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Syllabus:

MODULE-II

Numerical Methods: Numerical solution of second order ordinary
differential equations, Runge-Kutta method and Milne's method.
Special Functions: Series solution-Frobenious method. Series solution
of Bessel’s differential equation leading to J,(x)-Bessel’s function of first
kind. Basic properties and orthogonality, Series solution of Legendre's
differential equation leading to Py(x)-Legendre polynomials, Rodrigue’s
formula, problems

Text Books:
1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43° Ed., 2015.
2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10" Ed., 2015,

Learning outcomes:

Upon successful completion of Numerical solution of second order ordinary differential
equations, by Runge Kutta method and Milne’s method, it is expected that a student will be
able to do the following.

& Familiar with Fourth order Runge-Kutta method and Milne’s method.

& Find the numerical solutions of second order ordinary differential equations, using
Runge kutta method and Milne’s method.
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Introduction:

Is it necessary to study Numerical Analysis: or
Why it is necessary to study Numerical analysis:

In the real world, no system behaves in a linear manner. There is no ideal
material, ideal support condition and a perfect structure. Due to imperfections (defect)
the behavior can always be described by a set of non-linear equations only. These
equations cannot be solved analytically except in some trivial cases, and one has to
resort to numerical analysis to find solutions. Nava day’s it has become an important
tool to solve a wide spectrum of nonlinear problems that arise in many practical
situations.

What is Numerical Analysis?.

Numerical analysis is the development and study of procedures for solving
problems with a computer.

Advantages:

1. A major advantage for numerical analysis is that a numerical answer can be obtained
even when a problem has “no analytical” solution.

2. Numerical results can be plotted to show some of the behavior of the solution.

3. Another important distinction is that result from numerical analysis is an
approximation, but results can be made as accurate as desired. (There are limitations
to the achievable level of accuracy, because of the way that computers do arithmetic).

Secondorder differential equation:

. . . : d’ .. :
Consider the second order differential equation ﬁ:f [XN%} by writing dy/dx = z, it can
be reduced to two first order simultaneous differential equations.

dy dz
— =z, —=f(x,y,z
v v (xy.2)

These two equations can be solved using fourth order Runge-Kutta method.

Examplel: Using Runge - Kutta method, solve 3)2(32’ =xy'? —y? for x=0.2correctto 4
decimal places. Initial conditions arex=0,y=1,y" =0.

d dz
Solution: Let % =z="F(x,y,2), Then x xz® —y? =¢(x,y,z)

Wehave xo =0, Yo=1, 2 =0, h=0.2. Usingky, ks, ks, ks for f(x,y,z) and Iy, |, I5 for ¢(x,
y, z) Runge - Kutta formulae become

k, =hf(X,,Y,,2,)=0.2(0)=0 l, = ho(X,, Yy, 2,) = 0.2(-1) = -0.2

k, = hf[xo v rhyo+ iz, + X |1j —0.2(-0.1) = -0.02 ,
2 2 2

I, = he| xg + =h,y, + L K,,2e + =1, | = 0.2(—0.999) — —0.1998
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k, = hf(xo +%h, Yo +%k2, Z, + % |2j = 0.2(-0.09%9) = -0.02,

I, = h<|>(xO +%h,yO +%k2, Z, +%I2) =0.2(-0.9791) = -0.1958
k, = hf(x, + h,y, +k,,z, +1,)=0.2(-0.1958) = -0.0392.
I, = ho(x, + h,y, + ks, z, +1,)=0.2(0.9527) = —-0.1905

Y. =Y, +%(k1 + 2k, + 2k, + k,)=1-0.0199 = 0.9801
y' =2z,=12, +%(I1 +2l,+2l,+1,)=0-0.1970 = —0.1970

Example 2: Given y"+xy'+y =0 y(0) =1y(0) =0, obtain y for x =0, 0.1, 0.3 by any
method. Further, continue the solution by Milnes method to calculate y(0.4).

Solution: put y’ =z, the given equation reduces to the simultaneous equations

Z'+xz+y =0,y =2z

We use Taylor’s series method to find y, differentiating the given equation n times, we get
Yoz ¥ XY +NY, +Y, =0
atx=0
Viz)o = —(n+1)y,. )
-.y(0)=1gives vy,(0)=-1,vy,(0) =32,y,(0) =—15,....

and y,(0)=1yields y,(0)=0,y,(0)=0,y,(0)=0,....=0

Expanding y(x) by Taylor’s series, we have ,
X X

) =y(0) +xy1(0) + -y, (0) + Y5 (0) + ...

2 4

X X" Bx®

y(X):l_E-FBE_FX e (2)
I 1 3 1 5

and 20 = y/(9) = X+ 00 —x ==Xy oo 3)

From(2) y(0.1)=0.995, y(0.2)=0.9802, y(0.3)=0.956
From(3) we have,z(0.1)=-0.0995, 2(0.2) =-0.196, z(0.3) =- 0.2863
Also from (1) z'(X)=-(xz+Y)

2'(0.1) = -0.985, z'(0.2) = -0.941,2'(0.3) = -0.87.
Applying Milne’s predictor formula, first to z and then to y, we obtain

2(0.4) = z(0) + % (0.1)(2z'(0.1) — 2'(0.2) + 22'(0.3))
=0+ % (~1.97 + 0.941—-1.74) = —0.3692
y(0.4)=y(0) + % (0.1)(2y’(0.1) — y’(0.2) + 2y’(0.3))

—0+ 0;34 (~0.199 + 0.196 — 0.5736) = 0.9231
Also 2(0.4) = (x(0.4) z(0.4) + y(0.4)) = (0.4(—0.3692) + 0.9231) = —0.7754.
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Now Applying Milne’s corrector formula, we get

z(0.4)=z(0.2) + % (2'(0.2) + 4z'(0.3) + z'(0.4))

= —0.196 + % (—0.941-3.48—-0.7754) = —0.3692

h 14 14 14
y(0.4)=y(0.2) + 3 (y’(0.2)4y’(0.3) + y’(0.4))
= 0.9802 + % (—0.196 — 01.1452 — 0.3692) = 0.9232

Hence y(0.4)=0.9232, and z(0.4)= —0.3692.

Additional Resources: Please visit

http://numericalmethods.eng.usf.edu/topics/runge kutta 4th method.html

http://numericalmethods.eng.usf.edu

Special Functions:

Introduction:

We are familiar with the solution of linear differential equations with Constant
coefficients. The solution involves elementary functions such as e®, sin(ax), cos(ax) etc.
However, linear differential equations with variable coefficients, which arise from physical
problems, do not permit such solutions. Such equations can be solved by numerical methods,
But in many cases it is easier to find a solution in the form of an infinite converge series. The
series solution of certain differential equations give rise to special functions such as Bessel’s
function, Legendre’s polynomial, Hermite’s polynomial, Chebyshev polynomial. These
special functions have many applications in Engineering.

