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MODULE-IV 
 
Plane Wave:  

   
A uniform plane wave is the wave that the electric field, E or magnetic field, H in same direction, same 
magnitude and same phase in infinite planes perpendicular to the direction of propagation. A plane wave 
has no electric field, and magnetic field, components along its direction of propagation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Wave Equations: 
 
If the wave is in simple ( linear, isotropic and homogeneous ) nonconducting medium ( =0), Maxwell’s 

equation reduce to, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   

The first-order differential equations in the two variables E and H . They can combine to give E or H 
alone using second-order equation. 
 
Using Maxwell’s equation,  
 
 
 
 

 

The curl of equation of (1) 
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Replacing in equation (2)  
 
 
 
 

 

We know that  because of equation (3), thus the wave equation is  
 
 
 
 
 

 
The wave equation also can written as  
 
 

 
--------------------------(a)  

 
 
Assuming an implicit time dependence in the field vector. Equation (a) also called Helmholtz  
equation. The k  is called the wave number or propagation constant.  
 
 
 
 
 
 
 
 
 
where c is the velocity of light in free space. 
 
 

For magnetic intensity domain, H , we have,  
 
 
 
 
 

^  
For a uniform plane wave with an electric field E x Ex traveling in the z-direction, the wave equation 
can be reduced as  
 
 
 
 

 
The solution of this wave equation, 
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Where is the attenuation constant of the medium and is its phase constant. 
 
The associated magnetic field, H ,  
 
 
 
 
 
 
 
 
 
 

 
where is the intrinsic impedance of the medium. 
 
The k  is called the wave number or propagation constant.  
 
 
 
 
 

 
The wave number can also be written in terms of and .  
 
 
 
 
 
 
Thus,  
 
 
 
 
 
 
By solving (1) & (2),  
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So for different medium,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Electromagnetic Phenomena are described by using four Maxwell’s equations:   
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Poynting Vector and Power Flow in Electromagnetic Fields:  
Electromagnetic waves can transport energy from one point to another point. The electric and magnetic 
field intensities associated with a travelling electromagnetic wave can be related to the rate of such energy 
transfer. 
Let us consider Maxwell's Curl Equations:  
 
 
 
 
 

 
Using vector identity  
 
 
The above curl equations we can write  
 
 

,  

And . 
In simple medium where  and  are constant, we can write  
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Applying Divergence theorem we can write,  
 
 

…………….(a)  
 

 
The term 

 

 
represents the rate of change of energy stored in the electric and  

 

magnetic fields and the term 
 

represents the power dissipation within the volume. Hence right  
hand side of the equation (a) represents the total decrease in power within the volume under 
consideration.  
 

The left hand side of equation (6.36) can be written as where  (W/mt2) is called the Poynting 
vector and it represents the power density vector associated with the electromagnetic field. The 
integration of the Poynting vector over any closed surface gives the net power flowing out of the surface. 
Equation (6.36) is referred to as Poynting theorem and it states that the net power flowing out of a given 
volume is equal to the time rate of decrease in the energy stored within the volume minus the conduction 
losses. 
Poynting vector for the time harmonic case:  

For time harmonic case, the time variation is of the form , and we have seen that instantaneous value 

of a quantity is the real part of the product of a phasor quantity and  when  is used as 
reference. For example, if we consider the phasor  
 
 
 
 
 
 
then we can write the instanteneous field as  
 

 

when E0 is real.  
Let us consider two instanteneous quantities A and B such that 

,   
 
where A and B are the phasor quantities. i.e,  

 

Therefore,  
 
 
 
 
 

 
Since A and B are periodic with period , the time average value of the product form AB, denoted  

by  can be written as 
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Further, considering the phasor quantities A and B, we find that  
 
 
 
and , where * denotes complex conjugate.  
 
 
 

 

The poynting vector  can be expressed as  
 

 

..............................(b) 

 

If we consider a plane electromagnetic wave propagating in +z direction and has only  
component, from (b) we can write:  
 
 
Using (6.41)  
 
 
 
 
 

 

where  and 
For a general case, we can write 

 
 
 
 
 
 

 
, for the plane wave under consideration.  

 

 

We can define a complex Poynting vector  
 
 
 

and time average of the instantaneous Poynting vector is given by  . 
 
Polarisation of plane wave:  
The polarization of a plane wave can be defined as the orientation of the electric field vector as a 
function of time at a fixed point in space. For an electromagnetic wave, the specification of the 
orientation of the electric field is sufficient as the magnetic field components are related to electric field 
vector by the Maxwell's equations. 
Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey components. 
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The corresponding magnetic fields are given by,  
 
 
 
 
 
 
 
 
 
 
 

Depending upon the values of Eox and Eoy we can have several possibilities: 
1. If Eoy = 0, then the wave is linearly polarised in the x-direction.  
2. If Eoy = 0, then the wave is linearly polarised in the y-direction.  
3. If Eox and Eoy are both real (or complex with equal phase), once again we get a linearly polarised wave  
 
 
with the axis of polarisation inclined at an 
angle fig 6.4.  

