Introduction to PHP

Lesson 1:Introduction
Working in CodeRunner

Creating a File
Managing your Files

Four characteristics of PHP.

1. PHP is a server-side language, with HTML embedding.

2. PHP is a Parsed language.
3. PHP works jointly with SQL.
4.PHP is part of the LAMP, WAMP, and MAMP stack.

Lesson 2: PHP Basics
PHP Delimiters and Comments

Variables in PHP

Modifying Variables and Values with Operators

Superglobals
$GLOBALS

$ SERVER:
$_GET
$ POST

Lesson 3: Decisions
Comparison Operators and Conditions

IF and ELSE Control Structure

Logical Operators

A Brief Preview of Forms

Lesson 4: Multiple Control Structures and Loops

Multiple Control Structures

WHILE and FOR Loops

Lesson 5: Functions
Creating Code Reusability with Functions

Function and Variable Scopes

Using Functions with Parameters and Return Values

Sneaking In with Parameters

Sneaking out with Return Values

Multiple Parameters and Default Values

Lesson 6: Arrays
Creating an Array

Associative Arrays

Creating Multi-Dimensional Arrays

Traversing and Manipulating Arrays

Traversing Associative Arrays with list() and each()

More built-in functions

Lesson 7: Strings
What's a String Anyway?

Manipulating Strings
Other nifty string shortcuts

Built-in String Functions

Regular Expressions

Character Ranges and Number of Occurrences

Excluding Characters

Escaping Characters

Lesson 8: Fixing Broken PHP

Things Professors Don't Talk About Enough

Debugging Tips
Utilizing Error Messages

Riddle-Me-This Error Messages

Errors without Error Messages

Logical Errors
Infinite Loops, Infinite Headaches

Notes on Scalable Programming

Before you Code, Pseudocode

Make your Program Readable

Comment Until You're Blue in the Face
Code in Bite-Size Chunks
Debug as You Work

Reuse Functions as Much as Possible

Utilize Available Resources

Lesson 9:Forms in PHP
Forms Review

Using Superglobals to Read Form Inputs

Extracting Superglobals into Variables

Nesting Variable Names

Lesson 10: Utilizing Internet Tools

Environment and Server Variables

Using HTTP Headers

Manipulating Query Strings

Customizing specific error messages

Sending Emails

Lesson 11: Date and Time
Date and Time Standards

Date and Time Functions

Constructing Dates and Times

Lesson 12: Using Files
Including and Requiring Files

Reading and Writing Files

Allowing Users to Download Files

Lesson 13: Cookies and Sessions
Using Cookies

Knowing the User Through Sessions

Deleting Sessions

Lesson 14: Final Project
Final Project

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction

Welcome to the O'Reilly School of Technology Introduction to PHP course!

In this PHP class, you will learn basic to intermediate programming aspects of PHP--hypertext preprocessor. PHP is a versatile
server-side programming language that works hand-in-hand with front-end web languages such as HTML and JavaScript. PHP
can be used to create all types of dynamic web interfaces, and because of its open-source robustness, has become one of the
mostwidely used programming languages for the internet.

Course Objectives

When you complete this course, you will be able to:

e develop web applications using basic PHP elements such as delimiters, control structures, operators, variables,
arrays, and functions.

e manipulate dates and strings using built-in PHP functions and regular expressions.
e debug and improve code for better reusability and scalability.

e create dynamic web forms using internettools such as input, environment and server variables, HTTP headers, and
query strings.

e read, write, manage and download files through PHP-based web applications.
e frack userinformation using cookies and sessions.

e build a full-fledged shopping cart system.

From beginning to end,you will learn by doing your own PHP based projects. These projects, as well as the final project, will
add to your portfolio and provide needed experience. Besides a browser and internet connection, all software is provided
online by the O'Reilly School of Technology.

Learning with O'Reilly School of Technology Courses

As with every O'Reilly School of Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by doing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill or technology, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll putitinto code and see what YOU can do with it. On occasion we'll even
give you code thatdoesn'twork, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the tools to take control of your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School of Technology courses effectively:

e Type the code. Resistthe temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel for the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!

e Take yourtime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you otherwise would if you
blew through all of the coursework too quickly.

e Experiment. Wander from the path often and explore the possibilities. We can't anticipate all of your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely off the rails.

e Accept guidance, but don't depend on it. Try to solve problems on yourown. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part of what you're learning is
problem solving. Of course, you can always contact your instructor for hints when you need them.

e Use all available resources! In real-life problem-solving, you aren't bound by false limitations; in OST

courses, you are free to use any resources at your disposal to solve problems you encounter: the Internet,
reference books, and online help are all fair game.

e Have fun! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it

until you've mastered the skill. We want you to get that satisfied, "I'm so cool! I did it!" feeling. And you'll have
some projects to show off when you're done.

Lesson Format

We'll try out lots of examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll fype the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top of the white box contains directions for you to follow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

h] 12 g
COR—T I K TITT

If we want you to remove existing code, the code to remove witt

H

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or other command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is

provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is for you to inspect and absorb. This information is often
color-coded, and followed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that follow may provide addition details on information that was highlighted in the Observe box.

We'll also set especially pertinentinformation apartin "Note" boxes:

The CodeRunner Screen

This course is presented in CodeRunner, OST's self-contained environment. We'll discuss the details later, but here's
a quick overview of the various areas of the screen:

File Browser

=3 Home
(] .php_files
#|_apache

E—

File Browser area:

Shows all of your files
and folders. Navigate
like you would in

Windows Explorer or
the Finder on a Mac.

AA HC Appearance controls:

el !E Lesson 1: Introduction to Linux System Seglrity «
Objective 1

Course Obj

Course Syllabus area:

Use these as needed to change lesson text size or contrast.

= Afer completing this course—yomrvmr
To hide or view this panel while

m

® demonstrate your ability 1o identify svstem

ecurity issues and solution

« Welcome Courses Messages Overflow System Administration 5 '* Help About Sign Out
System Administration 5 « - |~
= ecurity c
= ||Refresh Course |

working on lessons, click the << or >>

button. L ® identify ways hack

 find and fix weakne| Lesson Content area:
When you finish a lesson, click the
2 Quiz and Objective links to do the

homework.

Lesson Objectives

In this lesson you will:
see more of this content.

la TSrESSUTTREMIE Sy
¥ Objective 1

CTvEstiga

e read about the O'R

Scroll up and down, and left to right, as needed. You might want to hide
the File Browser and Course Syllabus areas while working so you can

Quiz1 ® navigate in the Codel

® |oginto and out of the Linux Learning Enviror

|4 ’9 Lesson 6 Local Assessment Services

[m ' Divider bars:

Grading Policy

. (T
—

Dery =

Click and drag to resize any panel.

"l 2P 0 e [

_—

Code Editor/ Terminal Emulation area:
This is where you type the code and commands we give you in the lessons.

Mote the icons at the top for various functions. We'll describe these as we use them.

[_Jpert

[perlihomework

<]

I

n

These videos explain how to use CodeRunner:

File Management Demo

Code Editor Demo

Coursework Demo

Working in CodeRunner

Since CodeRunneris a multi-purpose editor, you need to make sure you're using the correct synt ax.

you will be using HTML and PHP. To startusing HTML, choose the HT ML option:

To change to PHP, choose the PHP option:

Creating a File

Java
MO
Pirl

S0L
Text

In this course,

http://www.youtube.com/watch?v=45sATp529Mw
http://www.youtube.com/watch?v=SvbM6vPAG9k
http://www.youtube.com/watch?v=WmajY8bIXrA

Let's create a file now. Select the HTML syntax and type the code as shown below.

Make sure you're using HTML syntax and type the following into CodeRunner:

Four characteristics of PHP:

<1li> PHP is a server-side language with HTML embedding.
<1i> PHP is a parsed language.</1li>

<1li> PHP works hand-in-hand with SQL.</1i>

<1li> PHP is part of the LAMP stack.

Managing your Files

Click the - button. In the Save As text box, type fourfacts.html (be sure to include the html extension when
you Save html files).

Save As: myTilename.html

Save Cancel
You can also use the Save As () button to save a file with a different name. Try it now with the name
fourfacts2.html. Note that you are now editing fourfacts2.html, not fourfacts.html.
After you successfully save your file, anybody can go on the web, type the URL

(http:/lyourusername.oreillystudent.com/fourfacts.html) in the location bar of their browser, and see this page.

To retrieve the original fourfacts.html, click the Load File (=) button or double-click the file name in the
File Browser window.

Four characteristics of PHP

Look again atthe HTML top-fourlist you just typed into CodeRunner, and click Preview:

This example serves more than one purpose for us. ltdemonstrates how to use CodeRunner and itintroduces some

Note Keep in mind that every time you Preview a file, your changes will be saved. Think about whether you

want the previous code overwritten or not. If not, use Save As - before you Preview.

Four characteristics of PHP:

PHP is a server-side language with HT ML embedding.
PHP is a parsed language.

PHP works hand-in-hand with SQL.

PHP is part of the LAMP stack.

A WN -

If the Preview button doesn'twork for you, you may be blocking pop-up windows in your browser. To fix
Note this, change your configuration settings to allow pop-ups from the OST servers, or view your page

directly at http://yourusername.oreillystudent.com/fo urfacts.html.

keys to using PHP. Of course there's much more to PHP than this, but let's start with this.

1. PHP is a server-side language, with HTML embedding.

On the web there are two sides to everything: the Client Side and the Server Side. The Client side is the side
you are on right now. It consists of your computer and your web browser. The server side is the side where
the web pages are stored and where programs are executed to build dynamic web pages with PHP.

Still have your HTML list? It's time to convertitto PHP. Switch CodeRunner to PHP, and retype the top four
listinto the editor. Then add the blue code below:

Make sure you're using PHP then type the following into CodeRunner:

<?php echo "Four characteristics of PHP:"; 72>

<1li> PHP is a server-side language with HTML embedding. </1i>
<1li> PHP is a parsed language. </1li>

<1li> PHP works hand-in-hand with SQL. </1i>

<1li> PHP is part of the LAMP stack. </1li>

Click Preview. This time save with the php (.php) extension. Itlooks exactly the same, right? But something
more happened this time on the back end.

You see, HTML is a Client side language. When you clicked Preview while in HT ML, the Sandbox simply
asked your browser to process the HTML tags without any outside help.

Conversely, PHP is a server side scripting language and builds HTML dynamically before sending to your
browser. Here's a diagram of how PHP works:

Request for Document
(blah.php3)

®

Server Processing
PHP Script

p—— ————————

Processed PHP Document

Client Side (you) {yg:lr"lf:; :Iilt;zt]

When you used Preview after adding the PHP code while using PHP syntax, the Learning Sandbox:

e Tookyourcode back to your Lab Accounton our web server
e Parseditusing the PHP Engine that's installed within your account

e Returned the results to the browser as HTML

Then your browser rendered the HTML to make itlook pretty. Did you notice how the addition of PHP code at
the top of the file did nothing to change the HTML list below? This is because the HTML is embedded into the
PHP file, and doesn't require anything else to outputit.

2. PHP is a Parsed language.

The fact that PHP is a parsed language as opposed to a compiled language is a technical concern and
probably only interesting to programmers with experience in Compiled programming languages like Java or
C++. Those languages perform an additional task called compiling that turns the text from the program into a
form the computer understands. A binary file is created that serves as the thing that gets executed when a
program is running.

PHP is a Parsed language, meaning that you can see the results of your code immediately after saving the
file, without any compiling or linking steps in between. That's because the compiled PHP engine installed on
your account takes the PHP file you've created and "parses" it and uses the commands you created to make
the server do something. All the work is still done by a compiled program, but the program you created
doesn'thave to be compiled, since it just tells the compiled program what to do.

For the geeks outthere, this is similarto an Interpreted language such as Perl; however, the parsing
process has been optimized to use a combination of interpreting and compiling atrun-time, enabling PHP
to be powerful AND fast.

