MODULE - I

COMPLEX VARIABLES

Complex number:

$>$ The Real and Imaginary part of a complex number $z=x+i y$ are x and y respectively, and we write

$$
\operatorname{Re} z=x \text { and } \operatorname{Im} z=y
$$

$>$ We may represent the complex number z in polar form:

$$
z=r[\cos \theta+i \sin \theta]
$$

$>$ Where $\mathrm{x}=r \cos \theta, \mathrm{y}=r \sin \theta, \mathrm{r}$ is called the absolute value and θ is the argument of Z .

Now

$$
\begin{gathered}
z=r e^{i \theta} \\
|z|=r\left|e^{i \theta}\right| \\
|z|=r \quad \text { and } \quad \arg z=\theta
\end{gathered}
$$

\rightarrow Geometrically $|z|$ is the distance of the point z from the origin. For any complex number

$$
\begin{aligned}
z & =x+i y \\
|z| & =\sqrt{x^{2}+y^{2}} \\
r & =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

$>$ Distance between two points, $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$
Now $z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{2}-y_{1}\right)$ is a complex number.

$$
\left|z_{1}-z_{2}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

$>$ Equations and inequalities of curves and regions in the complex plane:
\Rightarrow Consider $\left|z-z_{0}\right|=R--(1)$
$>$ Where $z=x+i y$ is any point and $z_{0}=x_{0}+i y_{0}$ is a fixed point, R is a given real constant.

$$
\begin{align*}
& \left\lvert\, \begin{array}{ll}
z-z_{0} \mid=R \quad \text { OR } \quad z-z_{0}=R e^{i \theta} \quad 0 \leq \theta \leq 2 \pi \\
\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}=R \\
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=R^{2}---(2)
\end{array}\right.
\end{align*}
$$

Equation (2) represents a circle C of radius R with the center at a point $\left(x_{0}, y_{0}\right)$. Hence equation (1) represents a circle C center at z_{0} with radius R in the complex plane

Consequently we have,

1. The inequality $\left|z-z_{0}\right|<R$, holds for any point z inside C ; ie. $\left|z-z_{0}\right|<R$ represents set of complex points lies inside C or interior points of C . such a region is called a circular disk or more precisely open circular disk or open set.

Note: If R is very small say $\delta>0$ (no matter, how small but not zero) then $\left|z-z_{0}\right|<\delta$ is called a nhd of the point z_{0}.
2. The inequality $\left|z-z_{0}\right| \leq R$, holds for any z inside and on the C . such a region is called circular disk or closed set $\left[\left|z-z_{0}\right| \leq R \quad\right.$ consists interior of C and C itself].
3. The inequality $\left|z-z_{0}\right|>R$ represents exterior of the circle C .

4. The inequality $r_{1}<\left|z-z_{0}\right|<r_{2}$ represents a region between two concentric circles C_{1} and C_{2} of radii r_{1} and r_{2} respectively. Where z_{0} is the center of circles. Such a region is called an open circular ring or annular region.

5. Suppose $z_{0}=0$, then $|z|=R \quad$ represents a circle C of radius R with center at the origin in the complex plane.

Consequently we have the following:

The equation $|z|=1$ represents the unit circle of radius 1 with center at the origin.
a) $|z|<1$: represents the open unit disk.
b) $|z| \leq 1:$ represents the closed unit disk.
[Students become completely familiar with representations of curves and regions in the complex plane]

Complex variable:

$>$ If x and y are real variables, then $z=x+i y$ is said to be a complex variable.

Complex Function:

$>$ If, to each value of a complex variable z in some region of the complex plane or z-plane there corresponds one or more values of W in a well defined manner, then W is a function of z defined in that region (domain), and we write $W=f(z)$.

Observation:

$>$ The real and imaginary part of a complex function $W=f(z)=u+i v$ are u and v which are depends on:
i. x, y in Cartesian form.
ii. r, θ in polar form.

Limit:

A complex valued function $f(z)$ is said to have the limit l as z approaches to z_{0} (except perhaps at z_{0}) and if every positive real number $\in>0$ (no matter, how small but not zero) we can find a positive real number $\delta>0$ such that $|f(z)-l|<\varepsilon$ whenever $\quad\left|z-z_{0}\right|<\delta$ for all values $\quad z \neq z \mathrm{z} \mathrm{r} \quad \lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$

$>z \rightarrow z_{0}$ means that, \mathbf{z} approaches to z_{0} through independent of path.

Continuity of : A complex function $W=f(z)$ is said to be continuous at a point z_{o} if
i) $f\left(\mathrm{z}_{0}\right)$ is exists.
ii) $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$

Note: If $f(\mathrm{z})$ is said to be continuous in any region R of the z -plane, if it is continuous at every point of that region.

Derivative of $f(\mathbf{z})$:

A complex function $\mathrm{f}(\mathrm{z})$ is said to be differentiable at $\mathrm{z}=\mathrm{z}_{0}$ if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists and is unique. This limit is then called the derivative of $f(z)$ at $z=z_{0}$ and denoted by $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ or $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ where $\delta z=z-z_{0}$.

Theorem: The necessary conditions for the derivative of the function $w=f(z)$ to exist for all values of z in a region R,
i) $\quad \frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial y}$ are continhous function of x and y in R .
ii) $\quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$. the relation (ii) are known as Cauchy- Riemann equations or briefly C-R Equations.

Proof: If $f(z)$ possesses a unique derivative at any point z in R, then

$$
f^{\prime}(z)=\lim _{\delta z \rightarrow 0} \frac{f(z+\delta z)-f(z)}{\delta z}
$$

In Cartesian form $f(z)=u(x, y)+i v(x, y)$

$$
\begin{aligned}
& \mathcal{\delta} z=\delta x+i \delta y, \quad \text { and } \\
& f(z+\delta z)=u(x+\delta x, y+\delta y)+i v(x+\delta x, y+\delta y) \mid \\
& f^{\prime}(z)=\lim _{\delta z \rightarrow 0}\left\{\frac{[u(x+\delta x, y+\delta y)+i v(x+\delta x, y+\delta y)]-[u(x, y)+i v(x, y)]}{\delta x+i \delta y}\right\} \\
& f^{\prime}(z)=\lim _{\delta z \rightarrow 0}\left\{\frac{u(x+\delta x, y+\delta \mathcal{L})-u(x, y)}{\delta x+i \delta y}+i \frac{v(x+\delta x, y+\delta y)-v(x, y)}{\delta x+i \delta y}\right\}---(1)
\end{aligned}
$$

Let us consider the limit $\delta z \rightarrow 0$ along the path parallel to the x -axis (for which $\delta y=0$), then RHS of (1) becomes $f^{\prime}(z)=\lim _{\delta z \rightarrow 0}\left\{\frac{u(x+\delta x, y)-u(x, y)}{\delta x}+i \frac{v(x+\delta x, y)-v(x, y)}{\delta x}\right\}$

$$
\begin{equation*}
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}---(\tag{2}
\end{equation*}
$$

Let us consider the limit $\delta z \rightarrow 0$ along the path parallel to the y -axis (for which $\delta x=0$), then RHS of (1)

$$
\begin{aligned}
& f^{\prime}(z)=\lim _{\delta z \rightarrow 0}\left\{\frac{u(x, y+\delta y)-u(x, y)}{i \delta y}+i \frac{v(x, y+\delta y)-v(x, y)}{i \delta y}\right\} \\
& f^{\prime}(z)=\lim _{\delta z \rightarrow 0}\left\{\frac{u(x, y+\delta y)-u(x, y)}{i \delta y}+\frac{v(x, y+\delta y)-v(x, y)}{\delta y}\right\} \\
& f^{\prime}(z)=\frac{1}{i} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \\
& f^{\prime}(z)=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}---(3)
\end{aligned}
$$

Now existence of $f^{\prime}(z)$ requires equality of (2) and (3)

$$
\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}
$$

Equating repl and imaginary part from both the sides.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\quad \frac{\partial v}{\partial x}
$$

Analytic function:

A complex function $f(z)$ is said to be analytic at a point $z=z_{0}$ if it is differentiable at z_{0} as well as in a nhd of the point z_{0}. An analytic function is also called a regular function or an holomorphic function.

Theorem (2): If $f(z)=u+i v$ is analytic at a point $z=x+i y$, then u and v satisfy the CauchyRiemann equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$ at that point.

Proof:

$f(z)$ is analytic means that $f(z)$ possesses a unique derivative at a point $z=x+i y$. (proof of theorem(1) follows)

Cauchy-Riemann equations in Polar form:

Property: show that the polar form of Cauchy-Riemann equations are

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
$$

Solution:

Complex variable z in polar form is
$z=r e^{i \theta}---(1)$
$\mathrm{w}=\mathrm{f}(\mathrm{z})$
$u+i v=f\left(r e^{i \theta}\right)----(2)$
where u and v are functions of $r \theta$

$$
\begin{aligned}
& \frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}=f^{\prime}\left(r e^{i \theta}\right) \cdot e^{i \theta}--(3) \\
& \frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta}=f^{\prime}\left(r e^{i \theta}\right) \cdot r i e^{i \theta}---(4) \\
& \frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta}=r i\left[\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right] \\
& \frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta}=\left[r i \frac{\partial u}{\partial r}-r \frac{\partial v}{\partial r}\right]_{1}
\end{aligned}
$$

Equating real and imaginary parts we get

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
$$

Note-1: The necessary conditions for $f(z)$ to be analytic are $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ these two relations are called Cauchy-Riemann Equations.
Note-2: The sufficient conditions for $f(z)$ to be analytic are, four partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ must exist and must be continuous at all points of the region.

Example-1:

Show that $f(z)=\operatorname{Re} z$ is not analytic.
Solution: $f(z)=\operatorname{Re} z=x$

$$
\begin{array}{r}
u=x \text { and } v=0 \\
\frac{\partial u}{\partial x}=1, \quad \frac{\partial v}{\partial x}=0, \quad \frac{\partial u}{\partial y}=0, \quad \frac{\partial v}{\partial x}
\end{array}
$$

C-R equation $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} \neq-\frac{\partial v}{\partial x}$, are not satisfied
Hence $f(z)=\operatorname{Re} z=x$ is not analytic similarly $f(z)=\operatorname{Im} z=y$ is not analytic

Property-1: The real and imaginary parts of an analytic functions $f(z)=u+i v$ in some region of the z-plane are solutions of Laplace's equations in two variables.

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y}=0 \quad \text { and } \quad \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0
$$

Solution: $f(z)=u+i v$ is an analytic function, then

$$
\text { (By } C-\text { R Equation) } \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}----(1)
$$

Consider $\quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}----(2), \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}----(3)$
Diff (2) with respect to x
Diff (3) with respect to y

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}----(4) \\
\frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial y \partial x}----(5)
\end{gathered}
$$

Adding (4) and (5)

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{6}
\end{equation*}
$$

Diff (2) with respect to y $\frac{\partial^{2} v}{\partial y^{2}}=\frac{\partial^{2} u}{\partial y \partial x}---(7)$
Diff (2) with respect to $x \frac{\partial^{2} v}{\partial x^{2}}=-\frac{\partial^{2} u}{\partial x \partial y}---(8)$
Adding (7) and (8) we get $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0---(9)$
\rightarrow Thus both functions $u(x, y)$ and $v(x, y)$ satisfy the Laplace's equations in two variables. For this reasons, they are known as Harmonic functions or Conjugate Harmonic function.