 
 
, with respect to the x-axis. This is shown in 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.4 : Linear Polarisation  

If Eox and Eoy are complex with different phase angles,   
This is explained as follows: 

 
will not point to a single spatial direction. 

 

Let  ,  

 
Then, 
 
and 

 
....................................(c)  

 
 
To keep the things simple, let us consider a =0 and  
field on the z =0 plain. 
From equation (c) we find that,  

 
 
. Further, let us study the nature of the electric 
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and the electric field vector at z = 0 can be written as  
 

………(d)  

Assuming  , the plot of  for various values of t is hown in figure 6.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.5 : Plot of E(o,t) 

 
From equation (d) and figure (6.5) we observe that the tip of the arrow representing electric field 
vector traces an ellipse and the field is said to be elliptically polarized.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.6: Polarisation ellipse  
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The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of semimajor to  
semiminor axis), tilt angle  (orientation with respect to xaxis) and sense of rotation(i.e., CW or 
CCW). Linear polarisation can be treated as a special case of elliptical polarisation, for which the axial 
ratio is infinite. 

In our example, if , from equation (6.47), the tip of the arrow representing electric field 
vector traces out a circle. Such a case is referred to as Circular Polarisation. For circular polarisation 
the axial ratio is unity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.7: Circular Polarisation (RHCP) 

 
Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if the electric 
field vector rotates in the direction of the fingers of the right hand when the thumb points in the direction 
of propagation-(same and CCW). If the electric field vector rotates in the opposite direction, the 
polarisation is asid to be left hand circular polarisation (LHCP) (same as CW).  

In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the  field vertical 
to the ground( vertical polarisation) where as TV signals are horizontally polarised waves. FM 
broadcast is usually carried out using circularly polarised waves.  
In radio communication, different information signals can be transmitted at the same frequency at 
orthogonal polarisation ( one signal as vertically polarised other horizontally polarised or one as RHCP 
while the other as LHCP) to increase capacity. Otherwise, same signal can be transmitted at 
orthogonal polarisation to obtain diversity gain to improve reliability of transmission. 
 
Behaviour of Plane waves at the inteface of two media:  
We have considered the propagation of uniform plane waves in an unbounded homogeneous medium. In 

practice, the wave will propagate in bounded regions where several values of will be present. 
When plane wave travelling in one medium meets a different medium, it is partly reflected and partly 
transmitted. In this section, we consider wave reflection and transmission at planar boundary between two 
media. 
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Fig 6.8 : Normal Incidence at a plane boundary  
Case1: Let z = 0 plane represent the interface between two media. Medium 1 is characterised 

by and medium 2 is characterized by .  
Let the subscripts 'i' denotes incident, 'r' denotes reflected and 't' denotes transmitted field 
components respectively. 
 
The incident wave is assumed to be a plane wave polarized along x and travelling in medium 1 along 

 direction. From equation (6.24) we can write  

 ..................(e)  
 
 

......................(f)  
 

where  and .  
Because of the presence of the second medium at z =0, the incident wave will undergo partial reflection 
 
and partial transmission. The reflected wave will travel along  
The reflected field components are: 

 in medium 1. 

 ...............................................(g)  
 
 

.........(h) 

 
The transmitted wave will travel in medium 2 along 

 

 for which the field components are  

............................................(i) 
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............................................(j)  
 

 

where  and 
In medium 1,  

 and   
and in medium 2, 

 and   
Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field components and 
noting that incident, reflected and transmitted field components are tangential at the boundary, we can 
write  
 

 

&  
From equation (e) to (j) we get,   

................................................................(k)  
 
 

..............................................................(l) 
Eliminating Eto ,  
 
 
 
 

 

or,   
or,  

 
 

...............(m)  
is called the reflection coefficient. 
From equation (k) & (l), we can write  
 
 
 
 

 

or,  
 
 
 

 
is called the transmission coefficient. 
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We observe that,  
 
 
 
The following may be noted  
(i) both  and T are dimensionless and may be complex 

(ii)   
Let us now consider specific cases: 
Case I: Normal incidence on a plane conducting boundary 

The medium 1 is perfect dielectric  and medium 2 is perfectly conducting .  
 
 
 
 
 
 
 
 
 
From (k) and (l)  

= -1  
and T =0 

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to the 
medium 1.  
 
