ENGINEERING ELECTROMAGNETICS [15EC36]

MODULE-1V

Plane Wave:

A uniform plane wave is the wave that the electric field, E or magnetic field, H in same direction, same
magnitude and same phase in infinite planes perpendicular to the direction of propagation. A plane wave
has no electric field, and magnetic field, components along its direction of propagation.

i Elactric
~ = Wavelengm, field

Wave Equations:

If the wave is in simple ( linear, isotropic and homogeneous ) nonconducting medium ( =0), Maxwell’s
equation reduce to,

ot vie =4

VxH=c— V.H=0
ot
Thefirst-order differential equations in the two variables E and H . They can combine to give E or H
alone using second-order equation.

Using Maxwell’s equation,

I

ct

[ - oF] —
(1) Fxﬂzgg 2) [v.E=0] (3)

Thecurl of equation of (1)
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VxVxE =—;:;(6KI}]
ar
Replacing in equation (2)
VxVXE=—ues E
ot~

WeknO\NthatéxﬁxE:ﬂV-E)_@

The wave equation also canwritten as

V2E—_EKE=0

-(@

Assuming an implicit time dependence ¢ 7" in the field vector. Equation (&) also called Helmholtz
equation. Thek is called the wave number or propagation constant.

kb—Fk €. 1
q and Ci—
. .;.J;f \/5—;- NI,

where cis the velocity of light in free space.

For magnetic intensity domain, H , we have,

== 7 < B:I—I — Y —
V' H - ue e = VH-usk H=0

n

For auniform plane wave with an electric field E x Ey traveling in the z-direction, the wave equation
can be reduced as

The solution of this wave equation,
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E(z)= xE,
=XE e™*

= xE e % e IF?
K el
Where isthe attenuation constant of the medium and s its phase constant.

The associated magnetic field, H ,

L.
m
=

where s theintrinsic impedance of the medium.
Thek is called the wave number or propagation constant.

B =k en,
k =k, u e —je))

The wave number can also be written in termsof  and

= (ot )
=(a’ -5 )+ j20p
Thus,
& B =k e (1)
B —- " 2" (2)

By solving (1) & (2),
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So for different medium,

=@\ us

L= us

Electromagnetic Phenomena are described by using four Maxwell’s equations:

specified location.

Right side:
Electric charge density. p

Maxwell’s equation
Integral form: Description Information
Gauss’s  Law
. c Lﬂ E dS = Left side: . Electq'c charge produces an
(Electric fields) |“o g The number of electric field |electric field. E and the flux of
%,_J - s - . .
Lefi Right | lines — perpendicularly passing | that field passing through any
through to a closed surface. .§ |closed surface is proportional to
the total charge. ¢ contained
Right side: within that surface.
Total amount of charge. ¢
contained within that surface.. [Charge on an insulated
conductor moves  outward
Differential form: surface.
Left side: ! =
& 6 . E‘ - Divergence of the -electric e elec.tnc e, E PrAANEN
o = by electric charge diverges from
= e ~~ |field. £ — the tendency of the ey d il
Left Right | field to “flow™ awsy-from a BT e GRECORVEeS

upon negative charge.

The electric field. Eis tendency
to propagate perpendicularly
away from a surface charge.
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Gauss’s Law Integral form:
Left side: The total magnetic flux passing
(Magnetic fields) }I’I H-dS= 0 The number of magnetic field | through any closed surface 1s
\ , m;h: lmes - perpendicularly | zero.
Lt passing through a closed
surface. Flux enter the closed swmface 15
same with the flux come out
Right side: from the surface.
Identically zero.
The divergence of the
Differential form: magnetic field at any point 1s
- - Left side: zero.
p,V H = 9 Divergence of the magnetic
T L R |field — the tendency of the
field to “flow™ away from a
point than toward 1t.
Right side:
Identically zero.
Integral form:
Faraday’s Law _ Left side: Changing magnetic flux
- = GH -|The cuculation of the vector|through a surface induces
JLE -di =‘I‘OLE'dS electric field, £ around a closed |an emf in any boundary
e ———|path.C path. C of that surface.