Polar form: If $f(z)=u(r, \theta)+i v(r, \theta)$ is an analytic function, then show that u and v satisfy Laplace's equation in polar form.
$>$ Laplace equation in Polar form in two variables,

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 \text { and } \frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}=0
$$

We have C-R equation in polar form

$$
\begin{align*}
& \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}---(1) \\
& \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}-\cdots(2) \tag{3}
\end{align*}
$$

Differentiate (1)with respect to $r, \quad \frac{\partial^{2} u}{\partial r^{2}}=-\frac{1}{r^{2}} \frac{\partial v}{\partial \theta}+\frac{1}{r} \frac{\partial^{2} v}{\partial r \partial \theta}-$
Differentiate (2)with respect to $\theta, \quad \frac{\partial^{2} u}{\partial \theta^{2}}=-r \frac{\partial^{2} v}{\partial \theta \partial r}---(4)$
using (4) and (1) on RHS of Equation (3), we get

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial \theta^{2}}=-\frac{1}{r}\left(\frac{\partial u}{\partial r}\right)+\frac{1}{r}\left(-\frac{1}{r} \frac{\partial^{2} u}{\partial \theta}\right) \\
& \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
\end{aligned}
$$

$>$ Hence \boldsymbol{u} is Harmonic
From (1) we get, $\frac{\partial v}{\partial \theta}=r \frac{\partial u}{\partial \theta}$
Differentiate with respect to $\theta \frac{\partial^{2} v}{\partial \theta^{2}}=r \frac{\partial^{2} u}{\partial \theta \partial r}----$
From (2) we get $\frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}----(6)$
Differentiate with respect to $r \quad \frac{\partial^{2} v}{\partial r^{2}}=+\frac{1}{r^{2}} \frac{\partial u}{\partial \theta}-\frac{1}{r} \frac{\partial^{2} u}{\partial r \partial \theta}---$
using (5),(6) on RHS of (7)

$$
\begin{aligned}
& \frac{\partial^{2} v}{\partial r^{2}}=\frac{1}{r}\left(-\frac{\partial v}{\partial r}\right)-\frac{1}{r}\left(\frac{1}{r} \frac{\partial^{2} v}{\partial \theta^{2}}\right)=0 \\
& \frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}=0
\end{aligned}
$$

Hence \boldsymbol{v} is Harmonic

Orthogonal System:

$>$ Two curves are said to be orthogonal to each other when they intersect at right angles at each of their point of intersections.

Property: If $\boldsymbol{w}=f(z)=u+i v$ be an analytic function then the family of curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ form an orthogonal system.

Solution: $f(z)=u+i v$ is an analytic functions.

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{array}\right\}^{u(x, y)=c_{1}} \begin{aligned}
&
\end{aligned}---C-\mathrm{R} \mathrm{e} \mathrm{quation}
$$

differentiate with respect to x , we get

$$
\begin{align*}
& \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \quad \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{-\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=m_{1}--- \tag{2}
\end{align*}
$$

differentiate w.r.t, x we get

$\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{-\frac{\partial v}{\partial x}}{\frac{\partial v}{\partial y}}=m_{2}---(3)$

$$
\begin{aligned}
\therefore m_{1} \cdot m_{2}= & \frac{+\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} \times \frac{+\frac{\partial v}{\partial x}}{\frac{\partial v}{\partial y}} \\
& =\frac{\frac{\partial v}{\partial y}}{-\frac{\partial v}{\partial x}} \times \frac{\frac{\partial v}{\partial x}}{\frac{\partial v}{\partial y}} \quad \text { (By C-R Equations) }
\end{aligned}
$$

$m_{1} \cdot m_{2}=-1$, form an orthogonal system
Polar form: Consider $u(r, \theta)=c_{1}--$ (1) and $v(r, \theta)=c_{2}--$ (2)

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{\partial u}{\partial r}=\frac{1}{r} \\
\frac{\partial v}{\partial \theta} \\
\frac{\partial u}{\partial \theta}=-r
\end{array} \begin{array}{l}
\frac{\partial v}{\partial r}
\end{array}\right\}---(3) \text { C-R Equations } \\
& \begin{array}{l}
\text { differentiate (1) w.r.t. } \theta \\
\frac{\partial u}{\partial \theta}+\frac{\partial u}{\partial r} \frac{d r}{d \theta}=0 \\
\frac{d r}{d \theta}=\frac{-\frac{\partial u}{\partial \theta}}{\frac{\partial u}{\partial r}}-\ldots-(4)
\end{array}
\end{aligned}
$$

$\tan \phi_{1}=\frac{r}{\frac{d r}{d \theta}}$ where ϕ_{1} being the angle between
the radius vector and the tangent to the curve(1)

$$
\begin{aligned}
\tan \phi_{1}= & \frac{r}{\frac{-\frac{\partial u}{\partial \theta}}{\frac{\partial u}{\partial r}}} \\
\tan \phi_{1} & =-\frac{r \frac{\partial u}{\partial r}}{\frac{\partial u}{\partial \theta}}----(5)
\end{aligned}
$$

Differentiate (2) w. r.t. θ
$\frac{\partial v}{\partial \theta}+\frac{\partial v}{\partial r} \frac{d r}{d \theta}=0$
$\frac{d r}{d \theta}=\frac{-\frac{\partial v}{\partial \theta}}{\frac{\partial v}{\partial r}}$
$\tan \phi_{2}=\frac{r}{\frac{d r}{d \theta}}$, where ϕ_{2} being the angle between the radius and the tangent to the curve (2)

$$
\begin{aligned}
\tan \phi_{1} \times \tan \phi_{2} & =\frac{r \frac{\partial u}{\partial r}}{\frac{\partial u}{\partial \theta}} \times \frac{r \frac{\partial v}{\partial r}}{\frac{\partial v}{\partial \theta}} \\
& =\frac{r \cdot \frac{1}{r} \frac{\partial v}{\partial \theta}}{-r \frac{\partial \theta}{\partial r}} \times \frac{r \frac{\partial v}{\partial r}}{\frac{\partial v}{\partial \theta}} \\
= & -1 \text { form an orthogonal system }
\end{aligned}
$$

Note: We have $z=x+i y$ and $\bar{z}=x-i y$

$$
\text { Now } \begin{aligned}
& x
\end{aligned}=\frac{1}{2}(z+\bar{z}) ~ 子 \begin{aligned}
y & =\frac{1}{2 i}(z-\bar{z})
\end{aligned}
$$

Consider $f(z)=u(x, y)+i \quad v(x, y)----(1)$
$f(z)=u\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)+i \quad v\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)$
put $z=\bar{z}$ we get
$f(z)=u(z, 0)+i \quad v(z, 0)----(2)$
\therefore (2) is same as (1) if we replace x by z and y by 0
Similarly in polar form if we replace r by z and θ by 0 in $f(z)=u(r, \theta)+i v(r, \theta)$
This is due to Milne-Thomson

Note: $(i) \sin (i x)=i \sinh x \quad$ or $\quad \sin h x=\frac{1}{i}[\sin (i x)]$ (ii) $\cos (i x)=\cos h x$

Example: 1

Show that $f(z)=\sin z$ is analytic and hence find, $f^{\prime}(z)$
Solution: $\quad f(z)=\sin (z)$

$$
\begin{aligned}
& =\sin (x+i y) \\
& =\sin (x) \cos (i y)+\cos (x) \sin (i y)
\end{aligned}
$$

$$
f(z)=\sin x \cos h y+i \cos x \sin h y
$$

Equating real and imaginary parts $u=\sin x \operatorname{coshy}$ and $v=\cos x \sin h y-(1)$ u and v satisfies necessary conditions $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
& =\cos x \cos \mathrm{~h} y+i(-\sin x) \sin \mathrm{h} y)----(*) \\
& =\cos (x) \cos (i y)-i \sin x \cdot \frac{1}{i} \sin (i y) \\
& =\cos (x) \cos (i y)-\sin x \sin (i y) \\
& =\cos (x+i y)
\end{aligned}
$$

$f^{\prime}(z)=\cos (z) \quad \therefore \frac{d[\sin z]}{d z}=\cos z$
or By Milne's Thomson method replace x by z and y by 0 in (*)
$f^{\prime}(z)=\cos (z) .1-0 \quad \therefore f^{\prime}(z)=\cos (z) \quad$ or $\quad \frac{d[\sin z]}{d z}=\cos z$
2) Show that $w=z+e^{z}$ is analytic, hence find $\frac{d w}{d z}$

Solution: Let $w=f(z)=u+i v$.
$w=\left(x+e^{x} \cos y\right)+i\left(y+e^{x} \sin y\right)$
Equating real and imaginary parts
$u=\left(x+e^{x} \cos y\right), v=\left(y+e^{x} \sin y\right)$
u and v satisfies $\mathbf{C - R}$ equations
consider

$$
\begin{aligned}
& \begin{aligned}
\frac{d w}{d z} & =f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
& =\left(1+e^{x} \cos y\right)+i\left(e^{x} \sin y\right) \\
& =1+e^{x}[\cos y+i \sin y]---(1) \\
& =1+e^{x} \cdot e^{i y} \\
& =1+e^{z}
\end{aligned} \\
& \frac{d\left[z+e^{z}\right]}{d z}=1+e^{z}
\end{aligned}
$$

Or By Milne's-Thomson method replace x by z and y by 0 in (1), we get derivative of $z+e^{z}$

Example-3:

$$
\begin{aligned}
& \text { show that } w=\log (z) i s \text { analytic, hence find } f^{\prime}(z) \\
& \qquad \begin{aligned}
& w=\log \left[r e^{i \theta}\right] \\
& w=\log (r)+i \theta \quad \text { equating real and imaginary parts } \\
& u=\log (r) \text { and } v=\theta, \mathrm{u} \text { and } v \text { satisfies C-R equation in polar form. } \\
& \text { consider } \\
& f^{\prime}(z)=e^{-i \theta}\left[\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right] \\
&=e^{-i \theta}\left[\frac{1}{r}\right] \\
&=\frac{e^{-i \theta}}{r} \\
& f^{\prime}(z)=\frac{1}{r e^{1 \theta}}----(1) \\
& f^{\prime}(z)=\frac{1}{z} \\
& \therefore \frac{d[\log z]}{d z}=\frac{1}{z}
\end{aligned}
\end{aligned}
$$

or by Milne's Thomson method replace r by z and θ by 0 in RHS of (1), we get $\frac{d[\log z]}{d z}=\frac{1}{z}$

Cauchy's-Riemann equations in Cartesian form

Statement: The real and imaginary part of an analytic function $f(z)=u(x, y)+i v(x, y)$ satisfies Cauchy's-Riemann equations.
$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ at each point
Note: A function $f(z)$ is analytic, then
$f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \quad$ limit approaches along the x -axis
and $f^{\prime}(z)=\frac{\partial u}{\partial y}-i \frac{\partial u}{\partial y}$ limit approaches along the y-axis
Example: The function $f(z)=z^{2}$ is analytic for all z , and $f^{\prime}(z)=2 z$

Solution:

$f(z)=\left(x^{2}-y^{2}\right)+i 2 x y$ is analytic every in the complex plane.
$\mathrm{u}=\mathrm{x}^{2}-y^{2}$ and $\mathrm{v}=2 \mathrm{xy}$

$$
\frac{\partial u}{\partial x}=2 x, \quad \frac{\partial u}{\partial y}=-2 y, \quad \frac{\partial v}{\partial x}=2 y, \quad \frac{\partial v}{\partial y}=2 x
$$

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
$$

$$
=2 x+i 2 y
$$

$$
=2(x+i y)
$$

$$
=2 z
$$

$\therefore \frac{d\left(z^{2}\right)}{d z}=2 z$

Note: If $f(z)=u(r, \theta)+i v(r, \theta)$ then Cauchy-Riemann equation in polar form:
$\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad$ and $\quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}$
where $f^{\prime}(z)=e^{-i \theta}\left[\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right]$ limit
approaches along the radial line and $f^{\prime}(z)=\frac{e^{-i \theta}}{r}\left[\frac{\partial v}{\partial \theta}-i \frac{\partial u}{\partial \theta}\right]$ a limit approach along angular path.

