Filter Design Techniques

- Filter

- Filter is a system that passes certain
frequency components and totally
rejects all others

+ Stages of the design filter

- Specification of the desired properties
of the system

- Approximation of the specification using
a causal discrete-time system

- Realization of the system
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Review of discrete-
tfime systems

Frequency response :

« periodic : period = 27

« for areal impulse response h[k]
Magnitude response ‘H Cha )‘ is even function
Phase response /H (e!”) is odd function

e example :
o: | | / Nyquis'r frequency
LI ~J]. el™* = 1-11-11,..
s — T T
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Review of discrete-
time systems

“Popular’ frequency responses for filter design :

low-pass (LP) high-pass (HP) band-pass (BP)
1 - - -
T T 7T
band-stop multi-band
= - - -
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Review of discrete-
time systems

FIR filters” (finite impulse response):
B(2)

ZN

- N

H (z) = =b,+bz+..+b,z

* “Moving average filters” (MA filters)
* N poles at the origin z=0 (hence guaranteed stability)
e N zeros (zeros of B(z)), “all zero” filters
« corresponds to difference equation

y[k] = b,u[k]+ byu[k —1]+ ... + byu[k — N ]
« impulse response

h[0] = b,,h[1] =b,,..., ([N]=b,,h[N +1] = 0,...
~@9‘



Linear Phase FIR Filters

Non-causal zero-phase filters :
example: symmetric impulse response
h[-L].....h[-1],h[0],h[1]....,h[L]
h[k]=h[-K], k=1..L

frequency response is L

_ +L _ L
H(e'*)= > hlk]e** =..=> a, cos(ak)
k=L k=0
- i.e. real-valued (=zero-phase) transfer function
- causal implementation by introducing (group) delay
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Linear Phase FIR Filters

 Causal linear-phase filters = non-causal zero-phase +
delay

example: symmetric impulse response & N even
h[01,h[1],.... h[N] “ | |
N=2L (even)
h{k]=h{N-k], k=0.L 0 N K
frequency response is

: N _ L
H(e'*)=> hlk]le"™ =...=e7 "> a, cos(ak)
=0 0

= i.e. causal implementation of zero-phase filter, by

~ __infroducing (group) delay ,-L _ g el
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Linear Phase FIR Filters

- Type-1 -~ Type-2 | iType-3 IType-4
- N=2L=even | | N=2L+l=odd | {N=2L=even 'N=2L+lzodd |
~ symmetric | | symmetric anti- symme’rr'lc anti-symmetric |

- h[KI=h[N-K] h[k] hIN-k] h[k] -h[N-K] h[k] -h[N-K]

e ij/ZZa COS(a)k) e JmN/zcos(_)Zak cos(a)k) je JaN/zsm(a))zakCOS@k Je JwN/ZSIn(E)Zak cos(a)li(

- izeroat@ =7 | | zeroa’ra)zo’”ii zeroat @ =0 4

LP/HP/BP | | LP/BP Hp



Linear Phase FIR Filters

ulk]
{AF—{ AT A A

o efficient direct-form realization.
example: ( A AT AR

ONONOCHONO
bo . bl. b2! b3. b4l
%) % -0 X X
yK] —®H—EH———

« PS:TIR filters can NEVER have linear-phase property |
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Filter Specification

Ex: LOW"PGSSl.z

Passband Ripple
1
1-6, ] :
P
0.8}
Wp || O

0.6 Passband Cutoff ->|<- Stopband Cutoff
0.-4¢ Stopband Ripple 158
N \/\

O . ! ! L L !
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Filter Design Problem %(

» Design of filters is a problem of
function approximation

* For FIR filter, it implies polynomial
approximation

* For IIR filter, it implies
approximation by a rational function
of z
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Filter Design by Optimization

(I) Weighted Least Squares Design :
 select one of the basic forms that yield linear phase

_ _ L )
°9-TVPel H(elo) = N/2Y" q, cos(wk) =€ N A(0)
k=0

« specify desired frequency response (LP HP,BP,...)
H, () =& N2 A, (o)

 optimization criterion is

e, ¢ L LAy

where \W (@) > 0 is a weighting function



Filter Design by Optimization

F (aoj,.\..,aL)

mxin{xTQx —2X'p+ y}

 ...this is equivalent to
x'=la, a .. a

Q= ]{W (w)c(w)c' (w)dw

p=[W(0)A (0)c(w)do

c"(w)=[1 cos(w) .. cos(Lw)]
U= ..
=standard ‘Quadratic Optimization’ problem
~ XOPT:Q_lp
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Filter Design by
Optimization

« Example: Low-pass design

A (w) =1, ‘a)‘ < wp (pass - band) 0.8}
A (0)=0,0; <|o|<7z (stop-band) °°|
0.4}

optimization function is o2}

®p +z 0 '
F @) = [JA@) -1 do+7. [ Ao} =..
0 g

/

Passband Ripple

Passband Cutoff ->

<- Stopband Cutoff]

Stopband Ripple 7

RN

1 1.5

pass-band stop - band J

l.e.

W(w)=...

—~
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Filter Design by Optimization

« asimpler problem is obtained by replacing the F(..) by...

_ N 2
aO
2
F(ay,...a )= ZW (a)i)‘A(a)i) - A (a)l)‘ = ZW (@)ic" (@) = |-A(@);
| | _aL_
where the w/'s are a set of n sample frequencies
The quadratic optimization problem is then equivalent to a least-squares
problem
i 2 i
min|Ax-b||, =min{x"”  A'A  x-2x"A'b+b'b}
X X — —— =
2 W (@)c(ep)e’ () 22
_(A' A\ LATH Compare to p.12
+++ . simple XLS _(A A) A b " "

--- : unpredictable behavior in between sample frequencies.