Series solution of differential equation:

To solve the equation of the form po(x)gx_2¥ E pl(x)% + PR O

Where po(X), p1(X), p2(X) are polynomials in x, in terms of infinite convergent series.
Validity of series solution:

Every differential equation of the form po(X)Sb%/+ pl(X)%+ P, (X)y =0————()

Does not have series solution. As such we find the conditions under which the above equation
admits of the series solution.Dividing equation (1) by po(X), we have

d’y dy B

o PO L +a09y =0

where p(x) = b, (x) and q(x) = b, (X)
Po(X) Po(X)
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Ordinary point:
x =0is called an ordinary point of (1) if po(x) # 0, otherwise it is called a singular point.

When x = 0 is an ordinary point of (1) its every solution can be expressed as a series of the
form

y=a,+aX+ax +————— S¥a, x"

Singular point: whenx =0 iscalleda singular point of (1) if po(0) = 0. If x p(x) and x* q(x) possess
derivatives of all ordersinthe neighborhood of x=0, thenx =0 is called a regularsingular point of

(1)

When x =0 is aregular singular point of (1) at least one of its solution can be expressed as
y =xm(a0 T X T e—— )=Zakxm+k

Where m may be a positive or negative integer or a fraction.

When x =0 is an irregular singular point of (1) , then the differential equation of (1) has no
series solution of the form

2 k
y:xm(a0+alx+a2x +————= )=Zakxm+

Series solution When x =0 is an ordinary point of the equation:

d2
Po(9) 5+ PL0) 2+ P ()Y =0 - ==~ )
Let y=a,+aX+ax>+————— _ iakxk _____ @)
k=0

be the solution of (1) then find dy/dx , dy/dx® Substitute the values of

dy d’y .
,—,and— in (1
y dx dx? @

equate to zero the coefficients of various powers of x and find a,, as,as ...... in terms of ap
and a;.Equate to zero the coefficient of x". The relation so obtained is called the recurrence
relation. Give different values to n in the recurrence relation to determine various aj’s in
terms of ap and a;.

Substitute the values of ay, a3, as, .... In equation (2) to get the series solution of (1)
having ap and a; as arbitrary constants.
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Examples : To solve the equation 97y XY =0 -mmmmmee 1)
d

Solution: since x =0 is an ordinary point of (1)

Let its series solution be Y =ap+aX+a,X’ +————— = Zakxk ————— (2)

Then findfirstand second derivative of (2) we get

d ¥
ke a, +2a,X + 32X + oo +Nna, X

2
d—¥ =2.1a, +32a,x +4.33,X*......... +n(n-Da,x"? +........

Substituting these values in the given equation we get
2.1a, +32a.x +4.33,X"......... +n(n—-La x"?+........ +X(a, +a,x+a,x’ +....+a,x") =0

2.1a, + (32a, +a,)x + (4 3a, +a,)x* + (54a, +a,)x* +...+[(n+2)(n+Da,,, +a, , X"+=0

Equating to zero the coefficients of the various powers of x we get

& =
32a,+a,=0iea &
3 0~ . 3 3|
2,

43a,+a, =0, lea, =—

: a
54a; +a, =0,i.ea, :—iand soon..

. a
Ingeneral, (n+2)(n+1)a,,,+a,, =0,iea, 6 =———""T1—
which is the recurrence relation
put n =4,5,6.....in the recurrencerelation weget
4
a6:-ﬁ:ﬁ; a7:-a—4:52a1;andsoon....
65 6! 76 7!
substituting these values in (2) weget
4 (l_x_3+14x6 _147x9 )+a (X_£+25x7 b
R TR or T a4 o
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Example2: To solve the equation dz_y 20— cmmmmme e (1)
dx?
Solution: since X =0 is an ordinary point of (1)
k
Let its series solution be Y =8 t@X+a,X" +————— = ) a X T (2)

Then find the first and second derivatives of (2) we get

;ﬂ =a, +2a,X +3a,X> +......... +na, X" =) kax*

X k-1

dzy 2 n-2 - k-2

prve 2.1a, +32a,x +4.33,X%......... +n(n—-a, x"? +........ =Y k(k -Da,x
k=2

Substituting the values of y and d2y/dx’ in the given differential equation (1) we get

D k(k-1)a x“*+x*> ax* =0
o 0

[2.1a, + 322X + 4.33,X"......... +(N+2)(n+1a, X" +........ =
+x%(a, +a X +a,x> +.....+a, ,X"?+..)=0
2.1a, +(32a,)x +(43a, +a,)x* +(54a, +a,)x> +..

..... +[(n+2)(n+Da,,,+a, X" +..=0

n+2

Equating to zero the coefficients of the various powers of x we get
a, =0 and soon..
Ingeneral, (n+2)(n+1)a,., +a,, =0,
. a
iea,,,=— n-2
(n+2)(n+1)
which is the recurrencerelation

a,=0

put n =2,3,4,5,6.....in the recurrencerelation weget

a da a
L =2 a5=-4—g; and soon....

4

34 6l
substituting these values in (2) weget
X4 X8 5 X9
=a,(1- + L)+ (X- + +---
Y=a(-37 3478 ) 44 5 1580 )
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. ; 2\ d’y dy
Examples3: To solve the equation (1+ x )d_2 + Xd_ -y =0---ccn-- (1)
X X

Solution: since x =0 is an ordinary point of (1)

Let its series solution be Y =a, +aX+a,Xx* +————— =Y g X< ————— )
k=0
then & _ a, +2a,X +3a,X° +......... +na,x"" =) kax*
dx k1
ﬂ—2161 +32ax + 4.3a,x° +n(n-2a x"? + —ik(k—l)a X2
5o = 218 X+4.3a,x%...... X" . =2 A

Substituting the values of y, dy/dx and d®y/dx? in the given differential equation (1)

and equating the various powers of x obtain a,=(ap /2) ,a3=0
n-1
Equating to zero the coefficients of X" , we get a,., =— En " 2; a,

Put n=2,3,4,5...successively we get

oWy @,
CRE "
ag=-Da, -2
2 " 16

substiting the values of a,'s in the assumed solution we get
y=a,| 1+ X—2 - X—4 X—6 — SL required equation
ST 2 8 16 128 T

Probenius method:

Series solution when x =0 is a regular singularity of the equation

po(x) +p1(x)%+pz(x)y S ——_ ®

Let y =x’“(a0 +aX+ax +————— ax"+..... ) =Y ax™ ———(2)

be the solution of (1) then

i(m+k)ak m+k—1

d K
d2
(m+k)m+k—1)a,x™*?2

Q\
<
b -

X2

~
Il

0

substiting the values of v, j—yand j Y in(1)
x?
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Equate to zero the coefficient of lowest power of x. This gives a quadratic equation in
m which is known as the indicial equation. Equate to zero the coefficients of other powers of
x to find az,az,a3...... in terms of ap.Substitute the values of ai, ay, as.....in (2) to get the series
solution of (1), since the complete solution must have two independent arbitrary constants.
The method of complete solution depends on the nature of roots of the indicial equation.