Construction of Analytic Function:

Construction of analytic function $f(z)=u+i v$ when u or v or $u \pm v$ is given.
Example1: Find the Analytic Function $f(z)$, whose real part is $e^{2 x}[x \cos 2 y-y \sin 2 y]$.

Solution:

Given $\quad u=e^{2 x}[x \cos 2 y-y \sin 2 y]----(1)$
Differentiate (1) w.r.t. x
$\frac{\partial u}{\partial x}=e^{2 x}[\cos 2 y]+2 e^{2 x}[x \cos 2 y-y \sin 2 y]----(2)$
Differentiate (1) w.r.t. y
$\frac{\partial u}{\partial y}=e^{2 x}[-2 \cdot x \cdot \sin 2 y-y \cdot 2 \cos 2 y-\sin 2 y]----(3)$

Consider $\quad f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}----(4)$
$B y \mathrm{C}-\mathrm{R}$ Equations replace $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$
$f^{\prime}(z)=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}----(5)$
using (2) and (3) on RHS (5)
$f^{\prime}(z)=e^{2 x}[\cos 2 y+2 x \cos 2 y-2 y \sin 2 y]+i e^{2 x}[2 x \sin 2 y+2 y \cos 2 y+\sin 2 y]$

By Milne's Method replace x by z and y by 0
$f^{\prime}(z)=e^{2 z}[1+2 z]$
$f^{\prime}(z)=e^{2 z}+2 e^{2 z} \cdot z$
int egrate we get
$f(z)=\frac{1}{2} e^{2 z}+2\left[\frac{e^{2 z}}{2} \cdot z-\frac{e^{2 z}}{4}\right]+c$
$f(z)=\frac{1}{2} e^{2 z}+z e^{2 z}-\frac{1}{2} e^{2 z}+c$
$f(z)=z e^{2 z}+c$
Note: $u+i v=(x+i y) e^{2 x} \cdot e^{i z y}+c$
$=e^{2 x}(x+i y)(\cos 2 y+i \sin 2 y)$
$u+i v=e^{2 x}[(x \cos 2 y-y \sin 2 y)+i(y \cos 2 y+x \sin 2 y)]+c$
$\therefore u=e^{2 x}[x \cos 2 y-y \sin 2 y]+c$
$v=e^{2 x}(y \cos 2 y+x \sin 2 y)$
Taking $c=0$ we get
$u=e^{2 x}[x \cos 2 y-y \sin 2 y]$ which is real part
and $v=e^{2 x}[y \cos 2 y+x \sin 2 y]$ is imaginary part of a required analytic function $f(z)$
2) Find the Analytic function whose real part is $\sin 2 x$
2) Find the Analytic function whose real part is $\overline{\cos 2 y-\cos 2 x}$

Solution: $u=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}-----(1)$
Differentiate w.r.t. x
$\frac{\partial u}{\partial x}=\frac{(\cosh 2 y-\cos 2 x) \cdot 2 \cos 2 x-\sin 2 x[+2 \sin 2 x]}{(\cosh 2 y-\cos 2 x)^{2}}$
$\frac{\partial u}{\partial x}=\frac{2 \cosh 2 y \cos 2 x-2\left[\cos ^{2}(2 x)+\sin ^{2} 2 x\right]}{(\cosh 2 y-\cos 2 x)^{2}}$
$\frac{\partial u}{\partial x}=\frac{2 \cos 2 x \cosh 2 y-2}{(\cosh 2 y-\cos 2 x)^{2}}-----(2)$

Differentiate (1) w.r.t. y
$\frac{\partial u}{\partial y}=\frac{\sin 2 x[-(2 \sinh 2 y)]}{(\cosh 2 y-\cos 2 x)^{2}}$
$\frac{\partial u}{\partial y}=\frac{-2 \sin 2 x \sinh 2 y}{(\cosh 2 y-\cos 2 x)^{2}}-----(3)$
Consider $f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
By C-R equation replace $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \quad f^{\prime}(z)=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}$
$f^{\prime}(z)=\frac{[2 \cos 2 x \cosh 2 y-2]+i 2 \sin 2 x \sinh 2 y}{(\cosh 2 y-\cos 2 x)^{2}}$
By Milne's Thomson method replace x by z and y by 0
$f^{\prime}(z)=\frac{2[\cos 2 z-1]+i .0}{(1-\cos 2 z)^{2}}$
$f^{\prime}(z)=\frac{-2[1-\cos 2 z]}{(1-\cos 2 z)^{2}}$
$f^{\prime}(z)=\frac{-2}{[1-\cos 2 z]}$
$f^{\prime}(z)=\frac{-2}{2 \sin ^{2} z}$
$f^{\prime}(z)=-\cos e c^{2} z$
int ergate
$f(z)=+\cot z+c$
3) Construct the analytic function whose imaginary part is $\left(r-\frac{1}{r}\right) \sin \theta, r \neq 0$. Hence find the Real part.
Solution: Given $v=\left(r-\frac{1}{r}\right) \sin \theta----(1)$
Differentiate (1) w.r.t. θ

$$
\frac{\partial u}{\partial \theta}=\left(r-\frac{1}{r}\right) \cos \theta----------(2)
$$

Differentiate (1) w.r.t.r
$\frac{\partial u}{\partial r}=\left(1+\frac{1}{r^{2}}\right) \sin \theta-----------(3)$

Consider $f^{\prime}(z)=e^{-i \theta}\left[\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right]----(4)$
By C-R Equation replace $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$ on RHS of (4) we get
$f^{\prime}(z)=e^{-i \theta}\left[\frac{1}{r} \frac{\partial v}{\partial \theta}+i \frac{\partial v}{\partial r}\right]$
$f^{\prime}(z)=e^{-i \theta}\left[\frac{1}{r}\left(r-\frac{1}{r}\right) \cos \theta+i\left(1+\frac{1}{r^{2}}\right) \sin \theta\right]$
By Milne's method replace r by z and θ by 0
$f^{\prime}(z)=e^{o}\left[\frac{1}{z}\left(z-\frac{1}{z}\right) \cdot 1+i .0\right]$
$f^{\prime}(z)=\left(1-\frac{1}{z^{2}}\right)$
Integrate we get
$f(z)=z+\frac{1}{z}+i c$
To find real part: Consider $f(z)=r e^{i \theta}+\frac{1}{r e^{i \theta}}+i c$
$u+i v=(r \cos \theta+i r \sin \theta)+\frac{1}{r}(\cos \theta-i \sin \theta)+i c$
$u+i v=\left(r+\frac{1}{r}\right) \cos \theta+i\left[\left(r-\frac{1}{r}\right) \sin \theta+c\right]$

Equating real and imaginary parts
$u=\left(r+\frac{1}{r}\right) \cos \theta$
$v=\left(r-\frac{1}{r}\right) \sin \theta+c$ to get actual imaginary part of an analytical function
$f(z)=u+i v$ taking $\quad c=0$
$\therefore v=\left(r-\frac{1}{r}\right) \sin \theta$
4) Find an analytic function $f(z)$ as a function of z given that the sum of real and imaginary part is $x^{3}-y^{3}+3 x y(x-y)$
Solution: The sum of real and imaginary part is given by
$u+v=x^{3}-y^{3}+3 x y(x-y)-------(1)$
Differentiate (1) w.r.t. x
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}=3 x^{2}-0+3 x y+3 y(x-y)$
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}=3 x^{2}+3 x y+3 y(x-y)----(2)$
Differentiate (1) w.r.t. y

$$
\begin{align*}
& \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}=0-3 y^{2}+3 x y(-1)+3 x(x-y) \\
& \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}=-3 y^{2}-3 x y+3 x(x-y)--- \tag{3}
\end{align*}
$$

By C-R Equation replace $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { in(3) }
$$

$\frac{\partial u}{\partial x}-\frac{\partial v}{\partial x}=-3 y^{2}-3 x y+3 x(x-y)-----(4)$
Consider

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}=3 x^{2}+3 x y+3 y(x-y) \\
& \frac{\partial u}{\partial x}-\frac{\partial v}{\partial x}=-3 y^{2}-3 x y+3 x(x-y) \\
& 2 \frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}+(x-y) 3(x+y) \\
& 2 \frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}+3 x^{2}-3 y^{2} \\
& \frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}--------(5)
\end{aligned}
$$

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}=3 x^{2}+3 x y+3 y(x-y)
$$

$$
\frac{\partial u}{\partial x}-\frac{\partial v}{\partial x}=-3 y^{2}-3 x y+3 x(x-y)
$$

$$
2 \frac{\partial v}{\partial x}=3 x^{2}+3 y^{2}+6 x y+(x-y) \cdot 3(y-x)
$$

$$
=3 x^{2}+3 y^{2}+6 x y-3(x-y)^{2}
$$

$$
=3 x^{2}+3 y^{2}+6 x y-3 x^{2}-3 y^{2}+6 x y
$$

$$
=12 x y
$$

$$
\frac{\partial u}{\partial x}=6 x y-------(6)
$$

Consider $f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
$=\left(3 x^{2}-3 y^{2}\right)+i 6 x y[b y(5) \&(6)]$
By Milne's Thomson method replace x by z and y by 0
$f^{\prime}(z)=3 z^{2}$
int egrat
$f(z)=z^{3}+c$
5) Find an analytic function $\mathrm{f}(\mathrm{z})-\mathrm{u}+\mathrm{iv}$, given that $\mathrm{u}+\mathrm{v}=\frac{1}{r^{2}}[\cos 2 \theta-\sin 2 \theta], r \neq 0$

