Engineering Electromagnetics

MODULE 1 : Coulomb’s Law, Electric Field Intensity and Flux Density

11 Experimental Law of Coulomb

1.1.1 Force on a point charge

1.1.2 Force due to several charges

1.2 Electric field intensity

1.2.1 Electric Field intensity due to several charges

1.2 .2 Electric Field intensity at a point due to infinite sheet
of charge

1.2 .3 Electric Field at a point on the axis at a charges
circular ring

1.3 Electric Flux

14 Electric Flux Density

1.1 Experimental law of Coulomb

Coulomb’s law states that the electrostatic force F between two point charges ql and q2 is
directly proportional to the product of the magnitude of the charges, and inversely proportional
to the square of the distance between them., and it acts along the line joining the two charges.
Then, as per the Coulomb’s Law,

F “kqlqg2
Or F=(kglg2)/(r) N

Where k is the constant of proportionality whose value varies with the system of units. R" is the
unit vector along the line joining the two charges.
1

In Sl unit, k= #==° .
Where € s called the permittivity of the free space.
It has an assigned value given as € ° =8.834& 107" F/m,
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Force on a point charge:

The forces of attraction/repulsion between two point charges & and & (charges
whose size is much smaller than the distance between them) are given by Coulomb’s
law:

_ . S
Bk

az

F2=k'gl?gza]2

where £~ x10° m/F in SI units, and R is the distance between the two charges.
Here. T1 is the force exerted on Q, and ¥2 is the force acting on €2 _ The unit vector

@21 points from charge 2 toward charge 1. Accordingly, 8z ™ a1

Force on Q1 is given by

Fl= 1 &Afs
pe il Newtons
+—O O
ql 02
O o
F2
ql q2

Force due to several charges

Let there be many point charges ql.q2.q3......... qn at distances r1.12r3....m from
charge q. The force F1, F2, F3.......__. Fn at the charges ql,q2.q3.......... qn respectively

e q g

q{-}na’v‘l fﬁ?fz BAE R R R e e e e wee .--..}
F=Fql+Fq2+Fq3.............
Hence, F= q{L_J ,’-‘=,% ri} N
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1.1 Objectives

After going through this section, the students are able
to 1. State Coulombs law
Application of Coulombs Law to point charge as well as several charges

1.2 Electric field intensity

Electric field intensity at any point in an electric field is the force experienced by positive unit
charge placed at that point.

Consider a charge Q located at a point A. At the point B in the electric fields set up by Q, it is
required to find the electric field intensity E.

Let the charge at B be 9 and let the charge Q be fixed at A. Let r be the distance between A and
B. As per the Coulomb’s Law, the force between Q and q is given by:
F= QAQ/(‘:}’T 60 ,rl') rN

If it is a unit positive charge, then by definition, F in the above equation gives the magnitude of
the electric field intensity E.
i.e. E=F when 29 = 1
Therefore, the magnitude of the electric field
strength is: E=Q/(4r T € o)

Let r be the unit vector along the line joining A and B. Thus, the vector relation between E is
written as:

E=0/(4 ™ Sor) Vim

1.2.1 Electric Field intensity due to several charges

Let there be many point charges 91,92,93......... gn at distances r1,r2,r3 ... rn be the corresponding
unit vectors. The field E1, E2, E3.......... En at the charges q1,92,93........... gn respectively are:
r+

E=Eql+EQg2+EQ3  .............

Hence, 4may 1
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1.2 .2 Electric field intensity at a point due to a infinite sheet of charge

Let us assume a straight line charge extending along Z axis in a cylindrical coordinate
system from -oo to +oo as shown in the figure 1.1. Consider an incremental length dl at a point on
the conductor. The incremental length has an incremental charge of dQ= pl dl= pldz’ Coulombs.

Considering the charge dQ, the incremental field intensity at point p is given by,

JE = Pzt —v)

dmrey|r — r’|':

(0,0,2) \

Where
r=ya, = pip
ri=7z'a.
and
r—r’' =pa,—za.
Therefore,
E — [\ /_)1_/')(/:'
i o 4-’701(92 + :':)} L

Integrating the above and substituting z’=p cot 6, we get
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and

ZTTEYp

1.2.3 Electric field intensity at a point due to a infinite sheet of
charge:

Let us assume a infinite sheet of charge with surface charge density ps as shown in the
figure 1.2. Divide the sheet of charge into differential width strips. number of str Consider an
incremental length dl at a point on the conductor. The line charge density pl= ps dy’.

A

The differential Electric field intensity at point P,

ps dy’ . Ps  xdy'
dE, = —co0sf = > : =
2meg /X + y'- 2mey x7+y

adding the effects of all the strips,

ps [F  xdy' ps 1T ps
Ei=x TR = oA —| =s—
&TEQ ) XT TV~ ZITE( X 80 Z€()
Therefore,
. Ps
E=—ay
2(ll »
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1.2.4 Electric field at a point on the axis of charged circular ring:

Let p be the charge density of the ring.

