
Discrete Fourier Transform (DFT)

Recall the DTFT:

X(ω) =
∞∑

n=−∞
x(n)e−jωn.

DTFT is not suitable for DSP applications because

• In DSP, we are able to compute the spectrum only at specific
discrete values of ω,

• Any signal in any DSP application can be measured only in
a finite number of points.

A finite signal measured at N points:

x(n) =

 0, n < 0,
y(n), 0 ≤ n ≤ (N − 1),
0, n ≥ N,

where y(n) are the measurements taken at N points.



Sample the spectrum X(ω) in frequency so that

X(k) = X(k∆ω), ∆ω =
2π

N
=⇒

X(k) =
N−1∑
n=0

x(n)e−j2πkn
N DFT.

The inverse DFT is given by:

x(n) =
1
N

N−1∑
k=0

X(k)ej2πkn
N .

x(n) =
1
N

N−1∑
k=0

{
N−1∑
m=0

x(m)e−j2πkm
N

}
ej2πkn

N

=
N−1∑
m=0

x(m)

{
1
N

N−1∑
k=0

e−j2π
k(m−n)

N

}
︸ ︷︷ ︸

δ(m−n)

= x(n).



The DFT pair:

X(k) =
N−1∑
n=0

x(n)e−j2πkn
N analysis

x(n) =
1
N

N−1∑
k=0

X(k)ej2πkn
N synthesis.

Alternative formulation:

X(k) =
N−1∑
n=0

x(n)W kn ←−W = e−j2π
N

x(n) =
1
N

N−1∑
k=0

X(k)W−kn.





Periodicity of DFT Spectrum

X(k + N) =
N−1∑
n=0

x(n)e−j2π
(k+N)n

N

=

(
N−1∑
n=0

x(n)e−j2πkn
N

)
e−j2πn

= X(k)e−j2πn = X(k) =⇒

the DFT spectrum is periodic with period N (which is expected,
since the DTFT spectrum is periodic as well, but with period
2π).

Example: DFT of a rectangular pulse:

x(n) =
{

1, 0 ≤ n ≤ (N − 1),
0, otherwise.

X(k) =
N−1∑
n=0

e−j2πkn
N = Nδ(k) =⇒

the rectangular pulse is “interpreted” by the DFT as a spectral
line at frequency ω = 0.



DFT and DTFT of a rectangular pulse (N=5)



Zero Padding

What happens with the DFT of this rectangular pulse if we
increase N by zero padding:

{y(n)} = {x(0), . . . , x(M − 1),0, 0, . . . , 0︸ ︷︷ ︸
N−M positions

},

where x(0) = · · · = x(M − 1) = 1. Hence, DFT is

Y (k) =
N−1∑
n=0

y(n)e−j2πkn
N =

M−1∑
n=0

y(n)e−j2πkn
N

=
sin(πkM

N )
sin(π k

N )
e−jπ

k(M−1)
N .



DFT and DTFT of a Rectangular Pulse with
Zero Padding (N = 10, M = 5)

Remarks:

• Zero padding of analyzed sequence results in
“approximating” its DTFT better,

• Zero padding cannot improve the resolution of spectral
components, because the resolution is “proportional” to
1/M rather than 1/N ,

• Zero padding is very important for fast DFT implementation
(FFT).



Matrix Formulation of DFT

Introduce the N × 1 vectors

x =


x(0)
x(1)

...
x(N − 1)

, X =


X(0)
X(1)

...
X(N − 1)

 .

and the N ×N matrix

W =


W 0 W 0 W 0 · · · W 0

W 0 W 1 W 2 · · · WN−1

W 0 W 2 W 4 · · · W 2(N−1)

... ... ... ... ...

W 0 WN−1 W 2(N−1) · · · W (N−1)2

 .

DFT in a matrix form:

X =Wx.

Result: Inverse DFT is given by

x =
1
N
WHX,



which follows easily by checkingWHW =WWH = NI, where
I denotes the identity matrix. Hermitian transpose:

xH = (xT )∗ = [x(1)∗, x(2)∗, . . . , x(N)∗].

Also, “∗” denotes complex conjugation.

Frequency Interval/Resolution: DFT’s frequency resolution

Fres ∼
1

NT
[Hz]

and covered frequency interval

∆F = N∆Fres =
1
T

= Fs [Hz].

Frequency resolution is determined only by the length of
the observation interval, whereas the frequency interval is
determined by the length of sampling interval. Thus

• Increase sampling rate =⇒ expand frequency interval,

• Increase observation time =⇒ improve frequency resolution.

Question: Does zero padding alter the frequency resolution?



Answer: No, because resolution is determined by the length of
observation interval, and zero padding does not increase this
length.

Example (DFT Resolution): Two complex exponentials with
two close frequencies F1 = 10 Hz and F2 = 12 Hz sampled
with the sampling interval T = 0.02 seconds. Consider various
data lengths N = 10, 15, 30, 100 with zero padding to 512
points.

DFT with N = 10 and zero padding to 512 points.
Not resolved: F2 − F1 = 2 Hz < 1/(NT ) = 5 Hz.