Case 1:

When the roots m; and my of the indicial equation are distinct and not differing by an integer.
The complete solution is

Yy =C1 (Y)m1 +C2 (Y)m2

Case 2: When the roots m; and m, of the indicial equation are equal the complete solution is
y =c1 (Y)m1 + C2 (By/ OM)m1

Case 3: When the roots m; and m, (mp < mp) of the indicial equation are distinct and differ
by an integer. Let some of the coefficients of y series become infinite when m = my ( smaller
of the two roots ). Replace ap by by ( m - my ) in the series for y.

The complete solution is Yy =cy (Y)m1 + C2 (Oy/ OM)m1

The solution corresponding to m = m, ( greater of the two roots ) is a constant multiple of the
solution corresponding to m=my .

2
Example : solve in series the equation 2x° 3—32/+ (2x? —x);ﬂ+ y=0
X X

Solution :since x =0 is a regular singular point of the given equation. Let its series solution
be

y= x’“(a0 +AX+AX +—————— ): D axmE
k=0
Then

Y- 3 (m+ kg
dx i

2 ©
d—i/ = > (m+k)m+k —1L)a,x™*?
dx k=0

. dy d’y . : .
substiting the values of y, I and v in the given equation, weget
X

0

2x2i(m +k)m+k-1)a, x™*2 + (2x* - x)i(m +Kax™ 1+ > a x™* = 0.
k=0 k=0

k=0
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2x2i(m +k)Ym+k —1)a x™*2 + (2x? - x)i(m +Ka x™ 4+ iakxm+k —0.
koo pry

k=0
2x*[m(m —1)a,x™? + (m+21)(m)a,x™ " + (m+ 2)(m+1)a,x™ + (m+3)(m +2)ax™ ™" +...]+

m+2

+(2x% =x)[(M)a,x™ " + (m+1)ax™ +(m+ 2)a,x™* +(m+3)ax™ +...]+

+a X" +ax™ +a,x™? +.....=0.
The lowest power of x is x". Equating to zero the coefficient of x™, we get 2m (m-1)ag - map
+ap=0. Or (2m* -3m+ 1) ap = 0 or (2m -1) (m-1) = 0 since ap # 0 . Which is the indicial
equation. Its roots are m = %, 1.Equating to zero the coefficient of x™**, we get

2m(m+1)a; + 2mag- (m+1l)a; + a;=0 or
(2n? +m) a; + 2map= 0 or m [(2m+1)a; +2ap] =0  or
(2m+1) a3 + 289 =0 since m#0 or
a;=-(2/(2m+l) ) ao
Equating to zero the coefficient of x ™*?
2 (m+2) (m+l) ap +2 (m+l) a; — (M+2) a, +a;=0. or
(2mf +5m + 3)az + 2 (M + 1)a; = 0 or
@2m+3)(m+1l)a+2(m+1)a; =0
(2m+3) (m+1) a, +2 (m+1) a1 =0
[Cm+3) a;+2a;] (m+l) =0 or
(2m+3) a;+2a;=0 since (mt+1) #0 or
a=-2/(2m+3))a; =- (4/ 2m+1) (2m+3)) ag
Equating to zero the coefficient of xX™** | we get

2 (m+3) (m+2) az +2 (m+2) a — (Mmt3) a3 +az =0 or

@2m; +9m+10)az+2 (m+2) a2 =0 or
@2m+5)(mt2) a3 +2(m+2) a, =0 or
(2m+5)az+2a,=0 since (m+2) #0
az=-(8/(2m+l) (2m+3) (2m+5) ) ap and so on....
When m = % : a = - a , a = - (a/2), a3 =- (a/6) etcThe first solution is
ylzaox}é[l—x+)(22—)(—63 ————— j
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Therefore the second independent solution is

2 2°x* 2°x°
Vo, =a,X|1— =X+ — + —— — — —
3 35 357

Hence the complete solution isy=c1y1 +C2 2
Examplel: Home work
2
Solve in series the equation Xd_y + &y _ y=0
dx®  dx
Hint: Since x = 0 is a regular singular point of the given equation. And roots are m = -2 and 2.

Example 2 : solve in series the equation

2
X d—g + 07 +xy =0
dx® dx
Hint: Roots are m =0, 0
 Obta e o - d?y dy
Example 3: Obtain the series solution of the equation x(1-— x)w -1+ 3x)d— -y=0
X
Hint: Roots are m =0,2
Bessel’s equation:
The second order differential equation given as
2
x2u+xﬂ+(x2—n2)y:0 ——————— @

dx*  dx
is known as Bessel’s equation. Where the solution to Bessel’s equation yields Bessel’s
functions of the first kind and second kind as follows y = A J,(X) + B Y,(X) Where A and B
are arbitrary constants.

Bessel function :

1. First kind: Jn(x) is the solution to Bessel’s equation is referred to as a Bessel’s
function of the first kind.

2. Second kind: Yn(x) in the solution to Bessel's equation is referred to as a Bessel's
function of the second kind or sometimes the Weber function or the Neumann
function.

Equation (1) is often encountered when solving boundary value problem, such as separable
solutions to Laplace’s equation or the Helmholtz equation, especially when working in
cylindrical or spherical coordinates. The constant n determines the order of the Bessel's
function found in the solution to Bessel's differential equation and can take on any real
number value. For cylindrical problems the order of the Bessel function is an integer value n
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while for spherical problems the order is of half integer value n+1/2. Since Bessel's
differential equation is a second order equation there must be 2 linearly independent
solutions.

