Discrete Fourier Transform (DFT)

Recall the DTFT:

X(w) = Z z(n)e 79m,

n=——oo

DTFT is not suitable for DSP applications because

e In DSP, we are able to compute the spectrum only at specific
discrete values of w,

e Any signal in any DSP application can be measured only in
a finite number of points.

A finite signal measured at N points:

0, n <0,
(n) =4 y(n), 0<n<(N-1),
0, n >N,

where y(n) are the measurements taken at N points.



Sample the spectrum X (w) in frequency so that

2
X(k) = X(kAw), Aw= WW —
N—1 L
X(k) = )Y ax(n)e >N DFT.
n=0
The inverse DFT is given by:
1 ity k
z(n) =+ ;;) X (k)e?*™ N




The DFT pair:

N-1 )
X(k) = z(n)e 92"N  analysis
n=0
1 v k
r(n) = NZX(]{)GJQWW” synthesis.
k=0

Alternative formulation:

N—-1

X(k) = ()W W = eI
n=0
1N—l

r(n) = N X (k)W —Fn



Schematic
representation

of DFT
X(k)




Periodicity of DFT Spectrum

the DFT spectrum is periodic with period NV (which is expected,
since the DTFT spectrum is periodic as well, but with period
27).

Example: DFT of a rectangular pulse:

2(n) = I, 0<n<(N-1),
] 0, otherwise.

N-1
X(k)= Y e ™R = No(k) =
n=0
the rectangular pulse is “interpreted” by the DFT as a spectral
line at frequency w = 0.



DFT and DTFT of a rectangular pulse (N=5)
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Zero Padding

What happens with the DFT of this rectangular pulse if we
increase N by zero padding:

{y(n)} ={x(0),...,x(M — 1),9,0,; .,0 },
N—M positions

where £(0) =--- =x(M — 1) = 1. Hence, DFT is
N-1 L M .
Y(k) = D yn)e TN = y(n)e X
n=0 n=0
B Sin(ﬂk—M)e_jﬁk(%—l)

N
sin(m4)



DFT and DTFT of a Rectangular Pulse with
Zero Padding (N = 10, M =5)
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Remarks:

e Zero padding of analyzed sequence results in
“approximating” its DTFT better,

e /ero padding cannot improve the resolution of spectral

components, because the resolution is “proportional” to
1/M rather than 1/N,

e /Zero padding is very important for fast DFT implementation
(FFT).



Matrix Formulation of DFT

Introduce the N x 1 vectors

(N —1)

and the N x N matrix

WO
Wl

DFT in a matrix form:

X = We.

Result: Inverse DFT is given by

HK
_—
w—NW 9




which follows easily by checking WHW = WW*# = NI, where
I denotes the identity matrix. Hermitian transpose:

Also, "™*" denotes complex conjugation.

Frequency Interval/Resolution: DFT's frequency resolution

1
FresN— H
~7  (HZ]

and covered frequency interval

1
AF =NAFe=7=F [He.

Frequency resolution is determined only by the length of
the observation interval, whereas the frequency interval is
determined by the length of sampling interval. Thus

e Increase sampling rate = expand frequency interval,

e Increase observation time = improve frequency resolution.

Question: Does zero padding alter the frequency resolution?



Answer: No, because resolution is determined by the length of
observation interval, and zero padding does not increase this

length.

Example (DFT Resolution): Two complex exponentials with
two close frequencies F; = 10 Hz and F5 = 12 Hz sampled
with the sampling interval T" = 0.02 seconds. Consider various
data lengths N = 10,15,30,100 with zero padding to 512

points.

IDFT{E)

FREQUENCY (HZ)

DFT with N = 10 and zero padding to 512 points.
Not resolved: Fy, — F; =2Hz < 1/(NT) =5 Hz.
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FREQUENCY (HZ)

DFT with NV = 15 and zero padding to 512 points.
Not resolved: Fo — F; = 2 Hz < 1/(NT) =~
3.3 Hz.
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DFT with N = 30 and zero padding to 512 points.
Resolved: Fy, — Fy =2Hz > 1/(NT) ~ 1.7 Hz.



IDFT(H)

FREQUENCY (HZ)

DFT with N = 100 and zero padding to 512
points. Resolved: F, — F} =2 Hz > 1/(NT) =
0.5 Hz.