DFT with N = 15 and zero padding to 512 points.
Not resolved: F2 − F1 = 2 Hz < 1/(NT ) ≈
3.3 Hz.

DFT with N = 30 and zero padding to 512 points.
Resolved: F2 − F1 = 2 Hz > 1/(NT ) ≈ 1.7 Hz.



DFT with N = 100 and zero padding to 512
points. Resolved: F2 − F1 = 2 Hz > 1/(NT ) =
0.5 Hz.



DFT Interpretation Using
Discrete Fourier Series

Construct a periodic sequence by periodic repetition of x(n)
every N samples:

{x̃(n)} = {. . . , x(0), . . . , x(N − 1)︸ ︷︷ ︸
{x(n)}

, x(0), . . . , x(N − 1)︸ ︷︷ ︸
{x(n)}

, . . .}

The discrete version of the Fourier Series can be written as

x̃(n) =
∑

k

Xke
j2πkn

N =
1
N

∑
k

X̃(k)ej2πkn
N =

1
N

∑
k

X̃(k)W−kn,

where X̃(k) = NXk. Note that, for integer values of m, we
have

W−kn = ej2πkn
N = ej2π

(k+mN)n
N = W−(k+mN)n.

As a result, the summation in the Discrete Fourier Series (DFS)
should contain only N terms:

x̃(n) =
1
N

N−1∑
k=0

X̃(k)ej2πkn
N DFS.



Inverse DFS

The DFS coefficients are given by

X̃(k) =
N−1∑
n=0

x̃(n)e−j2πkn
N inverse DFS.

Proof.

N−1∑
n=0

x̃(n)e−j2πkn
N =

N−1∑
n=0

 1
N

N−1∑
p=0

X̃(p)ej2πpn
N

 e−j2πkn
N

=
N−1∑
p=0

X̃(p)

{
1
N

N−1∑
n=0

ej2π
(p−k)n

N

}
︸ ︷︷ ︸

δ(p−k)

= X̃(k).

2

The DFS coefficients are given by

X̃(k) =
N−1∑
n=0

x̃(n)e−j2πkn
N analysis,

x̃(n) =
1
N

N−1∑
k=0

X̃(k)ej2πkn
N synthesis.



• DFS and DFT pairs are identical, except that

− DFT is applied to finite sequence x(n),
− DFS is applied to periodic sequence x̃(n).

• Conventional (continuous-time) FS vs. DFS

− CFS represents a continuous periodic signal using an
infinite number of complex exponentials,
whereas

− DFS represents a discrete periodic signal using a finite
number of complex exponentials.



DFT: Properties

Linearity

Circular shift of a sequence: if X(k) = DFT {x(n)} then

X(k)e−j2πkm
N = DFT {x((n−m) modN)}

Also if x(n) = DFT −1{X(k)} then

x((n−m) modN) = DFT −1{X(k)e−j2πkm
N }

where the operation modN denotes the periodic extension
x̃(n) of the signal x(n):

x̃(n) = x(n modN).



DFT: Circular Shift

N−1∑
n=0

x((n−m)modN)W kn

= W km
N−1∑
n=0

x((n−m)modN)W k(n−m)



= W km
N−1∑
n=0

x((n−m)modN)W k(n−m)modN

= W kmX(k),

where we use the facts that W k(lmodN) = W kl and that the
order of summation in DFT does not change its result.

Similarly, if X(k) = DFT {x(n)}, then

X((k −m)modN) = DFT {x(n)ej2πmn
N }.

DFT: Parseval’s Theorem

N−1∑
n=0

x(n)y∗(n) =
1
N

N−1∑
k=0

X(k)Y∗(k)

Using the matrix formulation of the DFT, we obtain

yHx =
(

1
N

WHY
)H ( 1

N
WHY

)
=

1
N2

YH WWH︸ ︷︷ ︸
NI

X =
1
N

YHX.



DFT: Circular Convolution

If X(k) = DFT {x(n)} and Y (k) = DFT {y(n)}, then

X(k)Y (k) = DFT {{x(n)}~ {y(n)}}

Here, ~ stands for circular convolution defined by

{x(n)}~ {y(n)} =
N−1∑
m=0

x(m)y((n−m) modN).

DFT {{x(n)}~ {y(n)}}

=
N−1∑
n=0

[∑N−1
m=0 x(m)y((n−m) modN)

]
︸ ︷︷ ︸

{x(n)}~{y(n)}

W kn

=
N−1∑
m=0

[∑N−1
n=0 y((n−m) modN)W kn

]
︸ ︷︷ ︸

Y (k)W km

x(m)

= Y (k)
N−1∑
m=0

x(m)W km

︸ ︷︷ ︸
X(k)

= X(k)Y (k).



Discrete Fourier Transform 

 What is Discrete Fourier Transform (DFT)? 

(Note: It’s not DTFT – discrete-time Fourier transform) 

 A linear transformation (matrix) 

 Samples of the Fourier transform (DTFT) of an aperiodic (with finite duration) sequence 

 Extension of Discrete Fourier Series (DFS) 

 Review: FT, DTFT, FS, DFS 
Time signal Transform Coeffs. 