Example:
dzy dy 2
x? +X—+XxX"-n)y=0-—————— 1
Solve a7 T (x* —n?)y @)
Since x =0 is aregular singular point of the given equation, Let its series solution be
y =x" (ao +aX+axi+—————— )z D a ™k
k=0

Differentiate above equation w.r.t. x two times then substitute these values in the equation

).

o
"<

i (m+k)a, x™**

(m+k)m +k —1)a, x™"*?

o Cl
N

o
N‘<
OM8

2
substiting the values of y, g—yand j—g in the given equation, weget
X X

xzi(m +k)m+k-1)a x™*2 + (x)i(m +Ka x™ 4+ (x? - nz)iakx”“" =
k=0 k=0

k=0

0

x2S (m+ k)Ym + k- x™ 2 + (0 (m+ Klax™< + (¢ -n?)Y a,x™ =0,

k=0 k=0 k=0

(m+k)Ym+k -1, x™* + i(m +KJax™ +x* Y a x™ -n*Y a, x"* = 0.

k=0 k=0 k=0
(m+K)m+Kax™ - Y (m+Klax™ + Y -
k=0 k=0 k=0 k=0
[(m+ k)2 = (m+ k) + (m+ k) - n2hx™ + 3

k=0 k=0

Z[(m+k) —n2 ™+ Y a X =0,

= k:O

3 S g U o

8

The lowest power of x is X" corresponding to k = 0. Equating to zero, the coefficient of x™,
we get indicial equation

m’ —n? =0, (since ap #0) implies m=xn

Equating to zero the coefficient of next term i.e. xX™** we get

[(M+1)? —n’Ja; =0 implies a; =0, since [(M+1)? —n’Ja; #0 for m=+n.
Equating to zero the coefficient of x m+k+2 we get the recurrence relation

[(mt+k+2)% — n’laks+2 +ax =0 or
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ay

ak-¢—2 =
(m=-n+k+2)(m+n+k+2)
ak
Apip =
(Mm-n+k+2)(m+n+k+2)
putk=1,35,...... weget a;=a,=a,=....=0.
putk=0,2,4,.....weget
a0
a, =
(Mm-n+2)(Mm+n+2)
a‘2
a, = =
(m-n+4)(m+n+4)
— a0
(m=-n+4)(M+n+4)(M-n+2)(M+n+2)
andsoon...... ,
substituting all the values values in the assumed solution, weget
mlq x2 x*
Sy=a,X"1- e T e | ——— — — a
¥=% (Mm+2)2—n? |(m+2)? —n?|(m+4)’ —n?| @

Depending upon the values of n, we get different types of solutions

Case | : When n #0 or n # an integer . In this case , we get two independent solutions for m =
n and m=-n.

For m = n we get

Yy, =a X" 1- X’ + X’ - X -—(2)
Y1 =% 4n+1)  42(n+1(n+2)] 423A[(n+)(n+2)n+3)]
For m = -nwe get
Sy, =ax M 1- X’ + X’ - X -—3)
4-n+1)  42[(-n+1)(-n+2)] 4°3A[(-n+1)(=n+2)-n+3)
If we take a, = 1
2"T(n+1)

Then the solution given by (2) is called the Bessel function of the first kind of order n and is
denoted by IJn(x). Thus (WKTn'n =T'(n+1))

0= [y a3 *arorals) -sroe(E)-Jo-o
e 2) | n(n+y ur(n+2)(2) 2r(n+3)(2) 3Ar(m+42) T ’

1

1.3,00=3 V(3] rreers @

r'r(n+r +1)

3,00 =2 (1) [gj r )

rr(—n+r+1)
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Which is called the Bessel’s function of the first kind of order —n. Hence complete solution of
the Bessel’s equation ( 1 ) may be expressed in the form y = A J, (X) + B J.n (X). Where A
and B are arbitrary constants.

Case 2: When n = 0, the Bessel’s equation takes the form

R X2 x* ~ X8
Sy {1 m+27?  [m+27fm+a7] [m+22fm+afm+ey?] }

If m =0 the first solution is given by

J3,(x) = g(‘ O (gk (k1!)2 |

in equation (4)putn=0,r=k,I'(k+1) = k!
Which is Bessel function of the kind of order zero.

We know that

XZ

X4
(m+2)*—n? +l(m+2)2—n21(m+4)2—nzj ............. } _____

y:aox"‘{l—

Now differentiate above equation with respect to m, we get

.oy

x™log x| 1— X’ + X +
o g (m+2) [(m+2)2J[(m+4)2J .............

X2 X* {2+2}+
(Mm+2)? (m+2) |(m+2)?f(m+4)?[|(m+2) (m+4)]

The second independent solution is given by (6_yj .
m=0

The complete solution of the Bessel equation of order zero is y = AJo(X) + B yo (X) , where
Yo(X) is called Bessel function of the second kind of order zero or Neumann function.

Case 3 : When n is an integer , the two functions J, (X) J.n(X) are not independent but are
connected by the relation

‘]—n (X) = (_ 1)n‘]n (X)

wktd (x)=>(- 1)k(5jn+ r 1

2 KIT(-n+k +1)
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Since I'( a negative integer or zero) tends to o, each term in the summation is zero as long as
—ntk+1 <0ie k< n-1. and I'(-n+k+1) is finite when k >n.

Put k = n+r , we observe that when k=n,r=20, ktends to o, rtends oo .

1,00 = Ca™ (ij

S M+N)!T(r+1)(2

N © (_1)r (é)nﬂr
=) rz(n+r)!1“(r+1) 2

sincerand nareinteger I'(r+1) =rland (n+N!'=T'(n+r+1)

o o (_1)r (zjnﬁr
I =D ;(r)!r(n+r+1) 2

=(-1)"J,(x).
Now , when n is an integer , y» fails to give a solution for positive values of n and y; fails to
give a solution for negative values of n.Let us find an independent solution of Bessel’s
equation (1 ) when n is an integer. Let y = u(x) Jn (X) be a solution of equation (1) , nis
integer. Then differentiate y two times we get

2L =uJ.(X)+ul
X (X)+ul,
d2

Il
o

y

d—zzu"Jn(x)+u'J'n +u'), +ul;
X

=u"J, (X)+2u'), +ul;

Substituting the values of y , dy/dx , d®y/dx? in equation (1) we get
xz(u"Jn(x) +2u'J +u J','])+ x(u'Jn + uJ'n)+ (x*-n*)ud, =0
or
u[sz','] +xJ.+(X* - nz)Jn]+ x2u'tJd (X)+2xPutd, +xu'd, =0
or
x2u'tJ, (x)+2x*u'd, +xu'J, =0 --J_isasolution of equation (1).
x*uJ, (x)+2x7u'd. +xu'd, =0
dividing throughout by x*u'J we get
Lij + j—" +§ =0

n

Cd d )
|.e.&(logu )+2dx (logJd, )+ ™ (logx)=0
or%(log u'+2logJ, +logx)=0
or%(log(u'\lﬁx)):o

Integrating w.r. t.x weget

log(u' 32x)=log B .'.u':% or u=BIdTX+A

e_notes: EDUSAT Programme-22 Engineering Mathematics-1V Module-l1, by: Dr S S Benchalli,BEC,BGK Page 15



Substituting the value of u in the assumed solution y = u(x) Jn(X)

1

or y=AJ (X)+By,(X), wherey,

dx
J (X
% Ao

The function y (X) is called Bessel function of the second kind of order n or Neumann

function.

