𝟐𝑼
[
𝒕𝒂𝒏𝜷𝟏+𝒕𝒂𝒏𝜷𝟐

𝒕𝒂𝒏𝜷𝟏𝒕𝒂𝒏𝜷𝟐
], where Va is axial 

velocity, U is blade speed and β1 and β2 are the inlet and outlet blade angles with respect to 

tangential direction. (VTU, Feb-03, Jul-11, Jun-10, Jan-14) 

Answer: The general velocity diagram for axial flow compressor stage is as shown in figure 2.14. For 

axial flow machines the blade speed and the axial velocity may assume to be constant. That is, 𝑈1 =

𝑈2 = 𝑈 𝑎𝑛𝑑 𝑉𝑎1 = 𝑉𝑎2 = 𝑉𝑎 

Degree of reaction for axial flow compressor is: 

𝑅 =

1
2
[(𝑉𝑟1

2 − 𝑉𝑟2
2 )]

1
2
[(𝑉2

2 − 𝑉1
2) − (𝑉𝑟2

2 − 𝑉𝑟1
2 )]

=

1
2
[(𝑉𝑟1

2 − 𝑉𝑟2
2 )]

𝑒
 

But, 𝑒 = ∆ℎ𝑜 = 𝑈𝑉𝑎(𝑡𝑎𝑛𝛾1 − 𝑡𝑎𝑛𝛾2) 

From inlet velocity triangle, 𝑉𝑟1
2 = 𝐴𝐵2 + 𝑉𝑎1

2 = 𝑉𝑎1
2 𝑡𝑎𝑛2𝛾1 + 𝑉𝑎1

2  

𝑉𝑟1
2 = 𝑉𝑎

2 + 𝑉𝑎
2𝑡𝑎𝑛2𝛾1 

 

Similarly from outlet velocity triangle,  

𝑉𝑟2
2 = 𝑉𝑎

2 + 𝑉𝑎
2𝑡𝑎𝑛2𝛾2 

Then, 
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𝑅 =
𝑉𝑎

2 + 𝑉𝑎
2𝑡𝑎𝑛2𝛾1 − (𝑉𝑎

2 + 𝑉𝑎
2𝑡𝑎𝑛2𝛾2)

2𝑈𝑉𝑎(𝑡𝑎𝑛𝛾1 − 𝑡𝑎𝑛𝛾2)
 

𝑅 =
𝑉𝑎(𝑡𝑎𝑛2𝛾1 − 𝑡𝑎𝑛2𝛾2)

2𝑈(𝑡𝑎𝑛𝛾1 − 𝑡𝑎𝑛𝛾2)
 

𝑅 = (
𝑉𝑎
𝑈

)
(𝑡𝑎𝑛𝛾1 + 𝑡𝑎𝑛𝛾2)

2
 

𝑹 =
𝑽𝒂

𝑼
𝒕𝒂𝒏𝜸𝒎 

 Where 𝑡𝑎𝑛𝛾𝑚 =
𝑡𝑎𝑛𝛾1+𝑡𝑎𝑛𝛾2

2
 γ1 and γ2 are the inlet and outlet blade angles with respect to axial 

direction. 

Or, 

𝑅 = (
𝑉𝑎
𝑈

)
[tan(90𝑜 − 𝛽1) + tan (90𝑜 − 𝛽2)]

2
 

𝑅 = (
𝑉𝑎
𝑈

)
[cotβ1 + 𝑐𝑜𝑡𝛽2]

2
 

𝑹 =
𝑽𝒂

𝑼
𝒄𝒐𝒕𝜷𝒎 

Where 𝑐𝑜𝑡𝛽𝑚 =
𝑐𝑜𝑡𝛽1+𝑐𝑜𝑡𝛽2

2
 β1 and β2 are the inlet and outlet blade angles with respect to tangential 

direction. 

Or, 

𝑅 = (
𝑉𝑎
2𝑈

) [
1

𝑡𝑎𝑛𝛽1
+

1

𝑡𝑎𝑛𝛽2
] 

𝑹 =
𝑽𝒂

𝟐𝑼
[
𝒕𝒂𝒏𝜷𝟏 + 𝒕𝒂𝒏𝜷𝟐

𝒕𝒂𝒏𝜷𝟏𝒕𝒂𝒏𝜷𝟐
] 

2.5.2 Radial Flow Compressors and Pumps: Radial flow compressors and pumps are radial outward 

flow turbomachines, here fluid flows across the rotor blades radially from inner radius (hub radius) to 

outer radius (tip radius) of the rotor as shown in figure 2.19. Therefore radial compressors and pumps 

are also known as centrifugal turbomachines. Since the fluid enters and leaves the rotor at different 

radius U1≠U2. In centrifugal compressor or pump usually the absolute velocity at the entry has no 

tangential component, i.e., Vu1= 0. 