The bottom line is the parsing action of PHP makes your life easier. If you wantto know more about parsed,
interpreted, and compiled languages, here's a good link.

3. PHP works jointly with SQL.

Let's look at your first PHP script again and add one more little piece of code. Don't worry yet about what the
code means, at this point we're just playing around.

Type the following (in BLUE) into CodeRunner:

<?php echo "Four facts about PHP:"; ?>

<ol style="font-size:1lé6px;">

<1i> PHP is a server-side language with HTML embedding. </1i>

<1i> PHP is a parsed language. </1i>

<1i> PHP works hand-in-hand with SQL. </1i>

<? printf("MySQL client info: %s\n", mysqli get client info()); ?>
<1li> PHP is part of the LAMP stack. </1li>

Click Preview. Now you should see the version of MySQL library that's included with your account's PHP
engine, embedded within your HTML list. You'll learn a lot more about the MySQL database in later courses,
butfor now justroll with it.

PHP makes it easy to add database-driven contentto any website. It supports popular database systems -
MySQL, PostgreSQL, Oracle, and others - with libraries of built-in functions like the one you added above.
These libraries can be referred to by the acronym DBI: Database Interface.

Other programming languages such as Perl contain their own sets of DBI libraries too. However, unlike Perl,
PHP was designed with database-driven websites in mind, and has become so closely intertwined with
MySQL that the two organizations now work together to ensure continued reciprocal support.

Here's a good O'Reilly article about PHP and MySQL.

4. PHP is part of the LAMP, WAMP, and MAMP stack.
What's a (L|W|M)AMP Stack?

It's yetanother acronym.

e Linux, Windows, Mac

e Apache

e MySQL

e PHP (orPerl,orboth)
The Stack partrefers to a group of technologies which, when used together, create powerful and dynamic
web applications. There are competing stacks, such as Microsoft's .NET framework and Sun's Java/J2EE

technologies. However, corporations are realizing more and more that the free, open-source LAMP Stack can
be just as powerful, safe, and lucrative for their businesses as the expensive, proprietary competitors.

And by the way, lucky you! You have all the LAMP technologies you need at your fingertips RIGHT NOW:-

e YourLearning Lab accountis on a Linux RedHat server.
e It's equipped with its own Apache web server.
e The Apache server has MySQL installed on it.
e |talso has PHP AND Perl on it.
Alright, you're doing great so farl Don't forgetto Save your first PHP file (call it "first.php"), and work on this lesson's

assignments on the syllabus page. Be sure to read the comments on each project or quiz using the "Graded" link. See you in
the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

http://www.answerbag.com/q_view/948
http://www.oreillynet.com/pub/a/network/2000/06/16/magazine/php_mysql.html?page=1

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

PHP Basics

Welcome back! In the next three lessons, we'll be playing around with a make-believe program to help demonstrate a few
programming concepts. While the faux-program isn'tone you'd likely create while on the job, the concepts and techniques used
are the same. Let's get started!

PHP Delimiters and Comments

Open the file first.php. Or, if you're completely sick of the Top Four list, start a new file. Make sure you're using PHP.

Type the following green and blue code into your chosen file in CodeRunner:

<ol style="font-size:1l6px;">

PHP is a server-side language, with HTML embedding.
</1li>

For instance:<br\>

<?php
echo "<1li style='color:blue;'>
This PHP code is INSIDE the PHP delimiters
</1i>";
?2>
<1li style="color:green;">
This HTML code is OUTSIDE the PHP delimiters
</1i>

Now click Preview to see the results. What happened?

It should look something like this:

1. PHP is a server-side language, with HT ML embedding.
Forinstance:
o This PHP code is INSIDE the PHP delimiters.
o This HTML code is OUTSIDE the PHP delimiters.

4] N D

PHP code is separated from embedded HT ML with delimiters. The delimiters are the <?php and the ?>. All PHP is
written between these delimeters. An open delimiter <?php must have a closing delimiter ?>. Try taking the delimiters
away and see what happens.

Take a look atthe PHP - notice that between the delimiters (<?php and ?>), the word echo showed up. That's a PHP
command that means "make this show up." Without echo, itwon'tshow up. Remove the echo command and check
outthe results.

Here the echo statement is used to return text to the web browser from a PHP script. The "echo" command just
means "print this out." And one more thing, all statements in PHP must end with a semicolon (;).

By the way, why did we putin those slashes (/) in the sample code above? Well, those are called "comments."
Commenting is a common practice in programming. Commenting records the specific reasons you had for writing the
program a particular way.

Type the blue text below into CodeRunner:

<ol style="font-size:16px;">
<1li> PHP is a server-side language, with HTML embedding.</1i>

 For instance:

<?php
//Jerry says, "What's the deal with this line of PHP code?"
/* Elaine says, "I want to talk about this line, that line, AND the other line!"

*/
#George says, "...yadda yadda yadda..."
echo "<1i style='color:blue;'>
This PHP code is INSIDE the PHP delimiters
</1li>";
?>
<li style="color:green;">
This HTML code is OUTSIDE the PHP delimiters
</1i>

Now click Preview to see the results. Notice what ISN'T printed out on the screen. Our results look exactly the same
as before.

What happened to the entire conversation we added?

Ah, Jerry, Elaine, and George, always commenting on everything, yet doing pretty much nothing. In fact, they behave a
lotlike comments in PHP, butin PHP, it's a developer who comments on the code withoutimpacting the results at all.

Note Two slashes (//) or one pound sign (#) will "comment out" the line that follows it. Or, you can comment
' out multiple lines by surrounding them with /* and */. Play around a bitto get the hang ofit.

Comments may not seem like a big deal (they didn'tto me at first either), but as our programs become more
complicated, it's useful to have reminders (in your own words) of the specific reasons you chose to write your code a
certain way. Also, comments are essential for reusing and sharing code. They allow other developers to decipher and
understand the specifics of the code you've written.

Let's experimentto discover the answers to these questions:

e Candelimiters share the same line as the PHP code?
e Canthey share the same line as HTML?

e Can muliiple statements share one line?

e Canstatements span multiple lines?

e Does itmatter whether you use <?php orjust<? ?

e Canyoumixaline of code with a comment?

Variables in PHP

Every programming language has variables. Variables are places to store things. You can insert values into variables
and you can extract them. Variables are a lot like dresser drawers. You can put things in and then take them out, and
you usually know what each drawer contains.

Add the following blue text to your file in CodeRunner:

<ol style="font-size:1l6px;">
<1i> PHP is part of the LAMP stack.</1li>

<?php
$lamp 1 = "Linux";
S$lamp a = "Apache";

$lamp_m = "MySQL";
$lamp p = "PHP";
?>

Now Preview that.

Not much happening, right? That's because we forgotto echo something. Let's go ahead and do that so we getan
output.

Add the following blue text to your file in CodeRunner:

<ol style="font-size:16px;">
<1i> PHP is part of the LAMP stack.
<?php
Slamp 1 = "Linux";
Slamp a = "Apache";
S$lamp m = "MySQL";

Slamp p = "PHP";
echo $lamp a;
?>

Now you should see the word Apache printed on your page. Why do you suppose thatis? After all, we wrote Echo

$lamp_a;, you'd think that would be the word that printed. Well, as itturns out, $lamp_a is a variable. Variables in PHP

always begin with a $. And, as if $lamp_a was a drawer, we put something in it, we inserted = "Apache". Then, in
order to get something out of the variable $lamp_a, we "echoed" by adding echo $lamp_a. Finally, "Apache," the
value we putinto the variable (or drawer) in the first place was printed out. They are called "variables" because the

value can vary. We can change the contents of the variable at anytime, and that makes them very useful for storing and

retrieving values dynamically.

Just like you can put differentitems in the appropriate drawers of your dresser--you might have a sock drawer for your

socks, a shirt drawer for your shirts, etc.--you can put different kinds of values in variables. In the example above,
we've entered words into our variables. In programming, these words are called strings because they comprise a
string of letters or characters.

Let's put different kinds of values into some other variables.

Add the following blue text to your file in CodeRunner:

<ol style="font-size:1l6px;">
<1i> PHP is part of the LAMP stack.
<?php
Slamp 1 = "Linux"; $lamp a = "Apache"; $lamp m = "MySQL"; $lamp p = "PHP";
?>
/* Here are some imaginary numbers for a possible salary package associated with the
skills we're learning in this course (play along!): */
<?php
Sbase_salary = 158470;
//whoa. we hit the jackpot
$bonus = 25815.25;
$benefits = 0.2;
//percentage of total
Stime off = 6476; //in dollars
?>

Here we're assigning differentkinds of values (like 158470) to variables. In this context, assigning simply means to
"fill" the variable with a value.

We've assigned the various PHP variables values of three basictypes:integer,floating point(decimal), and
string. Integers are whole numbers, including negative numbers and 0. Floating point numbers are numbers that may
have a decimal point. Strings, as we already mentioned, are simply successive strings of characters.

Below is a listofthe types we've assigned to the variables listed:

Variable Name | Assigned Value | Value Type
$lamp_| "Linux" string
$lamp_a "Apache" string
$lamp_m "MySQL" string
$Slamp_p "PHP" string
$base_salary |158470 integer
$bonus 25815.25 float
$benefits 0.2 float
$time_off 6476 integer

Let's go back to our dresser analogy fora moment. It will help us to understand the difference between "strongly typed"
programming languages and languages like PHP, which are not strongly typed. Programming languages that are
strongly typed require you to decide the types of variables you're going to have upon creating your files. Once you've
created your variables, you are committed. They cannot be revised. It's like labeling your drawers, so that you can only
putsocks in your sock labeled drawer and shirts in your shirt labeled drawer. And after you've labled these drawers,
you can't change them. PHP, however, is not strongly typed. Therefore, the variables remain flexible, we are allowed to
change them, and we can put any type of information into a PHP file that we wish.

Since PHP is NOT a strongly typed programming language, the following won't break your script:

Type the following blue text below into CodeRunner:

<ol style="font-size:16px;">
<1i> PHP is part of the LAMP stack. </1i>

<?php
Slamp 1 = "Linux";
Slamp a = "Apache";
Slamp m = "MySQL";
Slamp p = "PHP";

?>

<?php

/* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */

Sbase salary = 158470;

Sbonus = 25815.25;

Sbenefits = 0.2;

//percentage of total

Stime off = 6476;

//in dollars

$benefits = "this is a string now"; // You just changed the value of $benefits from
a float number to a string!
?>

Go ahead and Preview it. Our variables are shy creatures! So far they've been hiding like comments when we
Preview. Let's add some HTML and echo outsome ofthose variables.

Type the following blue and green textinto your documentin CodeRunner:

<ol style="font-size:16px;">
<1i> PHP is part of the LAMP stack. </1li>

<?php
Slamp 1 = "Linux";
Slamp _a = "Apache";
$lamp m = "MySQL";
$lamp p = "PHP";

>

<?php

/* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */

Sbase salary = 158470;

Sbonus = 25815.25;

Sbenefits = 0.2;

//percentage of total

Stime off = 6476;

//in dollars

Sbenefits = "this is a string now"; // You just changed the value of S$benefits from
a float number to a string!
2>

<1i> My Base Salary might be: <?php echo $base salary; ?>
<1i> My Bonus might be: <?php echo $bonus; ?> </1i>
<1i> My Benefits might be: <?php echo $benefits; ?> </1i>
<1li> My Time Off might be worth: <?php echo $time off; ?> </1li>

Click Preview. Those variables should show up now.

1. PHPis part of the LAMP stack.

My Base Salary might be: 158470

My Bonus might be: 25815.25

My Benefits might be: To be determined
My Time Off might be worth: 6476

O O

[e]

There they are. Actually, instead of displaying themselves, our variables displayed the values they were holding.
By the way, they're not just sneaky; they're picky too. Turns out, variable names may consistofonly letters,
numbers, and the underscore(_) character. Notjustthat, the first character of the variable name CANNOT be a
number.