Find the value of Ji/(X):
n-1 (_ 1)k (zjnﬁK

w.KT. J (X)=
(0 kzz(;‘k!l“(n+k+1)

put n =%weget and w.k.tl'n=(n-1)I"(n-1)

B n-1 ( )k [le/;yzr(
Tz (X )_Z;k'l“(k+3/2)

_ 1 (5)1/2 ) 1 (XTQ X 1 (5)7/2 .
I'@/2)\ 2 r'(5/2)\ 2 aralz) T

) G)m{(l’ 2;(1/2) @ 2)(1/12)F(1/2) [gj " 2512)a 2;(1/ 2)r(1/2) GT ’ ]

Jar@n) | 1 )

Jip (X)= 3 5

| X Z{X x* x° }
= ——— ...
27 n 3 5
:wfi(sinx).
X
'.Jl,z(x):wfix(sinx).
T

Find the value of J-1/2(X): -1 ( )k o\ 2K
w.KT. J  (X)= 2
SKIT(-n+k+1)( 2

put n :%weget and w.kitl'n=(n-1)I'(n-1)

B n-1 ( |< ( j1/2+2K
J2(X) = 0k'1"(k+1/2)

_ 1 (zj_llz B 1 (ij N 1 [5}7/2 N
r/2)\ 2 r'3/2)\ 2 2irGsi)\2) T
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3., (%)= V2 {1—X—2+X4 }

JXT(1/2)

2 x? x4
Y T NN
XTT 21 4l

Recurrence relation of Bessel functions:

The following recurrence relations connect Bessel functions of different orders and are very
helpful in the solution of problems involving Bessel functions.

1.Prove that : i [x”Jn (x)] =x"J,,(x)

n-1 k n+2K
Proof :W.KT. J(x)= ML(X)
=ZkT'(n+k+1)\ 2

n-1 ( 1)kX2n+2k
"J
X3, () = Z “2MKKIT(N+ k +1)

differentiate both sides weget

(2n + 2k)X2n+2k -1
x"J (X
[ o )] kz(; 2" KIT(N+ K +1)

] n-1 ( ) (n 4 k)xn+2k -1
£ M (n 4 K)T(N + K)

S (1) ( 5)

S HAIT(N -1+ K +1)| 2
=x"J,,(X)

—[x J (x)] x"J. 1 (X)
2.Provethat : —[x "J (x)]_ —Xx"J,..(X)

=X

Proof :W.KT. J (X)ziklr((n+)k+1)(xj

_ = (—1)x*
x"J. (X
(0= Z2”*2"k'1“(n+k+1)

dix[x'“\]n(x)]: i

k

(-1) (2k)x?

e QMK R(K-DIT(N+ K +1)
B (_ 1)k—1xn+2kfl

= —Xin
Zi_ J 2”+2"‘1(k —DIN(n+k+1)
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wherer=k-1

d ; ~ i o ( 1)Txn+2r—l
d_x[x J”(X)] - kZ:; 2" T (N+1 +2)

r n+2r+l
=-x" i (_ 1) X [ij
2" TN +1+r+1) (2

=-x"J n+l (X)

d
— X" (X)) [=—x"J ., (X).
dX[ n( )] n+1( )
In particular, whenx =0 wehave

2 3,00]= 3,00 or 3, =3,

3.Prove that:2nJ  (x) =x[J,,(X)+J,.,(X)]

(_1)k (XJMZK
30 (0= kz:jkll“(n+k+l)
(-

I, 0=3 1)2n + 2k — 2k (x\"*"
7 kIT(n+k+1) 2

o ( 1) 2(n+k)[ jn+2K © ( ) 2k (éjMZK
Z;k'l“(n+k+1) kZ=(;‘kll“(n+k+1)
i ( ) 2(n+k) (KJMZK B ( ) 2Kk (_jm-ZK
S k1 (n+ K)T(n+Kk) 2 “k(k-)!T(n+k+1) 2

(_1)kx[xjw_l (_1)“{3%

, ) ,
=2 KIT(n + k) +kZ::;(k—1)!F(n+k+l)

k=0
(X n-1+2K (X n+1+2r
R I
Z +> wherer =k -1

= ki'(n-1+k+1) & I1"(n+1+r+1)

[Ms

x~
I

= X3, () + 3,4 (X)]
~2nd (x) =X[J, 5 () +J,.,(x)]

4. Provethat:J (x) = 1 [3, () +J3,.,(x)](similar to previous proof)
Examplel: Prove that xJ!' (X) =x3 ., (X)—nJ, (X).

Proof. From the recurrence relation (1) i[x” J (x)]:x” J  (X)————— )
dx - " "
[x"37.00) + X3, ()| = "3, 4 (%)

Dividing by X" we get xJ'(x) =xJ, ,(x)—nJ, (X)————— (3) Whichisthe required
equation
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Example2: Prove that xJ'(X) =nJ (x)—xJ ., (x) ——(1)

Proof: From recurrence relation (2) we get _[x*n\] x)]= —x"3,,0) - ————— )
[x‘“J;] (X)—nx"1J, (x)J= —x"J .., (X)

Multiplying by x"** we get

XJ(X) =N (X) =xJ . (X) == ———— (4)  Which is the required equation.
Example3: Prove that 4 J'(x)=J, ,(x) =23, (X)+J,,(X)
Proof. W.K.T fromrecurrence relation (4) 23 (x)=J.,(X)=J,..(X)————(1)
Differentiate (1), we get 2'(x)=J!_,(x) =", (X)————(2)
Changingnto(n-1)and (n+1) inequation (1) weget 2J ,(X)=J,,(X)—J, (X)

23,0 (X) = 3,(x) = J,,,(X)

Subtracting ,we get 2[ LX) - \]M(X)] J,() =23, (X)+J, ,(X)

Using equation (2) , the above equation can be written as
437 =3, ,(x) =23,(X) + 3., (x)

x| %2 X

Solution: From recurrence relation (3)  2nJ (x) =x[J,,(x)+J,.,(x)]

Example 4: show that J,, (x) = 2|38=X s|nx—§cosxj

It can be written as 2n
‘]n+1(x) = ?‘]n (X) - ‘Jn—l(x)

Put n = 3/2in the above equation weget

Js52(X) = ;‘]3/2()() —J4,(X)

" Jgp (X )——[1 12 (X) — J-l/z(x)} J1/5(X)

[ jal,z(x)—EJl,xx)
( J\/i nx ——\FCOSX
X

KB-XZJ . 3 }
:1/— — |sinx — =cos x
x| x X
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Example5: Show that J,(x)= [§_§JJ (x)+ (1-%} Jo(X)

Solution: From recurrence relation (3) 2nJ_ (x) =x[J, ,(x) +J,,,(x)]

It can be written as Jnﬂ(x)_z—nJ X)=-J,,(x)-—--(@)