 

 
&  

Proceeding in the same manner for the magnetic field in region 1, we can show that,  
 
 
 
The wave in medium 1 thus becomes a standing wave  due to the super position of a forward travelling  

wave and a backward travelling wave. For a given ' t', both  and  vary sinusoidally with distance 
measured from z = 0. This is shown in figure 6.9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.9: Generation of standing wave  
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Zeroes of E1(z,t) and  
 
 
 
 

Maxima ofH1(z,t). 
 

Maxima of E1(z,t) and  
 
 

 

zeroes ofH1(z,t). 
 
Case2: Normal incidence on a plane dielectric boundary  

If the medium 2 is not a perfect conductor (i.e. ) partial reflection will result. There will be a  
reflected wave in the medium 1 and a transmitted wave in the medium 2.Because of the reflected wave,  
standing wave is formed in medium 1.  
From above equations we can write  

 
Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics  

( )  
 
 
 
 
 
 

 

In this case both  and  become real numbers.  
 
 
 
 

 

..................(n)  
From (n), we can see that, in medium 1 we have a traveling wave component with amplitude TEio and 
a standing wave component with amplitude 2JEio.  
The location of the maximum and the minimum of the electric and magnetic field components in 
the medium 1from the interface can be found as follows. The electric field in medium 1 can be 
written as  
 
 

If  i.e. >0  
The maximum value of the electric field is  
 
 
and this occurs when  
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or ,  n = 0, 1, 2, 3....................... (o) 

The minimum value of is  

And this occurs when 
.................(p)  

   
 
 

 
or , n = 0, 1, 2, 3.............................(q)  

For  i.e. <0 

The maximum value of  is which occurs at the zmin locations and the minimum value  

of  is  which occurs at zmax locations as given by the equations (o) and (q).  
 

 
From our discussions so far we observe that can be written as  

 
 

 

The quantity S is called as the standing wave ratio.  

As  the range of S is given by   
We can write the expression for the magnetic field in medium 1 as  

 
 
 

 
From above equation we can see that 

 
 
 

 
will be maximum at locations where 

 
 
 

 is minimum and  
vice versa.  
In medium 2, the transmitted wave propagates in the + z direction. 

 
Oblique Incidence of EM wave at an interface  

 
So far we have discuss the case of normal incidence where electromagnetic wave traveling in a lossless 
medium impinges normally at the interface of a second medium. In this section we shall consider the case 
of oblique incidence. As before, we consider two cases 

 
i.  When the second medium is a perfect conductor.  

ii.  When the second medium is a perfect dielectric. 
 

A plane incidence is defined as the plane containing the vector indicating the direction of propagation 
of the incident wave and normal to the interface. We study two specific cases when the incident electric  

field  is perpendicular to the plane of incidence (perpendicular polarization) and  is parallel to the 
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plane of incidence (parallel polarization). For a general case, the incident wave may have arbitrary 

polarization but the same can be expressed as a linear combination of these two individual cases. 
 

Oblique Incidence at a plane conducting boundary 
 
i. Perpendicular Polarization 

The situation is depicted in figure 6.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.10: Perpendicular Polarization  

As the EM field inside the perfect conductor is zero, the interface reflects the incident plane wave.  

and respectively represent the unit vector in the direction of propagation of the incident and 

reflected waves,  is the angle of incidence and  is the angle of reflection. 
 
 
 
 
 

 
We find that  

 
 
 
 

Since the incident wave is considered to be perpendicular to the plane of incidence, which for the 
present case happens to be xz plane, the electric field has only y-component. Therefore,  

 
 
 
 

 
The corresponding magnetic field is given by  

 
 
 
 
 

 

Similarly, we can write the reflected waves as 
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Since at the interface z=o, the tangential electric field is zero.  

 
The above equation is satisfied if we have  
 
 

 

The condition  is Snell's law of reflection.  
 
 
 
 
 
 
 
 

 
The total electric field is given by  
 
 
 
 
Similarly, total magnetic field is given by  
 
 
 
From above two equations we observe that  

1. Along z direction i.e. normal to the boundary 

y component of  and x component of  maintain standing wave patterns according 

to  and  where . No average power propagates along z as 

y component of  and x component of  are out of phase. 
2. Along x i.e. parallel to the interface 

y component of  and z component of  are in phase (both time and space) and 
propagate with phase velocity  

 
 
 
 
 
 

 
The wave propagating along the x direction has its amplitude varying with z and hence constitutes a non 
 
uniformplane wave. Further, only electric field is perpendicular to the direction of propagation (i.e.  x), 
the magnetic field has component along the direction of propagation. Such waves are called transverse 
electric or TE waves. 
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ii. Parallel Polarization:  

In this case also and are given by the derived equations. Here and have only 
y component.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.11: Parallel Polarization 

With reference to fig (6.11), the field components can be written as: 
 
Incident field components:  
 
 
 
 
 

............................(r)  
Reflected field components:  
 
 
 
 
 
 
 
 
 
 
Since the total tangential electric field component at the interface is zero.  