Filter Design by Optimization

 ...then dll this is often supplemented with
additional constraints

Example: Low-pass (LP) design  (continued)
pass-band ripple control :

A(@) -1 <6,,|0|<w, (5 ispass-band ripple)

stop-band ripple control :
|A(@)| < 85,05 <|w|< 7 (& isstop-band ripple)
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Filter Design by Optimization

Example: Low-pass (LP) design  (continued)

a realistic way to implement these constraints, is to impose
the constraints (only) on a set of sample frequencies

Wp1sWDpys- Doy in the pass—band
and @51, Dgys..0y Dy in the sTop-band
The resulting optimization problem is :

minimize : F(g ,...,a,)=...

XT:[ao a .. aL]

subject to A,x<b, (pass-band constraints)

A X < b (stop-band constraints)
= " Quadratic Linear Programming’ problem

49'
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Filter Design by Optimization

(IT) " Minimax’ Design:
 select one of the basic forms that yield linear phase
L
e.g. Type-l H (eja)) _ e_ijIZZa[k]COS(a)k) _ e_ij/ZA(a))
0

« specify desired frequency response (LP HP,BP,...)
H,(0) =e """ A, (@)

e optimization criterion is
min maxW(w)\H(eiw)—Hd(w)\_ min max\W ()| A(@) - A, (@)

ao ..... aL nggﬂ' ..... L 0< <r

where W(w) >0 is a weighting function

f‘@'
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Filter Design by Optimization

e Conclusion:
(I) weighted least squares design
(IT) minimax design

provide general * framework’, procedures to
translate filter design problems into standard
optimization problems

e Inpractice (and in textbooks):
emphasis on specific (ad-hoc) procedures :
- filter design based on ‘windows’
- equi-ripple design
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Filter Design using ‘Windows’

Example : Low-pass filter design .
* ideal low-pass filter is

H (o) = 1 ‘a)‘<a)C
a A0 = 0 a)C<‘a)‘<7r 1 -

* hence ideal time-domain impulse response is T

h, [K] = — jHd(eiw)e"“-kda)=...=a5'”(a’ck)
27 * @, K

« truncate hy[K] to N+1 samples : Non-causal and infinitely long

h, [k - N/2<k<N/2

otherwise
« add (group) delay to turn into causal filter

49'
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Filter Design using ‘Windows’

Example : Low-pass filter design (continued)

* note: it can be shown that time-domain ftruncation corresponds to
solving a weighted least-squares optimization problem with the
given Hy, and weighting function () =1

» tfruncation corresponds to applying a ‘rectangular window’ :

h[k] = hy[kIwik]

1 ~-N/2<k<N/2
wlk] = :
0 otherwise

« +++ simple procedure (also for HP,BP,...)
e ---:truncation in the time-domain results in ‘Gibbs effect’ in the

frequency domain, i.e. large ripple in pass-band and stop-band,
which cannot be reduced by increasing the filter order N.
:‘@'
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Filter Design using ‘Windows’

Remedy : apply windows other than rectangular window:

« time-domain multiplication with a window function w[k]
corresponds to frequency domain convolution with W(z) :

hik] = hy[kwik]
H(z) =H,(2)*W(z)

« candidate windows : Han, Hamming, Blackman, Kaiser.,.... (see
textbooks)

« window choice/design = trade-off between side-lobe levels
(define peak pass-/stop-band ripple) and width main-lobe
(defines transition bandwidth)

:‘@'
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Windowing Effect x

H,(e') H(e!)
: (e )
Hd(eJ ) —
% /\\ //\\// ~ /Y
’\\/\ /\/‘ L T —
o Vo | 77 0 V'V Vv Ve

Gibbs phenomenon



Windowing

/Hann ing

_— Bartlett

_Blackman
- Y = n
M2 M
20log,, |7 (™)
0 % Rectangular
N | Bartlett .
1\K 13de; e Hanning
K
R
_40|| Hamming
60—
Blackman
01—
-100 |
A B L (A B B | >

027 047 067 087 T



Equiripple Design

* Starting point is minimax criterion, e.g.
min maxW (o)|A(w) — A, (@)| = min max

a.o ..... aL 0<w<rw ao ..... a|_ 0<w<rx

E(a))‘

* Based on theory of Chebyshev approximation and the ‘alternation
theorem’, which (roughly) states that the optimal a’s are such that
the ‘max’ (maximum weighted approximation error) is obtained at
L+2 extremal frequencies...

max|E ()| = |E(@)| fori=1.,L+2

0<w<r

...That hence will exhibit the same maximum ripple (‘equiripple’)

« Tterative procedure for computing extremal frequencies, etc.
(Remez exchange algorithm, Parks-McClellan algorithm)

« Very flexible, etc., available in many software packages
e Details omitted here (see textbooks)
4@'

(




Software

» FIR Filter design abundantly available in
commercial software

e Matlab:

b=firl(n,Wn,type window), windowed linear-phase FIR design,
nis filter order, Wn defines band-edges, type is
“high’,” stop’,...

b=fir2(n,f,mwindow), windowed FIR design based on inverse
Fourier transform with frequency points f and
corresponding magnitude response m

b=remez(n,f,m), equiripple linear-phase FIR design with
Parks-McClellan (Remez exchange) algorithm
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