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Learning outcomes: 

Upon successful completion of Numerical solution of second order ordinary differential 

equations, by Runge Kutta method and Milne’s method, it is expected that a student will be 

able to do the following. 

  Familiar with Fourth order Runge-Kutta method and Milne’s method. 

 Find the numerical solutions of second order ordinary differential equations, using 

Runge_kutta method and Milne’s method. 
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Introduction: 

Is it necessary to study Numerical Analysis:  or 
Why it is necessary to study Numerical analysis: 
 

 In the real world, no system behaves in a linear manner. There is no ideal 

material, ideal support condition and a perfect structure. Due to imperfections (defect) 

the behavior can always be described by a set of non-linear equations only. These 

equations cannot be solved analytically except in some trivial cases, and one has to 

resort to numerical analysis to find solutions. Nava day’s it has become an important 

tool to solve a wide spectrum of nonlinear problems that arise in many practical 

situations. 

What is Numerical Analysis?. 

Numerical analysis is the development and study of procedures for solving 

problems with a computer. 

Advantages:  

1. A major advantage for numerical analysis is that a numerical answer can be obtained 

even when a problem has “no analytical” solution. 

2. Numerical results can be plotted to show some of the behavior of the solution. 

3. Another important distinction is that result from numerical analysis is an 

approximation, but results can be made as accurate as desired. (There are limitations 

to the achievable level of accuracy, because of the way that computers do arithmetic). 

Second order differential equation: 

Consider the second order differential equation                              by writing  dy/dx = z, it can 

be reduced to two first order simultaneous differential equations. 

 

These two equations can be solved using fourth order Runge-Kutta method. 

Example1: Using Runge - Kutta method, solve                                    for x = 0.2 correct to 4 

decimal places. Initial conditions are x = 0, y = 1, y’ = 0. 

Solution: Let  

We have x0 = 0 ,  y0 = 1,   z0 = 0 ,   h = 0.2. Using k1,  k2, k3, k4  for  f(x, y, z)  and  l1 ,  l2,  l3  for (x, 

y , z) Runge - Kutta formulae become 

 

 











dx

dy
,y,xf

dx

yd
2

2

               )z,y,x(f
dx

dz
,z

dx

dy


22

2

2

yyx
dx

yd


)z,y,x(yxz
dx

dz
),z,y,x(fz

dx

dy
 22 Then 

    20120            00.2(0) 00010001 .)(.z,y,xhlz,y,xhfk  

19980999020
2

1

2

1

2

1

 ,  -0.020.2(-0.1)
2

1

2

1

2

1

101002

101002

.).(.lz,ky,hxhl

lz,ky,hxhfk

























e_notes: EDUSAT Programme-22,Engineering Mathematics-IV Module-II, by: Dr S S Benchalli,BEC,BGK Page 3 
 

 

 

 

 

 

 

 

Example 2: Given                               y(0) = 1 y’(0) = 0, obtain y for x = 0, 0.1, 0.3 by any 

method. Further, continue the solution by Milnes method to calculate y(0.4). 

Solution: put y’ = z , the given equation reduces to the simultaneous equations 

 

We use Taylor’s series method to find y, differentiating the given equation n times, we get 

 

  

 

Expanding y(x) by Taylor’s series, we have 

 

 

 

 

 

 

Applying Milne’s predictor formula, first to z and then to y, we obtain 
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Now Applying Milne’s corrector formula, we get

 

Additional Resources: Please visit 

http://numericalmethods.eng.usf.edu/topics/runge_kutta_4th_method.html 

http://numericalmethods.eng.usf.edu 

Special Functions: 

 Introduction: 

We are familiar with the solution of linear differential equations with Constant 

coefficients. The solution involves elementary functions such as  eax, sin(ax), cos(ax) etc. 