Right

Right side:

The rate of change with time
(d/dr) of magnetic field. through
any surface. S.

and a changing magnetic
field, H induces a
circulating electnic field.

Differential form:

6 XE — —/lo ﬂ
L . O
Right

Left side:

Curl of the electric field. — the
tendency of the field lines to
circulate around a point.

Right side:
The rate of change of the

maguetic field. H over time
{didr)

A crculaung elecmic
field. is produced by a
magnetic field. H# that
changes with time.
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Ampere’s Law

Laft

Integral form:

1

Ig-di'-l.!j.id‘jg 'd.§
_L‘_ -S'l" : cr )

.

Right

Left side:

The circulation , of the
magnenc field. Haround a
closed path. C

Right side:

Two sources for the magnetic
field. A a steady conduction
current, J'.A and a changing
electric field. F through any
surface. bounded by closed
path. C.

An electric current or a

changing elecmric flux
through a surface
produces a circulating

magnetic field around any
path, C that bounds that
surface.

Differential form:

Left side:

Curl of the magnertic field. -
the tendency of the field hines
to circulate around a point

Right side:

Two represent  the
electric current density. J. and
the rime rate of change of the
electric field. E

ferms

Poynting Vector and Power Flow in Electromagnetic Fields:

A cuculating  electnic
field. is produced by a
maguenc field, A thar
changes with time.

An elecmc cwrrent. or a
field.

changing elecmic
through a surface
produces a circulanng
magnetic field. Haround
any path that bounds that

surface

Electromagnetic waves can transport energy from one point to another point. The electric and magnetic
field intensities associated with a travelling electromagnetic wave can be related to the rate of such energy

transfer.

Let us consider Maxwell's Curl Equations:

Using vector identity

v. (EXE) =HVXE-EVXH
The above curl equations we canwrite

]

In simple medium where & # and @ are constant, we canwrite

.'.v.(§x§)=—i leE2+l,uH2 - oF*
al2

788 _a(1

2

A &
And Ej = CTEQI
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Applying Divergence theorem we canwrite,

(ExH)dS = 22 dlemel arap-taniy
dty| 2 2 (a)
ﬂl[le B+l H’]dV
Theterm dep\2 < represents the rate of change of energy stored in the electric and

a BV
magnetic fields and theterm ‘[ represents the power dissipation within the volume. Hence right

hand side of the equation (a) represents the total decrease in power within the volume under
consideration.

?‘ ExH\dS =¢PdS

The left hand side of equation (6.36) can be written aswheré £ = EXH  \Wimt?) is called the Poynting
vector and it represents the power density vector associated with the electromagnetic field. The
integration of the Poynting vector over any closed surface gives the net power flowing out of the surface.
Equation (6.36) is referred to as Poynting theorem and it states that the net power flowing out of a given

volume is equal to the time rate of decrease in the energy stored within the volume minus the conduction
losses.

Poynting vector for the time harmonic case:
For time harmonic case, the time variation is of the form Cd , and we have seen that instantaneous value

of a quantity is the real part of the product of a phasor quantity and 2’ \when cos @ s used as
reference. For example, if we consider the phasor

E(z) =a,E,(2) =a, g™

then we can write the instanteneous field as

E(Z,t) =Re [E(Z) ej‘"’] = B, cos( @t - 8z) a:

when Eg is real.
Let us consider two instanteneous quantities A and B such that

A=Re (Ae*""”) =|A|cos(@t + &) B=Re (Be"""") =|B|cos(at + §)
A=|Ale™
B =|Ble”

where A and B are the phasor quantities. i.e,
Therefore,
AB = |A|Cos(wt + Cr)|B|cos(<?J£ * ,{3)
- %|A”B|[cos(a— 8)+ cos (20t +a+ )]

27T
Since A and B are periodic with period @ , the time average value of the product form AB, denoted
by AB can be written as
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—_ 17
AR =—JAB.:;€I
T

AB = :1 |4]| B|cos(a- 8)
Further, considering the phasor quantities Aand B, wefind that
48" = |4le™ |Bls7 = |4]j3|e"

and Re(4B") =|4||Blcos(a- 8)

, where* denotes complex conjugate.