Here's a list of valid and invalid variable names:

VALID variable names:

e $_var

$heres_a_name
$t12345

e $x

INVALID variable names:

o $1 var

e S$here's-a-name

e $t+12345

o $x?

Modifying Variables and Values with Operators

Variables are not useful unless they've been modified. Operators can be used to modify variables and their values.
Operators are fairly simple to use, in fact, you've already learned one: the assignment operator, represented by the
equal sign (=). The assignment operator is a quick, easy, and intuitive way to instruct a variable to hold a certain value.

But what if we wantto change a variable's value?

Type the following into CodeRunner:

<ol style="font-size:1l6px;">
<1i> PHP is part of the LAMP stack. </1i>
<?php
Slamp 1 = "Linux";
Slamp _a = "Apache";
S$lamp m = "MySQL";
Slamp p = "PHP";
>
<?php
/* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
Sbase salary = 158470;
Sbonus = 25815.25;
Sbenefits = 0.2;
//percentage of total
Stime off = 6476;
//in dollars

Sbenefits = "this is a string now"; // You just changed the value of S$benefits from
a float number to a string!
?>

 My Base Salary might be: <?php echo $base salary; ?>
<1i> My Bonus might be: <?php echo $bonus; ?> </1i>
<1i> My Benefits might be: <?php echo $benefits; ?> </1i>
<1i> My Time Off might be worth: <?php echo $time off; ?> </1li>
 My Base Salary plus Bonus would total: <?php echo $base_salary + $bonus; ?> </1
i>

Preview this code. We added the values of the variable's $base_salary and $bonus. Sweet.

1. PHPis part of the LAMP stack.

My Base Salary might be: 158470

My Bonus might be: 25815.25

My Benefits might be: To be determined

My Time Off might be worth: 6476

My Base Salary plus Bonus would total: 184285.25

O O O O

O

Kl B

The plus sign (+) is also an operator. More specifically, a binary operator, since it takes fwo variables or values (in

this case, called arguments), performs the addition operation on them, and returns the result - just like those shy
variables do. In this case, we displayed the result through the "echo" statement.

Below is a listof some binary operators, and some examples of them in action.

Assuming $i=12and $j= 5 then...

Operator|{Name Usage | Result

= assign $i=9j |5
+ add $i+$j [17
- subtract $i-9% |7
* multiply $i*8$j |60
/ divide $i/$) |24
% mod (remainder of division) | $i % $j | 2

Play around with these in your program and see what you get. Seriously, practice! Try applying different operators to
the example you've been working on in this lesson, and echo out the results.

The operations (except for addition) need to be executed in the order they appear, from left to right, to work properly.

By the way, the operators above only operate on integers and floating point number values. There are different
operators thatwork on strings. Most specifically, the concatenation operator. Here is an example using
concatenation. Notice the period in frontof $lamp_I:

Type the following into CodeRunner:

<ol style="font-size:16px;">
<1i> PHP is part of the LAMP stack. </1i>
<?php
Slamp 1 = "Linux";
Slamp _a = "Apache";
$lamp m = "MySQL";

Slamp p = "PHP";

echo "
The stack begins with " . $lamp 1;
?>
<?php

/* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */

Sbase salary = 158470;

Sbonus = 25815.25;

Sbenefits = 0.2;

//percentage of total

Stime off = 6476;

//in dollars

Sbenefits = "this is a string now"; // You just changed the value of S$benefits from
a float number to a string!
2>

 My Base Salary might be: <?php echo $base salary; ?>
<1i> My Bonus might be: <?php echo S$bonus; ?> </1i>
<1i> My Benefits might be: <?php echo $benefits; ?> </1i>
<1li> My Time Off might be worth: <?php echo $time off; ?> </1li>
 My Base Salary plus Bonus would total: <?php echo S$base salary + $bonus; ?> </
1i>

Preview the code and see what happens. After you Preview you should see the following sentence on your page:

The stack begins with Linux.

Let's break it down. How did this:
echo "The stack begins with " . $lamp_lI;
become this?:

The stack begins with Linux.

Well, the first partin quotation marks is a string and the $lamp_1I is a variable holding the string "Linux". To "add" them
together, we use a period . which is the concatenation operator. Did you understand that? If notlook again...

echo "The stack begins with ".$lamp_lI;

When used properly in PHP, suddenly that lowly punctuation mark, the period (.), becomes a powerful concatenation
tool. Yes, the concatenation operator (.) is yetanother binary operator in PHP, and an extremely useful one at that.

But the most useful characteristic of these operators is that they can be nested. To nestoperators essentially means
we can use them together.

Type the following blue code (notice the periods in red) into CodeRunner:

<ol style="font-size:16px;">
<1i> PHP is part of the LAMP stack. </1i>
<?php
Slamp 1 = "Linux";
Slamp a = "Apache";
$lamp m = "MySQL";

Slamp p = "PHP";
echo "
The stack begins with " . $lamp 1 . " and goes on to include " . $lamp
a . ", and " . $lamp p . "!
";
?>
<?php

/* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
Sbase salary = 158470;
Sbonus = 25815.25;
Sbenefits = 0.2;
//percentage of total
Stime off = 6476;
//in dollars
Sbenefits = "This is a string now."; // You just changed the value of $benefits fro
m a float number to a string!
Stotal = $base_salary + $bonus + $time off;
$total compensation = $total + ($total * 0.2); // Adding in benefits
?>

<1li> My Base Salary might be: <?php echo $base salary; ?> </1li>
<1i> My Bonus might be: <?php echo S$bonus; ?> </l1i>
<1i> My Benefits might be: <?php echo S$benefits; ?> </1li>
 My Time Off might be worth: <?php echo S$time off; ?> </1li>
<1li> My Base Salary plus Bonus would total: <?php echo S$base salary + Sbonus; ?> </

1i>
<1i> My total compensation would be <?php echo $total . " without benefits, and "
Stotal compensation . " with benefits."; ?> </1i>

In the code above there is operator nesting happening all over the place. Preview your file. You should get something
like this:

1. PHP is part of the LAMP stack.
The stack begins with Linux, and goes on to include Apache, MySQL, and PHP!

My Base Salary might be: 158470

My Bonus might be: 25815.25

My Benefits might be: To be determined

My Time Off might be worth: 6476

My Base Salary plus Bonus would total: 184285.25

Your total compensation would be 190761.25 without benefits, and 228913.5 wi
benefits.

O O O O O o

4] BN D

It appears that operator nesting worked just fine. That's notto say that our binary operators started taking on more
than two arguments. Instead, we've executed a succession of binary operations, with the one operation taking the
results of the last operation into consideration.

Here are a couple more things to consider:

e Whydo you suppose the "concat" operator (.) had no problem mixing strings, floats, and integers?
e Were the parentheses (()) necessary in the $total_compensation line?
e Whatrole do you think the parentheses play?
Finally, here are some useful PHP "shortcut" operators. These operators reduce the need for nesting to execute some

common tasks and they are really handy. Can you figure out which operators are unary operators? (Hint: unary
operators need only one argument.)

Play around with these and see what you get:

Operator|Equivalent
$i+=9j $i=8i+9j
$i-=9j $i=9i- 9§
$i*=§j $i=$i* 9
$i /= $j $i=%i/9j
$i++ $i=8i+1
$i-- $i=%i-1
$i =9 $i=8%i.9j

Superglobals

PHP has a set of predefined variables to make our lives easier. Superglobals can be accessed by classes, functions,
orfiles atany time without having to do anything special! Very nice. So, what are these Superglobals?

Before we delve too deeply, let's geta small taste of what's to come. After all, we can't simply give out all the secrets in
the beginning. There wouldn't be anything to look forward to!

$GLOBALS

1. References all variables that are in the global scope.
2. Associative array.
3. Variable names are keys of §GLOBALS array.

CODE TO TYPE: $GLOBALS example

<?php

echo

}

?>

function testScope () {
"The variable in the main code doesn't extend to within the function:
ope
";

//assign a value to the variable named $scope that IS within function scope
$scope
echo "The local scope within the function: $scope
";

= "WITHIN FUNCTION";

//the superglobal DOES extend within the function
echo "The global scope: {SGLOBALS['foo']}
";

//define S$scope in the main code
Sscope = "MAIN CODE";
echo "The local scope in the main code body: $scope
";

//define a global value (
SGLOBALS['foo'] = "SUPERGLOBAL";
echo "The value in the superglobal is {SGLOBALS['foo']}
";

//now run function, which has separate scope and $scope variable
testScope () ;

//show that main code's S$scope is unaffected
echo "The local scope in the main code body: $scope
";

Ssc

$_SERVER:

The local scope in the main code body: MAIN CODE
The value in the superglobal 1s SUPERGLOBAL

The variable i the main code doesn't extend to within the function:

The local scope within the function: WITHIN FUNCTION
The global scope: SUPERGLOBAL
The local scope 1 the main code body: MAIN CODE

1. Array containing information to Headers, Paths, and Scriptlocations.

2. Entries generated by web server.

CODE TO TYPE: $_SERVER example

<?php

?>

echo $ SERVER['SERVER NAME'];

$_GET

mchou oreillystudent com

1. Associative array.

2. Populated by URL parameters.

CODE TO TYPE: $_GET example

<form action="" method="get">

Enter your name: <input type="text" name="myname" placeholder="Tim O'Reilly"/>
<input type="submit" />

</form>

<?php

echo "Your name is: " . htmlspecialchars($ GET["myname"]);

>

<« C' [swsmmm.oreillystudent.com,/«al® php?myname=Tim+0%27Re

Enter vour name: Submit

Your name 1s: Tum O'Reilly

$_POST

1. Associative array.
2. Array is passed via HTTP POST method.

CODE TO TYPE: $_POST example

<form action="" method="post">

Enter the next phrase: <input type="text" name="next phrase" size="50" placehold
er="he played knick-knack on my door."/>

<input type="submit" />

</form>

<?php

echo "This old man, he played four, " . htmlspecialchars($_POST["next phrase"])

?>

Enter the next phrase: Submit

This old man. he plaved four. he played knick-knack on my door.

Note This is notan exhaustive list of PHP's Superglobals; however, click here for a full list with examples,
! definitions, and a peek of what's to come!

Phew! We've covered a lotofground. Don'tforgetto Save your work, and hand in the assignments from your syllabus. See you
atthe nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://php.net/manual/en/language.variables.superglobals.php
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Decisions

In the lastlesson we learned that storing values in variables and manipulating them with operators are among the most
importanttools we have for programming in PHP. Now let's talk about automating repetitive tasks and the decisions you'll
make based on the values presentin your programs.

Comparison Operators and Conditions

We make comparisons everyday. When we shop, we look at prices of similar items to determine which deals are best.
When we take a trip, we compare alternative routes to decide which will be most expedient. Well, it turns out that we can
do comparisons in PHP and other computer languages as well. Let's look at this process using a simple example.
Let's try a comparison of Captain Crunch breakfast cereal to Frosted Flakes breakfast cereal.

Suppose Captain Crunch is 4 dollars a box, while Frosted Flakes is 5 dollars. We can use PHP to figure out which
price is greater. (We realize you can determine this fairly easily without PHP, butlet's go ahead and work the example
anyway so we can see how PHP works.)

Add the following BLUE and GREEN code to your file in CodeRunner:

<?php
$captain crunch = 4;
$frosted flakes = 5;

?>

Does Captain Crunch cost less than Frosted Flakes? <?php echo ($captain crunch < $frost

ed flakes); ?>

Or, is Captain Crunch priced greater than Frosted Flakes? <?php echo ($captain crunch >
$frosted flakes); ?>

Preview that. What was returned from the echo command here?

In the the lastlesson we learned to modify variables using some of the standard operators: add, subtract, concatenate,
and others. The comparison operators we're using now compare two variables, producing TRUE or FALSE results.

Forinstance, the program above compares two integers to determine if one is larger than the other. ("<" is a symbol
that means "less than," while ">" means "greater than").