However, linear differential equations with variable coefficients, which arise from physical 

problems, do not permit such solutions. Such equations can be solved by numerical methods, 

But in many cases it is easier to find a solution in the form of an infinite converge series. The 

series solution of certain differential equations give rise to special functions such as Bessel’s 

function, Legendre’s polynomial, Hermite’s polynomial, Chebyshev polynomial. These 

special functions have many applications in Engineering. 

Series solution of differential equation: 

To solve the equation of the form 

Where p0(x), p1(x), p2(x) are polynomials in x, in terms of infinite convergent series. 

Validity of series solution: 

Every differential equation of the form                                                        

Does not have series solution. As such we find the conditions under which the above equation 

admits of the series solution.Dividing equation (1) by p0(x), we have  
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Ordinary point: 

x = 0 is called an ordinary point of (1) if p0(x) ≠ 0, otherwise it is called a singular point.  

When x = 0 is an ordinary point of (1) its every solution can be expressed as a series of the 

form 

 

Singular point: When x = 0 is called a singular point of (1) if p0(0) = 0. If x p(x) and x2 q(x) possess 

derivatives of all orders in the neighborhood of x = 0 , then x = 0 is called a regular singular point of 

(1) 

When  x = 0 is a regular singular point of (1) at least one of its solution can be expressed as 

 

 

Where  m may be a positive or negative integer or a fraction. 

When x = 0 is an irregular singular point of (1) , then the differential equation of (1) has no 

series solution of the form 

 

 

Series solution When x = 0 is an ordinary point of the equation: 

 

 

Let 

               be the solution of (1) then find   dy/dx  ,  d2y / dx2   Substitute the values of 

 

 

equate to zero the coefficients of various powers of x and find a2, a3,a4 …… in terms of a0 

and a1.Equate to zero the coefficient of xn. The relation so obtained is called the recurrence 

relation. Give different values to n in the recurrence relation to determine various ai’s in 

terms of a0 and a1. 

Substitute the values of a2, a3, a4, …. In equation (2) to get the series solution of (1) 

having a0 and a1 as arbitrary constants. 
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Examples : To solve the equation  

 

Solution: since x = 0 is an ordinary point of (1) 

Let its series solution be 

Then find first and second derivative of (2) we get 

 

 

 

 

Substituting these values in the given equation we get 

 

 

Equating to zero the coefficients of the various  powers of x we get 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

(1)  --------  0xy
dx

yd
2

2



 2
0

2

210  


k

k

kxaxaxaay

12

321 32  n

nxna.........xaxaa
dx

dy

........xa)n(n.........xa.xaa.
dx

yd n

n  22

4322

2

1342 312

0124 53 42 312

01342 312

12

3

14

2

14032

2

210

22

432









n

nn

n

n

n

n

x]aa)n)(n[(...x)aa(x)aa(x)aa(a.

)xa......xaxaa(x........xa)n(n.........xa.xaa.

02 a

!

a
aaa

3
 i.e 02 3 0

303 

relation recurrence  theis 

1)2)(n(n

a
a i.e 0,a1)a2)(n(n general, In

on.. so  and 
4 5

 i.e04 5

4

2
 i.e  03 4

1-n
2n1-n2n

2
525

1
414

which

a
a,aa

a
a,aa










-)--
7

x 5 2

4

2x
-(xa...)

9!

x 7 4 1
-

6!

4x 1

3!

x
-(1ay

get  we(2) in  values thesengsubstituti

on.... so and  
7

 2 5

 6 7

a
-a     

6

4

5 6

a
-a

get  werelation recurrence  thein 4,5,6.....nput 

74

1

963

0

14
7

03
6







!!