DFT Interpretation Using
Discrete Fourier Series

Construct a periodic sequence by periodic repetition of x(n)
every N samples:

{z(n)} ={...,2(0),...,2(N —1),2(0),...,2(N —1),...}
{w(n)} {w(n)}

The discrete version of the Fourier Series can be written as
~ _ jomkn 1 v jomkn 1 Y —kn
Z(n) = ;Xkej e %:X(k)ej o ;X(k)W ,

where X (k) = NX,. Note that, for integer values of m, we
have

W—kn _ ejZWkWn _ 6j27TT _ W—(k—FmN)n.

As a result, the summation in the Discrete Fourier Series (DFS)
should contain only IV terms:

1 Ay k
~ X (k)e’*™N  DFS.

k=0

z(n) =



Inverse DFS

The DFS coefficients are given by

N-1
X (k) = Z f(n)e_j%%n inverse DFS.
n=0
Proof.
N-1 ON-1 [ N1 i
S smere 5 {13 ggpemnt | ot
n=0 n=0 p=0
ity 1 i (p—k)
B ~ o n T
3 K {5 3 e |- o
p=0 < n=0 P
5(p—F)
]

The DFS coefficients are given by

N-1
X(k) = Zi(n)e_ﬂ”%ﬂ analysis,
n=0
| N-1 o
z(n) = NZX(]{)BJQWW” synthesis.

k=0



e DFS and DFT pairs are identical, except that

— DFT is applied to finite sequence xz(n),
— DFS is applied to periodic sequence x(n).

e Conventional (continuous-time) FS vs. DFS

— CFS represents a continuous periodic signal using an
infinite number of complex exponentials,
whereas

— DFS represents a discrete periodic signal using a finite
number of complex exponentials.



DFT: Properties

Linearity

Circular shift of a sequence: if X (k) = DF7T{x(n)} then
X (k)e 2% = DFT {z((n — m) mod N)}
Also if (n) = DFT '{X(k)} then
2((n —m)mod N) = DFT X (k)e 927

where the operation mod N denotes the periodic extension
z(n) of the signal x(n):

z(n) = x(nmod N).



DFT: Circular Shift

nnnnnn tional shift circular shift
' '

L i
B —r (o,
B i

z_: z((n — m)modN)Wk"

N-1
= Whm Z z((n — m)modN)Wkrn—m)
=0



_ ka Zm n —m mOdN)Wk(n m)mod N
— mew%

where we use the facts that Wk(modN) — 17kl and that the
order of summation in DFT does not change its result.

Similarly, if X (k) = DF7{x(n)}, then

X ((k —m)modN) = DFT {z(n)e’?™ V' }.

DFT: Parseval’s Theorem

N—-1 N-—-1

Y atmyn) = 3 X(k)Y

n=0 k=0
Using the matrix formulation of the DFT, we obtain
1 e
H H H
= |(=W"Y —W2Y
e = () ()
1 1

:——YHWWHX_—YHX
N2~ = N



DFT: Circular Convolution

If X (k) = DFT{x(n)} and Y (k) = DFT {y(n)}, then
X (k)Y (k) =DFT {{z(n)} ® {y(n)}}

Here, ® stands for circular convolution defined by

(z(m)} @ {ym)} = 3 z(m)y((n —m) mod N).

DFT {{z(n)} ® {y(n)}}

= [ZN_lx(m)y((n — m) mod N)lW"m

m=0
{z(n)}&{y(n)}

=3 [0S wn — m) mod NYWE?| a(m)

\ 7/

N—1
= Y)Y ax(m)W =X (k)Y (k)
m=0




Discrete Fourier Transform

e What is Discrete Fourier Transform (DFT)?
(Note: It’s not DTFT — discrete-time Fourier transform)
B A linear transformation (matrix)

B Samples of the Fourier transform (DTFT) of an aperiodic (with finite duration) sequence
B Extension of Discrete Fourier Series (DFS)

e Review: FT, DTFT, FS, DFS

Time signal Transform Coeffs. Coeffs. (con-
(periodic/aperiodic) ti./discrete)
Analog aperiodic FT Aperiodic Continuous
Analog periodic FT Aperiodic Continuous (impulse)
FS Aperiodic Discrete