Put n=1in the above equation weget
3(%) = 23,00 - 3,() ~— -~ - @
Putn=2inegn(l) weget
3,00 =23,00 3,00 -~~~ ©
putn=3:J,(X) ZSJS(X)—JZ(X)

= SFJZ(X) —Jl(x)}—\]z(x) using (3)

—( 24 jJ (9-23,(

[A}Jz(x) ~ 83,0
1 X

(24 j[EJl(x) —Jo(x)] 55,0
X X

[ 3 _E_Ej‘] (X) + [ 24}] (x)
X X X
—[——— J,(x) + [ i—fon(x)

Example6: Prove that —[xJ (x)J,..(0)]= x[J (x) - JM(X)]

Pr oof.:
LHs =9 [xa (03, 00]=2 X3, )x™13, . ()]
dX n n+1 dX n n+l
=x™"J_(X) dix 13, 00 ]+ x4, (%) dix k"3, 00]--@)
d n n
Now d—X[x Jn(x)]: x"J, ,(x)
changing n to (n +1), wehave di [x”*lJ n+1(x)]: X" (X)
X
d -n -n
Also w.k.t.d— [x J, (x)]= —X"J ., (X)
X
From equation (1) wehave %[xJn(x)Jm(x)] =
=x"J, (x)[x”*lJ . (x)]+ X", (x)[— x"J n+l(x)]

= x[92(x) - 92, ()]
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Example7:  Pr ove that i [Jﬁ (x)+J §+1(X)] = 2{; Ja(x) - nT+1 J ﬁ+1(x)}

Proof : LHS ——[J (x) + 3%, (%)= 23,03, () + 23, ()7, (X) ——(1)
From example 1 we have (using example 2) J'(x) = _EJH(X)JFJH(X) _____ 2)
X
Replace n by (n+1) in equation (2) we get J;.,(X) = . 1 J, . )+J,(X)————— (4)

Substituting the values of J; (x) J’ , (x)rom equation (2) and (4) in equation (1)
2004220023, 13,003,400 |+ 2,460 - 223,00 +3,00]

_ 2{ 2. (%) —“—”sz(x)}

Generating Function for J,(X):

We shall now show that Bessel functions of various orders can be derived as co-efficient of
various powers of tin the expansion of the function g(t—%j
e

X

x( 1 w
i.e. to prove that ez(t tj = > t"J, ().

[xtj l[xtJ2 1(xt}3 x"t" o xMt X"t
=1+t =t o ettt oo e X
2) 21 2 3 2 2'nl 2" (n+1)! 2" (n+2)!
2 3 n n+l n+l _1\N+2,n+2
X 1—(1j+l(ij —i(i} +...+(-D" X, (11)1 + (21) 5 X
2t ) 21\ 2t A2t 2"t"nt 2" (n+1)! 2"t (n+2)!
The coefficient of t" in the product

7(_7) Xt -x n n+2 n+4
p2 U _gzpa _ixy 1 (x +# X —..=J,(x)
n'\ 2 (n+11 2 21(n+2)1 2

Similarly the coefficient of t™ in the product
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z)” L [z) G (zj
2 (n+D1{ 2 21n+2)1\2)
_(_1)n i(ijn_;(ijm&_'_;(i)m%
B nt\ 2 (n+1)1 2 20n+2)1 2) 7

DY (-1)" Gj“k

S KIT'(n+k+1)
=(-1)"3,(x) =J3_,(x)

Thus we have proved that J,(X) and J.,(X) are respectively the coefficients of t" and t" in the
expansion of the function eg(t—%)

Z[tﬁj =Jo(X) + 13, (X) + t2T,(X) + ...+ "I, (X) + ...
........... +t I (X)) +t 2, (X) + ...+t "I (X) =

= 3t"3,(%)

e

This shows that Bessel functions of various orders can be derived as coefficient of different

powers of tin the expansion of  x. %

For this reason, it is known as the generating function of Bessel function.

Integral form of Bessel Function:

Prove that  J (x) = - [[cos(n®—xsin®)]de, for all integral values of n
n 0

X

1 o0
w.k.t. eg(t?] = > t"J,(x)

=J,(X) +tI,(X) + 2, (X) + ...+ t"T (X) + ...
....... FtI L (X) + 2T, () + .+t (X) +

Putt=cos 0 +isin 6 , By De Movier’s theorem
.. 1 ..
t" =cosn@+isinnd andt—nzcosne—lsm nod

t" +tin:2cosn6 and t" —tin:Zisin no
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Substituting these values in (1), we have

e = J(X) +2isin 8J,(X) + 2c0s 20, (X) + 3isin30 J,(X)...+ ......Q)

sincee™ ™" = cos(xsin®) + isin(xsin@)

Equating the real and imaginary parts in (2), we get

cos(xsin®) =J,(x)+2[J,(x)cos20+J,(x)cos40+.....]-——(3)
sin(xsin®) = 2[J,(x)sin 6+ J,(x)sin30+.....]- ——(4)

These are known as Jacobi series.

Multiplying both sides of (3) by conn® and integrating w.r.t 6 between. The limits O to =«
(when n is odd, all terms on the RHS vanish; when n is even, all terms on the RHS except the
one containing cos n 6 vanish).

e get T 0 , Wwhennisodd
We g Icos(xsine)cos ne do = ) ————(5)
5 7J, (X) , whenniseven
Similarly, mukiplying (4), by sinn 6 and integrating w.r.t. 6
between the Limits 0 to © we get
K J.(x), whennisodd
Isin(xsine)sinnedez ™, () I ————(6)
0 0 , whenniseven
Adding (5) and (6) we get
j[cos(xsine) cos @ + sin(xsin®)sinnd]de = nJ, (x)
0
2 d.(X) = lj[cos(n()—xsinf))]de, for all integral values of n
T 0
Orthogonality of Bessel functions :
1 0 , Wwhen a =
we shall prove that | xJ, (ax)J,(Bx)dx=<1
.('). E[‘]ml(a’)]z 1 \Nhen(X,ZB

wherea, B are the rootsof J, (x) = 0.