This statementis TRUE:

4 <5

We all know that4 is less than 5.

This statementis FALSE:

4 > 5

So how did your program answer the question it was asked about Captain Crunch and Frosted Flakes?

Here's whatyou saw:
Does Captain Crunch cost less than Frosted Flakes? 1

Or, is Captain Crunch priced greater than Frosted Flakes?

4 4

Obviously, in our example, Captain Crunch is less (expensive) than Frosted Flakes, but what's with the number one (1)
at the end there? Was thata typo?

No, that wasn't a typo. Turns out, this is how PHP interprets the Boolean result"TRUE." (Boolean, by the way, is justa
fancy programming word referring to the results of "true or false" inquiries.) Similarly, instead of returning "FALSE" or
"no" when asked if Captain Crunch is greater than Frosted Flakes, your program returned the NULL character. "Null" is

computer-speak for "nothing." When things are false, nothing gets returned, so nothing is printed.

Here's a table of values that PHP can interpret as TRUE or FALSE:

is equal to $b").

IF and ELSE Control Structure

You may not know it, but you actually already understand if and else control structures. You use them everyday when

FALSE TRUE Notes
0 (zero) any non-zero number|non-zero examples: 1,-1,0.5
false true no quotes ("), otherwise it's justa string
NULL, null,", or"" Jany non-null string The space (" ") characteris NOT the same as the null ("") character
Here's a listof comparison operators you can experiment with in your program:
Operator|{Name Usage Result
== Equal $a==%b TRUE if $a and $b are equal.
soceesy | [RS8 S0 A sl WD ey oo of v same
~ Notequal $al=$b TRUE if $a and $b are not equal.
<> $a <>%$b
== Not identical $a 1= $b ;Z%E:;E?;;er?ot equal to $b OR if $a and $b are not of
< Less than $a<$b TRUE if $a is less than $b.
> Greater than $a>$%b TRUE if $a is greater than $b.
<= Less than or equal to $a<=%b TRUE if $a is less than OR equal to $b.
>= Greater than or equal to $a>=$%b TRUE if $a is greater than OR equal to $b.
In PHP we use two equal signs (==) to test for equality. (When you use "==" you're essentially asking:
Not Are these values equal?). Two equal signs, like $a == $b, compare $a to $b (in English it would read

"is $a equal to $b?"), whereas one equal sign sa = $bassigns $b to $a (in English itwould read "set $a

you decide things like "I'll buy Captain Crunch if it's less expensive than Frosted Flakes, or else I'll buy

Frosted Flakes. You've set conditions and also decided on an alternative course of action should those conditions

fail to be met. In a program, this is called a control structure.

In PHP, you would write the sentence above like this:

Type the following into a new file in CodeRunner:

<?php $Captain Crunch = 4; $Frosted Flakes = 5; if ($Captain_Crunch
< $Frosted Flakes) { echo "I'll buy Captain Crunch"; }
else { echo "I'll buy Frosted Flakes";

} ?>

Preview the code above. Which cereal does PHP instruct you to buy? Try changing the numbers assigned to
$Captain_Crunch and $Frosted_Flakes to see what happens.

if statements have a specific form.

OBSERVE:

if (expression) {

statement (s) executed if expression is TRUE } else {
(optional) statement(s) executed if expression IS FALSE

Again, this if statementis also referred to as a control statement. PHP first evaluates the expression to see ifitis
true or false. If the expression is true, then the statements in blue are executed. If not, then the statements in BLUE
are not executed, butthe green ones are.

Logical Operators
Questions can be more complicated than statements. For instance, if Captain Crunch is more (expensive) than

Frosted Flakes, but FruitLoops are less (expensive) than Frosted Flakes, we might wantto choose FruitLoops. The
following code can handle these kinds of complications:

Add the colored code below into your documentin CodeRunner:

<?php $Captain Crunch = 5; SFrosted Flakes = 4;
SFruit Loops = 3;
if (SCaptain Crunch < SFrosted Flakes) {
echo "I'll buy Captain Crunch";
} else if ($Captain Crunch > $Frosted Flakes && $SFrosted Flakes > $Fruit Loops) {
echo "I'll buy Fruit Loops.";
} else { echo "I'll buy Frosted Flakes.";

Preview this code. Which cereal does PHP recommend that you buy? Try changing the numbers representing the
prices and observe the results.

In this example, we've added a couple of things for your consideration. First we added a logical operator. We used
&& which simply means AND. The other addition was the else if. We can have as many of those within an if
statement as we need.

So now the line reads:

OBSERVE:

else if ($Captain Crunch > $Frosted Flakes && $Frosted Flakes > $Fruit Loops) {
echo "I'll buy Fruit Loops.";

In English, the line reads:

OBSERVE:

"Or else if Captain Crunch is greater than Frosted Flakes,
AND
Frosted Flakes is greater than Froot Loops, then I'll buy Fruit Loops.

Notice that when Captain Crunch is 6 dollars and Frosted Flakes is 5 dollars and FruitLoops is 4 dollars, then
$Captain_Crunch > $Frosted_Flakes is TRUE, and that §Frosted_Flakes > $Fruit_Loops is TRUE. So the
whole thing is TRUE and so you'll buy Fruit Loops!

Here are some rules to remember aboutlogical operators:

e (TRUEAND TRUE)is TRUE
TRUE AND FALSE) is FALSE
TRUE OR FALSE)is TRUE

FALSE ORFALSE)is FALSE

(
(
(
e

Like comparison operators, the logical operator performs a comparison on two arguments, and returns a TRUE or
FALSE (1 or null) answer. However, the logical operator compares things that are already TRUE or FALSE.

Below is alistoflogical operators.

Operator|Name Usage Result
AND AN $a AND $b THIIF £t Annd O e TP

&& NN $a &&$b INUL ITYa aliu v aic 1N\NuvL.

OR $a OR $b . .

I OR $a || $b TRUE if $a or $b is TRUE.

XOR Exclusive OR $a XOR $b TRUE if $a OR $b is TRUE, but not both.

Look again at this condition:

($Captain Crunch >= 3 && SFrosted Flakes < 10)

Remember that nested operators perform in a certain order, depending on certain rules? There are rules here too.

Specifically, the comparison operators are evaluated before the logical evaluator. This way, the logical evaluator only

needs to look at the TRUE or FALSE results, and act accordingly.

Like this:

(($Captain Crunch >= 3) &&
($Frosted Flakes < 10)) ((TRUE) &&
(TRUE)) (TRUE)

Operator nesting is really useful. And fortunately, you can do it with logical operators too.

Type the following into CodeRunner:

<?php

$Captain Crunch = 5;

SFrosted Flakes 4;

SFruit Loops = 5;

$Oatmeal = 2;

if ($Captain Crunch < S$Frosted Flakes) {

echo "I'll buy Captain Crunch";

} else if ($Captain Crunch > $Frosted Flakes && $Frosted Flakes > $Fruit Loops) {
echo "I'll buy Fruit Loops.";

} else if ($Captain Crunch > 4 && $Fruit Loops > 4 && $Oatmeal < 4) {
echo "I'll get some Oatmeal.";

}

?>

Play with this one for a while—try entering different values for the different cereals. Be sure to Preview often to see what

happens.

NOTICE: Before you move on, Save the PHP file you've been working on as compare.php.

A Brief Preview of Forms

Before we continue on with control structures, let's make these examples a little more interesting by getting
your PHP program to take inputfrom a user on the web. We're going to make a form that will help us
understand these control structures better. This is a briefintroduction. We'll cover forms in much more detail
later in the course.

So farin this lesson, we've been changing the values in the variables $Captain_Crunch,
$Frosted_Flakes, $Fruit_Loops, and $Oatmeal by hand. Typically though, control structures evaluate
changes made to variables and then react to those changes. If the user changes an input, we can account for
all the possibilities through control structures.

To make our program more interactive, we're going to make a web page with a few input forms we'll use to
submit values to our PHP program. Then we're going to take those inputs and assign them to the variables
listed above.

Let's make an HTML form.

Make sure you're in HTML and type the following into CodeRunner:

<body>
<h3>Choosing your Cereal</h3>
<form method="GET" action="compare.php"> Enter the price of Captain Crunch:

<input type="text" size="25" name="crunch price" value="" />

 Enter the price of Fruit Loops: <input type="text" size="25"
name="loops_price" value="" />

 Cash in my wallet: <select name="cash money">
<option value="">How much cash?</option>

<option value="1">$1.00</option>
<option value="2">$2.00</option>
<option value="3">$3.00</option>
<option value="4">$4.00</option>
<option value="5">$5.00</option>
<option value="10">$10.00</option>
</select>

<input type="submit" value="SUBMIT" />
</form>

</body>

Now Preview this in HTML. If you select an item and click submit, it won't do anything. You should see a page

thatlooks like this:

Choosing your cereal

Enter the price of Captain Crunch: | |
Enter the price of Fruit Loops:| |

Cash in my wallet: How much cash do you have? SUBMIT

)

Save this page as userinput.html, or anything you like, so long as you can remember the name.

[4]

Now we've made a web page that will take input from a web user, and then send that input to the PHP program
thatwe'll use to process it. Now we just need to make our PHP program retrieve the input. To do this, we have
to use something called a superglobal array. Now that's a mouthful! We'll actually study superglobals in

detail in a later lesson. For now let's justtry it

Switch back to PHP with the compare.php PHP program we've been using, and make the following
changes.

Type the changes in BLUE into CodeRunner:

<?php
$Captain Crunch = $ GET["crunch price"];
SFrosted Flakes = 4;
$Fruit Loops = $ GET["loops price"];
SOatmeal = 2;
$my_cash = $_GET["cash_money"];
Stotal = $Captain Crunch + $Frosted Flakes;
if ($total < $my cash) {
echo "I'll buy both Captain Crunch and Frosted Flakes!";
} else if ($Captain Crunch < $my cash) {
echo "I'll buy Captain Crunch.";
} else if ($Captain Crunch > Smy cash && $Fruit Loops < $my cash) {
echo "I'll buy some Fruit Loops.";
} else {
echo "Forget it, I'm going home.";
}

?>

Now Save this PHP program as compare.php, then go back to your userinput.html file in HTML. Preview

it. Enter different prices for the two cereals, select the amount of cash you have in your wallet, then click
submit. Now your program should change according to the input you submitted in the form. Cool, huh?

We're just getting started with control structures, so be sure to save your work and hand in your assignments. See you in the
nextlesson!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Multiple Control Structures and Loops

Let's continue on from the lastlesson. Make sure you've opened userinput.html in HTML, and compare.php in PHP.
Ready? Let's go!

Multiple Control Structures

In the lastlesson we introduced the else if statement, which allows us to work with multiple conditions.

Check out this else if statement:
<?
if (Stotal < Smy cash) {
echo "I'll buy both Captain Crunch and Frosted Flakes!";
}
else if (SCaptain Crunch < Smy cash) {
echo "I'll buy Captain Crunch.";
}
else if ($Captain Crunch > Smy cash && $Fruit Loops < $my cash) {
echo "I'll get some Fruit Loops.";
}
else {
echo "Forget it, I'm going home.";
}
?2>

When the first if statement fails, PHP checks the else if statementbefore going on to else. As long as you begin with
an if and end with an else, (ifyou have a default action), you can add any number of else if statements in the middle.

This way we can check and reactto a lotof conditions. Let's add some conditions to the example we worked on last
lesson.

Type the code in blue into your PHP program in CodeRunner:

<?

$Captain Crunch = 5;

SFrosted Flakes = 4;

$Fruit Loops = 3;

$Oatmeal = 2;

Smy cash = $ GET["cash money"];

Stotal = $Captain Crunch + $Frosted Flakes;

if ($my cash == 10) {
echo "I'll buy both Captain Crunch and Frosted Flakes!";
}
else if (Smy cash ==) {
echo "I'll buy Captain Crunch.";
}
else if (Smy cash == 4)({
echo "I'll buy Frosted Flakes.";
}
else if (S$my cash == 3){
echo "I'll buy Fruit Loops.";
}
else if ($my cash == 2)({
echo "I'll buy Oatmeal.";
}
else {
echo "Forget it, I'm going home.";

}

?>

Save this code using the filename compare.php, and open your userinput.html file in HTML. Try entering some
numbers for the amountof money you have and Preview it (the other variables are setin the program, so the input for
those fields won't matter in this example).