Discrete aperiodic DTFT Periodic Continuous
Discrete periodic DFS Periodic Discrete
Discrete finite-duration DFT

<> The Discrete Fourier Series

e Properties of W,

27
-j=—=k
JN

_ilrm
W, =e”’ N thus WE=e

-~ W,, is periodic with period N. (It is essentially cos and sin) : W § =W =" =w {**"

Nt N if | =mN
-- W Ik — |
2y {o, if I¢mN}

(P () IfF1=m-N, W =w*"=wJ =1
N-1 N-1
SWy=>1=N
k=0 k=0
(i) IfFl=m-N, Wy =1

C1-wl 1wy

- Y[I]:;I:Z_:WN”‘ = if[l—mN]

wa.k 1-wM 11
k=0 N




DFES for periodic sequences

X[n]

X[n]=X[n+rN],  period N
Its DFS representation is defined as follows:
Synthesis equation: ¢r1_ 1 N7 gy Pk AN
wlnl= | S RUE" = &SR Ik,
Analysis equation: R[] = Nfi[n}N kn
n=0

Note: The tilde in X indicates a periodic signal.
X [k] is periodic of period N.
Pf =~ 1 s —kn

) 7)== 3 Rl *

N %o

Pickanr (0<r<N)

AW > X[ —%ii[k}\NN"‘” W,
N_l~ m S S —kn m
> X[njwy —fZ > X[y ™ wy

N -1 n=0 n=0 k=0

N-1

K N SRS, )

= x[o]-0+ x[1]-0+.--+ X[k=r]-1+--
= X[r]

>
Il
o

Il
=
iR
1

That is, )Z[r] [n m, QED

N

>
]
o



Example: Periodic Rectangular Pulse Train
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<> Sampling the Fourier Transform

Compare two cases:

(1)  Periodic sequence X[n]<> X[K]

(2)  Finite duration sequence x[n] = one period of )’Z[n]

An aperiodic sequence:

xt) - FT > X(jQ)
4 samples 17

x[n]— DTFT - X (/)

xn]  —>FT > X()
12 4 samples
X[n]« IDFS « X[]=X(e")| .,

Compare:
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Figure 8.7 Points on the unit circle at
which X(2) is sampled to obtain the

periodic sequence X[k] (N = 8).
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N-1 _
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1 jo —kn H
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r=—o0 r=—o0



x[n]

gl vl

N=12
(b)

Figure 8.8 (a) Finite-length sequence x[n]. (b) Periodic sequence ¥[n] corre-
sponding to sampling the Fourier transtorm of x[n] with N = 12.

ila]= ,;_ x[n—r7]

Figure 8.9 Periodic sequence %[n] corresponding to sampling the Fourier trans-
form of x[n] in Figure 8.8(a) with N = 7.

If x[n] has finite length and we take a sufficient number of equally spaced samples of its

Fourier Transform (.a number greater than or equal to the length of x[n]), then x[n] is re-
coverable from X[n].

Two ways (equivalently) to define DFT:
(1)  Nsamples of the DTFT of a finite duration sequence x|n]
()  Make the periodic replica of X[n] > X[n]
Take the DFS of X[n]
Pick up one segment of X [K]
x[n] — DFT - X[K]

4 periodic T one segment
x[n] - DFS— X[k]



+ Properties of the Discrete Fourier Series

-- Similar to those of FT and z-transform

e Linearity

%,[n] )21[k] =

o )Zz[k]} = aX,[n]+ bX,[n] <> aX, [k]+ bX,[K]

e Shift

o Symmetry [n]<> X[k]

Re(X[n]} > ie[k](: ;(i[k]+ s k])j
jimiEn] o X, -5 (R [-1)

%[n]= 2 (x[n]+ X"[- n]) > Re{X[K]

2

[nl= 2 (&ln]- X [- ) >  im{R k]

x

If X[n]isreal, X[k]= X"[-k].



e Periodic Convolution
%,[n], X,[n] are periodic sequences with period N

Exl[mliz[n—m]e %, [KI%, k]

<> Discrete Fourier Transform
e Definition
x[n]:length N, 0<n <N -1
Making the periodic replica:

0

X[n]= > x[n+rN]

r=—o0

= x[(n modulo N )]
= x[((n)y ]
Rlk]= S xnjwe

Keep one segment (finite duration)

x[k]:{*[kl 0<k<N-1 Thatis, X[k]= X[((K))y]
0, otherwise

This finite duration sequence X [k] is the discrete Fourier transform (DFT) of X[n]



N-1
Analysis eqn:  X[k]= > x[nWyg", 0<k<N-1
n=0

N-1
Synthesis eqn: x[n]= % > XKW, 0<n<N-1
k=0

Remark: DFT formula is the same as DFS formula. Indeed, many properties of DFT are de-
rived from those of DFS.