. :
..AB=§Re(le)

The poynting vector P=ExH can be expressed as

e "
P.=g

(B,H, - B,H,)+a,(B,H, - EH,)+a,(EH, - E,H,)

If we consider aplane electromagnetic wave propagating in +z direction and has only £,

component, from (b) we canwrite:

aces a

Pr=£E, (z,z)Hy (z,z)a3
Using (6.41)

Pray = %Re[Ex (2) H},‘ (z)a:]

Pro = %Re(ﬁ‘x (2)xH, (2))

where £@) = Ey(2)a,  H1@)=H,(2)a, o the plane wave under consideration.
For a genera case, we canwrite
z_ﬁm =—Re (EXE.)

Do | —

We can define a complex Poynting vector

*

S=—ExH

Do | =

j . . - Po =Re(S)

and time average of the instantaneous Poynting vector is given by :

Polarisation of plane wave:

The polarization of aplane wave can be defined asthe orientation of the electric field vector asa
function of time at a fixed point in space. For an electromagnetic wave, the specification of the
orientation of the electric field is sufficient asthe magnetic field components are related to electric field
vector by the Maxwell's equations.

Let us consider a plane wave travelling in the +z direction. The wave has both E, and E, components.
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—_

a8 o .
- - JEE
A= [a::,r £, ta, E‘,},]e

The corresponding magnetic fields are given by,

H-1ixE
7
=lc; X[a? E +a E ]e“’”’
?? z X ox ¥ oy
! ; o -
=—|-&,a,tE,a,le
7
Depending upon the values of Eqx and Eqy we can have several possibilities:

1. If Egy = 0, then the waveis linearly polarised in the x-direction.

2. 1f Egy = 0, then the waveiis linearly polarised in the y-direction.

3. If Egx and Eqy are both real (or complex with equal phase), once again weget alinearly polarised wave
tan ™ &

with the axis of polarisation inclined at an o , with respect to the x-axis. Thisis shownin

angle fig 6.4.

/
/
/
/

Fig 6.4 : Linear Polarisation

—

If Eox and Eoy are complex with different phase angles, £ will not point to a single spatial direction.
This is explained asfollows:

et on - |an|eﬂ‘ Eoy - |E@'|eﬁ

L
Then,
7
To keep the things simple, let us consider a =0 and 2 . Further, let us study the nature of the electric

field onthe z =0 plain.
From equation (c) we find that,

E (0,t) =|E,|cos at

b 3
cos|@E+—| =
[=+3)

E

| (—sin @t)

E,(0,8) =

B,
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. [Ex(-mf)

|Z

|

2+[Ey (0.0)\

|E | ] =cost @ +sin’ @t =1
av

and the electric field vector at z = 0 can be written as

E(o,t) =|B,|cos( @) a,~ |E, [sin (@t)a, @
Assuming |on| 2 e*1 , the plot of E(O”:) for various values of tis hown in figure 6.5.
l.
A
t=3720
Eox
o
(= mwo =0
Eoy
t=12w

Figure 6.5 : Plot of E(o,t)

From equation (d) and figure (6.5) we observe that the tip of the arrow representing electric field
vector traces an ellipse and the field is said to be elliptically polarized.

v
It

Figure 6.6: Polarisation ellipse
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The polarisation ellipse shown in figure 6.6 is defined by its axial ratio(M/N, the ratio of semimajor to

semiminor axis), tilt angle % (orientation with respect to xaxis) and sense of rotation(i.e., CW or
CCW). Linear polarisation can be treated as a special case of elliptical polarisation, for which the axial
ratio is infinite.

L |E =& . . . e

In our example, if | ‘”‘| ?1, from equation (6.47), the tip of the arrow representing electric field
vector traces out acircle. Such acaseisreferredto as Circular Polarisation. For circular polarisation
the axial ratio is unity.