Solution: $u+v=\frac{1}{r^{2}}[\cos 2 \theta-\sin 2 \theta]----(1)$
Differentiate (1) w.r.t.r
$\frac{\partial u}{\partial r}+\frac{\partial v}{\partial r}=-\frac{2}{r^{3}}[\cos 2 \theta-\sin 2 \theta]-----(2)$
Differentiate (1) w.r.t. θ
$\frac{\partial u}{\partial \theta}+\frac{\partial v}{\partial \theta}=\frac{2}{r^{2}}[-2 \sin 2 \theta-2 \cos 2 \theta]-----(3)$
By C-R Equations

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \\
\frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
\end{array}\right\} \text { in LHS of (3) }
$$

$-r \frac{\partial v}{\partial r}+r \frac{\partial u}{\partial r}=\frac{-2}{r^{2}}[\sin 2 \theta+\cos 2 \theta]$
$\frac{\partial u}{\partial r}-\frac{\partial v}{\partial r}=\frac{-2}{r^{3}}[\sin 2 \theta+\cos 2 \theta]-----$
Consider
$\frac{\partial u}{\partial r}+\frac{\partial v}{\partial r}=\frac{-2}{r^{3}}[\cos 2 \theta-\sin 2 \theta]$
$\frac{\frac{\partial u}{\partial r}-\frac{\partial v}{\partial r}=\frac{-2}{r^{3}}[\cos 2 \theta+\sin 2 \theta]}{2 \frac{\partial u}{\partial r}=\frac{-2}{r^{3}}[2 \cos 2 \theta]}$
$\frac{\partial u}{\partial r}=\frac{-2}{r^{3}} \cos 2 \theta-------------$ (5)
Subtract (3)-(4) we get
$2 \frac{\partial u}{\partial r}=-\frac{2}{r^{3}}[-2 \sin 2 \theta]$
$\frac{\partial u}{\partial r}=\frac{2}{r^{3}} \sin 2 \theta---------(6$
Consider $f^{\prime}(z)=e^{-i \theta}\left[\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right]$
$f^{\prime}(z)=e^{-i \theta}\left[-\frac{2}{r^{3}} \cos 2 \theta+i \frac{2}{r^{3}} \sin 2 \theta\right]$
By Milne's Thomson method replace r by z and θ by 0
$f^{\prime}(z)=-\frac{2}{r^{3}}$
int egrate
$f(z)=-2\left(-\frac{1}{2 z^{2}}\right)+c$
$f(z)=\frac{1}{z^{2}}+\mathrm{c}$
6) Show that $u=\left(r+\frac{1}{r}\right) \cos \theta$ is harmonic. find its harmonic
conjugate and also corresponding analytic function.
Solution: Given $u=\left(r+\frac{1}{r}\right) \cos \theta-------(1)$
we shall show that u is a solution of Laplace's equation in two variables in polar form.
i.e $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}-0---------(2)$

Differentiate (1) w.r.t. r
$\frac{\partial u}{\partial r}=\left(1-\frac{1}{r^{2}}\right) \cos \theta-------------(3)$
Differentiate (3) w.r.t. r
$\frac{\partial^{2} u}{\partial r^{2}}=+\frac{2}{r^{3}} \cos \theta---------------(4)$
Differentiate (1) w.r.t. θ
$\frac{\partial u}{\partial \theta}=\left(1+\frac{1}{r}\right)(-\sin \theta)-------------(5)$
Differentiate (5) w.r.t. θ
$\frac{\partial^{2} u}{\partial \theta^{2}}=-\left(r+\frac{1}{r}\right) \cos \theta------(6)$
Consider

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} & =\frac{2}{r^{3}} \cos \theta+\frac{1}{r}\left(1-\frac{1}{r^{2}}\right) \cos \theta-\frac{1}{r^{2}}\left(r+\frac{1}{r}\right) \cos \theta \\
& =\frac{2}{r^{3}} \cos \theta+\frac{1}{r} \cos \theta-\frac{1}{r^{3}} \cos \theta-\frac{1}{r} \cos \theta-\frac{1}{r^{3}} \cos \theta \\
& =\frac{2}{r^{3}} \cos \theta-\frac{2}{r^{3}} \cos \theta \\
& =0
\end{aligned}
$$

$\therefore u$ is solution of equation(2)
Hence u is harmonic function.

Consider
$f^{\prime}(z)=e^{-i \theta}\left[\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right]------(7)$
By C-R Equation $\frac{\partial u}{\partial \theta}=-\mathrm{r} \frac{\partial v}{\partial r}$
\therefore replace $\frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$ in (7)
$f^{\prime}(z)=e^{-i \theta}\left[\left(1-\frac{1}{r^{2}}\right) \cos \theta-\frac{i}{r}\left(r+\frac{1}{r}\right) \sin \theta\right]$
By Milne's Thomson method replace r by z and θ by 0
$f^{\prime}(z)=\left(1-\frac{1}{z^{2}}\right)-i . o$
$f^{\prime}(z)=\left(1-\frac{1}{z^{2}}\right)$
Integrate
$f(z)=z+\frac{1}{z}$
To find harmonic Conjugate
consider $\quad u+i v=r e^{i \theta}+\frac{1}{r} e^{-i \theta}$
$u+i v=\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta$
Equating real and imaginary parts
$\therefore u=\left(r+\frac{1}{r}\right) \cos \theta$
$v=\left(r-\frac{1}{r}\right) \sin \theta$
which is required conjugate harmonic
7) If $f(z)$ is a regular function of z show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$

Solution:

We have $f(z)=u+i v$
$\therefore|f(z)|=\sqrt{u^{2}+v^{2}}------(1)$
$|f(z)|^{2}=u^{2}+v^{2}-------(2)$
and $f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
$\therefore\left|f^{\prime}(z)\right|=\sqrt{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}}$
$\left|f^{\prime}(z)\right|^{2}=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}---$
Differentiate (2) w.r.t. x
$\frac{\partial|f(z)|^{2}}{\partial x}=\frac{\partial}{\partial x}\left(u^{2}+v^{2}\right)$
$=2 u \frac{\partial u}{\partial x}+2 \frac{\partial v}{\partial x}$
Again differentiate w.r.t. x

$$
\begin{align*}
& \frac{\partial^{2}\left|f^{\prime}(z)\right|^{2}}{\partial x^{2}}=2\left\{\frac{\partial}{\partial x}\left[u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}\right]\right\} \\
& =2\left\{u \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x} \frac{\partial u}{\partial x}+v \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial x}\right\} \\
& 2\left\{u \frac{\partial^{2} u}{\partial x^{2}}+\left(\frac{\partial u}{\partial x}\right)^{2}+v \frac{\partial^{2} v}{\partial x^{2}}+\left(\frac{\partial v}{\partial x}\right)^{2}\right\}- \tag{4}
\end{align*}
$$

Similarly Differentiate (2) w.r.t. y we get
$\frac{\partial^{2}|f(z)|^{2}}{\partial y^{2}}=2\left\{u \frac{\partial^{2} u}{\partial y^{2}}+\left(\frac{\partial u}{\partial y}\right)^{2}+v \frac{\partial^{2} v}{\partial y^{2}}+\left(\frac{\partial v}{\partial y}\right)^{2}\right\}-----(5)$
Adding (4) and (5) we get
$\frac{\partial^{2}|f(z)|^{2}}{\partial x^{2}}+\frac{\partial^{2}|f(z)|^{2}}{\partial y^{2}}=2\left\{u\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right]+v\left[\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right]+\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right\}---(6)$
w. k. t. if $f(z)=u+i v$ is regular or analytic function then real part u and imaginary part v satisfies Laplace equation in two variables or two dimensional Laplace equation.
$\therefore \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad$ and $\quad \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$
Using these on RHS of (6)
$\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=2\left\{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right\}$
By C-R Equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
$=2\left\{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(-\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial x}\right)^{2}\right\}$
$=2\left\{2\left(\frac{\partial u}{\partial x}\right)^{2}+2\left(\frac{\partial v}{\partial x}\right)^{2}\right\}$
$=4\left\{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}\right\}$
$=4\left|f^{\prime}(z)\right|^{2} \quad[$ from (3)]

Complex integration:

Line Integral:

Let $f(z)$ be a single valued complex function and continuous defined at each point on a curve C between end points A and B , in the z-plane. Then the line integral of $f(z)$ along the curve C traversed from A to B is denoted by

$$
\int_{A}^{B} f(z) d z \quad \text { or } \quad \int_{C} f(z) d z
$$

Note: Now, we divide this curve C into n parts between the points $A=A_{1}\left(z_{1}\right), A_{2}\left(z_{2}\right),------A_{n}\left(z_{n}\right)=B$
We get n line segments say $C_{1}: A_{1}$ to $A_{2}, C_{2}: A_{2}$ to $A_{3}------C_{n}: A_{n-1}$ to A_{n} $\therefore C: C_{1} \cup C_{2} \cup C_{3} \cup-----\cup C_{n,}$ is union of $\mathrm{C}_{1} C_{2}---C_{n}$

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{c_{1} \cup c_{2} \cup C_{3} \cup---\cup C_{n}} f(z) d z \\
& =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z+\int_{C_{3}} f(z) d z+\cdots---\int_{C_{n}} f(z) d z
\end{aligned}
$$

$\int_{A}^{B} f(z) d z=\int_{A_{1}}^{A_{2}} f(z) d z+\int_{A_{2}}^{A_{3}} f(z) d z+\int_{A_{3}}^{A_{4}} f(z) d z+\cdots-\int_{A_{t-1}}^{A_{1}} f(z) d z$

Note: If curve C is traversed from B to A then line integral of $f(z)$ along C is
$\int_{-C} f(z) d z=-\int_{C} f(z) d z$
ie. $\int_{B}^{A} f(z) d z=-\int_{A}^{B} f(z) d z$
Note: Now setting $z=x+i y$

$$
f(z)=u(x, y)+i v(x, y)
$$

or $f(z)=u+i v$
$\therefore d z=d x+i d y$
$\int_{C} f(z) d z=\int_{C}(u+i v)(d x+i d y)$
$=\int_{C}(u d x-v d y)+i(v d x+u d y)$
$\int_{C} f(z) d z=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)$
This shows that evaluationof the line integral of a complex function can be reduced to the evaluation of two line integrals of real functions.
$\int_{A\left(x_{1}, y_{1}\right)}^{B\left(x_{2}, y_{2}\right)} f(z) d z=\int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)}(u d x-v d y)+i \int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)}(v d x+u d y)$
Example: Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d z$ along
(i) The line $y=\frac{x}{2}, \quad$ (ii) The real axis upto 2 and then vertically to $2+i$

Solution: We have $\bar{z}=x-i y$
$d z=d x+i d y$
(i) Line integral of $\mathrm{f}(\mathrm{z})=(\bar{z})^{2}$ along the curve $\mathrm{x}=2 \mathrm{y}$ between the points $\mathrm{z}_{1}=0$ and $\mathrm{z}_{2}=2+i$

Along $o A: x=2 y \quad \therefore d x=2 d y$
$\int_{0}^{2+i}(\bar{z})^{2} d z=\int_{(0,0)}^{(2,1)}(x-i y)^{2}(d x+i d y)$
Replace $x=2 y$ and $d x=2 d y$
$\int_{0}^{2+i}(\bar{z})^{2} d z=\int_{(0,0)}^{(2,1)}(2 y-i y)^{2}(2 d y+i d y)$
Here integral is a function of y alone and y varies from 0 to 1

$$
\begin{aligned}
& =\int_{y=0}^{1}(2-i)^{2}(2+i) y^{2} \cdot d y \\
& =\frac{5}{3}(2-i)\left[\frac{y^{3}}{3}\right]_{0}^{1} \\
& =\frac{5}{3}(2-i)
\end{aligned}
$$

