Analog IIR Filter Design

Commonly used analog filters :

* Lowpass Butterworth filters G(jo)=|H(jo) = i) -
all-pole filters characterized 1+(0)c)
by magnitude response. 1
(N=filter order) G(s)=H(s)H(-s) = . (_Sz)N

+ 2

c

Poles of H(s)H(-s) are equally spaced points on a circle of
radius@, in s-plane

poles of H(s) N=4
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Butterworth Filters

« Lowpass Butterworth filters
monotonic in pass-band & stop-band

TN
N

@,

“maximum flat response’: (2N-1) derivatives are zero at

=0 agnd ® =
49'



Analog IIR Filter Design

Commonly used analog filters :
« Lowpass Chebyshev filters (type-I)

all-pole filters characterized by magnitude response
1 (N=filter order)

G(jo)=|H(jo)" = -
1+52TN2(—)

a)C
G(s) = H(s)H (=s) To(x) =1
Tl(X) =X

€ is related to passband ripple
P PP T,(x)=2x* -1

T, (X) are Chebyshev polynomials:

= TN (X) — 2XTN—1(X) _TN—Z(X)
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Chebyshev & Elliptic Filters

« Lowpass Chebyshev filters (type-I)
— All-pole filters, poles of H(s)H(-s) are on ellipse in s-plane
— Equiripple in the pass-band
— Monotone in the stop-band
« Lowpass Chebyshev filters (type-II)
— Pole-zero filters based on Chebyshev polynomials
— Monotone in the pass-band

— Equiripple in the stop-band 1

o | 1+6U,(2)
« Lowpass Elliptic (Cauer) filters @,
— Pole-zero filters based on Jacobian elliptic functions

— Equiripple in the pass-band and stop-band
— (hence) yield smallest-order for given set of specs
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Analog IIR Filter Design

Frequency Transformations :

Principle : prototype low-pass filter (e.g. cut-off frequency
= 1 rad/sec) is transformed to properly scaled low-pass,
high-pass, band-pass, band-stop,... filter

S
example: replacing s by o, Moves cut-off frequency to o,

example: replacing s by %c turns LP into HP, with cut-off «
frequency S

2
i L turns LP into BP

example: replacing s by (@ — )
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Analog -> Digital

* Principle :
— design analog filter (LP/HP/BP/...), and then convert it to a
digital filter.
« Conversion methods:
— convert differential equation into difference equation

— convert continuous-time impulse response into discrete-
time impulse response

— convert transfer function H(s) into transfer function H(z)
* Requirement:

— the left-half plane of the s-plane should map into the
inside of the unit circle in the z-plane, so that a stable
analog filter is converted into a stable digital filter.
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Analog -> Digital

(I) convert differential equation into difference equation :

— in a difference equation, a derivative dy/dt is replaced by a
‘backward difference’ (y(kT)-y(kT-T))/T=(y[k]-y[k-1])/T,
where T=sampling interval.

— similarly, a second derivative, and so on.

— eventually (details omitted), this corresponds to replacing s by
(1-1/z)/T in H(s) (=analog transfer func’rion) P H(z)=H (s)\ 1_2-1

jw ‘
s-plane z-plane
. > ‘ s=0=1z=1
S=00=>7=

— stable analog filters are mapped into stable digital filters, but
pole location for digital filter confined to only a small region

N (o.k. only for LP or BP)
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Analog -> Digital

(IT) convert continuous-time impulse response into discrete-time
impulse response :
— given continuous-time impulse response h (1), discrete-time impulse
response is hk] = h, (kT,) where T =sampling interval.
— eventually (details omitted) this corresponds to a (many-to-one)

mapping
1w =
7 =gl s-plane — z-plane _
> |
s=0=>1z=1 1

S=tjzlTy=>2=-1

— aliasing (1) if continuous-time response has significant frequency
content above the Nyquist frequency (i.e. not bandlimited)
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Example: Filter Design by
Impulse Invariance

If h.(¢)1s the impulse response of continuous-time filter, and

h.(nT,) 1s equally spaced samples of it.
Let hin]=T,4h.(nTy) (7.4)

then the corresponding {frequency responses meet following
equation:

: | = @ 2
H(e'")=T) -— > H.(j—+j—k) (7.5)
Td k=—o0 Td Td

If the continuous-time filter 1s band-limited, so that

H.(jQ)=0, |Q>7/T, (7.6)
then
H(e'*)=H (jz). |o|<z (1.7)
d



[f the continuous-time filter 1s not band-limited, then the interferenoe\
(aliasing) between successive terms exists

-t -1 T 2 @
(22/T) (7/T) (=T Q) 0
b Unit circle
JIm(z)4
/T /
Many—‘l'o-one mapping .................. : /‘\ el
......... ;W >
.......... WL




Example: A Low-Pass Filter

Specifications:
0.89125<|H(e™)|<1, 0<|w|<0.27 (7.13a)
H(e™)|<0.17783, 037 <|o|<x (7.13b)

Choose 7,= 1 (1.e. @ =€) ), from Eq.(7.7) we obtain

Q

T,
Then 0.89125<|H (jQ)|<1, 0<|Q<0.27

|H (j©Q)[<0.17783, 037 <[Q<7z

H(')=H.(j—), |o|<x

Let Q,=027,and Q =0.37 then

_f=r H.(j0.27)]>0.89125
@ H.(j0.37)<0.17783,




1
[+(Q/Q )"

2N 2
0.37 ( 1 j
+| —— =
Q. 0.17783

2

By using Butterworth filter, then |H (jQ)

2N 2
027 ( 1 )
4| —=| =
Q 0.89125

c

Consequently,

Then :
[
2N ~1
[0.27:} _\0.89125) N-5 8858
037) (1 Y, =) =9
0.17783

Since N must be integer. So, N=6. And we obtain 2.=0.7032

We can obtain 12 poles of |H_(s)|2. They are uniformly distributed in
angle on a circle of radius ©.=0.7032

1 jIm(z)
/07032 -

X, _ X
A\




SO HC (S) = KOZO.12093
[T6s-s50)
so that _
H(s) = 0.12093

(57 +0.36405 +0.4945)(s* +0.99455 + 0.4945)(s* +1.35855 + 0.4945)

Discrete Filter

0.2871—0.4466z"" N —2.1428+1.1455z7"
1-1.2971z71 +0.6949z> 1-1.0691z7" +0.3699-72
1.8557 —0.6303z "

+ — —. (7.19)
1-0.9972z7 +0.2570- 2

H(z) =

'y |HI:E.J'6J )

Figure 7.6 (b) Frequency response
of sixth-order Butterworth filter
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Analog -> Digital

e (III) convert continuous-time system transfer function into
discrete-time system transfer function : Bilinear Transform

— mapping that transforms (wholel) jw-axis of the s-plane into
unit circle in the z-plane only once, i.e. that avoids aliasing of
the frequency components.

H(z) =H,(s)|_2 02"

T 1+Z_1) S:j.OO:>Z:—1

s-plane w RN Z'p|ane/;\j :
| "
ST

— for low-frequencies, this is an approximation of Z =€
— for high frequencies : significant frequency compression
(" warping’)
A=p" sometimes pre-compensated by ‘pre-warping’

(

s=0=>1z=1

Non-linear transform



|H.( Q)

SHE 2 1-e/?

s =—(

fd l+e

)

—jo

i
|
|
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|
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——  —

2 [2jsin(a)/2)]_ 27
I, 2cos(w/2) T,

tan
tan

tan(w / 2)

2
‘Td
2
Tn’

2
[f o =0, then Q=—tan(w/2)
Q= 2 tan (9) 1"”
2

P

The bilinear transformation avoids
| the problem of aliasing problem

\
‘Q'p ‘Q'.r

|

|

|

i because it maps the entire

| imaginary axis of the s-plane onto
o the unit circle in the z-plane. The

i price paid for this, however, is the

| nonlinear compression the

| frequency axis (warping).

|




Conclusions/Software

« IIR filter design considerably more complicated
than FIR design (stability, phase response, etc..)

* (Fortunately) IIR Filter design abundantly available
in commercial software

* Matlab:
[b,a]=butter/chebyl/cheby2/ellip(n,..., Wn),

ITR LP/HP/BP/BS design based on analog prototypes, pre-warping,
bilinear transform, ...
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