0 4 n
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Figure 8.10  Illustration of the DFT. (a) Finite-length sequence x[n]. (b) Periodic
sequence X[n] formed from x[n] with period ¥ = 5. (c) Fourier series coefficients
A [k]for ¥[n]. To emphasize that the Fourier series coefficients are samples of the
Fourier transform, | X(s")| is also shown. (d) DFT of x[n].
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Figure 8.11 lllustration of the DFT. {a) Finite-langth sequence x|n]. (b) Periodic
sequence ¥[n] formed from x[n] with period N = 10. (¢c) DFT magnitude. {d) DFT
phase. (x's indicate indeterminate values.)



Properties of Discrete Fourier Transform
e Linearity
il[[:]]:il[l[(k]]}:>ax1[n]+bx2[n]<—>aXl[k]+bX2[k]

length = max[N,, N, ]

e Circular Shift

x[n]<> X [k] ==> X[((n—m))y ] Wy X[k]
Wy "x[n] &> X[((k =1))\ ]
(Pf) From the right side of the 2" eqn.

27 27

wix[k]=e' v "X [k]—> e’ N "R [K]
T DFT { IDFS
X[((n=m))y ]« x[((n = m))y ]=X[n - m]
Remark: This is circular shift not linear shift. (Linear shift of a periodic sequence = circular
shift of a finite sequence.)

QED

x[n]

(d)

Figure 8.12 Circular shift of a finite-length sequence; i.e., the effect in the time
domain of multiplying the DFT of the sequence by a linear-phase factor



Duality
x[n] > X[k]
X[n]<> Nx[((=k)) ] 0<k<N-1

x[n]
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p
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Relx;[n]} = Re(X[n]}
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(d)
Tmfx, [n]] = Dm{X[n])
308
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0 > b+ s 6 7 8 910 n
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Figure 8.13 lllustration of duality. (a) Real finite-length sequence x[n]. (b) and

(c) Real and imaginary parts of corresponding DFT X[]. (d) and (e} The real and
imaginary parts of the dual sequence x;[n] = X[n]. (f) The DFT of x[n].

Symmetry Properties

=%, [

Xep [N = periodic conjugate - symmetric

=5 (@) J+x [} o<

%{x[n]Jr X'[N-n]} 1<n<N-

Re{x[0]},

n=0



Xop [N] = periodic conjugate - antisymmetric

_ {; Xn]-x" [N =n]} 1<n<N-4
Im{x[0]}, n=0
X, [n] > Re{X K]} X [n] > jIm{X[k]}

If x[n]real, X[k]=X"[((-k)),} O0<k<N-1

_pEpea
Ax=-2x(] T lmixE = - mix 0L

Refuln) > X k1= 5 (X[ T+ X[
imi > Xep 1= 2 XEENT- XKD,

e Circular Convolution

X;[n] = x,[n}ex, n]
-1 N-point circular convolution

X[mx[((n —m)),]

0%, 1] X, [k, K]

P4

0 N

GO -m))y].0=m=N-1
]
0 N

H((1-m)yl0=m=N-1

‘ 1]

0 N

xa[n] = x([n] ® vy [n]

1 “T

0 N

Figure 8.14 Circular convolution of a finite-length sequence x,[n] with a single
delayed impulse, x{[n] = 8[n — 1].



Example: N-point circular convolution of two constant sequences of length N

[~

0 N n
(a)

'I[[]][ x2[n]

0 N n
(b)

x3[n] = x[n] ® ;1]

1]

0 N n

(c)

Figure 8.15  N-point circular convolution of two constant sequences of length .