;
!

a
;

!

a



e_notes: EDUSAT Programme-22,Engineering Mathematics-IV Module-II, by: Dr S S Benchalli,BEC,BGK Page 7 
 

Example2: To solve the equation  

Solution: since x = 0 is an ordinary point of (1) 

Let its series solution be 

Then find the first and second derivatives of (2) we get 

 

 

 

 

Substituting the values of y and d2y/dx2 in the given differential equation (1) we get 

 

 

 

 

 

Equating to zero the coefficients of the various powers of x we get 
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Examples3:  To solve the equation  

Solution: since x = 0 is an ordinary point of (1) 

Let its series solution be  

then 

 

 

Substituting the values of y, dy/dx and d2y/dx2 in the given differential equation (1)  

and equating the various powers of x obtain  a2 = (a0 /2) , a3 = 0 

Equating to zero the coefficients of xn , we get                      

Put n = 2,3,4,5…successively   we get 

 

 

 

 

 

Probenius method: 

Series solution when x = 0 is a regular singularity of the equation 

 

 

Let 

be the solution of (1) then  
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Equate to zero the coefficient of lowest power of x. This gives a quadratic equation in 

m which is known as the indicial equation. Equate to zero the  coefficients of other powers of 

x to find a1,a2,a3……in terms of a0.Substitute the values of a1, a2, a3…..in (2) to get the series 

solution of (1), since the complete solution must have two independent arbitrary constants. 

The method of complete solution depends on the nature of roots of the indicial equation. 

Case 1: 

When the roots m1 and m2 of the indicial equation are distinct and not differing by an integer. 

The complete solution is 

                                        y = c1 (y)m1 + c2 (y)m2 

Case 2: When the roots m1 and m2 of the indicial equation are equal the complete solution is 

y = c1 (y)m1 + c2 (y/ m)m1 

Case 3: When the roots m1 and m2 (m1 < m2) of the indicial equation are distinct and differ 

by an integer. Let some of the coefficients of y series become infinite when m = m1 ( smaller 

of the two roots ). Replace a0 by b0 ( m - m1 ) in the series for y.     

The complete solution is     y = c1 (y)m1 + c2 (y/ m)m1 

The solution corresponding to m = m2 ( greater of the two roots ) is a constant multiple of the 

solution corresponding to m = m1 . 

Example : solve in series the equation 

 

Solution : since x = 0 is a regular singular point of the given equation. Let its series solution 

be  

 

Then 
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The lowest power of x is xm. Equating to zero the coefficient of xm, we get  2m (m-1)a0 - ma0 

+ a0 = 0.  Or (2m2 -3m + 1) a0 = 0 or (2m -1) (m -1) = 0 since a0 ≠ 0 . Which is the indicial 

equation. Its roots are m = ½ , 1.Equating to zero the coefficient of xm+1, we get 

   2m(m+1)a1 + 2ma0- (m+1)a1 + a1= 0                        or  

(2m2 +m) a1 + 2ma0 = 0 or m [(2m+1)a1 +2a0] = 0      or 

(2m+1) a1 + 2a0  = 0  since m ≠ 0                              or 

a1 = - (2 / (2m+1) ) a0 

Equating to zero the coefficient of x m+2 

2 (m+2) (m+1) a2 + 2 (m+1) a1 – (m+2) a2 + a2 = 0.     or 

       (2m2 + 5m + 3)a2 + 2 (m + 1)a1 = 0                       or 

      (2m + 3) (m + 1) a2 + 2 (m + 1) a1 = 0       

         (2m+3) (m+1) a2 + 2 (m+1) a1 = 0 

             [(2m+3)  a2 + 2 a1 ]   (m+1) = 0                                   or 

                               (2m+3) a2 + 2 a1 = 0        since (m+1) ≠ 0  or 

 a2 = - (2 / ( 2m +3) ) a1 = - (4/ (2m+1) (2m+3)) a0 

Equating to zero the coefficient of xm+3 , we get  

2 (m+3) (m+2) a3 + 2 (m+2) a2 – (m+3) a3 + a3 = 0   or 

(2m2 + 9m + 10 ) a3 + 2 ( m+2) a2 = 0                      or 

(2m + 5 ) ( m+2) a3 + 2 ( m+2) a2 = 0                       or  

             (2m + 5) a3 + 2 a2 = 0                                 since (m+2) ≠ 0 

a3 = - (8 / (2m+1) (2m+3) (2m+5) ) a0                        and so on…. 

