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1. Introduction to Dynamic Programming

Dynamic programming is a technique for solving problems with 

Typically, these subproblems arise from a recurrence relating a given

solutions of its smaller subproblems. Rather than solving

again, dynamic programming suggests solving

and recording the results in a table from

obtained. [From T1] 

The Dynamic programming can also be used when the solution to a problem can be viewed 

as the result of sequence of decisions

Example 1 

Example 2 

   

Example 3 

Example 4 
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Introduction to Dynamic Programming 

Dynamic programming is a technique for solving problems with overlapping subproblems

Typically, these subproblems arise from a recurrence relating a given problem’s solution to 

of its smaller subproblems. Rather than solving overlapping subproblems again and 

again, dynamic programming suggests solving each of the smaller subproblems only once 

and recording the results in a table from which a solution to the original problem can t

can also be used when the solution to a problem can be viewed 

sequence of decisions.  [ From T2]. Here are some examples.
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overlapping subproblems. 

problem’s solution to 

overlapping subproblems again and 

each of the smaller subproblems only once 

al problem can then be 

can also be used when the solution to a problem can be viewed 

Here are some examples.  
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1.2 Multistage Graphs  
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Figure: Five stage graph 
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Backward Approach 
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2. Transitive Closure using

Definition: The transitive closure

× n boolean matrix T = {tij }, in which the element in the i

there exists a nontrivial path (i.e., directed path of a

jth vertex; otherwise, tij is 0. 

Example:  An example of a digraph, its adjacency matrix, and its transitive closure is

below.  

                           (a) Digraph.                              (b) Its adjacency matrix.                   (c) Its

 

We can generate the transitive closure of a digraph with the help of depthfirst

breadth-first search. Performing either traversal starting at the i

about the vertices reachable from it and 

the transitive closure. Thus, doing such

the transitive closure in its entirety.

Since this method traverses the same digraph several times, we can

called Warshall’s algorithm. 

a series of n × n boolean matrices:

Each of these matrices provides certain information about directed paths in the

Specifically, the element ���
���

 

= 0, 1, . . . , n) is equal to 1 if and only if there exists a

the ith vertex to the jth vertex with each

k. 

Thus, the series starts with R(0)

hence, R(0) is nothing other than the adjacency matrix of the digraph

information about paths that can use the first vertex as intermediate.

series, R(n) , reflects paths that can use all n vertices of the digraph as intermediate and hence

is nothing other than the digraph’s transitive closure.

This means that there exists a 

intermediate vertex numbered not higher than k:

vi, a list of intermediate vertices each numbered not higher than k, v

Two situations regarding this path are possible.
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Transitive Closure using Warshall’s Algorithm,  

transitive closure of a directed graph with n vertices can be

}, in which the element in the ith row and the j

there exists a nontrivial path (i.e., directed path of a positive length) from the i

An example of a digraph, its adjacency matrix, and its transitive closure is

(a) Digraph.                              (b) Its adjacency matrix.                   (c) Its transitive closure.

We can generate the transitive closure of a digraph with the help of depthfirst

first search. Performing either traversal starting at the ith vertex gives the information 

about the vertices reachable from it and hence the columns that contain 1’s in the i

the transitive closure. Thus, doing such a traversal for every vertex as a starting point yields 

entirety. 

Since this method traverses the same digraph several times, we can use a better algorithm 

. Warshall’s algorithm constructs the transitive closure through 

a series of n × n boolean matrices: 

 

Each of these matrices provides certain information about directed paths in the

 in the ith row and jth column of matrix R(k) (i, j = 1, 2, . . . , n, k 

= 0, 1, . . . , n) is equal to 1 if and only if there exists a directed path of a positive length from 

vertex with each intermediate vertex, if any, numbered not higher than 

(0) , which does not allow any intermediate vertices in its paths; 

is nothing other than the adjacency matrix of the digraph

at can use the first vertex as intermediate. The last matrix in the 

reflects paths that can use all n vertices of the digraph as intermediate and hence

is nothing other than the digraph’s transitive closure. 

means that there exists a path from the ith vertex vi to the jth vertex vj with each

intermediate vertex numbered not higher than k: 

, a list of intermediate vertices each numbered not higher than k, v

Two situations regarding this path are possible. 
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of a directed graph with n vertices can be defined as the n 

and the jth column is 1 if 

positive length) from the ith vertex to the 

An example of a digraph, its adjacency matrix, and its transitive closure is given 

 
transitive closure. 