Even though the above code works justfine, the procedure could be streamlined by using a switch statement. The
switch control structure is similar to the if control structure, butit's especially useful when you have one variable with
many possible values. The switch control structure is a more efficient means of accomplishing the same task. It's up to
you decide which control structure you like better.

This is how we'd change our code into a switch statement:

switch ($my cash) {
case "10":
echo "I'll buy both Captain Crunch and Frosted Flakes.";
break;
case "5":
echo "I'll buy Captain Crunch.";
break;
case "4":
echo "I'll buy Frosted Flakes.";
break;
case "3":
echo "I'll buy Fruit Loops.";
break;
case "2":
echo "I'll buy Oatmeal.";
break;
default:
echo "Forget it, I'm going home.";

Give ita try. Save the old file as new_file.php (don'tforgetto make a new HTML file as well), then replace the block of
code that contains the if statements with the switch statements above. Use whichever method you prefer, it's your call.

And of course we want you to practice! Especially since we're going to assign this task as an objective later.

Before we go on, experiment and find answers to these questions:

. What happens when you nest comparison operators?
. Would (null == 0) be TRUE or FALSE?
° How about (null === 0)°?

° In an If statement, do you have to have parentheses (()) around the condition?

. What about brackets ({})?
Hint: Try this with one action statement AND with two.

. Can you put the whole if control structure in one line?
° Do you always need to have an else statement?
. When nesting logical operators, do you need parentheses?

. What happens when you remove break; statements?

WHILE and FOR Loops

Aloop is arepetitive task that goes on while something is true or for some number of steps. That's why they are
called "while" and "for" loops.

A while loop has the following structure:

while (somethingis true) { do some stuff };

As soon as that something is false, the while loop stops.
Whereas a forloop has the following structure:

for (some number of steps) {do some stuff };

Let's look atan example. Type this into a new PHP file in CodeRunner:

<?

echo "Hide and go seek, I'm counting to 25:
";

$counts = 1;

while ($counts <= 25) {
echo $counts." Mississippi...
";
$counts++;

}

echo "Ready or not, here I come!
";

?>

In case you didn't play hide-and-seek in your childhood, this is how you'd count outloud while giving the other kids a
chance to hide. Such fun!

We have introduced a new form of control structure - the WHILE loo p. And like with any control structure, the WHILE
loop does something in response to a TRUE conditional statement. In this case, however, the loop continues to

repeat the action until the conditional statementis FALSE.

All loops have four essential parts:

1. The initial value statement, in this case $counts = 1;

2.The conditional statement, in this case $counts <= 25

3.The action statement(s), in this case echo $counts.” Mississippi...
";

4.The increment statement, in this case $counts++; (Remember this unary operator?)

In order for aloop to work, it has to have a starting point, an ending point, and something to do in between. What would
happen if any of the four elements in our example were missing? Try messing with them, and you'll find out. (Go
ahead, try. I'll wait.)

Loops follow the same scheme as any control structure, in that you can nest all kinds of conditional E
Note statements and actions within them, including more loops. This can be lots of fun -- especially for duping !
your buddies into thinking the computer screen is possessed by gremlins! '

Our counting loop example above is a really common loop--so common, in fact, thatalmost all programming
languages have developed an alternate type ofloop that can be used as a shortcut: the FOR loop.

The FOR loop structure looks like this:

for ($counts = 1; S$Scounts <= 25; S$counts++) {
echo S$counts." Mississippi...
";

}

Try replacing your WHILE loop with this FOR loop, then Preview the code. You should see the exact same result. In
fact, the FOR loop has exactly the same four elements as the WHILE loop. The only difference is the order of the
elements in the syntax. Well, that, and if you forgetthe increment statement in this one, PHP will yell at you. Sounds
mean, butsometimes we need a little kick to keep from inadvertently causing an infinite loop. Yuck.

You may think that learning both WHILE loops and FOR loops in PHP is needless and redundant, and it's true that
most of the time they are interchangeable. However, as your scripts gain more complexity, you'll find that some tasks
are a perfect fit for using FOR, while using WHILE is best for others.

You've come really farl Now you can program the majority of what you'll need in PHP. Congratulations! You are one of the best
PHP programmers in the world!

...Circa 1995, that is. To create cutting-edge web software for this century, we have a ways to go. Take heart—you've
accomplished a lot already. Save your work, and don't forget the assignments. See you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Functions

A function acts like a small program within your larger program. You invoke a function, send itinformation, and get something
back. A great way to learn to use functions, is to create one and use it. Let's go!

Creating Code Reusability with Functions
Let's create a new program so we can practice using functions. Our new program will take user inputjustlike our

previous programs, only this time we'll inquire about the user's state of mind and recommend a mantra for them to
repeat.

Make sure you're in HTML syntax and type the following into CodeRunner:

<body>
<h3>0ST's Mantra generator</h3>
<form method="GET" action="mantra.php">

My current mood:
<select name="my mood">
<option value="">Please choose...</option>
<option value="happy">I'm happy.</option>
<option value="sad">I'm sad.</option>
<option value="angry">I'm angry.</option>
<option value="indifferent">I'm indifferent.</option>
</select>

<input type="submit" value="SUBMIT" />

</form>

</body>

Save this HTML file as moodinput.html

In PHP Mode, type the following code highlighted in BLUE into CodeRunner:

<?
$my mood = $ GET["my mood"];

if ($my mood == "happy") {
echo "Repeat the following:

";

for ($chant = 1; $chant <= 10; Schant++) {
echo " OM... ";
}

}

else if (Smy mood == "sad") {
echo "Repeat the following:

";

for ($chant = 1; $Schant <= 10; Schant++) {
echo " okay... ";

}

}

else if (Smy mood == "angry") {
echo "Repeat the following:

";
for ($chant = 1; $chant <= 10; Schant++) {
echo " Mississippi... ";

}

}

else if (Smy mood == "indifferent") {
echo "Repeat the following:

";

for ($chant = 1; $chant <= 10; S$chant++) {
echo " Wake up... ";

}

}

else {
echo "Repeat the following:

";

for ($chant = 1; $chant <= 10; $chant++) {
echo " Try harder... ";

}

?>

Save this code as mantra.php and, once again, open up the HTML file moodinput.html.
Preview the HTML. Enter different values for your mood (after all, we're all pretty moody).

We have used pretty much the same PHP code in several places. When you have the same code or similar code in
lots of different places, use a function. It will make your program more readable and save time. Say we decided to
recommend chanting our mantra 20 times instead of 10. Unless we used a function, we'd have to change the code by
hand in each ofthe "for" loops. Even for a simple code like ours, that would be truly annoying. You can imagine trying
to do this with long and complicated code--it could get downright ugly. Fortunately, functions enable us to avoid
such unpleasantness. We can create a function to execute a particular task each time we enter the name of the function
into our program. This is referred to as "calling" a function. Change your program so itlooks like the stuff below—be
sure to remove the "for" loops within the "else if" statements.

Switch back to PHP and add the following code in BLUE into CodeRunner:

<?
function mantra($the _sound) {

for ($chant = 1; Schant <= 10; S$chant++) {
echo $the sound . "... ";

}

$my mood = $ GET["my mood"];
if ($my mood == "happy") {
mantra ("OM") ;

}

else if (Smy mood == "sad") {
mantra ("okay") ;

}
else if (Smy mood == "angry") {

mantra ("mississippi");

}

else if ($my mood == "indifferent") {
mantra ("Wake up") ;

}

else {

mantra ("Try harder") ;

?>

Save this file as mantra.php and then switch back to your moodinput.html file. Try entering different moods. You

should getthe same results as before, but this time you used functions.

Each time the mantra("something") function is encountered by PHP, it calls the function definition function
mantra($the_sound). The variable ($the_sound in this case) is setto whatever is in between the parentheses

when mantra("something") is encountered. Forinstance, mantra("OM") is calling the function

mantra($the_sound) and setting $the_sound = "OM". This is known in functions as "setting a parameter." This
particular function takes one parameter: $the_sound. However, functions can take no parameters at all or many
different parameters.

Much like a variable holds values, functions hold processes (snippets of code) that we want to reuse. So instead of
having to add the same code over and over again, we can simply call the function. In this case, when mantra() is
encountered, the code inside ofthe brackets { and } in the definition function mantra(){} is executed. Functions will
only be executed when they are called. Try removing the calls to mantra(). You'll see that the function doesn'tdo
anything then.

If the function you've created doesn't have any parameters, you still need to have the parentheses in
place, they just won't contain anything. Notice how no dollar signs ($) are used in the function name
mantra, butinstead we follow the name with parentheses(()). They need to be there, that's just the way it

Congratulations—you've just worked through your firstexample of code reusability!

Function and Variable Scopes

Scope refers to a variable's area of influence. If a variable is defined inside of a function, then its area of influence is
only within that function. That means we can use that variable name again in another function--setting values to itin
one function won't affect the setting in another function. Let's try using a function to encapsulate those "if" statements in
our example from the last section. In the process, we can see how scope may affect the outcome of our program.

Revise your PHP program so itlooks like this in CodeRunner:

<?
function mantra($the sound) {
for ($chant = 1; S$chant <= 10; S$Schant++) {
echo $the sound . "... ";
}
}

function Mood Chant() {

if ($my mood == "happy") {
mantra ("OM") ;

}

else if (Smy mood == "sad") {
mantra ("okay") ;

}

else if (Smy mood == "angry") {
mantra ("mississippi");

}

else if ($my mood == "indifferent") {
mantra ("Wake up");

}

else {

mantra ("Try harder");

}
$my mood = $_GET["my mood"];
Mood Chant() ;

?>

Save this as mantra.php, then open your moodinput.html file. Try altering ANY of the moods on the list. No matter
what you choose, this code will always return Try Harder as the output.

So why is the program returning Try Harder as a result, no matter what we select? Let's perform some diagnostic
tests to find out. We'll enter some echo statements to print out variable values in different parts of our program. Then
we can use the information we getto determine the path our program is taking and the steps we need to take to correct
our problem. Let's try it.

Add some echo statements into CodeRunner:

<?
function mantra($the sound) {

for ($chant = 1; S$Schant <= 10; S$Schant++) {
echo $the sound . "... ";
}
}
function Mood Chant () {
echo "INSIDE the Mood Chant function, your mood is ".$my mood.".
";
if ($my mood == "happy") {

mantra ("OM") ;

}

else if (Smy mood == "sad") {
mantra ("okay") ;

}

else if (S$Smy mood == "angry") {
mantra ("mississippi");

}

else if (Smy mood == "indifferent") {
mantra ("Wake up");

}

else {

mantra ("Try harder");

}

$my mood = $ GET["my mood"];

echo "OUTSIDE the Mood_Chant function, your mood is ".$my_mood.".
";
Mood Chant () ;

?>

Once again, Save this as mantra.php, then go back to your moodinput.html page. Selectangry from the drop
down listand submitit.

You should get something like this:

OUT SIDE the Mood_Chant function, your mood is angry.

INSIDE the Mood_Chant function, your mood is .

Try Harder..Try Harder..Try Harder..Try Harder..Try Harder..Try Harder..Try Harder..Try Harc
Harder..Try Harder...

(1 D

Look closely. What printed out? What didn't? The first result printed out OUT SIDE the Mood_Chant function, your
mood is angry. We asked PHP to printit with the statementecho "OUTSIDE the Mood_Chant function,your
moodis".$my_mood.".";. So as expected, the variable $my_mood was defined as angry. However, the second
result printed INSIDE the Mood_Chant function,your mood is . Even though we asked PHP to printecho
"INSIDE the Mood Chant function,vourmoodis".$my mood.".";, itdidn't printa value for §my mood.