(ii) Line intergral along the real axis upto 2 and then vertically ($2+i$)

Here Curve $C: C_{1} \cup C_{2}$
where $C: \mathrm{O}$ to A divided into $C_{1}: O$ to B and $C_{2}: B$ to A
$\int_{0}^{2+i}(\bar{z})^{2} d z=\int_{(0,0)}^{(2,0)}(x-i y)^{2}(d x+i d y)+\int_{(2,0)}^{(2,1)}(x-i y)^{2}(d x+i d y)$
In the first integral x is varies from 0 to 2 and $\mathrm{y}=0 \quad \therefore \mathrm{dy}=0$
In the second integral y is varies from 0 to 1 and $\mathrm{x}=2 \therefore \mathrm{dx}=0$

Using these on RHS of the above integral
$=\int_{x=0}^{2} x^{2} d x+\int_{y=0}^{1}(2-i y)^{2} \cdot i d y$
$\left.=\left.\frac{x^{3}}{3}\right|_{0} ^{2}+i \frac{(2-i y)^{3}}{-3 i}\right]_{0}^{1}$
$=\frac{8}{3}-\frac{1}{3}\left[(2-i)^{3}-8\right]$
$=\frac{8}{3}-\frac{1}{3}[(3-4 i)(2-i)-8]$
$=\frac{8}{3}-\frac{1}{3}[-6-11 i]$
$=\frac{8}{3}+\frac{1}{3}(6+11 i)$
$=\frac{1}{3}[14+11 i]$
Example $-2:$ Evalute $\int_{C} z^{3} d z$, along the circle $|z|=1$.
Solution: The given Curve C is $|z|=1$
Complex variable z in polar form
$z=r e^{i \theta}$
$r=1$ and θ varies from 0 to 2π
$z=e^{i \theta}$
$d z=e^{i \theta} . i d \theta$
$d z=i e^{i \theta} d \theta$

$\therefore \int_{C} z^{3} d z=\int_{|z|=1} z^{3} d z$
Along $|z|=1, \mathrm{r}=1, \boldsymbol{\theta}=\mathrm{O}$ to 2π
$=\int_{\theta=0}^{2 \pi}\left(e^{i \theta}\right)^{3} \cdot i e^{i \theta} d \theta$
$=i \int_{\theta=0}^{2 \pi} e^{4 i \theta} d \theta$
$=i\left[\frac{e^{4 i \theta}}{4 i}\right]_{0}^{2 \pi}$
$=\frac{1}{4}\left[e^{8 \pi i}-1\right]$
$\int_{C} z^{3} d z=\frac{1}{4}[\cos 8 \pi+i \sin 8 \pi-1]$
$=\frac{1}{4}[1+O-1]$

$$
=\mathbf{O}
$$

Example-3: Evaluate $\int_{(0,3)}^{(2,4)}\left(2 y+x^{2}\right) d x+(3 x-y) d y$ along
(i) The parabola $x=2 t$ and $y=t^{2}+3$
(ii) The straight line from $(0,3)$ to $(2,4)$

Solution:
(i) Along $\mathrm{x}=2 \mathrm{t}$ and $y=t^{2}+3$, from the given limit, $\mathrm{x} \rightarrow 0$ to 2 and $y \rightarrow 3$ to 4 . Compute limit for t ie.

Here t varies from 0 to 1 , as x varies from 0 to 2 and y varies from 3 to 4
$\therefore x=2 t \quad d x=2 d t$
$y=t^{2}+3 \quad \mathrm{dy}=2 \mathrm{tdt}$
Let $\mathrm{I}=\int_{(0,3)}^{(2,4)}\left(2 y+x^{2}\right) d x+(3 x-y) d y$
$\mathrm{I}=\int_{t=0}^{1}\left[2\left(t^{2}+3\right)+4 t^{2}\right] 2 d t+\left[6 t-t^{2}-3\right] 2 t d t$
$=2 \int_{t=0}^{1}\left[6 t^{2}+6\right] d t+\left[6 t^{2}-t^{3}-3 t\right] d t$
$=2 \int_{t=0}^{1}\left[6 t^{2}+6+6 t^{2}-t^{3}-3 t\right] d t$
$=2 \int_{t=0}^{1}\left[12 t^{2}-3 t-t^{3}+6\right] d t$
$=2\left[\frac{12 t^{3}}{3}-\frac{3 t^{2}}{2}-\frac{t^{4}}{4}+6 t\right]_{0}^{1}$
$=2\left[\frac{12}{3}-\frac{3}{2}-\frac{1}{4}+6\right]$
$=2\left[10-\frac{7}{4}\right]$
$=2 \frac{[40-7]}{4}$
$=\frac{33}{2}$
(ii) Along straight line from $(0,3)$ to $(2,4)$.

Equation of line joining the points $(0,3)$ to $(2,4)$

$$
\begin{aligned}
& \frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{\left(x_{2}-x_{1}\right)} \\
& \frac{y-3}{x-0}=\frac{4-3}{(2-0)} \\
& \frac{y-3}{x}=\frac{1}{2}
\end{aligned}
$$

$$
x=2 y-6 \quad \text { or } \quad y=\frac{1}{2}[x+6]
$$

$$
\text { Let } \mathrm{I}=\int_{(0,3)}^{(2,4)}\left(2 y+x^{2}\right) d x+(3 x-y) d y-----(1)
$$

Taking $y=\frac{1}{2}(x+6) \quad \therefore d y=\frac{d x}{2}$ and x varies from 0 to 2 $\mathrm{I}=\int_{0}^{2}\left[2 \cdot \frac{1}{2}(x+6)+x^{2}\right] d x+\left[3 x-\frac{1}{2}(x+6)\right] \frac{d x}{2}$
$=\int_{0}^{2}\left(x^{2}+x+6\right) d x+(6 x-x-6) \quad \frac{d x}{4}$

$$
\begin{aligned}
& =\frac{1}{4} \int_{0}^{2}\left[4 x^{2}+4 x+24+5 x-6\right] d x \\
& =\frac{1}{4} \int_{0}^{2}\left(4 x^{2}+9 x+18\right) d x \\
& =\frac{1}{4}\left[4 \frac{x^{3}}{3}+9 \frac{x^{2}}{2}+18 x\right]_{0}^{2} \\
& =\frac{1}{4}\left[4 \times \frac{8}{3}+9 \times \frac{4}{2}+36\right] \\
& =\frac{1}{4}\left[\frac{32}{3}+18+36\right] \\
& =\frac{1}{4}\left[\frac{32+54+108}{3}\right] \\
& =\frac{194}{12} \\
& =\frac{97}{6}
\end{aligned}
$$

Cauchy's Theorem

Statement: If $\mathrm{f}(\mathrm{z})$ is analytic function and $f^{\prime}(z)$ is continuous at all points inside and on a simple closed curve C
then $\int_{C} f(z) d z=0$
Proof: Let $f(z)=u+i v$ and $z=x+i y$,
$d z=d x+i d y$ as usual.
Then

$\int_{C} f(z) d z=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)-------(1)$
C
The given curve in the complex plane is a simple closed curve C

Greens Theorem states that
$\int_{C} M d x+N d y=\iint_{A}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$, Where A is a region bounded by A
Applying this theorem on RHS of (1) we obtain
$\int_{C} f(z) d z=\iint_{A}\left[\frac{\partial(-v)}{\partial x}-\frac{\partial u}{\partial y}\right] d x d y+i \iint_{A}\left[\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right] d x d y$
Since $f(z)$ is analytic, we have Cauchy Riemann Equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
$\int_{C} f(z) d z=\iint_{A}\left[-\frac{\partial v}{\partial x}+\frac{\partial v}{\partial x}\right] d x d y+i \iint_{A}\left[\frac{\partial u}{\partial x}-\frac{\partial u}{\partial x}\right] d x d y$
$=0 \quad$ This proves Cauchy's Theorem

Extension of Cauchy's Theorem:

If $f(z)$ is analytic in the region D between two simple closed curve C and C_{1}, then

$$
\int_{C} f(z) d z=\int_{C_{1}} f(z) d z
$$

To Prove this, we need to introduced the cross cut $A B$, say

Now $f(z)$ is analytic at all points inside and on a simple closed curve $\square C \cup A B \cup C_{1} \cup B A$, By Cauchy's Theorem
$\int f(z) d z=0$

$$
\int_{C \cup A B \cup C_{1} \cup B A} f(z) d z=0
$$

$$
\int_{C} f(z) d z+\int_{A B} f(z) d z+\int_{C_{1}} f(z) d z+\int_{B A} f(z) d z=0
$$

$$
\int_{C} f(z) d z+\int_{A B} f(z) d z+\int_{-C_{1}} f(z) d z+\int_{-A B} f(z) d z=0
$$

$$
\int_{C} f(z) d z+\int_{A B} f(z) d z-\int_{C_{1}} f(z) d z-\int_{A B} f(z) d z=0
$$

$\int_{C} f(z) d z-\int_{C_{1}} f(z) d z=0$
$\int_{C} f(z) d z=\int_{C_{1}} f(z) d z$
If $\mathrm{C}_{1}, C_{2}, C_{3} \ldots \ldots \ldots . . C_{n}$ be any n number of closed curves with in C then $\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z+\int_{C_{3}} f(z) d z+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+\int_{C_{n}} f(z) d z$

Example: Verify Cauchy's Theorem for the function $f(z)=z^{2}$ where \mathbf{C} is the square having vertices $(0,0),(1,0),(1,1),(0,1)$.

Solution:

Here the given curve C is the square in the Complex plane as shown in the above figure.