 

Which leads to  and  as before.  
Substituting these quantities in (r) and adding the incident and reflected electric and magnetic 
field components the total electric and magnetic fields can be written as  
 
 
 
 
 
 
Once again, we find a standing wave pattern along z for the x and y components of and , while a  
 
 
non uniform plane wave propagates along x with a phase velocity given by 
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where . Since, for this propagating wave, magnetic field is in transverse direction, such waves are 

called transverse magnetic or TM waves.  
Oblique incidence at a plane dielectric interface  
We continue our discussion on the behavior of plane waves at an interface; this time we consider a plane 
dielectric interface. As earlier, we consider the two specific cases, namely parallel and perpendicular 
polarization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.12: Oblique incidence at a plane dielectric interface   
For the case of a plane dielectric interface, an incident wave will be reflected partially and transmitted 
partially.  

In Fig(6.12),  corresponds respectively to the angle of incidence, reflection and transmission.   
1. Parallel Polarization  

As discussed previously, the incident and reflected field components can be written as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In terms of the reflection coefficient   
 
 
 
 
 
 
The transmitted filed can be written in terms of the transmission coefficient T 
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We can now enforce the continuity of tangential field components at the boundary i.e. z=0  
 
 
 
 
 

 
If both 

 
 
 
 
 
 

 and 

 
 
 

 
..........................(s)   

are to be continuous at z=0 for all x , then form the phase matching we have  

 
We find that  

 

 
..........................(t)  

Further, from equations (s) and (t) we have  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or  
 
 
 
 
 
 

 

From equation (u) we find that there exists specific angle  

 
 
 
 

 
..........................(u)  
 

for which 

 
 
 
 
 
 

 
= 0 such that 

 
 
 
 

or 
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Further,  

For non magnetic material   
Using this condition  
 
 
 
 

 
.........................(v)  

rom equation (v), solving for  we get  
 
 
 
 
 

This angle of incidence for which  = 0 is called Brewster angle. Since we are dealing with 

parallel polarization we represent this angle by  so that  
 
 
 

 

2. Perpendicular 

Polarization For this case 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using continuity of field components at z=0  
 
 
 
 
 
As in the previous case  
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Using these conditions we can write  
 
 
 
 

.........................(w)  
From equation (w) the reflection and transmission coefficients for the perpendicular polarization can 
be computed as  
 
 
 
 
 
 
 

We observe that if  = 0 for an angle of incidence  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again  
 
 
 
 
 
 
 
 

 
or  
 

 
or  
 

 
or .........................(x)  

We observe if  i.e. in this case of non magnetic material Brewster angle does not exist 
as the denominator or equation (x) becomes zero. Thus for perpendicular polarization in dielectric 
media, there is Brewster angle so that  can be made equal to zero.  
From our previous discussion we observe that for both polarizations 
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If   
 
 

 

For ;   

 

The incidence angle for which i.e. is called the critical angle of 

incidence. If the angle of incidence is larger than  total internal reflection occurs. For such case an 
evanescent wave exists along the interface in the x direction (w.r.t. fig (6.12)) that attenuates 
exponentially in the normal i.e. z direction. Such waves are tightly bound to the interface and are 
called surface waves. 
 
QUESTIONS: 
 
1.Write down Maxwell’s field equations in the differential and integral form for time harmonic fields   
2.Derive the expressions for energy stored in electric and magnetic field. Which field is efficient.  
 
3.In a uniform plane wave, E and H are at right angles to each other. Prove.  
4.A lossy dielectric is characterized by R=1.5, R=1 and / =2.5x10-4. At a frequency of 200MHz, how far 
can a uniform plane wave propagate in the material before 
 

(i)it undergoes an attenuation 1Np 
 

(ii)its amplitude is halved 
 
5. Deduce the integral form of the theoram of Poynting and state the significance of the three terms 

appearing in the equation. 
 
6.What are the properties of uniform plane wave? 
 
7.Write Maxwell’s equation in integral form and interpret 
 
8.Show that characteristic impedance of free space is 377ohm 
 
9.State and explain Poynting Vector(P) and Poynting theorem. 
 

10.A brass(conductivity=107mho/m) pipe with inner and outer diameter of 3.4 and 4 cm carries a total 

current of 100A dc. Find Electric field (E), Magnetic field(H) and Poynting Vector(P) within the brass 