Figure 6.7: Circular Polarisation (RHCP)

Further, the circular polarisation is aside to beright handed circular polarisation (RHCP) if the electric
field vector rotatesin the direction of the fingers of the right hand when the thumb points in the direction
of propagation-(same and CCW). If the electric field vector rotatesin the opposite direction, the
polarisation is asid to be left hand circular polarisation (LHCP) (same as CW).

In AM radio broadcast, the radiated electromagnetic wave is linearly polarised with the £ field vertical
to the ground( vertical polarisation) where as TV signals are horizontally polarised waves. FM
broadcast is usually carried out using circularly polarised waves.

In radio communication, different information signals can be transmitted at the same frequency at
orthogonal polarisation ( one signal asvertically polarised other horizontally polarised or one as RHCP
while the other as LHCP) to increase capacity. Otherwise, same signal can be transmitted at

orthogonal polarisation to obtain diversity gain to improve reliability of transmission.

Behaviour of Plane waves at the inteface of two media:

We have considered the propagation of uniform plane wavesin an unbounded homogeneous medium. In
practice, the wave will propagate in bounded regions where several values of £+# < wiill be present.
When plane wave travelling in one medium meets a different medium, it is partly reflected and partly
transmitted. In this section, we consider wave reflection and transmission at planar boundary betweentwo
media.
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Medium 1 Medium 2
&, 5, 0 2, o, @
E, £
-~
d:.!r H, aﬁ?

E
$—> ~
H @

©
y

™

i

Fig 6.8 : Normal I ncidence at aplane boundary
Casel: Let z=0 plane represent the interface betweentwo media. Medium 1 is characterised

by (81"“1’61)and medium 2 is characterized by (52’“2’52) .
L et the subscripts 'i* denotes incident, 'r' denotes reflected and 't' denotes transmitted field
components respectively.

Theincident wave is assumed to be a plane wave polarized along x and travelling in medium 1 along

N

%z direction. From equation (6.24) we canwrite

Ei(z) = Be ™ ay

g = J @
N : 1 :
where 1t " Ae (G +jea) T Y+ jes

Because of the presence of the second medium at z=0, the incident wave will undergo partial reflection

and partial transmission. The reflected wave will travel along %z in medium 1.
The reflected field components are:

= n
E, = E, " ax

..(Q)

aig ‘l a % n E % S
=_|- 2 = —_m X
Hy a, | X &, a, " a,

™ h

N

Thetransmitted wavewill travel in medium 2 aong 9 for which thefield components are

— n
- -y
Et E!Oe ax N R R R R RN RN RN EE A EE A EE AN EE RN EE R AR AR

0
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Hy="0 & a?y
fis J @G
where 72 =\ij#2(‘72 + jwe) and P Vo + o
In medium 1,
31 =§z’ +§r and §1=§z‘+§r
and in medium 2,

Ez & E: and Ez = ﬁt
Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field components and

noting that incident, reflected and transmitted field components are tangential at the boundary, we can
write

E:(0)+ B (0) = E: (0)
g Hi(0)+H(0)=H:(0)
From equation (e) to (j) we get,

By B _ B
Eliminating E ,

b B lig.g,)

T 2

g fl1).g (1.1

or, h h T
or, & =TE,
o 0
Pt (m)

is called the reflection coefficient.
From equation (k) & (I), we canwrite

or, T+,

is called the transmission coefficient.
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We observe that,
T = 27, Tttt =1+T
Mt i,

Thefollowing may be noted

(i) both © and T are dimensionless and may be complex

Let us now consider specific cases:

Case |: Normal incidence on aplane conducting boundary

(67 =0)

Themedium 1 is perfect dielectric and medium 2 is perfectly conducting (Jﬂ - m) .

7, =0
n =) (jos,)
=J@\HE = J8f
From (k) and (I)
t=-1
and T=0

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to the
medium 1.