Since $f(z)=z^{2}$ is analytic everywhere in the complex plane, it is analytic at all points inside and on the curve C .
By Cauchy's Theorem
$\int_{C} f(z) d z=0$
$\int_{C} z^{2} d z=0$.
$\int_{C} z^{2} d z=\int_{O A} z^{2} d z+\int_{A B} z^{2} d z+\int_{B C} z^{2} d z+\int_{C O} z^{2} d z$
$\int_{C} z^{2} d z=\int_{(0,0)}^{(1,0)} z^{2} d z+\int_{(1,0)}^{(1,1)} z^{2} d z+\int_{(1,1)}^{(0,1)} z^{2} d z+\int_{(0,1)}^{(0,0)} z^{2} d z \ldots$
Consider $\int_{(0,0)}^{(1,0)} z^{2} d z=\int_{(0,0)}^{(1,0)}(x+i y)^{2}(d x+i d y)$
Here $y=0 \quad \therefore d y=0$ and x varies from 0 to 1
$=\int_{x=0}^{1}(x+i o)^{2}(d x+o)$
$=\int_{x=0}^{1} x^{2} d x$
$=\frac{1}{3}$.
Consider $\int_{(1,0)}^{(1,1)} z^{2} d z=\int_{(1,0)}^{(1,1)}(x+i y)^{2}(d x+i d y)$
Here $x=1, d x=0$ and y varies from 0 to 1
$=\int_{y=0}^{1}(1+i y)^{2}(i d y)$

$$
\begin{align*}
& =i \int_{y=0}^{1}(1+i y)^{2} \\
& =i\left[\frac{(1+i y)^{3}}{3 i}\right]_{0}^{1} \\
& =\frac{1}{3}\left[(1+i)^{3}-1\right] \\
& =\frac{1}{3}[(1+i)(2 i)-1] \\
& =\frac{1}{3}[2 i-2-1] \\
& =\frac{1}{3}[2 i-3] \\
& =\frac{2}{3} i-1 \ldots \ldots \ldots \ldots \ldots \ldots .(3) \tag{3}
\end{align*}
$$

Consider $\int_{(1,1)}^{(0,1)}(x+i y)^{2}(d x+i d y)$
Here $y=1, d y=0$ and x varies from 1 to 0
$=\int_{x=1}^{0}(x+i)^{2} d x$
$=\left.\frac{(x+i)^{3}}{3}\right|_{1} ^{0}$
$=\frac{1}{3}\left[i^{3}-(1+i)^{3}\right]$
$=\frac{1}{3}[-i-(1+i) 2 i]$
$=\frac{1}{3}[-i-2 i+2]$
$=\frac{1}{3}[-3 i+2]$
$=-i+\frac{2}{3} \ldots \ldots \ldots \ldots$.

Consider $\int_{(0,1)}^{(0,0)} z^{2} d z=\int_{(0,1)}^{(0,0)}(x+i y)^{2}(d x+i d y)$
Here $x=0, \quad d x=0$ and y varies from 1 to 0

$$
\begin{align*}
& =\int_{y=1}^{0}(i y)^{2} i d y \\
& =-i\left[\frac{y^{3}}{3}\right]_{1}^{0} \\
& =-i\left[0-\frac{1}{3}\right] \\
& =\frac{i}{3} \ldots \ldots \ldots \ldots . \tag{5}
\end{align*}
$$

Substitute $2,3,4 \& 5$ on RHS of (1)

$$
\begin{aligned}
& \int_{C} z^{2} d z=\frac{1}{3}+\frac{2 i}{3}-1+\frac{2}{3}-i+\frac{i}{3} \\
& =-\frac{2}{3}+\frac{2 i}{3}+\frac{2}{3}-\frac{2 i}{3}
\end{aligned}
$$

$=0 \quad$ Hence Cauchy's Theorem verified
If C is the circle $|z|=1$ verify Cauchy's Theorem for $f(z)=z^{3}$

Example-2:

Show that $\int_{C}|z|^{2} d z=i-1$, where C is the square having vertices $(0,0)(1,0)(1,1)(0,1)$.
Give the reason for Cauchy's theorem not being satisfied.
Solution:-

$$
\begin{gathered}
\int_{C}|z|^{2} d z=\int_{0 A}|z|^{2} d z+\int_{A B}|z|^{2} d z+\int_{B C}|z|^{2} d z+\int_{C 0}|z|^{2} d z \\
=\int_{(0,0)}^{(1,0)}\left(x^{2}+y^{2}\right)(d x+i d y)+\int_{(1,0)}^{(1,1)}\left(x^{2}+y^{2}\right)(d x+i d y)+\int_{(1,1)}^{(0,1)}\left(x^{2}+y^{2}\right)(d x+i d y)+\int_{(0,1)}^{(0,0)}\left(x^{2}+y^{2}\right)(d x+i d y)
\end{gathered}
$$

$=\int_{x=0}^{1} x^{2} d x+\int_{y=0}^{1}\left(1+y^{2}\right) i d y+\int_{x=1}^{0}\left(x^{2}+1\right) d x+\int_{y=1}^{0} y^{2} . i d y$
$=\frac{1}{3}+i\left(\frac{4}{3}\right)-\frac{4}{3}-\frac{i}{3}$
$=-1+i$
$\therefore \int_{C}|z|^{2}=i-1 \neq 0$. Hence Cauchy's Theorem is not verified since $f(z)=|z|^{2}=x^{2}+y^{2}$
ie. $u+i v=x^{2}+y^{2}$ is not analytic. The necessary conditions $\mathrm{u}_{x}=v_{y}, \mathrm{u}_{y}=-v_{x}$ are not satisfied. This is the reason for Cauchy's Theorem not being satisfied.

Cauchy's Integral formula:

Statement: If $f(z)$ is analytic within and on a closed curve C and if a is any point within C, then $f(a)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)} d z$

Proof: Consider a closed curve C with ' a ' is a point within C

Consider function $\frac{f(z)}{(z-a)}$ which is a analytic at all points within C except at $z=a$. with the point ' a ' as centre and radius r , draw a small circle C_{1} lying entirely within C
Now $\frac{f(z)}{(z-a)}$ being analytic in the region
enclosed by C_{1} and C, we have by Cauchy's Theorem
$\int_{C} \frac{f(z)}{z-a} d z=\int_{C_{1}} \frac{f(z)}{(z-a)} d z$

For any point z on $C_{1}, z-a=r e^{i \theta}$
and $d z=i r e^{i \theta} d \theta \quad \therefore z=a+r e^{i \theta}$
Where θ varies from 0 to 2π
$\int_{C} \frac{f(z)}{(z-a)} d z=\int_{0}^{2 \pi} \frac{f\left(a+r e^{i \theta}\right)}{r e^{i \theta}} \cdot i r e^{i \theta} d \theta$
$=i \int_{0}^{2 \pi} f\left(a+r e^{i \theta}\right) d \theta$
in the limiting form, as the circle C_{1} shrinks to the point ' a ' ie as $\mathrm{r} \rightarrow 0$,
The above line integral approach to

$$
\begin{aligned}
& \begin{aligned}
\int_{C} \frac{f(z)}{(z-a)} d z & =i \int_{0}^{2 \pi} f(a) d \theta \\
& =i f(a) \int_{0}^{2 \pi} d \theta \\
& =2 \pi i . f(a)
\end{aligned} \\
& \therefore f(a)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)} d z
\end{aligned}
$$

Note:- Generalized the Cauchy's Integral formula:
(i) $f^{\prime}(a)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)^{2}} d z$
(ii) $f^{\prime \prime}(a)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)^{3}} d z \quad$ and so on

$$
f^{n}(a)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)^{n+1}} d z
$$

Note:- In view of solving problems we consider Cauchy's integral formula as $\int_{C} \frac{f(z)}{(z-a)} d z=\left\{\begin{array}{cc}2 \pi i f(a) & \text { if } a \text { is inside } C \\ 0 & \text { if } a \text { is outside C }\end{array}\right.$

Problems on Cauchy's Integral formula:

Example-1:
Evaluate $\int_{C} \frac{e^{z}}{(z+i \pi)} d z$ over each of the following regions C :
(i) $|z|=2 \pi$
(ii) $|z|=\frac{\pi}{2}$
(iii) $|z-1|=1$

Solution:
$\int_{C} \frac{e^{z}}{(z+i \pi)} d x=\int_{C} \frac{f(z)}{[z-(-) i \pi]} d z$
where $f(z)=e^{z}$, which is analytic everywhere in the complex plane
(i) $|z|=2 \pi$ is a circle centre at the origin and radius 2π

$\int_{C} \frac{e^{z}}{(z+i \pi)} d z=\int_{C} \frac{f(z)}{[z-(-i \pi)]} d z$
Here the point $a=-i \pi$ lies inside the circle $|z|=2 \pi$ and $f(z)=e^{z}$
is analytic within and on the circle $|z|=2 \pi$. By Cauchy's Integral Formula
$=2 \pi i f(-i \pi)$
$=2 \pi i e^{-i \pi}$
$=2 \pi i[\cos \pi-i \sin \pi]$
$=-2 \pi i$
(ii) $|z|=\frac{\pi}{2}$ is a circle centre at the origin and radius $\frac{\pi}{2}$
$\int_{C} \frac{e^{z}}{(z+i \pi)} d z=\int_{C} \frac{f(z)}{[z-(-i \pi)]} d z$
Here point $\mathrm{a}=-\mathrm{i} \pi$ lies outside the circle
circle $|z|=\frac{\pi}{2}$, by Cauchy,s Integral
formula

$$
\int_{C} \frac{e^{z}}{(z+i \pi)}=0
$$

(iii) $|z-1|=1$ is a circle centre at the point (1.0) and radius 1 .
$\int_{C} \frac{e^{z}}{(z+i \pi)} d z=\int_{C} \frac{f(z)}{[z-(-i \pi)]} d z$
Here point $\mathrm{a}=-\mathrm{i} \pi$ lies outside the circle
$|z-1|=1$ by Cauchu's Integral formula
$\int_{C} \frac{e^{z}}{(z+i \pi)} d z=0$

Evaluate using Cauchy's integral formula:
(i) $\int_{C} \frac{e^{2 z}}{(z+1)(z-2)} d z$ where C represents the circle $|z|=3$.

Solution: $\int_{C} \frac{e^{2 z}}{(z+1)(z-2)} d z=\int_{C} \frac{f(z)}{(z+1)(z-2)} d z$.
Where $f(z)=e^{2 z}$ which is analytic every where in the complex plane.
Consider $\frac{1}{(z+1)(z-2)}=\frac{A}{(z+1)}+\frac{B}{(z-2)}$
$1=A(z-2)+B(z+1)$
put $z=2, \quad B=\frac{1}{3}$
put $z=-1 \quad A=-\frac{1}{3}$
$\frac{1}{(z+1)(z-2)}=\frac{-\frac{1}{3}}{(z+1)}+\frac{\frac{1}{3}}{(z-2)}$
$=\frac{1}{3}\left[\frac{1}{(z-2)}-\frac{1}{(z+1)}\right]$..
using (2) in (1) we get
$\int_{C} \frac{e^{2 z}}{(z+1)(z-2)} d z=\int_{C} f(z) \cdot \frac{1}{3}\left[\frac{1}{(z-2)}-\frac{1}{(z+1)}\right] d z$
$=\frac{1}{3}\left\{\int_{C} \frac{f(z)}{(z-2)} d z-\int_{C} \frac{f(z)}{[z-(1)]} d z\right\}$.
$|z|=3$ is a circle centre at the origin and radius 3
$=\frac{1}{3}\left\{\int_{C} \frac{f(z)}{(z-2)} d z-\int_{C} \frac{f(z)}{[z-(-1)]} d z\right\}$
here point $a=2, a=-1$ both lies inside the
circle $|z|=3$
$=\frac{1}{3} 2 \pi i f(2)-\frac{1}{3} 2 \pi i f(-1)$
$=\frac{1}{3} 2 \pi i e^{4}-\frac{1}{3} 2 \pi i e^{-2}$
$=\frac{1}{3} 2 \pi i\left[e^{4}-e^{-2}\right]$
$=\frac{2 \pi i}{3}\left[e^{4}-e^{-2}\right]$

Singular point, Poles and Residues:
(i) A point $z=a$ at which the complex function $f(z)$ is fails to be analytic is called a singular point or singularity of $f(z)$.