We can generate the transitive closure of a digraph with the help of depthfirst search or 

vertex gives the information 

columns that contain 1’s in the ith row of 

a traversal for every vertex as a starting point yields 

use a better algorithm 

the transitive closure through 

Each of these matrices provides certain information about directed paths in the digraph. 

(i, j = 1, 2, . . . , n, k 

directed path of a positive length from 

vertex, if any, numbered not higher than 

, which does not allow any intermediate vertices in its paths; 

is nothing other than the adjacency matrix of the digraph. R(1) contains the 

The last matrix in the 

reflects paths that can use all n vertices of the digraph as intermediate and hence 

path from the ith vertex vi to the jth vertex vj with each 

, a list of intermediate vertices each numbered not higher than k, vj . --- (*) 
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1. In the first, the list of its intermediate vertices 

path from vi to vj has intermediate vertices numbered not higher than 

2. The second possibility is that path (*

intermediate vertices. Then path (*) can be 

vi, vertices numbered 

Thus, we have the following formula for generating the elements of matrix R

elements of matrix R(k−1) 

The Warshall’s algorithm works 

 

As an example, the application of Warshall’s algorithm to the digraph is shown below. New 

1’s are in bold. 
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list of its intermediate vertices does not contain the k

has intermediate vertices numbered not higher than k−
d possibility is that path (*) does contain the kth vertex v

Then path (*) can be rewritten as; 

, vertices numbered ≤ k − 1, vk, vertices numbered ≤ k − 1, v

i.e  r�	
�	
��

� 1 and r	�
�	
��

� 1 

Thus, we have the following formula for generating the elements of matrix R

 
s algorithm works based on the above formula.  

As an example, the application of Warshall’s algorithm to the digraph is shown below. New 
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contain the kth vertex. Then this 

−1. i.e. r��
�	
��

� 1 

vertex vk
 among the 

− 1, vj .   

Thus, we have the following formula for generating the elements of matrix R(k) from the 

As an example, the application of Warshall’s algorithm to the digraph is shown below. New 
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Analysis 

Its time efficiency is Θ(n3). We can make the algorithm to run faster by treating

as bit strings and employ the bitwise or operation

languages. 

Space efficiency: Although separate matrices for recording intermediate results

algorithm are used, that can be avoided. 

 

3. All Pairs Shortest Paths using

Problem definition: Given a weighted connected graph (undirected or directed), the all

shortest paths problem asks to find the distances

each vertex to all other vertices.

Applications: Solution to this problem finds applications in 

networks, and operations research. 

problem is pre-computing distances for motion planning in computer

We store the lengths of shortest paths in an n 

element dij in the ith row and the j

path from the ith vertex to the j

                (a) Digraph.  

We can generate the distance matrix with an algorithm that is very similar to

algorithm. It is called Floyd’s algorithm.

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a 

series of n × n matrices: 
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We can make the algorithm to run faster by treating

as bit strings and employ the bitwise or operation available in most modern computer 

Although separate matrices for recording intermediate results

that can be avoided.  

All Pairs Shortest Paths using Floyd's Algorithm,  

Given a weighted connected graph (undirected or directed), the all

paths problem asks to find the distances—i.e., the lengths of the shortest paths 

each vertex to all other vertices. 

Solution to this problem finds applications in communications, transportation 

tworks, and operations research.  Among recent applications of the all-

computing distances for motion planning in computer games.

the lengths of shortest paths in an n x n matrix D called the distance matrix: the 

row and the jth column of this matrix indicates the length of the shortest 

vertex to the jth vertex. 

 (b) Its weight matrix.   (c) Its distance matrix

We can generate the distance matrix with an algorithm that is very similar to

Floyd’s algorithm.  