;B (z) = B e " a’;- E " c;r; =-2jE, sin ﬁlzc;;
& B (z.2) =Re[-2j£‘io sin ﬁze""”]a: =2F,, sin §zsin mza?x
Proceeding in the same manner for the magnetic field in region 1, we can show that,
E1[z,£) = a;; 25, cos Sz cos @

1
The wavein medium 1 thus becomes a standing wave due to the super position of aforward travelling

wave and a backward travelling wave. For agiven ' t', both £1 and 1 vary sinusoidally with distance
measured from z = 0. This is shown in figure 6.9.
wt = 3gq/2

\_//

@l =3 @l =\;,'/2

(a) E; versus z o=

peyfct
conductor
@t = O
Wt =
v wt = 7/2
{b) Hy versus 2 sielo

Figure 6.9: Generation of standing wave
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Zeroes of E4(z,t) and

occurat Bz=-n orz= —nE
Maxima ofH1(zt).

Maxima of Eq(z,t) and

occur at )812=-(2n+1)12r orz=—(2n+l)%, 2=012..

zeroes ofH1(zt).

Case2: Normal incidence on a plane dielectricboundary
If the medium 2 is not a perfect conductor (i.e. Ry ) partial reflection will result. Therewill be a
reflected wave in the medium 1 and a transmitted wave in the medium 2.Because of the reflected wave,
standing waveis formed in medium 1.
From above equations we canwrite

B = 2 (e"'x + l“e"x)ax
Let us consider the scenario when both the media are dissipation lessi.e. perfect dielectrics
(6= 0, ;= 0)

W =JafhE =8 h= Lot
8
Yo = J@\J 8y =J:@ My = %
2

In this case both 71 and 72 become real numbers.
Fy=a:E, (e'mx S )

z ‘;X‘Ew ((1 + T) o8 4T (emx e e—w))
= axE,, (Te™% + T(2jsin z))

From (n), we can seethat, in medium 1 we have a traveling wave component with amplitude TE;g and

astanding wave component with amplitude 2JE;o.
Thelocation of the maximum and the minimum of the electric and magnetic field components in

the medium 1from the interface can be found asfollows. The electric field in medium 1 canbe
written as

B = QXLT,-‘,Q‘J"’" (l 2 I"e”’nﬁx)

it 727 Mie T's0
The maximum value of the electric field is

B =E,(1+7)
and this occurswhen
282y = 2N
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, o BT __ nn -2,
or A 2% ‘ ,N=0,12 3. e, (0
The minimum value of a2l is
Bl 80D ®

And this occurswhen

Zons =—(2n+1)£
or 4.,n=0,123 e (o)

For 72 <™ je T'<0

Themaximum value of lEl| is E,(1-T)

of |§1| is E,(1+T)

which occurs a the zy,i, locations and the minimum value

which occurs at zy,g¢ locations as given by the equations (o) and ().
|2l

From our discussions so far we observe that |E Inm can be written as

Bl _ 1+
5= o
Bl 11T
The quantity Sis called asthe standing wave ratio.

< < .
As U< <1 therangeof Sis givenby 1 =5 =
We can write the expression for the magnetic field in medium 1 as
— -~ E o ’
Hy=ay 2 g% (1 - I"e”’“)
™
| AN | &
From above equation we can seethat will be maximum at locations where

vice versa
In medium 2, the transmitted wave propagatesin the + z direction.

is minimum and

Obligue Incidence of EM wave at an interface

So far we have discuss the case of normal incidence where electromagnetic wave traveling in alossless
medium impinges normally at the interface of a second medium. In this section we shall consider the case
of oblique incidence. Asbefore, we consider two cases

I. When the second medium is a perfect conductor.
il When the second medium is a perfect dielectric.

A plane incidence is defined asthe plane containing the vector indicating the direction of propagation
of theincident wave and normal to the interface. We study two specific cases when the incident electric

field £t is perpendicular to the plane of incidence (perpendicular polarization) and Ei is parallel to the
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plane of incidence (parallel polarization). For a genera case, theincident wave may have arbitrary
polarization but the same can be expressed as a linear combination of thesetwo individual cases.