So, p=dq/dl
dg=pdl

Electric field due to an infinitely small element = dE = dg/4meo 1> r*

where r” is the unit vector along AP.
dE can resolved into two rectangular components, dEx and dEy. Now, dEx=dEcos6.
Taking the magnitude of dE from above, the equation becomes,

dgcos8

. - 2
4wslr?

dEx=

2
coso=r
substituting for dq from above, we have;

dEx=22!

dmers

The component dEy is directed downwards. If we consider an element of the ring at a point
diametrically opposite to A, then its dEy component points upwards and hence, cancels with
that due to element A. The dEx components add up.

[dEy=0.
The total field at P is the sum of the fields due to all the elements of the ring.
Therefore, E=|dE=[dEx+|dEy=]dEx
px inK
— dl
E=|dEx= 4rsr*"0
px(2nR)
= 4mxzrs
But, r=(R2+x?)%2
Therefore, E= 2zRpx ax
4ms(R2+x72)572

Where, ax is the unit vector along the x axis.
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1.2  Objectives

At the end of this section the students are able to
1. Define Electric field Intensity
2. Derive Electric field intensity at a due to several charges
3. Derive Electric field Intensity at a point due to sheet of charge
4. Derive Electric field intensity at a point on the axis of charged circular ring

1.3 Electric flux:

The concept of electric flux is useful in association with Gauss' law. The electric flux through a
planar area is defined as the electric field times the component of the area perpendicular to the
field. If the area is not planar, then the evaluation of the flux generally requires an area integral
since the angle will be continually changing.

When the area A is used in a vector operation like this, it is understood that the magnitude of the
vector is equal to the area and the direction of the vector is perpendicular to the area.

Consider a concentric sphere having radius of ‘a’m charged up to +Q C. This sphere is
then placed in another sphere having a radius of ’b’ m as shown in the figure 1.4.

Metal
conducting
spheres

Insulating or
dielectric
matenal

There is no electrical connection between them. The outer sphere is momentarily
charged, then it found that the charge on the outer sphere is equal to the charge on the inner
sphere. This is depicted by the radial lines. This is referred as displacement flux. Therefore,

¥ =Q.

1.3.1 Electric flux density:

If +Q C of charge on the inner sphere produces the electric flux of v, tthen electric flux vy

) . 2 . . )
uniformly distributed over the surface areca 4I1a~ m~ , where a is the radius of the inner sphere.
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The electric flux density si given by

-0 S o
I)!,_‘, = I a, (inner sphere)
Similarly for the outer sphere,
Q
l)i = ~Q, (outer sphere)
|,77/' 43/)_ ( C \p C

If the inner sphere becomes smaller and smaller retaining a charge of Q C, it becomes a point
charge. The flux density at appoint ‘r’ from the point charge is given by,

4l

D= Q a, ‘

The electric field intensity due to point charge in free space is given by,

)
E= ¢ a,

dreyr:

Therefore in free space,

D=eFE

1.3 Objective

After going through this section the students should be able to
1. Define Electric flux
2. Explain Electric flux density

1.4 Gauss law:

The Gauss's law states that. "The electric flux passing through any closed surface is equal to
the total charge enclosed by the surface™

For the Gaussian-surface shown in the following figure, the Gauss' law can
be expressed mathematically, .

y =§0;-ds=Q
Where
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Y = flux passing through the closed surface
8s =1 surface integral

Ds =, flux density (vector quantity) normal to the
surface Q = Total charge enclosed in the surface

Gauss law for charge Q enclosed in a closed surface:

Let Q be the point charge placed at the origin of imaginary sphere in spherical co-
ordinate system with a radius of "a" as illustrated in the figure
The electrical field intensity cf the point charge is found to be equal to
@ .
S =q,,  _
E = dneg,r? M

Where r=ClI
and we al so know that the relation between E and D as,

D,

e g

D=gE = =  —— )
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Therefore from (1) and (2) we get.
5 Q .

e

D= 4n &0 rz

2.3

T
4ma’

at the surface of the sphere,

v _g

4ma’
The differential element of area on a spherical surface is, in spherical coordinate form is
given by,

ds r’ sinf d6 d¢ = a? sinb d6 do

Or ds = a’sinddBdg a,
Then the required integrand

r

-ds

Q . o
= W"‘ sinB df d¢ a, -a,

= T sinfdB d¢ (. a,-a, =1 from vector basics)

Then the integration over the surface as required for Gauss' law.

= p=2 =N
s di=| r Q (inodado
=0  Jo=0 4

: =

The limits placed for integral indicate that the integration over the entire sphere in spherical
co-ordinate system on integration we get
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T

2n
: j_Q—(-cose:.gm
) 4

Q
|

= Q
Thus we get, comparing LHS of Gauss' law as
y=Q
This indicates that, Q coulombs of electric flux are crossing the surface as the enclosed charge is
Q coulombs.

1.4 .1 Application of Gauss law:

In case of asymmetry, we need to choose a very closed surface such that D is almost
constant over the surface. Consider any point P shown in the figure 1.6 located in the
rectangular co-ordinate system.