We know that the solution of the equation

X2u"+xu' + (a’x* —n)Ju=0-————— @

XV +xv' + (BX* —n*)v=0-————— (2)

areu=J, (ax) and v =J (Bx) respectively, Multiplyi ng equation (1) by Y and (2 byE
X X

2

. n-uv
we obtain XvU” + vu' + a’uvx — =0and

2

n
XUV" + UV’ + B?uvx — =0
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On subtracting we obtain x(u"v — uv")+ (u'v — uv) (a _B? )uvx 0

i.e.%{ (u'v—-uv) ﬁi )uvx
Now integrating both sides w.r.t x between o and 1

1
[x(u'v —uv)f, = (B2 — az) uvxadx
0

ie(uv-uv), —0=(- uz)j uvxdx ——— (3)
sinceu=1J,(ax)
o= o Bl 501 oty o
Similarly ~ v=1J,(Bx)
9 )= 8 ax]ABX) s
V'= e DB = G D BRI =B B
Substituting these values in (3), we get

ol (@), (B) - B3, ()3} (B) = (B* — ) xJ, (x)J, (Bx)clx

.0, (0001, (B - S (@ B)-BLLE) __
B°—a

If a and B are distinct rootsof J, (x) =0thenJ (a)=J,(B) =0

and (4) reduces to Jl‘ xJ, (ax)J, (Bx)dx =0———(5)

This is known as the orthogonality relation of Bessel functions when
B =a,the right side of equation (4)is of (0/0) form. Its value can

B be found by considering o as aroot of J,(X) =0 and 3 as a variable
Approaching o, then equation (4) gives

lim j xJ_ (o). (BX)dx = li M
B? —a’

By L’Hospitals rule the numerator and denominator are differentiated Separately w.r.t. f.
Thus we have

jx[J (o) o = Ilrgw[):(ﬁ) B @F ---©

From the recurrence relation
, n
‘Jn(x) = ;‘]n(x) - Jn+1(x)

3 (o) = an(a) - Ja (00)

= J () =J,,,(a),since J, (aa) =0
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Equation (6) becomes
ix[Ji (o) Jax = %[Jm(a)]z

Solution of Legendre differential Equation:
. d’y dy
Consider (1-x°)—2 - 2x—=—+n(n+1)y=0———(1

2

The coefficient of g Y e (1-x*)=20 atx=0
X

2

Assume series solution in theformy =>"a x", — - —(2)
r=0

o0

dy r-1 dzy = r-2
S = arx -, —= a . r(r-1)x
dX rZ:l: r dXz rZZZ: r ( )

Equation (1) becomes

(- xz)iarr(r-l)x"2 —~ 2xiarr x™ +n(n +1)ia,x' =0
r=2 r=1 r=0

= ia,r(r -1)X" =D a,r(r-1)x’ —iZa,r x"+n(n+1)> ax =0
r=2

r=2 r=1 r=0

The first two terms of the above vanishes when r =0, 1 and third term vanishes when r=0,

we can write the above equation in the form

iarr(r -1)x"? - iarr(r 1) — Zia,r x"+n(n +1)§:arxr =0

r=2 r=2 r=1 r=0
Equate the coefficient of X' to zero i.e in the first term replace r by  r+ 2 we get

o (r+2)(r+1)—a(r)(1)-2a (r)+n(nmtl)a =0
lean+2)r+l)=afr(r-1)+2r-n(n+1)

_[rz—r+2r—n(n+1]

a,,,= a
2 (r+2)r+1) '
[n(n+1)-r? —r]
Ay =— a, ————(3
SR () o R A
putr=0,1,2,3...nin equation (3)
-n(n+1
LGSR
-(n*+n-2 -(n=-D(n+2
3=¥a1: ( g( )a,
. _-(n2+n—6)a _—(n—2)(n+3)x—n(n+l)a
12 2 12 2 °
~n(n+1)(n-2)(n+3) a
- 24 °
- 2 — — [— — R
a, = (n +28 12)a3: (n Z%(n+4)x (n 1()3(n+2)a1

nN-1D(n+2)(n-3)(n+4
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Obviously ag, a1 #0 , otherwise we get a trivial solution y = 0. Substitute above values in the
assumed solution (2).

iey-aptax+a X +tasxtax +asx +.......

iey=(ap + ax? + ax? +..)+@x + a3 + asx°....)

Because a, , a4, --- are in terms of agand as, as ... are in terms of a;, we obtain
y:ao[l— nn+1) . nn+H(n-2)(n+3) ., }L

2! 41
+a{x- (n-1)3(In+2) x® + (n—l)(n+233(ln—3)(n+4) x® —...}——(4)

Let y1(X) , y2(X) respectively represent the two infinite series in (4)
Le y=agyi(X) +a1 y2(x) is the series solution of the Legendre’s differential equation.
Legendre Polynomials:

If nis a positive even integer, ao y1(X) reduces to a polynomial of degree n.
If nis a positive odd integer a; y2(X) reduces to a polynomial of degree n
Otherwise these will give infinite series called Legendre functions of second kind

Takea, = ('1)n/2-M and a, = (-1)"2 _135.n
24.6..n 246..n-1)
equation (4) becomes

Pa(¥)=(-1

when n is even
0. (X) = (_1)n% 1.35...n [x (n-D(n+2) 5, (N-D(n+2)(N-3)(n+4) s }
2.46..(n-1) 3! 51

o 1.35....(n-1) {1_ nn+l) . n+H(N-2)(n+3) o }
2.4.6..n 2! 4

when n is odd.
Particular cases:putn=0,1,2,3,4,5.....

0,00 =1, p;(X)=X, pz(x)=§(3x2—1), Ps(x)=%(5x3—3x),
P, (X) = %(35x4 —30x2 +3),

P (X) = %(63X5 —70x° + 15x)

Example: Expressf(x)=x*+3x> =’ + 5x-2 in terms of Legendre polynomials

Solution Ww.k.t p4(x)=%(35x4—30x2+3)=§{x4—25x2+£3}—%{x4—6 2 3}

7 35

8 35 4 358

8 6 3
X = —p, (X)X
35p“() 7 35
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P,(X)== (5x —3x) 2[x3—gx}

2 3 .. 2 1
SXE=ZP,(X)+=x, similarly x*==P,(X) +=.
5 5 (X) 5 y 3 ,(X) 3

: S 3 _
~f(x) = { P, (X)+ x 35}+3X X% +5x -2

8 s 1 73
:EpA(x)+3x 7x +5x—£
8 2 3 1|2 1 73
:—p4(x)+3{—p3(x)+—x}—7{§P2(x)+§}+5x—£
6 224
=—p4(X)+5p3(X)——P( )+ E
=—|O4(X)+6p3(><) PR P() Po(X), X =P(x), 1=F,(x)

Generating Function for Pn(X):

In the expansion (1—2 x z + Z2)*/2

Pn(X).