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a 
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We can make the algorithm to run faster by treating matrix rows 

available in most modern computer 

Although separate matrices for recording intermediate results of the 

Given a weighted connected graph (undirected or directed), the all-pairs 

shortest paths - from 

communications, transportation 

-pairs shortest-path 

games. 

called the distance matrix: the 

this matrix indicates the length of the shortest 

 
(c) Its distance matrix 

We can generate the distance matrix with an algorithm that is very similar to Warshall’s 

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a 
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The element  ���
���

 in the ith row and the j

. . . , n) is equal to the length of the shortest path among all paths from

vertex with each intermediate vertex, if any, numbered

As in Warshall’s algorithm, we can compute all the elements of each matrix D

immediate predecessor D(k−1) 

If ���
���

� 1, then it means that there is a path; 

vi, a list of intermediate vertices each numbered not higher than k, vj .

We can partition all such paths into two disjoint subsets: those that do not use the

as intermediate and those that do.

i. Since the paths of the first subset have their intermediate vertices numbered not higher 

than k − 1, the shortest of them is, by definition of our matrices, of length 

ii. In the second subset the paths 

vi, vertices numbered ≤

 

The situation is depicted symbolically in Figure

the underlying idea of Floyd’s algorithm.

 

 

 

Taking into account the lengths of the shortest paths in both 

recurrence: 

 

Analysis: Its time efficiency is 
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row and the jth column of matrix D(k) (i, j = 1, 2, . . . , n, 

he length of the shortest path among all paths from the i

vertex with each intermediate vertex, if any, numbered not higher than k. 

As in Warshall’s algorithm, we can compute all the elements of each matrix D

 

, then it means that there is a path;  

vi, a list of intermediate vertices each numbered not higher than k, vj .

We can partition all such paths into two disjoint subsets: those that do not use the

as intermediate and those that do. 

Since the paths of the first subset have their intermediate vertices numbered not higher 

− 1, the shortest of them is, by definition of our matrices, of length 

In the second subset the paths are of the form 

≤ k − 1, vk, vertices numbered ≤ k − 1, vj . 

depicted symbolically in Figure, which shows 

nderlying idea of Floyd’s algorithm.  

account the lengths of the shortest paths in both subsets leads to the following

Its time efficiency is Θ(n3), similar to the warshall’s algorithm.  

Dynamic Programming  
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(i, j = 1, 2, . . . , n,    k = 0, 1, 

the ith vertex to the jth 

As in Warshall’s algorithm, we can compute all the elements of each matrix D(k) from its 

vi, a list of intermediate vertices each numbered not higher than k, vj . 

We can partition all such paths into two disjoint subsets: those that do not use the kth vertex vk 

Since the paths of the first subset have their intermediate vertices numbered not higher 

− 1, the shortest of them is, by definition of our matrices, of length ���
��
��

 

subsets leads to the following 
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Application of Floyd’s algorithm to the digraph 

in bold. 

4. Optimal Binary Search 

A binary search tree is one of the most important data structures in computer

its principal applications is to implement a dictionary, a set of

searching, insertion, and deletion.

If probabilities of searching for elements of a set are known

about past searches it is natural to pose a question about an optimal binary search

which the average number of comparisons in a search is the smallest

As an example, consider four keys A, B, C, and D 

to be searched for with probabilities 0.1, 0.2, 0.4, 

and 0.3, respectively. The figure

14 possible binary search trees containing these 

keys.  
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Application of Floyd’s algorithm to the digraph is shown below. Updated elements are shown 

Optimal Binary Search Trees 

A binary search tree is one of the most important data structures in computer

its principal applications is to implement a dictionary, a set of elements with the operations of 

searching, insertion, and deletion. 

searching for elements of a set are known e.g., from accumulated data 

it is natural to pose a question about an optimal binary search

which the average number of comparisons in a search is the smallest possible.

consider four keys A, B, C, and D 

probabilities 0.1, 0.2, 0.4, 

The figure depicts two out of 

14 possible binary search trees containing these 

Dynamic Programming  
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. Updated elements are shown 

 

A binary search tree is one of the most important data structures in computer science. One of 

elements with the operations of 

e.g., from accumulated data 

it is natural to pose a question about an optimal binary search tree for 

possible. 
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The average number of comparisons in a successful search in

1+ 0.2 *  2 + 0.4 *  3+ 0.3 *  4 = 2.9, an

0.3 *  3= 2.1.  Neither of these two trees is, in fact, optimal. 