 (periodic/aperiodic) 
Coeffs. (con-
ti./discrete) 

Analog aperiodic FT Aperiodic Continuous 
Analog periodic FT 

FS 
Aperiodic 
Aperiodic 

Continuous (impulse)
Discrete 

Discrete aperiodic DTFT Periodic Continuous 
Discrete periodic DFS Periodic Discrete 
Discrete finite-duration DFT   

 
 
 The Discrete Fourier Series 
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 DFS for periodic sequences  
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Its DFS representation is defined as follows:   
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Analysis equation:    
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               Example: Periodic Rectangular Pulse Train  
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 Sampling the Fourier Transform 
Compare two cases: 

(1) Periodic sequence   ][
~~ kXnx   

(2) Finite duration sequence  nx  = one period of  nx~  

An aperiodic sequence: 
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If x[n] has finite length and we take a sufficient number of equally spaced samples of its 

Fourier Transform ( a number greater than or equal to the length of x[n]), then x[n] is re-

coverable from [n]x~ . 

 

 Two ways (equivalently) to define DFT: 
(1) N samples of the DTFT of a finite duration sequence  nx  

(2) Make the periodic replica of  nx    nx~  

Take the DFS of  nx~  

Pick up one segment of ][
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kX  
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 Properties of the Discrete Fourier Series 

-- Similar to those of FT and z-transform 

 

 Linearity 
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 Shift 
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 Duality 

Def:    
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 Symmetry      kXnx ~~   
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 Periodic Convolution  

   nxnx 21
~,~  are periodic sequences with period N 
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 Discrete Fourier Transform 
 Definition   
     nx : length N, 10  Nn  

    Making the periodic replica:  
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      Keep one segment (finite duration) 
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      This finite duration sequence ][kX  is the discrete Fourier transform (DFT) of  nx  
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      Remark: DFT formula is the same as DFS formula. Indeed, many properties of DFT are de-

rived from those of DFS. 

   
 

 



 Properties of Discrete Fourier Transform 
 Linearity  
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 Circular Shift  

       kXnx    ==> 
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      (Pf)  From the right side of the 2nd eqn. 
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      Remark:  This is circular shift not linear shift. (Linear shift of a periodic sequence = circular 

shift of a finite sequence.) 

 

 

 



 Duality 
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 Symmetry Properties 
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 Circular Convolution 
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Example: N-point circular convolution of two constant sequences of length N 

 

 

2L-point circular convolution of two constant sequences of length L 

 

 
 

 

 

 



 Linear Convolution Using DFT 
 Why using DFT?  There are fast DFT algorithms (FFT) 

 

 

 How to do it? 

(1) Compute the N-point DFT of  nx1  and  nx2  separately  

  kX1  and  kX 2
 

(2) Compute the product      kXkXkX 213   

(3) Compute the N-point IDFT of  kX 3
   nx3  

 Problems:  (a) Aliasing 

                       (b) Very long sequence 



 Aliasing 

     nx1 , length L (nonzero values) 

     nx2 , length P 

In order to avoid aliasing, 1 PLN  

(What do we mean avoid aliasing?  The preceding procedure is circular convolution but we 

want linear convolution. That is,  nx3  equals to the linear convolution of  nx1
 and  nx2 )  

 
 

 

 



   nx1  pad with zeros  length N 

   nx2  pad with zeros  length N 

 

      Interpretation: (Why call it aliasing?)    

       kX 3
 has a (time domain) bandwidth of size 1 PL  

           (That is, the nonzero values of  nx3
 can be at most 1 PL ) 

      Therefore,  kX3
 should have at least 1 PL  samples.  If the sampling rate is insuf-

ficient, aliasing occurs on  nx3 .  

 
 

 

 



 Very long sequence  (FIR filtering) 

 Block convolution 

 Method 1 – overlap and add  

              Partition the long sequence into sections of shorter length. 

              For example, the filter impulse response  nh  has finite length P and the input data  nx  

is nearly “infinite”. 
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               The system (filter) output is a linear convolution: 
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              Remark: The convolution length is 1 PL .  That is, the 1 PL  point DFT is used. 
                       nyr

 has 1 PL  data points; among them, (P-1) points should be added 

to the next section.  

 

 

               This is called overlap-add method. 

               (Key: The input data are partitioned into nonoverlapping sections  the section outputs 

are overlapped and added together.) 



 Method 2 – overlap and save 

               Partition the long sequence into overlapping sections.  

               After computing DFT and IDFT, throw away some (incorrect) outputs. 

               For each section (length L, which is also the DFT size), we want to retain the correct 
data of length ))1((  PL  points 

 

Let  nh , length P 

                       nxr , length L (L>P) 

                  Then,  nyr
 contains (P-1) incorrect points at the beginning.  

                  Therefore, we divide into sections of length L but each section overlaps the preceding 

section by (P-1) points. 
                              1-Ln0  ,11  PPLrnxnxr  

This is called overlap-save method. 
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