Obligue I ncidence at a plane conducting boundary

i Perpendicular Polarization
The situation is depicted in figure 6.10.

4 X
"/{\’ P4 Perfect Conductor
~ N
a¥
H' N
0, i z
ax
E 3 P =
G |=0 CT; -

Figure 6.10: Perpendicular Polarization

-~

Asthe EM field inside the perfect conductor is zero, the interface reflectsthe incident plane wave. &=

and @w» respectively represent the unit vector in the direction of propagation of the incident and

8 8,

reflectedwaves, “i is the angle of incidence and “ is the angle of reflection.

Wefind that
axi = as cos &, + & sin &,

G = —Gz COS 8, +aysin 8,
Since the incident wave is considered to be perpendicular to the plane of incidence, which for the
present case happensto be xz plane, the electric field hasonly y-component. Therefore,

E: (x.z)= ayE}oe_j’ela"'F
2 ayE,wé—j,&l[xsinBﬁzcos&)
The corresponding magnetic field is given by

> 1~ —
Hilx,z)=— Eil x,
(x z) 7 a, x (x z)]

el [_ cosinredin 9,.2:3] Ebe‘fﬂl[mn-%ﬂcosﬁ%)
7

Similarly, we canwritethe reflected waves as
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Ey (x.z)= &;-Eme_j’gla"'r
_ ayEmE—j,El[xsmﬁr—ac o5ty |
Since at the interface z=o, the tangential electric field is zero.
-7 B xsing, -7 Gxsing,
Eioe A e - Erae & =0

The above equation is satisfied if we have
E =-F

re W0

and 8 =8,

The condition g =8 * is Snell's law of reflection.

35 (x z) - _ayE. e‘}'ﬂl[xsinﬁ,-—zcosg)

and Er (X,Z) =l ;mrxz_ér(x,Z)]

o1
= E— —ax cos8 - ax sin &, ] —j,q[xmnq—zcosﬁg)
|
Thetotal electric field is given by
B (x.2)= E (x,z)+ E, (x.2)

= —a,2jE, sin (Bzcosd, )e_'f‘alxsmﬁ
Smilarly, total magnetic field is given by

Hi(xz)= —oE [ax cos &, cos( Bz cos Q)e_J.’slmn% + @z jsin & sin ( §zcos §, )e-j’alxsm% ]
7
From above two equations we observe that
1. Along z direction i.e. normal to the boundary

y component of E and x component of H maintain standing wave patterns according
0 sin 4,2 and “°° Az where Bz = fros§ . No average power propagates along z as

y component of E and x component of H are out of phase.
2. Alongxi.e. parallel to the interface

y component of E andz component of H arein phase (both time and space) and
propagate with phase velocity
@ @
vplx S -
Gy  Bsing

and /'le—z= A
5, sng

The wave propagating along the x direction hasits amplitude varying with z and hence constitutes a non

uniformplane wave. Further, only electric field is perpendicular to the direction of propagation (i.e. X),
the magnetic field has component along the direction of propagation. Such waves are called transverse
electric or TE waves.
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ii. Parallel Polarization:

In this case also @x and &= are given by the derived equations. Here #7: and Z» have only
y component.

X

/?," 1 Perfect Conductor
e —
0 —_—
W
w @xi
E R —————
g1=0 ay=®

Figure 6.11: Parallel Polarization
With referenceto fig (6.11), thefield components can be written as:

Incident field components:

Fi(r2) = B, [cos @ ~singa A0

i (r.2) -3, B g Al
B e (n
Reflected field components:
- 8, 8,
B, (x z [ax cosd, + ax sin & ] PR rmdpesesty)
H (x,Z) = ay _J’sl(mn% 005%)
’31

Since the total tangential electric field component at the interfaceis zero.
5 (,0)+ £(x,0) -

Which leads to £, ==&, and 6=6 * asbefore.