2L-point circular convolution of two constant sequences of length L

L

0 3 N
(a)

o L N n
(b)

-yl 0=n=N-1

il

Il




< Linear Convolution Using DFT

Why using DFT? There are fast DFT algorithms (FFT)

: J(N)a
] [ ] ] -
........ e 1] e oo,
Figure 8.18 lllustr 1 that circular convolution is equivalent to linear
convolution folloy aliasing. (a) The sequences x[n] and x;[n] to be
> olution of x;[n] and xz[n). (¢) xs[n— N B
(d) xa[n+ N ] for N = 6. (&) xy[n] (6) x2[n], which is equal to the sum of (b), (c)

and (d) in the interval 0 = n < 5. (1) x [A] (2) x[n]

How to do it?
(1) Compute the N-point DFT of x,[n] and x,[n] separately
> Xy[k]and X, k]

(2) Compute the product X ,[k]= X, [k]X ,[k]

(3) Compute the N-point IDFT of X,[k] 2> x4[n]

Problems: (a) Aliasing
(b) Very long sequence



e Aliasing
Xl[n], length L (nonzero values)

x,[n], length P
In order to avoid aliasing, N > L+ P —1
(What do we mean avoid aliasing? The preceding procedure is circular convolution but we

want linear convolution. That s, X,[n] equals to the linear convolution of x [n] and x,[n])

..........

ooooooo

Figure 8.19  An example of linea

''''''''

...........

Figure 8.20 Interpretation of circular convolution as linear convolution followed
by aliasing for the circular convolution of the two sequences x;[a] and x:[n] in
Figure 8.19



x, [n] pad with zeros > length N
x,[n] pad with zeros - length N

Interpretation: (Why call it aliasing?)

X,[k] has a (time domain) bandwidth of size L + P —1
(That is, the nonzero values of x_[n] can be at most L + P —1)
Therefore, X,[k] should have at least L + P —1 samples. If the sampling rate is insuf-

ficient, aliasing occurs on x,[n].

tapln] | (N) xa[n]
N=1I
l T [ I [
P-1
| ] ]
T”'H [I
bt
va,ln | (N) xs[n
A L +P 1
Figure 8.21 lllustration of how the
1 T l result of a circular convolution “wraps
o TN n  around.” (a)and (b) N = L, so the
ali overlaps the first (P — 1)

points. (c)and (d) N = (L + P — 1), 50




Very long sequence (FIR filtering)
B Block convolution
® Method 1 - overlap and add
Partition the long sequence into sections of shorter length.
For example, the filter impulse response h[n] has finite length P and the input data x|n]
is nearly “infinite”.
. x(n+rL) 0<n<L-1
Let x[n]=>"x,[n-rL] where x,[n]z{ I+ ] .
o 0, otherwise
The system (filter) output is a linear convolution:
yIn]=x[n]*h[n]=3Xy,[n—rL] where y, [n]=x,[n]*h[n]
r=0
Remark: The convolution lengthis L + P —1. That s, the L + P —1 point DFT is used.
y,[n] has L+ P —1 data points; among them, (P-1) points should be added
to the next section.

ﬂn.llllm e
Ly ﬂ ...
o luuu
| 1
Tﬂ t1aee
":llll lHl # Figure 8.23 (a) Decomposition of x[n]

in Figure 8.22 into nonoverlapping
sections of length L. {b) Result of
convolving each section with [n],

This is called overlap-add method.

(Key: The input data are partitioned into nonoverlapping sections = the section outputs
are overlapped and added together.)



® Method 2 - overlap and save
Partition the long sequence into overlapping sections.
After computing DFT and IDFT, throw away some (incorrect) outputs.
For each section (length L, which is also the DFT size), we want to retain the correct
data of length (L — (P —1)) points

il

o A

ToL4P-

a1 7‘“‘J
:‘ & gy Il =, [0 59 g [,
N=_

il

- bl

Let h[n], length P
x[n], length L (L>P)
Then, y_[n] contains (P-1) incorrect points at the beginning.
Therefore, we divide into sections of length L but each section overlaps the preceding
section by (P-1) points.
x.[n]=xn+r(L-P+1)-(P-1)], 0<n<L-1
This is called overlap-save method.
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Figure B.24 {a) Decornposition of x| in Figure 8.22 into overlapping sections
of length L. (b} Result of convolving each section with K[a]. The portions of each
filterad section to be discarded in forming the linear convelution are indicated
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