P(x, y, )
D=Dp=Dga +Dga,+ Da,

The value of D at point P, may be expressed in rectangular components as,
D=Dx0ax+Dy0ay+Dz0az. . From Gauss law, we have

JS

I :I[ﬁ l)-(IS:Q

In order to evaluate the integral over the closed surface, the integral must be broken into
six integrals, one over each surface,
* ‘[[op | ."hmu‘-m

f\ D-dS I - [
JS Jiromt Jback
The surface element is very small & hence D is essentially constant ,

i vl
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aD,

[ —+—J = =——AxAyA:z
Jfrom back dx

Similarly,

. 3D,
+ = —=Ax AV Az
J right left ay

and,
abD

1D,
[ + [ = —AXAyA:z
Jop Jbottom oz

Therefore collectively,

aD, aD, aD.
( -dS = |—+—+—]AxAy Az
]ED d (8.\' - 3 - = )A\ Ay A

or

. (8D, aD, aD.
- dS = = : : - '
i.') s =0 ( ax | dy | oz )A'

Charge enclosed in volume Av,

, . . (9D, aD, aD.
Charge enclosed in volume Av = (d—\‘-r ' -

—_— 4 — | x volume Av
ay a:) ¢

1.4  Objectives

At the end of this section the students are able to
1. State and prove Gauss Law

2. Apply Gauss law to find the charge enclosed in differential volume

1.5 Divergence:

From Gauss law, we know that,

Av

(ao‘ . aD, 8D:) . §DdS

x o

And applying limits,

Av
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= lim —g
Av Av->0 Ay

(BD\. aD, aD. . $.D-dS
+ + = lim =—w
ax av 0z ) Av->0

The last term in the equation is the volume charge density, pv.
(ao,\ oDy BD:) $D-dS

+ = lim =— = p,

ax dy 0z Av-0 Av

We shall write it as two separate equations,

(31) aD, aﬁ"\_l §sD-ds

o (dD ab, aD. )

‘]1

- -

ax ay 5 pe

Divergence is defined as,

y oD, ab, ab.
vD= - - -
div (:‘h’ - 3 + % )

1S
Divergence of A = div A = lim 4;‘“' L
Av=0  Aw

Statement: The flux crossing the closed surface is equal to the integral of the divergence of the

flux density throughout the enclosed volume, as the volume shrinks to zero.

Divergence in Cartesian system,

. aD, aD, aD. .
div D= - - — (cartesian)
ox ay az

Divergence in Cylindrical system,

1 19D, aD. L
) = = ot SR Pt = .;
div I >3 (pD,,) % = (cylindncal)
Divergence in Spherical system,
: 19,5 ! I @ ..o ic
divD = '-3 ",)—"'(I"D,) o0 30 % ‘in(lg (bphtﬂtdl)
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1.6.1 Maxwell’s First equation:

From divergence theorem, we have

; ’ 'f\. D-dS
y ) —_ oo
divD =t
. 9Dy  aD,  3D.
Gy D= ax ay ez
div D = Pu
From Gauss law,
} A-dS=0Q
S
Per unit volume,
.‘f.s A-dS Y
Av  Av
As the volume shrinks to zero,
$ A -dS
lim j‘—”——: lim —
Av-0 Av Av—+0 Av
Therefore, div D = py,
1.6.2 Divergence theorem:
The del operator is defined as a vector operator.
d d d
V=—ay+4+—a, +—a;
it % ay YT

In Cartesian coordinate system,

a d d
V:D=—(D,)+—(D,)+—(D.
(D) 47 (D) + 72D

Which is equal to,

aD. aD, aD-:
e

V:D=
ax ay 0z
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Therefore,
. abD,. 8D, aD.
' D=V.D= —
div D D ax oy =
From Gauss law, we have
[ D-.dS = Q
JS
And by letting,
P = Wdv
¢ .[m]”' g VD=0

Hence we have,

‘ % D-(/ST [ V-Ddl‘ ‘
JS Jvol

1.6 Objectives

At the end of this section the students are able to
1. Explain the concept of divergence
Derive Maxwell’s First Equation

State and prove Divergence theorem

2
3
4.
5
A

1 Recommended Questions

1. State Coulomb’s law of force between any 2 point charges & indicate the units of the

quantities involved.

2. Derive the general expression for electric field vector due to infinite line charge using Gauss law.

3. State and prove Gauss law.

4. Derive the general expression for E at a height h(h<a) , along the axis of the ring charge &

normal to its plane.

5. From gauss law show that .D=cv
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6. State and prove divergence theorem for symmetric condition.

7. State and prove divergence theorem for asymmetric condition

1.8 Further Readings

1. Energy Electromagnetics, William H Hayt Jr. and John A Buck, Tata McGraw-Hill, 7th
edition,2006.

2. Electromagnetics with Applications, John Krauss and Daniel A Fleisch McGraw-Hill, 5th
edition, 1999

3. Electromagnetic Waves And Radiating Systems, Edward C. Jordan and Keith G Balmain,
Prentice — Hall of India / Pearson Education, an edition, 1968.Reprint 2002

4. Field and Wave Electromagnetics, David K Cheng, Pearson Education Asia, 2nd
edition, 1989, Indian Reprint — 2001
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