Substituting these quantities in (r) and adding the incident and reflected electric and magnetic

field components the total electric and magnetic fields can be written as

B (x,z) --2F, c;xj cos &, sin (,é’izr:os g)+ &z sin 8 cos (,612 cos 9!)] g AT

and Hi (x,2) = (82 cos@)e—j’g‘xsm%

G|
Once again, we find a standing wave pattern along z for the x and y components of E and E, while a
_ ¥A
vplx o
non uniform plane wave propagates along x with a phase velocity given by S04
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a
v =
»l
where . Sincefor this propagating wave, magnetic field is in transverse direction, suchwaves are

called transverse magnetic or TM waves.

Obligue incidence at aplane dielectric interface

We continue our discussion on the behavior of plane waves at aninterface; this time we consider a plane
dielectric interface. Asearlier, we consider the two specific cases, namely parallel and perpendicular
polarization.

A
X
Er Hr T
E: H:
0,
Sl =) 6, 2
0; %
z=0
Ez‘,Hz’
Medium 1 Medium 2
%,M,U].:U gg:#g,az=[]

Fig 6.12: Oblique incidence at a plane dielectric interface
For the case of a plane dielectric interface, an incident wave will be reflected partially and transmitted

partially.
. 8,8, and &, . o . -
InFig(6.12), t corresponds respectively to the angle of incidence, reflection and transmission.

1. Parallel Polarization
Asdiscussed previously, the incident and reflected field components can be written as

Ei(x,z) = &, [Cos 8ax —sin 9,-;3] e_‘j’el(mm%ﬂws%)
(-3, o A

o

xsing, —2c0ss, )

—

Ey(xz)=E, [;x cos 8, +as sin 5’,]@—}’81(
e (1.2) = -5y FAlrint st
o1
In terms of the reflection coefficient [
E,(x,z)=TE, [cAzx cosd, +assin 9,]9_3’81(

IE,

iae

xsing,—2c0s, )

Hy (x.2) = _ay ~ )8 xsiny -zcos8y)

S|
The transmitted filed can be written in terms of the transmission coefficient T
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E“ [L z) =T1E, [ax cos8, - &x eify gr]g‘i'ﬁg[mnﬁﬁamsgtj

E: [x, z:l = QJ, %eﬂﬁz(mmﬁﬁzmsﬂj

We cannow enforce the continuity of tanggential field components at the boundary i.e. z=0
cos Q-e—j’glmn% +Tcos 6‘,6_3.’81’@“'9’ =T cos G,e_f’szmna’

1 yspsing _ T —jopsing _ T -jepsing

and
7 7 G ———— (9

If both & and 1, areto be continuous at z=0 for all X, then form the phase matching we have
Gsind = 8sind, = G510 §
.+ Wefind that
g =86
and Gesin§ =Gsin8 ®)

Further, from equations (s) and (t) we have
cosd + cosd =Tcosf,

1 ' T
and ———=—
B % B
cos8 (1+T) =Tcos 8,
md L1-r)=L
! B3
~T=22(1-T)
4!

cos&(1+T) =n—2(l—l")cos£9,
|
S (mycos 8 +nycos§ )T =n,cos8, —n cosé

_%cos8, —ncosé,

r

or %, c088, +n,c088,

7
and T=-2(1-T
=La?

2n, cos &,

mcosftmeosd 0)

From equation (u) wefind that there exists specific angle & =8 forwhich I = 0suchthat
7, cos8, = cos 8,

Ji-sin’g = 2 fi-sin’§,
or e
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sn g, = ﬁsiﬂ a,
Further,
For non magnetic material #4 = #2 = o
Using this condition
; & ;
1-sin*8 =2{1-sin* 4
G 15"

and sin® 8, = A gi? g,
€2 e —— (v)
rom eguation (v), solving for S & we get
1
1+ ﬁ
&

This angle of incidence for which I" = Qis called Brewster angle. Since we are dealing with

sind, =

parallel polarization we represent this angle by & so that
: 1

sin gbu = —6‘

1+ =L

&

2. Perpendicular

Polarization For this case
7, (x.2) = ayggoe‘fﬁl(xsm% +zc0s8)