When m = ½ :  a1 = - a0 , a2 = - (a0/2), a3 =- (a0/6) etcThe first solution is
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Therefore the second independent solution is 

 

Hence the complete solution is y = c1 y1 + c2 y2  

Example1: Home work 

Solve in series the equation 

Hint: Since x = 0 is a regular singular point of the given equation. And roots are m = -2 and 2. 

Example 2 : solve in series the equation  

 

Hint: Roots are m = 0, 0 

Example 3: Obtain the series solution of the equation 

Hint: Roots are m = 0,2 

Bessel’s equation: 

The second order differential equation given as 

 

is known as Bessel’s equation. Where the solution to Bessel’s equation yields Bessel’s 

functions of the first kind and second kind as follows  y = A Jn(x) + B Yn(x) Where A and B 

are arbitrary constants. 

Bessel function : 

1. First kind: Jn(x) is the solution to Bessel’s equation is referred to as a Bessel’s 

function of the first kind. 

2. Second kind: Yn(x) in the solution to Bessel’s equation is referred to as a Bessel’s 

function of the second kind or sometimes the Weber function or the Neumann 

function. 

Equation (1) is often encountered when solving boundary value problem, such as separable  

solutions to Laplace’s equation or the Helmholtz equation, especially when working in 

cylindrical or spherical coordinates. The constant n determines the order of the Bessel's 

function found in the solution to Bessel's differential equation and can take on any real 

number value. For cylindrical problems the order of the Bessel function is an integer value n 
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while for spherical problems the order is of half integer value n+1/2. Since Bessel's 

differential equation is a second order equation there must be 2 linearly independent 

solutions. 

Example: 

Solve  

Since x = 0 is a regular singular point of the given equation, Let its series solution be 

 

Differentiate above equation w.r.t. x two times then substitute these values in the equation 

(1). 
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we get indicial equation 
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Equating to zero the coefficient of next term i.e. xm+1 we get 

[(m+1)2 – n2]a1 = 0  implies    a1 = 0, since [(m+1)2 – n2]a1 ≠ 0 for    m =  n . 

Equating to zero the coefficient of x m+k+2 we get the recurrence relation 
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Depending upon the values of n , we get different types of solutions 

Case I : When n ≠0 or n ≠ an integer . In this case , we get two independent solutions for m = 

n   and  m = - n. 

For m = n we get 

 

 

For m = -n we get 
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Which is called the Bessel’s function of the first kind of order –n. Hence complete solution of 

the Bessel’s equation ( 1 ) may be expressed in the form  y = A Jn (x) + B J-n (x). Where A 

and B are arbitrary constants. 

Case 2: When n = 0, the Bessel’s equation takes the form 

 

 

If m = 0 the first solution is  given by 

 

 

 

Which is Bessel function of the kind of order zero. 

We know that 

 

 

Now differentiate above equation with respect to m , we get 
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Case 3 : When n is an integer , the two functions Jn (x) J-n(x) are not independent but are 
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Since ( a negative integer or zero) tends to  , each term in the summation is zero as long as 

–n+k+1 ≤ 0 i.e k ≤  n-1. and (-n+k+1) is finite when k  n. 

Put k = n+r , we observe that when k = n , r = 0, k tends to   ,   r tends  . 
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equation (1 ) when n is an integer. Let y = u(x) Jn (x) be a solution of equation (1) , n is 

integer. Then differentiate y two times we get 

 

 

 

Substituting the values of y , dy/dx , d2y/dx2 in equation (1) we get 

 

 

 

 

 

 

 

 

 

 

 

 

 














































0

2

0

2

21

1
1                

21

1
     

r

rnr

n

r

rnrn

n

x

)r()!rn(
)(

x

)r()!rn(
)x(J

 