Example:

(1) $f(z)=\frac{1}{z}, \quad z=0$ is a singular point
(2) $f(z)=\frac{1}{z-2}, \quad z=2$ is a singular point
(ii) A singular point $z=a$ is said to be an isolated singular point of $f(z)$ if there exists a neighborhood of \boldsymbol{a} which encloses no other singular point of $f(z)$.

Example:

$f(z)=\frac{1}{z}, z=0$ is an isolated singylar point of $f(z)=\frac{1}{z}$, since nhd of ' 0 ' which encloses no other singular point of $f(z)=\frac{1}{z}$ or $\frac{1}{z}$ is analytic everywhere in the complex plane except at $z=0$

Note: If a is an isolated singular point of a function $f(z)$ then we can expand $f(z)$ by Laurent's series given by
$f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\sum_{n=1}^{\infty} b_{n}(z-a)^{-n}$.
in the domain $0<|z-a|<R$
Here the first term involving positive power series
of $(z-a)$ is called analytic part of $f(z)$ and
second part involving negative power series of $(z-a)$ is called principle part of $f(z)$.

Note: The nature of the isolated singularity depends upon the number of terms in principle part. Hence we have the following cases.
(i) Removable Singularity: If all the negative powers of $(z-a)$ in (1) are completely absent then $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$. Here the singularity can be removed by defining $f(z)$ at point $z=a$ in such a way that it becomes analytic at $z=a$. such singularity is called a removable singularity.

Example: $f(z)=\frac{z-\sin z}{z^{2}}$
Here $z=0$ is a singularity
$\therefore \frac{z-\sin z}{z^{2}}=\frac{1}{z^{2}}\left[z-\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\frac{z^{7}}{7!}+\ldots \ldots \ldots \ldots ..\right)\right]$
$=\frac{1}{z^{2}}\left[\frac{z^{3}}{3!}-\frac{z^{5}}{5!}+\frac{z^{7}}{7!}-+\ldots \ldots \ldots \ldots \ldots ..\right]$
$=\frac{z}{3!}+\frac{z^{3}}{5!}+\frac{z^{5}}{7!}+$.
Since there is no negative powers of z in the expansion $z=0$ is a removable singularity
(ii) Poles: If all the negative powers of $(z-a)$ in (1) after the $m^{\text {th }}$ term are missing, then the singularity at $z=a$ is called a pole of order ' m ' ie. $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\frac{b_{1}}{(z-a)}+\frac{b_{2}}{(z-a)^{2}}+\ldots \ldots \ldots . \ldots \ldots .+\frac{b_{m}}{(z-a)^{m}}+0+\ldots$.
Note: A pole order one is called a simple pole.
Note: Poles of $f(z)$ can be determine by equating the denominator to zero

Example: $f(z)=\frac{e^{z}}{(z-1)^{4}}$
Here $z=1$ is a singularity and put $z-1=t$
$\therefore z=t+1$
$\frac{e^{z}}{(z-1)^{4}}=\frac{e^{t+1}}{t^{4}}$
$=\frac{e}{t^{4}} \cdot e^{t}$
$=\frac{e}{t^{4}}\left[1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots \ldots \ldots \ldots . .+\right]$
$=e\left[\frac{1}{t^{4}}+\frac{1}{t^{3}}+\frac{1}{2 t^{2}}+\frac{1}{6 t}+\frac{t}{4!}+\frac{t^{2}}{5!}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\right]$
$=e\left[\frac{1}{(z-1)^{4}}+\frac{1}{(z-1)^{3}}+\frac{1}{2(z-1)^{2}}+\frac{1}{6(z-1)}+\frac{(z-1)}{4!}+\frac{(z-1)^{2}}{5!}+\ldots \ldots \ldots \ldots\right]$
Here there are four terms containing negative powers of (z-1) thus $\mathrm{z}=1$ is a pole of order four.
(iii) Essential Singularity: If the number of negative powers of $(z-a)$ in (1) is infinite, then $z=a$ is called an essential Singularity. Example: $f(z)=z e^{\frac{1}{z^{2}}}$

$$
=\mathrm{Z}\left[1+\frac{1}{z^{2}}+\frac{1}{2!z^{3}}+\frac{1}{3!z^{4}}+\ldots \ldots \ldots \cdots \cdot\right]
$$

$=z+\frac{1}{z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{4}}+$.
$f(z)=z+z^{-1}+\frac{1}{2!} z^{-2}+\frac{1}{3!} z^{-3}+$ \qquad

Here there are infinite number of terms in the negative powers of z, therefore $z=0$ is an essential singularity of $f(z)$.

Expansion given by $(*)$ is expansion of $f(z)$
around an isolated singularity $z=0$.

Residues:

The coefficient of $(z-a)^{-1}$ in the expansion of $f(z)$ around an isolated singularity is called the residue of $f(z)$ at that point.

The residue of $f(z)$ at $z=a$ is given by
$\operatorname{Res} f(a)=\frac{1}{2 \pi i} \int_{C} f(z) d z \quad$ or $\int_{C} f(z) d z=2 \pi i \operatorname{Res} f(a)$
(1) If $f(z)$ has a simple pole at $z=a$ then $\operatorname{Res} f(a)=\lim _{z \rightarrow a}[(z-a) f(z)]$
(2) If $f(z)$ has a pole of order m at $z=a$ then

$$
\operatorname{Res} f(a)=\lim _{z \rightarrow a}\left\{\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[(z-a)^{m} f(z)\right\}\right.
$$

Example:

Determine the poles of the function $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and the residues at each pole.

Solution:

$$
f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}
$$

Here $z=1$ is a pole of order 2
$Z=-2$ is a pole of order 1 or simple pole

$$
\begin{aligned}
\therefore \operatorname{Res} f(1) & =\lim _{z \rightarrow 1}\left\{\frac{1}{1!} \frac{d\left[(z-1)^{2} \cdot \frac{z^{2}}{(z+2)(z-1)^{2}}\right.}{d z}\right\} \\
= & \lim _{z \rightarrow 1} \frac{d\left[\frac{z^{2}}{(z+2)}\right]}{d z} \\
& =\lim _{z \rightarrow 1} \frac{z^{2}+4 z}{(z+2)^{2}} \\
\operatorname{Res} f(1) & =\frac{5}{9}
\end{aligned}
$$

$$
\operatorname{Res} f(2)=\lim _{z \rightarrow-2}(z+2) \cdot \frac{z^{2}}{(z+2)(z-1)^{2}}
$$

$$
=\lim _{z \rightarrow-2} \frac{z^{2}}{(z+1)^{2}}
$$

$$
=\frac{4}{9}
$$

Cauchy's Residue Theorem:

Statement: If $f(z)$ is analytic within and on a closed curve C except at a finite number of singular points $a_{1} a_{2} \ldots \ldots \ldots a_{n}$ all are within C, then

$$
\int_{c} f(z) d z=2 \pi i\left[\operatorname{Re} s f\left(a_{1}\right)+\operatorname{Re} s f\left(a_{2}\right)+\ldots \ldots \ldots \ldots \ldots . .+\operatorname{Re} s f\left(a_{n}\right)\right]
$$

Example:

Using Cauchy's residue theorem, Evaluate $\int_{C} \frac{z^{2}}{(z-1)^{2}(z+2)^{2}} d z$, Where C is the circle $|z|=2.5$

Solution:

Clearly $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ is analytic within and
on a given circle $|z|=2.5$, except at $z=1$, and $z=-2$.
$z=1$ is a pole of order 2 .
$\therefore \operatorname{Re} s f(1)=\frac{5}{9}$
$z=-2$ is a simple pole
$\therefore \operatorname{Re} s f(-2)=\frac{4}{9}$
By Cauchy's residue Theorem

$$
\begin{aligned}
\int_{C} \frac{z^{2}}{(z-1)^{2}(z+2)} d z & =2 \pi i\{\operatorname{Re} s f(1)+\operatorname{Re} s f(-2)\} \\
& =2 \pi i\left\{\frac{5}{9}+\frac{4}{9}\right\} \\
& =2 \pi i
\end{aligned}
$$

Conformal Transformation:

Definition: Suppose two curves C_{1} and C_{2} in the Z - plane intersect at the point P and the corresponding curves and in the W - Plane intersect at . If the angle of intersection of the curves at P is the same as the angle of intersection of the curves at in magnitude and sense. Then the transformation is said to be conformal.

Note: If $w=f(z)$ is an analytic function of z in a region of the $\mathrm{z}-$ plane then $w=f(z)$ is conformal at all points of that regions where $f^{\prime}(z) \neq 0$

Note: To investigate the specific properties of a mapping $w=f(z)$. We may consider the images of
i) Straight line $x=$ constant
ii) Straight line $y=$ constant
III) $|z|=$ constant and the lines through the origin

Note: The curves defined by $u(x, y)=$ constant and $v(x, y)=$ constant, the pre images in the z-plane can be investigated. These curves are called the level curves of u and v.

1) Discuss the transformation $w=z^{2}$

Solution:

$$
\begin{align*}
& w=z^{2} \ldots \ldots \ldots \ldots \ldots \tag{1}\\
& w=(x+i y)^{2} \\
& u+i v=x^{2}-y^{2}+i 2 x y
\end{align*}
$$

Equating real and imaginary parts
$u=x^{2}-y^{2}$ and $v=2 x y$
$\frac{d w}{d z}=2 z=0 \quad$ for $z=0$ therefore it is a critical point of the mapping
Case (i) Determine the images of the straight line $x=$ constant.
\therefore The line $x=c_{1}$ has the image
$u=c_{1}^{2}-y^{2}$ and $v=2 c_{1} y$
Now eliminate y from the above relali
$v^{2}=4 c_{1}^{2}\left[c_{1}^{2}-u^{2}\right]$
Equation given by (3) is a parabola with focus at the origin and opening to the left.