In the above example, you would think the value of $my_mood ("angry") would print both inside and outside of the
function Mood_Chant (). But, once the function was called, the value $my_mood wasn't seen INSIDE of the
Mood_Chant() function atall. This is because the variable $my_mood is completely different depending on whether it
is located outside or inside of the function. Although variables may share the same name, their location determines
their effect on the program. When a variable within a function is encapsulated, as if the function was its own program,
this is referred to in programming as the function's scope.

In the next section, we'll learn to set parameters so that scope doesn't prevent us from using functions to the fullest.

PHP isn't as strict with scope as some other languages are. Since PHP isn't strongly typed, you're not
required to declare variables before you use them. Therefore, within a PHP function, a variable declared
within a loop will retain its value outside of thatloop. To see this conceptatwork, try using echo to
output $chant after the forloop is finished in mantra().)

Z
o
-~
®

Using Functions with Parameters and Return Values

As interesting as scope can be, itdoesn't help lighten your work load. What's the use of reusing your code in a
function, if you have to re-define $my_mo od within the function? Worse, what if you want to have different values for
$my_mood anytime you use the function Mood_Chant()? We could save ourselves a lot of work if we could feed
our function different values and get an output each time. We already did this in the first section above using
parameters.

Sneaking In with Parameters

Type the following into CodeRunner:

<?
function mantra(Stheisound) {

for ($chant = 1; S$chant <= 10; S$chant++) {

echo S$the sound . "... ";

}
function Mood Chant ($my mood) {
echo "INSIDE the Mood Chant function, your mood is ".S$my mood.".
";

if (Smy mood == "happy") {

mantra ("OM") ;

}

else if (Smy mood == "sad") {
mantra ("okay") ;

}
else 1if ($my_mood == "angry") {

mantra ("mississippi");

}

else if (Smy mood == "indifferent") {
mantra ("Wake up") ;

}

else {

mantra ("Try harder");

}
$my mood = $ GET["my mood"];

echo "OUTSIDE the Mood Chant function, your mood is ".S$my mood.".
";
Mood Chant ($my_mood) ;

?>

Save this as mantra.php, open moodinput.html, and select angry from the drop-down list. This time, you
should have gotten the results you expected.

Look at your function again:

function Mood Chant ($my mood) {
//code that processes the value of $my mood

}

//passing the value of Smy mood UP to the Mood Chant function above
Mood Chant ($my_mood) ;

Passing a parameter essentially drills through the wall of your function's scope, making ita more useful

machine.

Whatever parameter we call to Mood_Chant(parameter); becomes the value for$my_mood. And you
don'teven have to use the name $my_mood, since it's a completely different variable within the function and

outside the function. Try using this on your own.

Look at your function again:

function Mood Chant ($my mood) {

//code that processes the value of $my mood

}

//passing the value of $my mood up to the Mood Chant function above
Mood Chant ("happy") ;

The value of $my_mood inside of the function Mood_Chant($my_mood)is "happy". It's like setting
$my_mood = "happy" INSIDE of the function.

Now that we've snuck in with parameters, let's sneak out with return values.

Sneaking out with Return Values

In the examples above, we saw that we can sneak into a function using parameters. We can also sneak out

using return values. The best way to understand "return" is to use it. Let's get to it.

Type the following into CodeRunner:

<?
function mantra($theisound) {

for ($chant = 1; S$chant <= 10; S$chant++) {
echo S$the sound . "... ";

}
function Mood Chant ($my mood) {
if ($my mood == "happy") {

mantra ("OM") ;
$after_chant = "
I feel serene now.";

}

else if (Smy mood == "sad") {

mantra ("okay") ;
Safter chant = "
I feel better now.";

}

else 1if ($my_mood == "angry") {

mantra ("mississippi");
Safter chant = "
I've calmed down now.";

}

else if (Smy mood == "indifferent") {

mantra ("Wake up");
Safter chant = "
I'm awake now.";

}

else {

mantra ("Try harder");
$after_chant = "
I'll try harder now.";

}

return Safter chant;

}

$my mood = $ GET["my mood"];

$after chant mood = Mood Chant ($my_mood) ;
echo $after chant mood;

?>

Save this as mantra.php, open up moodinput.html, and select anything you like from the drop down list.
Now you should get the chant and at the end you should have an "after-chant mood" expressed. All we did
here was add some statements into the variable $after_chantand then use return $afterchant atthe end of

the function. When we use return, we are setting a value in place of the function.

Butinstead of justletting a parameter sneak in, you've allowed a return value to sneak out of the function
scope. Suddenly, your function is an efficient factory, taking in raw ingredients (parameters) and spitting outa
refined product -- that s, it returned a value. Allowing a return value to sneak out of the function scope is used

often in programming to return true or false values in functions that perform tests.

Multiple Parameters and Default Values

We practiced using parameters earlier in the lesson and now we can pass parameters to a function. Let's
change our function so that the end user can sethow many times we chant our mantra.

Type the following code into your moodinput.html file in CodeRunner:

<body>
<h3>0ST's Mantra generator</h3>
<form method="GET" action="mantra.php">

My current mood:
<select name="my mood">

<option value="">Please choose...</option>

<option value="happy">I'm happy.</option>

<option value="sad">I'm sad.</option>

<option value="angry">I'm angry.</option>

<option value="indifferent">I'm indifferent.</option>
</select>

Pick a number:
<select name="my number">
<option value="2">Please choose...</option>
<option value="10">10</option>
<option value="20">20</option>
<option value="30">30</option>
<option value="40">40</option>
</select>

<input type="submit" value="SUBMIT" />

</form>
</body>

Save this as moodinput.html again. We've added the option of selecting a number, so let's change our
program to accept this information and process it.

Type the following in your PHP file in CodeRunner:

<?
function mantra(Stheisound,$the_pumber = 10) {

for ($chant = 1; $Schant <= $the number; Schant++) {
echo S$the sound . "... ";

}

}

function Mood Chant ($my mood, $chant_pumber = 10) {
if ($my mood == "happy") {

mantra ("OM", $chant_number) ;
$afterfchant = "
I feel serene now.";

}

else if (Smy mood == "sad") {

mantra ("okay", $chant number) ;
Safter chant = "
I feel better now.";

}

else 1if ($my_mood == "angry") {

mantra ("mississippi", $chant_number) ;
Safter chant = "
I've calmed down now.";

}

else if (Smy mood == "indifferent") {

mantra ("Wake up", $chant number) ;
Safter chant = "
I'm awake now.";

}

else {

mantra ("Try harder", $chant number) ;
Safter chant = "
I'll try harder now.";

}

return $after chant;

}

$my mood = $ GET["my mood"];
$chant number = $ GET["my number"];

$after chant mood = Mood Chant ($my mood, $chant number) ;

echo Safter chant mood;

?>

Save this as mantra.php, open moodinput.html, and Preview.

In this program we let the user selecta number. Then inside of the mood_chant function we call Mantra(first
parameter, second paramter) where the second parameter is the number the end user chose on the form in
the first place. Notice we changed the function Mantra() to accept two parameters.

By adding a default value to the parameter $the_number, you made that parameter completely optional
when you call Mantra. To see this in action, try changing the program so that one of the calls to Mantra() has
only one parameter being set.

You can have as many parameters and default values as you wantin a function. But you have to
' Note make sure that the default-valued parameters are at the end of the parameter list. Any idea why? !
' Experimentto find out! '

Be sure to save your work and hand in your assignments. See you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Arrays

Have you ever used one of those weekly pill containers? You know, the ones that keep your vitamins or medicine organized for
each day? Surely you've atleast seen one:

This is an excellent representation of this entire lesson—thatbox is just an array of containers with objects in them. Let's get
started with a fresh file and take a breather from the monster we've created.

Creating an Array

Open a new PHP file and type this code into CodeRunner:

<?php
Snames = array("scott","kendell","Trish","Tony","Mike", "Debra","Curt");
echo "<pre>";

print r($names);
echo "</pre>";

?>

Save and preview the file:

[0] => scott

[1] => kendell
[2] => Trish

[3] => Tony
[
[
[

4] => Mike
5] => Debra
6] => Curt

You've just defined an array named names, by passing the seven names as parameters to the built-in PHP array()
construct. If you think in terms of the pill box above—a huge, people-sized pill box—it would look like this:

0 1 2 3 4 5 6
scott jkendell] Trish Tony Mike | Debra] Curt

Now, the great thing about arrays is that you can access and mess with any one of the elements—names, pills,
whatever values are in the boxes—by using the array keys. Let's give Mike a call:

Type the following into CodeRunner:

<?php
Snames = array("scott","kendell","Trish","Tony", "Mike", "Debra", "Curt") ;
echo "Who is it? ...".Snames[4]."
";

echo "<pre>";
print r(S$names);
echo "</pre>";

?>

Preview this. Did you see Mike's name? All you did here is retrieve the value of the array element at the 4th position,
orindex. In this case, you used the index 4 as the key. For kicks, let's replace Mike:

Type the following into CodeRunner:

<?php
Snames = array("scott","kendell","Trish", "Tony", "Mike", "Debra", "Curt") ;
echo S$names([4];

Snames[4] = "Josh";
echo "Who is it? ...".Snames[4]."
";

echo "<pre>";
print r($names);

echo "</pre>";

?>

See, this is why we love arrays. No scope to contend with, justa simple organization of values that we can mess with
atwill. So now the $names array looks like this:

0 1 2 3 4 5 6
scott Jkendell} Trish Tony | Josh | Debra} Curt

Notice the new, super-handy, built-in function called print_r, which prints outan array in a really nice,
Note readable format. With a little experimentation, you can figure out why we used the <pre> and </pre> tags, !
too. You can find out more about this function at php.net. :

Associative Arrays

If we wanted to represent the pill box in PHP, it would make sense to use the labels that already existto mark each box
for our purposes as well. Here's one way to do it:

http://www.php.net/manual/en/function.print-r.php

Type the following into CodeRunner:

<?php

Sweekly pills = array("S" => "vitamin C",
"M" => "Echinacea",
"T" => "antibiotic",
"W" => "calcium",
"Th" => "zinc",
"F" => "multivitamin",
"Sa" => "alka seltzer");

echo "<pre>";
print r($weekly pills);

echo "</pre>";

?>

Save itas pills.php and preview:

] => vitamin C

] => Echinacea

] => antibiotic

] => calcium

h] => zinc

] => multivitamin
al] => alka seltzer

£l

You've just defined an associative array. By using the => operator, you've associated each array element value to its
own index, or key, so thatyou can access it more intuitively. In other words, an associative array is a way of naming
each slotof the array. In this case, the slots are named S,M, T, W, Th, F, and Sa, respectively. So now we can store
and access values in an array based on these names instead of using indices. Experiment with this:

Type the following into CodeRunner:

<?php

Sweekly pills = array("S" => "vitamin C",
"M" => "Echinacea",
"T" => "antibiotic",
"W" => "calcium",
"Th"™ => "zinc",

echo "<pre>";
print r($weekly pills);
echo "</pre>";

//assign a new pill to Thursday
$weekly_pills["Th"] = 'aspirin';
Sweekly pills[4] = 'garlic';

//Let's be lazy and see what happens...
Sweekly pills[] = 'glucose';

echo "<pre>";
print r($weekly pills);

echo "</pre>";

>

"F" => "multivitamin",
"Sa" => "alka seltzer");

//Does Thursday correspond to index 4? Let's see...

Save and preview this:

] => vitamin C

] => Echinacea

] => antibiotic

] => calcium

h] => zinc

] => multivitamin
al] => alka seltzer

] => vitamin C

] => Echinacea

] => antibiotic

] => calcium

h] => aspirin

] => multivitamin
al] => alka seltzer
] => garlic

] => glucose

Kl

D

By the way, all arrays in PHP are associative. Every array value is assigned to a key index, regardless of whether we
defined it. When you don'tdefine a key index for an element value, PHP automatically assigns a defaultindex to that

value for you. Specifically, it assigns the nextincrement after the highest integer index used. That's why 'glucose’ was

assigned to the index 5—we'd already used 4.