=+ ~J [ xsinéy +zc0s8} )

Eor - a
Hi(x,2)=—2|-axcos8 +azsin 8 |e
H f]
ks
1

, (1,7) - 3,0 AR -208)

- - J[ xsing, -zcos8y )

Hy(x,z)= £t [(;x cos 8, +as sin 5,]@
|

7, (x,2) = chyTE,.,, e-fﬁl[xsma,ﬂcos@)

H (x.2)= L) [—&x cos 8, +assin 91] I Aa(xsindy+ zo0sth)
o
Using continuity of field components at z=0
e—,f',&lxg-rl% A5 I“e-j;&lxsin&, o ’j"’Ebe"j,ngsine,

and —lcos gie—;,slxﬁnsg oI s gre_j)&lmno, 20k s @e—j,azxsineg
?’31 }gl ?22
Asin the previous case
Bsing = Bsind, = §sin §
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8-8,
and sin &, = ﬁsin 2
Using these conditions we canwrite
1+T=7
cos8  [cos@ Tcos 8,
e + e
%y % 1 (w)

From equation (w) the reflection and transmission coefficients for the perpendicular polarization can
be computed as

r _ % c0s8 —ncosb,
nycos 8 +ncos 8,

and T = 2n, cos 8,

+
zn cosé‘i nlcos@

2

We observethat if ' = 0for anangle of incidence =6
7, c088, =ncos 8,

Scos*g = & cos? &,
!
o L} cos® &,
HE
" 1-sin* 6, =229 (1-5in%8, )
HEy
sin g, = ﬁsin &,
Again
C.sin?g, = FifL 2 8,
e
c|1-Afginrg |- A ARG
ey HEy  HE
Sin2 95 ;'{181 _ 4’{'{261 =|1- '.(.4{251
or K&y H& &y
sin? 6 =i g = HE T HyE
or L& HEy
sin? g, = Hy (ﬂliz ‘ﬂ:;fl)
or alw =) X)

We observe if #1~ %27 #0 je in this case of non magnetic material Brewster angle does not exist
as the denominator or equation (x) becomes zero. Thus for perpendicular polarization in dielectric

media, there is Brewster angle so that I can be made equal to zero.
From our previous discussion we observe that for both polarizations

DEPT.OF ECE,ACE 83



ENGINEERING ELECTROMAGNETICS [15EC36]

sAn g = %siné‘i

; £y ..
sind, = f—l sin &,
&

8, = i g = sin_l\/g
The incidence angle & = & for which 2 ie. 4 s called thecritical angle of

incidence. If the angle of incidence is larger than & total internal reflection occurs. For such case an

evanescent wave exists along the interface in the x direction (w.r.t. fig (6.12)) that attenuates
exponentially in the normal i.e. z direction. Such wavesaretightly bound to the interface and are
called surface waves.

If £ = H = Hy

For 676 & 28

QUESTIONS

1.Write down Maxwell’s field equations in the differential and integral form for time harmonic fields
2.Derive the expressions for energy stored in electric and magnetic field. Which field is efficient.

3.Inauniform plane wave, E and H are at right angles to each cther. Prove.

4.A lossy dielectric is characterized by g=1.5, g=1 and / =25x10%. At afrequency of 200MHz, how far
canauniform plane wave propagate in the material before

(it undergoes an attenuation 1INp
(i)its amplitude is halved

5. Deducethe integral form of the theoram of Poynting and state the significance of the three terms
appearing in the equation.

6.What are the properties of uniform plane wave?
7.Write Maxwell’s equation in integral form and interpret
8.Show that characteristic impedance of free space is 3770hm

9.State and explain Poynting V ector(P) and Poynting theorem.

10.A brass(conductivity=107mho/m) pipe with inner and outer diameter of 3.4 and 4 cm carriesatotal
current of 100A dc. Find Electric field (E), Magnetic field(H) and Poynting V ector(P) within the brass
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