Question No 2.26: Derive a theoretical head capacity (H-Q) relationship for centrifugal pumps and 

compressors and explain the influence of outlet blade angle. (VTU, Jul/Aug-05, Dec-11, Jun/Jul-14) 

Answer: The velocity diagram for centrifugal pumps and compressor with Vu1= 0 is as shown in 

figure 2.20. Usually in a radial flow turbomachines the working fluid is either water or oil. Whenever, 

the energy transfer occurs in these machines, then pressure energy or potential energy of the working 

fluid changes.  



Energy Transfer in Turbomachines                                                            
 

Page | 47  
 

 

Fig. 2.19 Radial flow compressor or pump  

The energy transfer of a centrifugal compressor and pump is given as: 

𝑒 = 𝑔𝐻 = 𝑈2𝑉𝑢2 − 𝑈1𝑉𝑢1 

Or,     𝑔𝐻 = 𝑈2𝑉𝑢2  (Because, Vu1= 0) 

From outlet velocity triangle, 𝑉𝑢2 = 𝑈2 − 𝑥2 

But, 𝑐𝑜𝑡𝛽2 =
𝑥2

𝑉𝑚2
⟹ 𝑥2 = 𝑉𝑚2𝑐𝑜𝑡𝛽2 

Then, 

 𝑉𝑢2 = 𝑈2 − 𝑉𝑚2𝑐𝑜𝑡𝛽2 

Therefore,    𝑔𝐻 = 𝑈2(𝑈2 − 𝑉𝑚2𝑐𝑜𝑡𝛽2) 

Or,     

𝐻 =
𝑈2

2

𝑔
−

𝑈2𝑉𝑚2

𝑔
𝑐𝑜𝑡𝛽2 

 

Fig. 2.20 Velocity diagram for centrifugal pumps and compressor with Vu1= 0 

Discharge at outer radius of centrifugal machine = Area of flow × Flow velocity 

𝑄 = 𝜋𝐷2𝐵2 × 𝑉𝑚2 

𝑉𝑚2 =
𝑄

𝜋𝐷2𝐵2
 

Then, 

𝑯 =
𝑼𝟐

𝟐

𝒈
− (

𝑼𝟐

𝒈
) (

𝑸

𝝅𝑫𝟐𝑩𝟐
) 𝒄𝒐𝒕𝜷𝟐 
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Fig. 2.21 H-Q characteristic curve for centrifugal machines 

By using above equation, H-Q characteristic curve of a given impeller exit blade angle β2 for different 

values of discharge is drawn in figure 2.21. 

Question No 2.27: Draw the inlet and outlet velocity triangles for a radial flow power absorbing 

turbomachines with (i) Backward curved vane (ii) Radial vane (iii) Forward curved vane. Assume 

inlet whirl velocity to be zero. Draw and explain the head-capacity relations for the above 3 types of 

vanes. (VTU, Dec-08/Jan-09, Dec-12) 

Answer: There are three types of vane shapes in centrifugal machines namely, (i) Backward curved 

vane (ii) Radial vane (iii) Forward curved vane. 

The vane is said to be backward curved if the angle between the rotor blade-tip and the tangent 

to the rotor at the exit is acute (β2<90o). If it is a right angle (β2=90o) the blade said to be radial and if it 

is greater than 90o, the blade is said to be forward curved. Here the blade angles measured with respect 

to direction of rotor (clockwise direction). The velocity triangles at the outlet of centrifugal machines 

are shown in figure 2.21. 

The head-capacity characteristic curve for the above 3 types of vanes is given in figure 2.16, if 

β2 lies between 0 to 90o (backward curved vanes), cotβ2 in H-Q relation is always positive. So for 

backward curved vanes the head developed by the machine falls with increasing discharge. For values 

of β2 between 90o to 180o, cotβ2 in H-Q relation is negative. So for forward curved vanes the head 

developed by the machine continuously rise with increasing discharge. For β2=90o (radial vanes), the 

head is independent of flow rates and is remains constant. For centrifugal machines usually the 

absolute velocity at the entry has no tangential component (i.e., Vu1= 0), thus the inlet velocity triangle 

for all the 3 types of vanes is same.   
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Fig. 2.21Types of centrifugal vanes 

Question No 2.27: Draw the velocity diagram for a power absorbing radial flow turbomachine and 

show that 𝑹 =
𝟏

𝟐
[𝟏 +

𝑽𝒎𝟐 𝐜𝐨𝐭 𝜷𝟐

𝑼𝟐
]. (VTU, Dec-14/Jan-15) 