Case (ii) Determine the images of the straight line $y=$ constant.
The line $\mathrm{y}=\mathrm{c}_{2}$ has the image
$u=x^{2}-c_{2}^{2} \quad$ and $v=2 c_{2} x$
now eliminate x from the above relations.
$v^{2}=4 c_{2}^{2}\left(u^{2}+c_{2}^{2}\right)$. \qquad
Equation given by (4) is a parabola with focus at the origin opening to the right

Here the pairs of lines $x=c_{1}$ and $y=c_{2}$
in the z - plane map into parabolas in the w - plane as shown in the above figure

Case (iii)

Determine the images of $|z|=r$
Taking $z=r e^{i \theta}$
$\therefore w=r^{2} e^{2 i \theta}$
$w=R \mathrm{e}^{i \phi}$
Where $\mathrm{R}=\mathrm{r}^{2}$
$\phi=2 \theta$
$|w|=R$
\therefore The angles at the origin are doubled under the mapping $\mathrm{w}=\mathrm{z}^{2}$.
The first quadrant of the z-plane $0 \leq \theta \leq \frac{\pi}{2}$ is mapped upon the entire upper half of the w-plane

2) Discuss the transformation $w=z+\frac{1}{z}, z \neq 0$

Solution: The given transformation is conformal except at the points $\mathrm{z}= \pm 1$.
since $\frac{d w}{d z}=1-\frac{1}{z^{2}}=0$ for $\mathrm{z}= \pm 1$
$\mathrm{w}=\mathrm{re}^{i \theta}+\frac{1}{r} e^{-i \theta}$
$u+\dot{i}=\left(r+\frac{1}{r}\right) \cos \theta+\left(r-\frac{1}{r}\right) \sin \theta$
Equating real and imaginary parts we get
$u=\left(r+\frac{1}{r}\right) \cos \theta$
$\left.v=\left(r-\frac{1}{r}\right) \sin \theta\right\}$

Case (i):- Find the images of circle, $r=$ constant ie. $r=c$, represents a circle with constant Radius.
$\cos \theta=\frac{u}{a} \quad$ where $\mathrm{a}=$ constant
$\sin \theta=\frac{v}{b} \quad$ where $\mathrm{b}=$ constant
$\frac{u^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}=1$.
Equation given by (2) represents ellipses whose principal axes lie in u and v axes and have the length 2 a and 2 b respectively with foci($\pm 2,0$)

Thus the circle $r=$ constant is mapped onto ellipses under the transformation $w=z+\frac{1}{z}$

Case (ii) Find the images of line $\theta=$ constant, passing through origin, ie. $\theta=\mathrm{C}$
From(1) $\quad \frac{u}{a}=\left(r+\frac{1}{r}\right)$

$$
\frac{v}{b}=\left(r-\frac{1}{r}\right) \quad \text { where } b=\sin c
$$

$$
\frac{u^{2}}{A^{2}}-\frac{v^{2}}{B^{2}}=1 \ldots \ldots \ldots \ldots \ldots \ldots \quad \text { where } \mathrm{A}=2 \mathrm{a} \text { and } \mathrm{B}=2 \mathrm{~b}
$$

Equation given by (3) represents hyperbalas in the w-plane.
Thus lines $\theta=$ constant is mapped onto hyperbolas under $\mathrm{w}=\mathrm{z}+\frac{1}{z}$

Z-Plane

3) Discuss transformatin of $w=e^{z}$

Solution: $w=e^{z}$

$$
\begin{gathered}
\mathrm{u}+\mathrm{iv}=\mathrm{e}^{x+i y} \\
=\mathrm{e}^{x} \cdot e^{i y} \\
=\mathrm{e}^{x}[\cos y+i \sin y] \\
\mathrm{u}+\mathrm{iv}=\mathrm{e}^{x} \cos y+i e^{x} \sin y
\end{gathered}
$$

Equating real and imaginary perts
$\left.\begin{array}{l}u=e^{x} \cos y \\ v=e^{x} \sin y\end{array}\right\}$.
Case (i): Find the images of $\mathrm{x}=$ constant ie. $\mathrm{x}=\mathrm{c}$ from (1) we have $u=e^{c} \cos y$

$$
\begin{aligned}
v & =e^{c} \sin y \\
u^{2}+v^{2} & =e^{2 c} \\
u^{2}+v^{2} & =R^{2} \ldots \ldots . e r e ~ \\
& =e^{c}
\end{aligned}
$$

Equations given by (2) represents a circle centre at the origin with radius R Thus the line $x=$ constant in the z-Plane is mapped onto circle in the w - plane under the transformation $w=e^{z}$

Z-plane

Case (ii): Find the images of a line $y=$ constant ie. $y=c$
From (1) we have

$$
\begin{aligned}
& \left.\begin{array}{l}
u=e^{x} \cos (c) \\
v=e^{x} \sin (c)
\end{array}\right\} \\
& \frac{v}{u}=\frac{e^{x} \sin (c)}{e^{x} \cos (c)} \\
& \tan (c)=\frac{v}{u}
\end{aligned}
$$

$$
\therefore v=\tan (c) \cdot u
$$

$$
v=m u . .
$$

(2) where $m=\tan (c)$ slope

Equations given by (3) represents a straight line passing through the origin with slope $\mathrm{m}=\tan \mathrm{c}$ in the $\mathrm{w}-$ plane.
Thus the line $\mathrm{y}=$ constant in the z - plane is mapped onto straight line passing through the origin in the w - plane under the transformation $\mathrm{W}=\mathrm{e}^{\mathrm{z}}$

Z-Plane

w -plane

Observation:
(1) Since $e^{z} \neq 0$, for all z, the point $w=0$ is not an image of any point z.
(2) Suppose $c=0$ ie. $x=0$ means that the y-axis in the z-plane is mapped onto the unit circle $u^{2}+v^{2}=1$

Bilinear Transformation:

$>$ Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d be complex constant such that $a d-b c \neq 0$. Then the transformation defined by

$$
\begin{equation*}
w=\frac{a z+b}{c z+d} . \tag{1}
\end{equation*}
$$

is called Bilinear Transformation
$>$ from (1) we find
$z=\frac{b-w d}{c w-a} \ldots \ldots \ldots \ldots \ldots$ (2)
is also calleda Bilinear Transformation
Note: The condition ad- $\mathrm{bc} \neq 0$ ensures that $\frac{d w}{d z} \neq 0$ ie. The transformation is conformal if $a d-b c \neq 0$

Invariant Point:

Invariant points of bilinear transformation,
If z maps into itself in the w -plane ie $\mathrm{w}=\mathrm{z}$
$\mathrm{z}=\frac{a z+b}{c z+d} \quad$ or $\quad c z^{2}+(d-a) z-b=0$
$>$ Equation given by (3) is a quadratic equation in z , the roots of the equation are which are Z_{1}, Z_{2} invariant points or fixed points of the Bilinear transformation.

Cross Ratio: Bilinear transformation preserves cross ratio of three points say points $Z_{1}, Z_{2} Z_{3}$ of the z-plane maps onto the points $W_{1} W_{2}$ W_{3} of the w-plane.
this cross ration is given by
$\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)}=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}$
Solving this equation for w interms of z
we obtain the unique bilinear transformation that transforms $z_{1} \mathrm{z}_{2} \mathrm{Z}_{3}$ onto $w_{1} w_{2} w_{3}$ respectively

Example: Find the bilinear transformation that transforms the points $z_{1}=i z_{2}=1, z_{3}=-1$ onto the points $w_{1}=1, w_{2}=0, w_{3}=\infty$ respectively. Also find the invarient points and the images of region $|z|<1$ under this transformation.

Solution: The required bilinear transformation is given by
$\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)}=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}$

$$
\begin{aligned}
& \frac{\left(w-w_{1}\right)\left(\frac{w_{2}}{w_{3}}-1\right) w_{3}}{w_{3}\left(\frac{w}{w_{3}}-w_{3}\right)\left(w_{2}-w_{1}\right)}=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)} \quad \because \frac{w}{w_{3}} \rightarrow 0 \quad w_{3} \rightarrow \infty \\
& \frac{(w-1)(0-1)}{(0-1)(0-1)}=\frac{(z-i)(1+1)}{(z+1)(1-i)} \\
& -(w-1)=\frac{(z-i)(1+1)}{(z+1)(1-i)} \\
& -w+1=\frac{2(z-i)}{(z+1)(1-i)} \\
& w=1-\frac{2(z-i)}{(z+1)(1-i)} \\
& w=\frac{(z+1)(1-i)-2(z-i)}{(z+1)(1-i)} \\
& =\frac{z-i z+1-i-z-i z+1+i}{(z+1)(1-i)} \\
& w=\frac{(z+1)(1-i)-2(z-i)}{(z+1)(1-i)} \\
& =\frac{z-i z+1-i-2 z+2 i}{(z+1)(1-i)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-z-i z+1+i}{(z+1)(1-i)} \\
& =\frac{(1-z)+i(1-z)}{(z+1)(1-i)} \\
& =\frac{(1-z)(1+i)}{(z+1)(1-i)} \\
& =\frac{(1-z)(1+i)}{(1+z)(1-i)} \frac{(1+i)}{(1+i)} \\
& w=\frac{(1-z)}{(1+z)} \cdot \frac{2 i}{2} \quad(1+\mathrm{i})^{2}=2 i \\
& w=\frac{i(1-z)}{1+z} \ldots \ldots \ldots . .(*) \text { is a required bilinear transform }
\end{aligned}
$$

To find the invariant points of bilinear transform
Taking $w=2$ in equation $\left({ }^{*}\right)$
$z=\frac{i(1-z)}{(1+z)}$
$z^{2}+z=i-i z$
$z^{2}+(1+i) z-i=0$
$z=\frac{-(1+i) \pm \sqrt{(1+i)^{2}-4(-i)}}{2}$
$=\frac{-(1+i) \pm \sqrt{2 i+4 i}}{2}$
$=\frac{-(1+i) \pm \sqrt{6 i}}{2}$
$\therefore z_{1}=\frac{-(1+i)+\sqrt{6 i}}{2}, \quad z_{2}=\frac{-(1+i)-\sqrt{6 i}}{2}$ are
invarient points.

To find the image of $|z|<1$ (ie. interior points of the unit circle)
$\mathrm{w}=\frac{i(1-z)}{(1+z)}$
$w+w z=i-i z$
$w z+i z=i-w$
$z(w+i)=i-w$
$z=\frac{i-w}{i+w} \ldots \ldots \ldots \ldots$........
Now $|z|<1$
$\left|\frac{i-w}{i+w}\right|<1$
$|i-w|<|i+w|$
$|i-(u+i v)|<|i+(u+i v)|$
$|-u+i(1-v)|<|u+i(i+v)|$
$|-[u-i(1-v)]|<|u+i(1+v)|$
$|u-i(1-v)|<|u+i(1+v)|$
$\sqrt{u^{2}+(1-v)^{2}}<\sqrt{u^{2}+(1+v)^{2}}$
$u^{2}+v^{2}-2 v+1<u^{2}+v^{2}+2 v+1$
$-4 v<0$
$4 v>0$
$\Rightarrow v>0$

Thus under the given transformation, the circular region $|z|<1$

 (ie. interior of the circle $|z|=1$) in the z-plane is mapped onto the upper - half of the w-plane.2) Find the bilinear transformation that the points $z=-1, i, 1$ onto the points $w=1, i,-1$ respectively.
Solution: Let $z_{1}=-1, \quad z_{2}=i \quad z_{3}=1$

$$
w_{1}=-1, \quad w_{2}=i \quad w_{3}=1
$$

The required bilinear transformation is given by
$\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)}=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}$
$\frac{(w-1)(i+1)}{(w+1)(i-1)}=\frac{(z+1)(i-1)}{(z-1)(i+1)}$
$\frac{(w-1)}{(w+1)}=\frac{(z+1)}{(z-1)} \cdot \frac{(i-1)^{2}}{(i+1)^{2}}$

$$
=\frac{(z+1)}{(z-1)} \times \frac{(-2 i)}{(2 i)}
$$

$\frac{(w-1)}{(w+1)}=-\frac{(1+z)}{(z-1)}$
$\frac{(w-1)}{(w+1)}=\frac{(1+z)}{(1-z)}$
$(w-1)(1-z)=(w+1)(1+z)$
$w-w z-1+z=w+w z+1+z$
$-2 w z-2=0$
$-2 w z=2$
$w=-\frac{1}{z}$ this is the requird transformation