Type the following into CodeRunner:

<?php

$months of the year = array(l => "January", "February", 4 => "April", 3 => "March",
"May", "June", "July", "August", "September", 12 => "Decemb
er",
10 => "October", 11 => "November");

echo "<pre>";
print_r($months of the year);

echo "</pre>";

?>

Save itas months.php and preview it. Play around with it. Become one with array elements and keys. Oh, and don't
forget to study your book or php.net for more fun examples.

Creating Multi-Dimensional Arrays

A multi-dimensional array is simply an array of arrays. Thatis, we can put arrays in for the values of an array which
would be a two-dimensional array. A three-dimensional array would be an array of arrays of arrays. Ah, nesting. One of
PHP's little joys. Let's modify our pills.php to see how itworks.

Type the following into CodeRunner:

<?php

Sweekly pills = array("S" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"opm" => "zinc",
"llpm" => "alka seltzer"),
"M" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"opm" => "zinc",
"llpm" => "alka seltzer"),
"T" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"epm" => "zinc",
"llpm" => "alka seltzer"),
"W" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"opm" => "zinc",
"llpm" => "alka seltzer"),
"Th" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"epm" => "zinc",
"llpm" => "alka seltzer"),
"F" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"épm" => "zinc",
"llpm" => "alka seltzer"),
"Sa" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"épm" => "zinc",
"llpm" => "alka seltzer"));

echo "<pre>";
print r(Sweekly pills);
echo "</pre>";

echo "What pill should I pop right now? ...".Sweekly pills["Th"]["6pm"];

?>

http://www.php.net/manual/en/function.array.php

Save and preview this code. Wow. That's a lot of pills! Butit seems that there are enough people taking enough pills

that a container indeed exists that represents this matrix of dosages:

£

B

&
|

Creating a multi-dimensional array is as simple as nesting the array() constructto your heart's content, to create useful

representations of just about anything.

Traversing and Manipulating Arrays

Let's have some fun and send a shout-outto everyone in the $names array. Modify array.php as shown

We're feeling friendly. Type the following into CodeRunner:
<?php
Snames = array("scott","kendell","Trish","Tony", "Mike", "Debra", "Curt");
echo "There are ".count ($names)." names in the \S$names array.
";
for ($1 = 0; $i < count(Snames); Si++) {
echo "Dialing index ".$i."...";
echo "Hey there, ".Snames[$i]."!!
";
}
>

encourage you to check itoutatphp.net.

Preview this code and feel the love:

There are 7 names in the $names array.
Dialing index 0..Hey there, scott!!
Dialing index 1..Hey there, kendell!!
Dialing index 2..Hey there, Trish!!
Dialing index 3..Hey there, Tony!!
Dialing index 4 ..Hey there, Mike!!

Dialing index 5..Hey there, Debral!
Dialing index 6..Hey there, Curt!!

El

Just by being friendly, you've traversed an array. Traversing simply requires that you hopscotch through all the

Note Yet another excellent built-in PHP function is count (). We're sure you can guess whatitdoes, but we still

D

elements of your array and do something with each value. "For" and "while" loops are great for that, especially when

you use numerical indices.

Traversing Associative Arrays with list() and each()

http://www.php.net/manual/en/function.count.php

Here's one guarantee: you're going to use arrays a lot. You can create, access, traverse, and manipulate
arrays fairly easily IF you know exactly whatis going into them, how many elements they have, and how deep
the nesting goes in every case. Butmost of the time, you won'tknow all that. You'll need to work around any
gaps with some nifty programming or some great built-in PHP array functions, like count().

Forinstance, how would you traverse the associative $weekly_pills array? Using numerical counters won't
help. Butdon'tworry, you have options. Here's our recommended way to do it:

Type the following into CodeRunner:

<?php

Sweekly pills = array("Sunday" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"epm" => "zinc",
"llpm" => "alka seltzer"),
"Monday" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"opm" => "zinc",
"llpm" => "alka seltzer"),
"Tuesday" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"epm" => "zinc",
"llpm" => "alka seltzer"),
"Wednesday" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"epm" => "zinc",
"llpm" => "alka seltzer"),
"Thursday" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"epm" => "zinc",
"llpm" => "alka seltzer"),
"Friday" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"epm" => "zinc",
"llpm" => "alka seltzer"),
"Saturday" => array("8am" => "vitamin C",
"lpm" => "antibiotic",
"epm" => "zinc",
"llpm" => "alka seltzer"));

while (list(Skey, $value) = each($weekly pills)) {
echo "Here's what you should take on ".Skey.":
";

echo "<pre>";

print r($value);
echo "</pre>";

?>

Save and preview it:

Here's what you should take on Sunday: [«

Array

(

8am] => wvitamin C
lpm] => antibiotic
6pm] => zinc

llpm] => alka seltzer

D
g D

How did you get all that output? Well, there are two built-in functions working together here.

[
[
[
[

Let's break itdown:

while (list($key, $value) = each ($weekly pills)) {
echo "Here's what you should take on ".Skey.":
";

list() is notreally considered a function, but a language construct, because itdoesn't follow the normal
"Parameter in/Return value out" function rule. list () is simply a shortcut which, when used with the
assignment operator (=) and an array, assigns each value of that array to the parameter variables within
list().

In other words, this:

list ($parameterl, $parameter2, $parameter3) = array("valuel", "value2", "value3"

)

...Is the same as this:

$parameterl = "valuel";
$parameter2 = "value2";
$parameter3 = "value3";

Now let's go on to each(), which may be even frickier than list(). Trickier, because itintroduces an aspect of
arrays that we haven't discussed until now: the array cursor.

Take a look at the graphical representation of $names again:

1] 1 2 3 4 5 6
scott fkendell} Trish Tony | Josh | Debra} Curt

Now, take your mouse cursor and pointto each box, one by one, starting with the first entry. You've just
demonstrated the way an array cursor works: it points to array elements. The array cursor always begins by
pointing to an array's first element, and stays where itis until moved by a built-in PHP function.

Here's where each() comes in:

Type the following into CodeRunner:

<?

Stest array = array("keyl" => "valuel",
"key2" => "valuel",
"key3" :> "Value3") ’.

//start with the beginning
$new arrayl = each($test_array);

echo "<pre>";

printir($new7arrayl);
echo "</pre>";

>

Save itas each.php and preview it:

)
Kl [

As you may have guessed, each() takes an array as its parameter. But what you may not have guessed is
thatitalso has an array as its return value. Only the array returned is different from the array passed in.

each() uses the array cursor to access the element currently being pointed to by that cursor. This is called the
current element. In our above example, the current element is the first element of $test_array. After
accessing the element, each() creates a new array with four elements—using the key and value from the
current element of the parameter array—and returns that array. In our example, we assigned that array to
$new_array1. Finally, each() increments the array cursor so it points to the next elementin the array.

Why four elements in the return array? So that the new array can be accessed both numerically AND
associatively. The key of the parameter array's current element becomes the value for two of the new array's
elements, accessed by the keys 0 and "key". The value of the parameter array's current elementbecomes
the value for the other two elements of the new array, accessed by the keys 1 and "value™.

Since list () can only deal with numerical keys (itignores associative keys), the four-element return array is
especially handy.

Let's putit all together:

while (list($key, $value) = each(Sweekly pills)) {
echo "Here's what you should take on ".S$key.":
";

In this example, the "while" loop is monitoring the cursor of our $weekly_pills array. We can trust that the
loop won't be infinite because of each(). The array cursor will eventually reach the end of the array and point
to null, buteach time itloops, the current element's key (in this case, the day of the week) would be assigned
to the variable $key. Similarly, the current element's value (in this case, another array containing that day's
pills) would be assigned to the variable $value.

Yikes! That's notjusttricky, that's downright eye-crossing. When you do get the hang of it though, this little
PHP concoction will serve you well, not only with arrays, but with SQL commands and lots of other
programming.

Note As an alternative to using list() and each() inside the condition of a while loop, check out
' foreach() loops atphp.net.

More built-in functions

How do you know if an element exists in an array? What if you need distinct array elements? How about sorting and
merging? All these questions can be answered with built-in PHP functions. Like we said earlier, it would take ages to
go through them all, but we should definitely go over some of the major ones.

To cap off our intensive array workout, we leave you with a montage of fun PHP functions. Play, experiment, and refer
back to your book or to php.net often. Think about how the functions work. Are array cursors used? What are the
parameters? Whatis the function returning?

Finally, think about how you would write your own PHP functions to perform the same tasks. Would you make the
same choices as the PHP folks?

http://php.net/manual/en/control-structures.foreach.php
http://php.net

Type the following into CodeRunner:

<?php

$scotts_phonebook = array("kendell" => "555-1234",
"Trish" => "555-2345",
"Tony" => "555-3456",
"Mike"™ => "555-4567",
"Debra" => "555-5678",
"Curt" => "555-6789");

Skendells phonebook = array("scott" => "555-7890",
"Trish" => "555-2345",
"Tony" => "555-3456",
"Debra" => "555-5678",
"Kate" => "555-8901");

//here's a phonebook combining both Scott's and Kendell's contacts, no duplicates

$combined phonebook = array unique (array merge ($scotts_phonebook, $kendells phonebook))

’

echo "<pre> Combined Phonebook:";

print r($combined phonebook) ;

echo "</pre>";

//sort by name - why do you suppose we aren't assigning the return value to anything?
ksort ($combined phonebook) ;

echo "<pre>Sorted Phonebook:";

print r($combined phonebook) ;

echo "</pre>";

//here's a phonebook containing only mutual friends of Scott and Kendell
Smutual friends = array intersect ($scotts phonebook, S$kendells phonebook);
echo "<pre>Mutual Friends:";

print r($mutual friends);
echo "</pre>";

//in this custom function called "invite friend," a phone number is
//called and that friend is invited to a party.
function invite friend(Sphone number, $name) ({

echo "Calling phone number Sphone number...";
echo "Hello $name! You're invited to a party!
";

//Here's a REALLY tricky built-in function we can use to invite ALL friends to the part
Y.
//Careful, this one has lots of rules regarding the second parameter.

array walk($combined phonebook, 'invite friend');

//Finally, generate a random phone number and see if it's in the phonebook.

$random_phonenumber = "555-".strval (rand(1000,9999));
if (in_array($random phonenumber, S$combined phonebook)) {
echo "Phone number ".$random phonenumber." is in the phonebook.";

}

else {

echo "Phone number ".$random phonenumber." is not in the phonebook.";

?>

Save itas phonebooks.php and preview.

Were you able to figure them out? If not, give yourself some time and don't stress—remember, these are functions
built by someone else to save time. If any built-in function doesn't suit your purpose, look for another one...or just write
one yourself.

Don'tforgetto Save your work! And be sure to work on the assignments in your syllabus when you're done here. See
you atthe nextlesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Welcome back. So, you already know that strings are one type of PHP variable. And you've been using strings throughout the
lastfive lessons with echo, the concat operator (.), and in all kinds of functions and loops. You've got strings down, baby.

So why spend an entire lesson on the letters, numbers, and symbols that make up strings?

Strings

The truth is, we've only explored the tip of the proverbial iceberg when it comes to strings. In fact, they are the cornerstones of

many a web-based, database-driven application. Like piranha, you should never underestimate the feisty little critters.

So get your waist-high galoshes on, fire up PHP in CodeRunner, and let's get cracking.

What's a String Anyway?

And whatis it hiding from us? String is its real name, right? Let's see what's going on here. Remember our LAMP

acronym?

Type the following into a new PHP file in CodeRunner:

echo
echo
echo
echo

?>

.$lamp a.", ".$lamp m.", and ".$lamp p."!
";

//These supposedly simple strings are hiding something...