For our tiny example, we could find the optimal tree b

with these keys. As a general algorithm, this exhaustive

total number of binary search trees with n keys is equal

So let a1, . . . , an be distinct keys ordered from the smallest to the largest and

the probabilities of searching for them. Let C(i, j) be the smallest

comparisons made in a successful search in a binary se

where i, j are some integer indices, 1

Following the classic dynamic programming approach, we will find values of

smaller instances of the problem, although we are interested just in

recurrence underlying a dynamic programming algorithm, we

to choose a root ak among the keys a

root contains key ak, the left subtree

the right subtree Tj
k+1contains keys a

taking advantage of the principle of optimality here.)

If we count tree levels starting with 1 to make 

the following recurrence relation is obtained:
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comparisons in a successful search in the first of these trees is 0.1 

4 = 2.9, and for the second one it is 0.1 * 2 + 0.2 *

Neither of these two trees is, in fact, optimal.  

For our tiny example, we could find the optimal tree by generating all 14 

with these keys. As a general algorithm, this exhaustive-search approach is unrealistic: the 

total number of binary search trees with n keys is equal to the nth Catalan 

  which grows to infinity as fast as

be distinct keys ordered from the smallest to the largest and

the probabilities of searching for them. Let C(i, j) be the smallest average number of 

comparisons made in a successful search in a binary search tree Ti
j made up of keys a

where i, j are some integer indices, 1≤ i ≤ j ≤ n.  

Following the classic dynamic programming approach, we will find values of

smaller instances of the problem, although we are interested just in C(1, n). To derive a 

recurrence underlying a dynamic programming algorithm, we will consider all possible ways 

among the keys ai, . . . , aj . For such a binary search tree (Figure 8.8), the 

root contains key ak, the left subtree Ti
k−1 contains keys ai, . . . , ak−1 optimally arranged, and 

contains keys ak+1, . . . , aj also optimally arranged. (Note how we are 

advantage of the principle of optimality here.) 

If we count tree levels starting with 1 to make the comparison numbers equal

the following recurrence relation is obtained: 

Dynamic Programming  
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the first of these trees is 0.1 *  

d for the second one it is 0.1 * 2 + 0.2 *  1+ 0.4 *  2 + 

 binary search trees 

approach is unrealistic: the 

 number, 

which grows to infinity as fast as 4n / n1.5 

be distinct keys ordered from the smallest to the largest and let p1, . . . , pn be 

average number of 

made up of keys ai, . . , aj, 

Following the classic dynamic programming approach, we will find values of C(i, j) for all 

C(1, n). To derive a 

will consider all possible ways 

such a binary search tree (Figure 8.8), the 

optimally arranged, and 

also optimally arranged. (Note how we are 

 

the comparison numbers equal the keys’ levels, 
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The two-dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by 

formula (8.8): they are in row i and the columns to the left of 

the rows below row i. The arrows point to the pairs of entries whose sums are computed in 

order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the 

table along its diagonals, starting with

pi, 1≤ i ≤ n, right above it and moving toward the upper right corner.

The algorithm we just sketched computes C(1, n)

successful searches in the optimal binary t

we need to maintain another two

minimum in (8.8) is achieved. The table has the same shape as the table in Figure 8.9 and is 

filled in the same manner, starting with entries R(i, i) = i for 1

its entries indicate indices of the roots of the optimal subtrees, which makes it possible to 

reconstruct an optimal tree for the entire set given.
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dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by 

formula (8.8): they are in row i and the columns to the left of column j and in column j and 

the rows below row i. The arrows point to the pairs of entries whose sums are computed in 

order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the 

table along its diagonals, starting with all zeros on the main diagonal and given probabilities 

 n, right above it and moving toward the upper right corner. 