Hence (1-2xz+2)

in powers of z, it can be shown the coefficient of Z" is

2 is called generating function for pn(x).

e (1-2xz+2°)" = P, (x).2"
n=0
Proof :w.kt(L-t)" =1+t nn+1) o NN+DN+2) s

2! 3!

put n=1/2 in the above formula
3 3/)(5
a0 =14 Loy %%> A
2 3

1.1 1 t+£t 135 4 1357 4 +w+1357....(2n-1) 4
2 24 246 2468 2468......2n

ie (1-2xz+2°)™ =[1-z(2x - z)| *

w.K.t.
(1-t)7l/2 =1+lt 13 18 135 4 1357 oy +1357....(2n-1) .
24 246 2468 7 2468.....2n
:l+£z(2x—z)+£zz(2x—z) +—135 2*(2x—z)’ + 1357 z'(2x-z2)' +
2 24 246 2468
L 18579 2°(2x—z2) + 4. L 18579..(2n-5) 2" (2x—z)"" +
246810 246810...(2n-4)
L 13579.20-3) jnap, s (13579201 0y
246810...(2n-2) 246810...(2n)
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Expansion of the n'™ term using the following formula

(-1 "c, x"" a" weget

s

w.kt(x-a) =

o

r=|

.~.13579“(2”'1)z”(2x—z)”:13579“(2”'1)z” i('l)r e (20 2
246810...(2n) 246810...(2n) | & r

13579..(2n'1) nin n n n-1 n n-2.,2
= z"V'c, (2xX)" ="c, (2xX)"z+"c, (2X Z°+....
24%m4m){0() L (2%) , (2%) }

Collect the coefficient of z" from the above equation, we get

13579..(2n-1),

‘. (2x)7 = 13579.2n-1) fonwe |
246810...(2n) 246810...(2n)
_13579.(2n-1),, ,_13579.(2n-1) ,
2" n! n!

Expansion of the (n-1)!" term using the following formula

(x-a) =3 (1) "c, x™" a" is

r=0

. 13579(2ﬂ-3) anl(zx_z)n_lz 13579(2”'3) Zn71 i (_l)r n71C (2X)n717r Zr —
1 246810...(2n-2) 246810...(2n-2) '

~13579..(2n-3)
246810...(2n-2)
Collect the coefficient of z" from the above equation, we get

13579..(2n-3 o n 13579..(2n-3 N2 n-
( ) {_ e, (2x) 2}:_ ( ) {(n-l)Z 2y 2}:
246810...(2n-2) 246810...(2n-2)
13579..(2n-3) s
=— n-1)2"°x
2n—1 (n_1) {( ) }
multiplyin g both N" and D" by n (2n-1) weget

- 13579..(2n-3)n(2n-1) 1oz yn2
2" n(n-1) (2n-1) GRS

=_13579..(2n-3)n(2n-1) {(n-l) ol o Xn.z}

r=0

Zn—l{n—lCO (Zx)n—l _n—lcl (2)()n—22_i_n—lc2 (2X)n7322+----}

2" n! (2n-1)
:_13579..(2n-3)n(2n-1) {(n-l) o1 Xn.z}
n! (2n-1)
_ 13579.(2n-3) (2n-1) n(n-1) {x”'z}
n! 2(2n-1)

13579..(2n-5)
246810...(2n- 4)

Similarly the coefficient of 2" in 2" (2x —z)"*

Is
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13579..(2n-1) n(n—1)(n-2)(n—13) 4
n! 24(2n-1)(2n-3)
. The coefficient of z" in (1—2xz +z*)™ is given by
13579..(2n-1) _ n(n-1) N n(n-21)(n-2)(n _3)x"'4+... ~P (x)
n! 2(2n-1) 24(2n-1)(2n-3)
Thusin the expansion of (1-2xz +2z°)" , p,(X), p,(X), p5(X)...P,(x)are the

coefficients of z*,z%, z%... 2" respectively.

(=22 + ) =14 p,(X)z+ p,(X)Z° +p,(X)Z +.. 4+ P (X) 2" +.....

=iPn(x)z”.

Example 1: Show that P,(1) = 1.

w.kt > z"p, (X) = (1-2xz +2°)* —— - —(1)
n=0
put x =1 inequation (1) weget
D> 2p, (D) =(1-22+2%)"" = {(1-2)2}_1/2 =-z2) =14+z+22+2° 4. 42" 4. >z
n=0 n=0

equating the coefficients of z" we get P(1)=1.
Example 2 : Show that Py(-X) = (-1)" Pp(X) .
w.k.t.> z"p, (X) = (1-2xz +2%)™ ————(1) replace x by (-x)in equation (1) weget

n=0

iz”pn(-x): (1+2xz +2%)™ ——(2) again replace z by -z in (1)

n=0

i(— 2)'p, ()= (L+2xz +2%)* or i(—l)"znpn(x) = (1+2xz +2%)™ - —(3)

n=0

Fron(2) and (3)

>z, (-x)=>(-1)"2"p, (x) Equating the coefficient of z" wehave
n=0 n=0

P, (-x)=(-1)p, (x)
Rodrigue’s formula : Showthat P, (X)= 1 i(X2 —l)n
2"n! dx
Let u=(x* -1), First find the n™ derivative of u i.e. u, is a solution of the Legendre’s

differential equation (1_ xz)y” —2xy'+n(n+1)y = 0——— (1)
Differentiating u w.r.t. X
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u, (x> =1)=n(x* 1) 2x
= 2nxu, differentiating w.r.t.x again
(x* =2, + 2xu, = 2n(xu, +u)
Differentiating n times above equation using Leibnitz' s rule

n(n-1)
(), =uv, +nuyv,, + ——=

- O)I(nn x> = 1)u, |+ Zi(—Z(XUl)z Zn;—n(xul)+ 2nu,,

n(n-1)
2

i.e[(xz—l)umz+n2xun+l+ 2un}+2[xun+l+nlun]:

=2n[xu,,, +nlu,]+2nu,
i.e (x2 —1)un+2 +2nXU,,, +(n2 —n)un +2XU,,, +2nu, =
=2nxu,,+2n’u, +2nu,
i.e.(x2 —1)un+2 +2xu,,-n’u,—nu, =0
i.e. (x2 —1)un+2 +2XU,,, —hu,(N+1)=0
or (1—x2)un+2 —2Xu,,, +n(n+1)u, =0, This canalso be writtenas
(1—x2)u;; —2xu, +n(n+Lu, =0—-—(2)

Pn(x) satisfies Legebdre’s differential equation is also a polmomial of degree n and hence un
must be same as P,(x) but for some constant factor k.

n

d :

Le.P,(X)=ku, =k
"

=

(=1 {x+2" ] +nn(x-1Hxe1r ), +

O gy ) e )

ie. P,(x) = k- |(x~1)" (x+1)" | Apply Leib nitz's rule for RHS

M)

if z=(xx—-1)",z, =n(x—1)" 'z, =n(n—-1Dx—-1)"2.....
oz, =n(n—-1D("n—2)...21(x—21)" "
=n!'(x—1)° =n!
Ak —1) ) =
put x =1in (3) and all the termsin RHS becomes zero
except thereducing ton!(1+1)" =n!12"
ie P, ()=kn!2" butp,(1)=1
1

1 =knt!2" -~ k= ———
nt2"

since P, (X) =k u,

F>n(x)=—:L {(x2 —1) }n __r _a (x* —a)

nt2" n!2" dx"
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