).x(J)(

x

)rn()!r(
)()x(J

cesin

n

n

r

rnr

n

n

1           

21

1
1

1)r(nr)!(n and r!1)(rinteger  are n andr  

0

2




























''

n

'

n

''

n

'

n

'

n2

2

'

n

J J 2       

J J J 

J 

u'u)x(J''u

u'u'u)x(J''u
dx

yd

u)x(J'u
dx

dy

n

n

n







   

 

(1). equation of solutiona  is J    0J 2

0J 2JJ

0JJ J 2

n

'

n

22

'

n

2222'

n

''

n

2

22'

n

''

n

'

n

2







nn

nnn

nnn

J'xu'ux)x(J''ux

or

J'xu'ux)x(J''uxJ)nx(xxu

or

uJ)nx(uJ'uxu'u)x(J''ux

     

 

  

  A
xJ

dx

xJ

B
'uBlogxJ'ulog

xJ'ulogor

xlogJlog'ulogor

xlogJlog'ulog.e.i

xJ'u

''u

getweJ'ux

J'xu'ux)x(J''ux

nn

n

n

n

n

n

n

nn













 22

2

2

'

n

2

'

n

22

 B uor         

get x we  t.r.  w.gIntegratin

0
dx

d

02
dx

d

0
dx

d

dx

d
2

dx

d
 

0
1J

2

  by t  throughoudividing 

  0J 2



e_notes: EDUSAT Programme-22,Engineering Mathematics-IV Module-II, by: Dr S S Benchalli,BEC,BGK Page 16 
 

Substituting the value of u in the assumed solution y = u(x) Jn(x) 

 

The function y n(x) is called Bessel function of the second kind of order n or Neumann 

function. 

Find the value of J1/2(x): 
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Recurrence relation of Bessel functions: 

The following recurrence relations connect Bessel functions of different orders and are very 

helpful in the solution of problems involving Bessel functions. 
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Example1: Prove that  

Proof: From the recurrence relation (1) 

 

Dividing by xn-1  we get                                                                    Which is the required 

equation 
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Example2:  Prove that 

Proof: From recurrence relation  (2) we get 

 

Multiplying by xn+1 we get 

                                                                                 Which is the required equation. 

Example3: Prove that 

Proof: W.K.T from recurrence relation (4) 

Differentiate (1) , we get 

Changing n to (n-1) and  (n+1) in equation (1) we get 

 

Subtracting ,we get    
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Example 4: show that 

Solution: From recurrence relation (3) 
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Example5: Show that 

Solution: From recurrence relation (3) 

It can be written as 
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Example7: 

 

 

From example 1 we have (using example 2) 

 

Replace n by (n+1) in equation (2) we get 

Substituting the values of                        from equation (2) and (4) in equation (1) 
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Thus we have proved that Jn(x) and J-n(x) are respectively the  coefficients of tn and t-n in the 

expansion of the function 

 

 

 

 

This shows that Bessel functions of various orders can be derived as coefficient of different 

powers of t in the expansion of 

For this reason, it is known as the generating function of Bessel function. 

Integral form of Bessel Function: 

Prove that 
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Substituting these values in (1), we have 

 

 

Equating the real and imaginary parts in (2), we get 

 

 

These are known as Jacobi series. 
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On subtracting we obtain 

 

Now integrating both sides w.r.t x between o and 1 
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Substituting these values in (3), we get 

   

 

 

 

 

This is known as the orthogonality relation of Bessel functions when 
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Equation (6) becomes 

           

Solution of Legendre differential Equation: 
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we can write the above equation in the form 
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Obviously a0, a1 ≠ 0 , otherwise we get a trivial solution y = 0. Substitute above values in the 
assumed solution (2). 

i.e y = a0 + a1x + a2 x2 + a3 x3 + a4 x4 + a5 x5 +……. 
i.e y = (a0  +  a2 x2   +   a4x4    +….) + (a1x  +  a3 x3  +  a5 x5 …..) 