The algorithm we just sketched computes C(1, n)—the average number of comparisons for 

successful searches in the optimal binary tree. If we also want to get the optimal tree itself, 

we need to maintain another two-dimensional table to record the value of k for which the 

minimum in (8.8) is achieved. The table has the same shape as the table in Figure 8.9 and is 

nner, starting with entries R(i, i) = i for 1≤ i ≤ n. When the table is filled, 

its entries indicate indices of the roots of the optimal subtrees, which makes it possible to 

reconstruct an optimal tree for the entire set given. 

Dynamic Programming  
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dimensional table in Figure 8.9 shows the values needed for computing C(i, j) by 

column j and in column j and 

the rows below row i. The arrows point to the pairs of entries whose sums are computed in 

order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the 

all zeros on the main diagonal and given probabilities 

the average number of comparisons for 

ree. If we also want to get the optimal tree itself, 

dimensional table to record the value of k for which the 

minimum in (8.8) is achieved. The table has the same shape as the table in Figure 8.9 and is 

 n. When the table is filled, 

its entries indicate indices of the roots of the optimal subtrees, which makes it possible to 
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Example:  Let us illustrate the algorithm by applying it to the four

beginning of this section: 

The initial tables look like this:

Let us compute C(1, 2): 

Thus, out of two possible binary trees containing the first two keys, A and B, 

optimal tree has index 2 (i.e., it contains B), and the average number

successful search in this tree is 0.4.

tables: 

Thus, the average number of key comparison

4) = 3, the root of the optimal tree contains the third key, i.e., C. Its

keys A and B, and its right subtree contains just key D. To find the specific structure of these 

subtrees, we find first their roots by

2, the root of the optimal tree containing A and B is B, with A being its left child (and the 

root of the one-node tree: R(1, 1) = 1). Since R(4, 4) = 4, the root of

tree is its only key D. Figure given below

Here is Pseudocode of the dynamic programming algorithm.

Design & Analysis of Algorithms | Module 4: Dynamic Programming 
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Let us illustrate the algorithm by applying it to the four-key set we

 

The initial tables look like this: 

Thus, out of two possible binary trees containing the first two keys, A and B, 

optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a 

successful search in this tree is 0.4. On finishing the computations we get the 

 

Thus, the average number of key comparisons in the optimal tree is equal to

4) = 3, the root of the optimal tree contains the third key, i.e., C. Its left subtree is made up of 

keys A and B, and its right subtree contains just key D. To find the specific structure of these 

, we find first their roots by consulting the root table again as follows. Since R(1, 2) = 

tree containing A and B is B, with A being its left child (and the 

tree: R(1, 1) = 1). Since R(4, 4) = 4, the root of this one

given below presents the optimal tree in its entirety.

 

of the dynamic programming algorithm. 
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key set we used at the 

 

 
Thus, out of two possible binary trees containing the first two keys, A and B, the root of the 

of comparisons in a 

we get the following final 

 

s in the optimal tree is equal to 1.7. Since R(1, 

left subtree is made up of 

keys A and B, and its right subtree contains just key D. To find the specific structure of these 

consulting the root table again as follows. Since R(1, 2) = 

tree containing A and B is B, with A being its left child (and the 

this one-node optimal 

presents the optimal tree in its entirety. 
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5. Knapsack problem  

We start this section with designing a dynamic programming 

problem: given n items of known weights w

of capacity W, find the most valuable subset of the

To design a dynamic programming algorithm, we 

expresses a solution to an instance of the knapsack problem in terms

smaller subinstances. 

Let us consider an instance defined by the first i items, 1

values v1, . . . , vi , and knapsack capacity j, 1 

solution to this instance. We can divide all the subsets of the first i items that fit

of capacity j into two categories: those that do not include th

the following: 

i. Among the subsets that do not include the i

by definition, F(i − 1, j).

ii. Among the subsets that do include the i

made up of this item and an optimal subset of the first i

knapsack of capacity j 

wi). 
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We start this section with designing a dynamic programming algorithm for the

problem: given n items of known weights w1, . . . , wn and values v1, . . . , v

of capacity W, find the most valuable subset of the items that fit into the knapsack.