Because a2 , a4 , ---  are in terms of a0 and a3, a5 … are in terms of a1, we obtain 
 
 

 

 

 

Let y1(x) , y2(x) respectively represent the two infinite series in (4) 

i.e y = a0 y1(x) + a1 y2(x)  is the series solution of the Legendre’s differential equation. 

Legendre Polynomials: 

If n is a positive even integer, a0 y1(x) reduces to a polynomial of degree n. 
If n is a positive odd integer a1 y2(x) reduces to a polynomial of degree n 

Otherwise these will give infinite series called Legendre functions of second kind 
 

 

 

 

 

 

 

 

 

 

 

Example: Express f(x) = x4 + 3x3 –x2 + 5x-2 in terms of Legendre polynomials 
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Generating Function for Pn(x): 

In the expansion (1 – 2 x z + z2)-1/2 in powers of z, it can be shown the coefficient of Zn is 

Pn(x). 

 Hence (1 – 2 x z + z2 )-1/2   is called  generating function for  pn(x). 
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Expansion of the nth term using the following formula 

 

 

 

 

Collect the coefficient of zn from the above equation, we get 

 

 

 

Expansion of the (n-1)th term using the following formula 
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Example 1: Show that Pn(1) = 1. 

 

 

 

 

Example 2 : Show that Pn(-x) = (-1)n Pn(x) . 

 

 

 

 

 

 

 

Rodrigue’s formula : Show that 

Let u = (x2 -1) , First find the nth derivative of u  i.e. un is a solution of the Legendre’s 

differential equation 

Differentiating u w.r.t. x 

 

 

 

ly.respective zzzz of tscoefficien

  theare (x)(x)...Pp  (x),p   (x),p     ,  )z2xz(1 of expansion  thein Thus

3212 4 2

321

122

1

n!

1)-9..(2n 7 5 3 1

by given is )z2xz(1 in  z oft coefficien The 

x
3)-1)(2n-(2n 4 2

321

n!

1)-9..(2n 7 5 3 1

n321

n321

1/2-2

4-n2-nn

1/2-2n

4-n

....,,

)x(P...x
)n)(n(

)n)(n)(n(n
x

)n(

)n(n
x

)n)(n)(n(n

n




































0

n

n

n

n

3

3

2

21

-1/22

z (x)P                              

 .....z (x)P...(x)zp  (x)zp  (x)zp  1  )z2xz(1 

n

.

    

1.  (1)get      P       wez    of      tscoefficien        theequating

z1z-1z-1)z2z-(1 (1)pz

get  we(1) equation in    1 x  put     

1)z2xz-(1 (x)pz w.k.t.

n

n

0n

n321212

0n

1/2-2

n

n

0n

1/2-2

n

n

























......z...zzz

)(

n
/

   

 

  (x)p1 (-x)p

have  wez oft coefficien  the Equating (x)pz1 (-x)pz

 (3) and (2) Fron

3 )z2xz(1 (x)pz1   )z2xz(1 (x)pz

(1) in  z-by    z  replace again  2)z2xz(1 (-x)pz

get  we(1) equation in (-x)by x   replace   1)z2xz-(1 (x)pz w.k.t.

n

n

n

n

0n

n

nn

0n

n

n

0n

1/2-2

n

nn

0n

1/2-2

n

n

0n

1/2-2

n

n

0n

1/2-2

n

n











































)(or

)(

)(

 n
n x

dx

d
)x(P 1

n!2

1
  2

n


  )(y)n(nyxyx 10121 2 

 

   
 
 

    

 1

21
             

2 11              

2 1

2

2

122

12

1














x

xxn

xxxn

xxnu
dx

du

n

n

n



e_notes: EDUSAT Programme-22,Engineering Mathematics-IV Module-II, by: Dr S S Benchalli,BEC,BGK Page 30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pn(x) satisfies Legebdre’s differential equation is also a polinomial of degree n and hence un 

must be same as  Pn(x) but for some constant factor k. 
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