To design a dynamic programming algorithm, we need to derive a recurrence

expresses a solution to an instance of the knapsack problem in terms 

Let us consider an instance defined by the first i items, 1≤ i ≤ n, with weights w

, and knapsack capacity j, 1 ≤ j ≤ W. Let F(i, j) be the value of an optimal 

We can divide all the subsets of the first i items that fit

of capacity j into two categories: those that do not include the ith item and those that do. Note 

Among the subsets that do not include the ith item, the value of an optimal subset is, 

− 1, j). 

Among the subsets that do include the ith item (hence, j − wi ≥ 0), an optimal subset is 

de up of this item and an optimal subset of the first i−1 items that fits into the 

knapsack of capacity j − wi . The value of such an optimal subset is v

Dynamic Programming  
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algorithm for the knapsack 

, . . . , vn and a knapsack 

items that fit into the knapsack. 

need to derive a recurrence relation that 

 of solutions to its 

 n, with weights w1, . . . , wi, 

 W. Let F(i, j) be the value of an optimal 

We can divide all the subsets of the first i items that fit the knapsack 

item and those that do. Note 

item, the value of an optimal subset is, 

 0), an optimal subset is 

−1 items that fits into the 

. The value of such an optimal subset is vi + F(i − 1, j − 
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Thus, the value of an optimal solution among all feasible subsets of the first 

maximum of these two values.

It is convenient to define the initial conditions as follows:

F(0, j) = 0 for j 

Our goal is to find F(n, W), the maximal value of a subset of the n given items

the knapsack of capacity W, and an optimal subset itself.

Example-1: Let us consider the instance given by the following data:

The dynamic programming table, filled by applying formulas is given below

Thus, the maximal value is F(4, 5) = $37.
 
We can find the composition of an optimal subset by backtracing the computations of this 

entry in the table. Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution 

along with an optimal subset for filling 5 

The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal 

subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element 

F(1, 3 − 1) to specify its remaining composition. Similarl

the final part of the optimal solution {item 1, item 2, item 4}.
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Thus, the value of an optimal solution among all feasible subsets of the first 

maximum of these two values. 

It is convenient to define the initial conditions as follows: 

F(0, j) = 0 for j ≥ 0 and F(i, 0) = 0 for i ≥ 0. 

the maximal value of a subset of the n given items

psack of capacity W, and an optimal subset itself. 

Let us consider the instance given by the following data: 

 
The dynamic programming table, filled by applying formulas is given below

Thus, the maximal value is F(4, 5) = $37.  

the composition of an optimal subset by backtracing the computations of this 

Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution 

along with an optimal subset for filling 5 − 2 = 3 remaining units of the knapsack ca

The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal 

subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element 

− 1) to specify its remaining composition. Similarly, since F(1, 2) > F(0, 2), item 1 is 

the final part of the optimal solution {item 1, item 2, item 4}. 
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Thus, the value of an optimal solution among all feasible subsets of the first I items is the 

 

the maximal value of a subset of the n given items that fit into 

 

The dynamic programming table, filled by applying formulas is given below 

 

the composition of an optimal subset by backtracing the computations of this 

Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution 

− 2 = 3 remaining units of the knapsack capacity. 

The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal 

subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element 

y, since F(1, 2) > F(0, 2), item 1 is 
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Analysis 

The time efficiency and space efficiency of this algorithm are both in 

needed to find the composition of an optimal solution i

 

Memory Functions 

The direct top-down approach

that solves common subproblems more than once and hence is very inefficient

The classic dynamic programming approach, on the other 

table with solutions to all smaller subproblems, but each of

unsatisfying aspect of this approach is that solutions

are often not necessary for getting a so

present in the top-down approach,

and bottom-up approaches.  The goal is to get a method that solves only subproblems that are

necessary and does so only once. Such a method exists; it is based on using 

functions. 

This method solves a given problem in the top

table of the kind that would have been used by a bottom

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they 

have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the 

method checks the corresponding entry in the table first: 

retrieved from the table; otherwise, it is computed by the recursive call whose result is then 

recorded in the table. 

The following algorithm implements this idea for the knapsack problem. After

table, the recursive function needs to be called with i = n (the

(the knapsack capacity). 

Algorithm MFKnapsack(i, j )

//Implements the memory function method for the knapsack problem
//Input: A nonnegative integer i indicating the number of the first

considered and a nonnegative integer j indicating
//Output: The value of an optimal feasible subset of the first i items
//Note: Uses as global variables input ar

table F[0..n, 0..W ] whose entries are initialized with 
row 0 and column 0 initialized with 0’s
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The time efficiency and space efficiency of this algorithm are both in 

needed to find the composition of an optimal solution is in O(n). 

down approach to finding a solution to such a recurrence leads to an algorithm 

subproblems more than once and hence is very inefficient

The classic dynamic programming approach, on the other hand, works bottom up: it fills a 

table with solutions to all smaller subproblems, but each of them is solved only once. An 

unsatisfying aspect of this approach is that solutions to some of these smaller subproblems 

are often not necessary for getting a solution to the problem given. Since this drawback is not 

down approach, it is natural to try to combine the strengths of the top

The goal is to get a method that solves only subproblems that are

nd does so only once. Such a method exists; it is based on using 

This method solves a given problem in the top-down manner but, in addition, maintains a 

table of the kind that would have been used by a bottom-up dynamic programming algori

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they 

have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the 

method checks the corresponding entry in the table first: if this entry is not “null,” it is simply 

retrieved from the table; otherwise, it is computed by the recursive call whose result is then 

The following algorithm implements this idea for the knapsack problem. After

ble, the recursive function needs to be called with i = n (the number of items) and j = W 

MFKnapsack(i, j ) 

//Implements the memory function method for the knapsack problem
A nonnegative integer i indicating the number of the first
considered and a nonnegative integer j indicating the knapsack capacity

The value of an optimal feasible subset of the first i items
Uses as global variables input arrays Weights[1..n], V alues[1..n],
table F[0..n, 0..W ] whose entries are initialized with −1’s except for
row 0 and column 0 initialized with 0’s 
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The time efficiency and space efficiency of this algorithm are both in Θ(nW). The time 

to finding a solution to such a recurrence leads to an algorithm 

subproblems more than once and hence is very inefficient.  

bottom up: it fills a 

them is solved only once. An 

to some of these smaller subproblems 

to the problem given. Since this drawback is not 

it is natural to try to combine the strengths of the top-down 

The goal is to get a method that solves only subproblems that are 

nd does so only once. Such a method exists; it is based on using memory 

down manner but, in addition, maintains a 

up dynamic programming algorithm. 

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they 

have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the 

if this entry is not “null,” it is simply 

retrieved from the table; otherwise, it is computed by the recursive call whose result is then 

The following algorithm implements this idea for the knapsack problem. After initializing the 

number of items) and j = W 

//Implements the memory function method for the knapsack problem 
A nonnegative integer i indicating the number of the first items being 

the knapsack capacity 
The value of an optimal feasible subset of the first i items 

rays Weights[1..n], V alues[1..n], and 
−1’s except for 
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Example-2 Let us apply the memory function method to the instance considered

1. The table in Figure given below

not those in row 0 or in column 0) have been computed.

retrieved rather than being recomputed. For

can be significantly larger. 

Figure: Example of solving an instance of the knapsack problem by the memory function algorithm

 

In general, we cannot expect more than a constant

method for the knapsack problem, because its time efficiency

bottom-up algorithm 

6. Bellman-Ford Algorithm 

Problem definition 

Single source shortest path - Given a gra

from s to all vertices in the given graph. The graph may contain negative weight edges.

Note that we have discussed

Dijksra’s algorithm is a Greedy algorithm and ti

doesn’t work for graphs with negative weight edges

Bellman-Ford works for such graphs. Bellman

well for distributed systems. But time complexity of Bellman

than Dijkstra. 

How it works?  

Like other Dynamic Programming Problems, the 

bottom-up manner. It first calculates the shortest distances for the shortest paths which have 

at-most one edge in the path. Then, it cal

on. After the ith   iteration of outer loop, the

There can be maximum |V| – 

1 times. The idea is, assuming that there is no negative weight cycle, if we have calculated 

shortest paths with at most i edges, then an iteration over all edges guarantees to give shortest 

path with at-most (i+1) edges 
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Let us apply the memory function method to the instance considered

given below gives the results. Only 11 out of 20 nontrivial values (i.e., 

not those in row 0 or in column 0) have been computed. Just one nontrivial entry, V (1, 2), is 

retrieved rather than being recomputed. For larger instances, the proportion of such entries 

Figure: Example of solving an instance of the knapsack problem by the memory function algorithm

In general, we cannot expect more than a constant-factor gain in using the

method for the knapsack problem, because its time efficiency class is the same as that of the 

Ford Algorithm (Single source shortest path with –ve weights)

Given a graph and a source vertex s in graph, find shortest paths 

to all vertices in the given graph. The graph may contain negative weight edges.

e have discussed Dijkstra’s algorithm for single source shortest path 

Dijksra’s algorithm is a Greedy algorithm and time complexity is O(VlogV)

raphs with negative weight edges.  

Ford works for such graphs. Bellman-Ford is also simpler than Dijkstra

well for distributed systems. But time complexity of Bellman-Ford is O(VE), which is more 

Like other Dynamic Programming Problems, the algorithm calculates

up manner. It first calculates the shortest distances for the shortest paths which have 

most one edge in the path. Then, it calculates shortest paths with at-most 2

iteration of outer loop, the shortest paths with at most i edges are calculated. 

 1 edges in any simple path, that is why the outer loop runs |v| 

1 times. The idea is, assuming that there is no negative weight cycle, if we have calculated 

th at most i edges, then an iteration over all edges guarantees to give shortest 
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Let us apply the memory function method to the instance considered in Example 

nontrivial values (i.e., 

Just one nontrivial entry, V (1, 2), is 

stances, the proportion of such entries 

 

Figure: Example of solving an instance of the knapsack problem by the memory function algorithm 

factor gain in using the memory function 

class is the same as that of the 

ve weights) 

in graph, find shortest paths 

to all vertices in the given graph. The graph may contain negative weight edges.  

single source shortest path problem. 

ogV). But Dijkstra 

Ford is also simpler than Dijkstra and suites 

Ford is O(VE), which is more 

algorithm calculates shortest paths in 

up manner. It first calculates the shortest distances for the shortest paths which have 

ost 2 edges, and so 

shortest paths with at most i edges are calculated. 

1 edges in any simple path, that is why the outer loop runs |v| – 

1 times. The idea is, assuming that there is no negative weight cycle, if we have calculated 

th at most i edges, then an iteration over all edges guarantees to give shortest 
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Bellman-Ford algorithm to compute shortest path
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Ford algorithm to compute shortest path 
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7. Travelling Sales Person problem (T2:5.9), 
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Travelling Sales Person problem (T2:5.9),  

Dynamic Programming  

                            Page| 21 

 

 

 

 

 

 

 

 



Lecture Notes | 10CS43 – Design & A

Prerpared by Harivinod N, Dept of CSE, VCET Puttur                               

 

Design & Analysis of Algorithms | Module 4: Dynamic Programming 

Dept of CSE, VCET Puttur                                                      Techjourney.in                 

Dynamic Programming  

                            Page| 22 

 

 

 

 

 

 

 

 



Lecture Notes | 10CS43 – Design & A

Prerpared by Harivinod N, Dept of CSE, VCET Puttur                               

 

 

 

 

Design & Analysis of Algorithms | Module 4: Dynamic Programming 

Dept of CSE, VCET Puttur                                                      Techjourney.in                 

 

 

 

Dynamic Programming  

                            Page| 23 

 

 

 

 

 



Lecture Notes | 10CS43 – Design & A

Prerpared by Harivinod N, Dept of CSE, VCET Puttur                               

 

8. Reliability design 
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