"Gimme an L! ".$lamp 1[0]."!'
";
"Gimme an A! ".$lamp_a[0]."!'
";
"Gimme an M! ".$lamp m[0]."!'
";
"Gimme a P! ".$lamp_p[0]."!
";

<?php

Slamp_1 = "Linux";

S$lamp a = "Apache";

$lamp_m = "MySQL";

Slamp p = "PHP";

echo "
The stack begins with ".S$lamp 1.", and goes on to include "

Save itas strings.php, then click Preview. You should see this:

The stack begins with Linux, and goes on to include Apache, MySQL, and PHP!

Gimme an L! L!
Gimme an Al Al
Gimme an M! M!
Gimme a P! P!

[l

now the truth comes forth.

That sneaky string doesn't wantyou to know it has a secretidentity. You see, a string is a special type of array, one
where each character --letter, number, symbol, newline, whatever takes up one byte of space -- is assigned a

D)

Wait a minute. Why were we just able to use the array operator [] to access the first letters of the LAMP acronym? Aha,

numerical key index. Here's what the string "Linux" would look like in our pillbox representation from the arrays lesson:

' Note

The lastbox you see contains simply the NULL character, which has always been used to terminate
strings in the C language - the language PHP is based upon. (Check out the history of PHP.)

Manipulating Strings

Let's explore strings further. We're going to make a new PHP file called bologna.php.

http://en.wikipedia.org/wiki/Character_%28computing%29
http://www.php.net/history

Type the following into CodeRunner:

<?php

function spell me ($mystring) {
$i =0;
while ($mystring[$i] !'= null) {
if ($1i == 0) {
echo $mystring[$i];

}
else {
echo " - ".$mystring[$i];
}
$i++;
}

}
$string_1 = "bologna";
$string 2 = "oscar";
$string 3 = $string_2;
$string 3[0] = 'm';
$string_3[1] = 'a';
$string 3[2] = 'y';
$string_3[3] = 'e';

//8ing along if you remember the commercial!

echo "My ".$string 1." has a first name, it's ";
spell me($string 2);
echo "
";

echo "My ".$string_1l." has a second name, it's ";
spell me($string 3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That ".$string_2." ".$string_3." has a way

With ";

spell me($string 1);

echo "!";

2>

E Note Forreference here's the Oscar Mayer bologna song

Preview for the lyrics of the song:

My bologna has a first name, it'so-s-c-a-r

My bologna has a second name,it'sm-a-y-e-r
Oh llove to eat it every day,

And if you ask me, why [l say...

That oscar mayer has a way
Withb-o-1-0-g-n-al
(1l

D]

D

Through the power of commercial jingles, we're able to uncover two more truths about strings: notonly can we access

the characters within a string using the [] operator, but we can use the same operator to traverse and manipulate
strings, just like arrays.

http://www.youtube.com/watch?v=rmPRHJd3uHI

Take another look:

function spell me (Smystring) {
Si = 0;
while ($mystring[$i] !'= null) {
if (81 == 0) {
echo S$mystring[$i];
}
else {
echo " - ".$mystring[$il;
}

Sit++;
}
$string 1 = "bologna";

$string 2 = "oscar";
$string 3 = $string 2;

$string 3[0] = 'm';
$string 3[1] = 'a’';
$string 3[2] = 'y';
$string 3[3] = 'e';

In our function spell_me(), we used a while loop to traverse the string parameter, stopping when we reached the null
character. Then we manipulated $string_3 by assigning new characters to the indices we wanted to change. In no
time, "oscar" turned to "mayer," and all were spelled correctly.

Go ahead, keep humming the tune - we don't mind.

Other nifty string shortcuts

Type the BLUE stuffinto your documentin CodeRunner:

<?php

function spell me (Smystring) {
$1i = 0;
while ($mystring([$i] !'= null) {
if (81 == 0) {
echo Smystring[$i];
}
else {
echo " - ".$mystring[$i];
}
Sit+;

}
$string 1 = "bologna";

$string 2 = "oscar";
$string 3 = $string 2;

$string 3[0] m';
Sstring 3[1] = 'a';
$string 3[2] = 'y';
S$string 3[3] = 'e';

//Sing along if you remember the commercial!
echo "My $string 1 has a first name, it's "; //we took out the concat operators

spell me($string 2);
echo "
";

echo "My $string 1 has a second name, it's ";
spell me($string 3);
echo "
";

>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string 2 $string_ 3 has a way

With ";
spell me($string 1);
echo "!";
>

Preview this. Nothing changed, right? This is a cool shortcut created especially for strings in PHP, called

embedding variables. Since you'll most likely use PHP in web pages, you can thank us later for showing you

this shortcut. It provides a more intuitive method of creating and outputting dynamic strings without the need
for all those annoying concat operators and quotation marks.

There's only one small complication with this shortcut. What happens if you want to display an actual dollar
sign ($) along with all the embedded variables?

Type the following into CodeRunner:

<?php

function spell me (Smystring) {
$1i = 0;
while ($mystring([$i] != null) {
if (81 == 0) {
echo Smystring[$i];
}
else {
echo " - ".$mystring[$i];
}
Sit+;

}
$string 1 = "bologna";

$string 2 = "oscar";
$string 3 = $string 2;

$string 3[0] = 'm';
Sstring 3[1] = 'a';
$string 3[2] = 'y';
Sstring 3[3] = 'e';

//Sing along if you remember the commercial!
echo "My S$string 1 has a first name, it's "; //we took out the concat operators

spell me($string 2);
echo "
";

echo "My S$string 1 has a second name, it's ";

spell me($string 3);

echo "
";

>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string 2 $string 3 has a way

With ";

spell me($string 1);

echo "!";

echo "
As you can see, $string 1 was passed into the parameter $mystring.";

>

You should get something like this:

My bologna has a first name, it'so-s-c-a-r

My bologna has a second name,it'sm-a-y-e-r
Oh llove to eat it every day,

And if you ask me, why [l say...

That oscar mayer has a way
Withb-o-1-0-g-n-al

[ﬁs voll can see. holoana was nassed into the narameter .

Well, that's a bunch of bologna. While we wanted to output the actual variable names, the echo command

(]

[

tried to replace them with their values instead. This happens anytime echo sees a dollar sign ($) followed by

something that could pass as a variable name.

How can we stop it? Escape it.

Type the following into CodeRunner:

<?php

function spell me (Smystring) {
$1i = 0;
while ($mystring([$i] != null) {
if (81 == 0) {
echo Smystring[$i];
}
else {
echo " - ".$mystring[$i];
}
Sit+;

}
$string 1 = "bologna";

$string 2 = "oscar";
$string 3 = $string 2;

$string 3[0] m';
Sstring 3[1] = 'a';
$string 3[2] = 'y';
Sstring 3[3] = 'e';

//Sing along if you remember the commercial!

echo "My S$string 1 has a first name, it's "; //we took out the concat operators
spell me($string_2);
echo "
";

echo "My S$string 1 has a second name, it's ";
spell me($string 3);
echo "
";

>
Oh I love to eat it every day,

And if you ask me, why I'll say...

<?
echo "That $string 2 $string 3 has a way

With ";
spell me($string 1);
echo "!";
echo "
As you can see, \$string 1l was passed into the parameter \$mystring."

;

2>

You should get this:

My bologna has a first name, it'so-s-c-a-r

My bologna has a second name, it'sm-a-y-e-r

Ohllove to eat it every day,

And if you ask me, why [l say...

That oscar mayer has a way

Withb-o0-1-0-g-n-al

As you can see, $string_1 was passed into the parameter $mystring.

Ah, much better. Just by adding a little backslash (\) before each dollar sign ($), we're able to tell PHP that we
really do want the name itself displayed, not the value.

That backslash is handy for escaping several other characters too. Refer to your book or to php.netto embed
them all into your subconscious.

Built-in String Functions

"String functions?" you say, "l don't need no stinking string functions. | could use all the built-in array functions on
strings too!"

While that may be true in C, PHP treats strings as a differenttype with its own set of built-in functions, generally
keeping their secret identity under wraps. Try using an array function to traverse a string:

http://www.php.net/manual/en/language.types.string.php

Type the following into CodeRunner:

<?php

function spell me (Smystring) {
for ($i = 0; $i < count($mystring); $i++) {
if ($1i == 0) {
echo $mystring[$i];

}
else {

echo " - ".$mystring[$i];
}

}

$string 1 = "bologna";
$string 2 = "oscar";
$string 3 = $string 2;

$string 3([0] m';
Sstring 3[1] = 'a';
$string 3[2] = 'y';
Sstring 3[3] 'e';

//8ing along if you remember the commercial!
echo "My $string 1 has a first name, it's "; //we took out the concat operators

spell me($string 2);
echo "
";

echo "My $string 1 has a second name, it's ";

spell me($string 3);

echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string 2 $string 3 has a way

With ";

spell me($string 1);

echo "!";

echo "
As you can see, \$string 1 was passed into the parameter \S$mystring.";

?>

Preview itand you should get this:

My bologna has a first name, it's o

My bologna has a second name, it's m
Oh llove to eat it every day,

And if you ask me, why [l say...

That oscar mayer has a way

With bl

As vou can see. $strina 1 was nassed into the narameter $mvstrina.
4

Not exactly the catchiest lyrics anymore. Now try it with a built-in string function.

Type the following into CodeRunner:

<?php

function spell me (Smystring) {
for ($1 = 0; $i < strlen($mystring); S$i++) {
if (81 == 0) {
echo S$mystring[$i];
}
else {
echo " - ".Smystring[$i];

}
}
$string 1 = "bologna";

$string 2 = "oscar";
$string 3 = $string 2;

$string 3[0] m';
Sstring 3[1] = 'a';
$string 3[2] = 'y';
Sstring 3[3] = 'e';

//8ing along if you remember the commercial!
echo "My $string 1 has a first name, it's "; //we took out the concat operators

spell me($string 2);
echo "
";

echo "My $string 1 has a second name, it's ";

spell me($string 3);

echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string 2 $string 3 has a way

With ";

spell me($string 1);

echo "!";

echo "
As you can see, \$string 1 was passed into the parameter \S$mystring.";

?>

You should get this:

My bologna has a first name, it'so-s-c-a-r

My bologna has a second name, it'sm-a-y-e-r

Oh llove to eat it every day,

And if you ask me, why [l say...

That oscar mayer has a way

Withb-o0-1-0-g-n-al

,‘As voll can see. $strina 1 was nassed into the narameter $mvstrina.

()

I

See, it's notsuch a bad thing. Having specialized string functions means they'll be faster, easier, and more intuitive to

use.

Soon we'll be working with HTML forms and dynamic inputs, which really flex the muscles of built-in PHP string

functions. However, even without forms, string functions have thousands of uses. Here we have peppered our oscar

mayer song with a plethora of useful string functions. Play, experiment, and refer back to your book or to php.net as
much as you need. Try out the code below. Can you figure out how they all work?

http://www.php.net/manual/en/function.substr.php

Type the following into CodeRunner:

<?php

function spell me (Smystring) {
for ($i = 0; $i < strlen(Smystring); S$i++) {
if ($1i == 0) {
echo strtoupper ($mystring[$i]);
}
else {
echo " - ".strtoupper ($mystring[$i]);

}

$string 1 = "bologna";
$string 2 = "oscar mayer";
$space_index = strpos($string 2, " ");

//let's spell boloney how we really say it...

echo "My ".str_replace('gna', 'ney',$string 1)." has a first name, it's ";
spell me (substr($string_2,0,$space_index));

echo "
";

echo "My $string 1 has a second name, it's ";
spell_me(substr(Sstring_2,$space_index+1)); //notice this has only two parameters
echo "
";

?>
Oh I love to eat it every day,

And if you ask me, why I'll say...

<?
//we're tired of putting in the HTML
 tags...
echo "That $string 2 ".nl2br("has a way
With ");
spell me($string 1);
echo "!";
$sale price = 1; //a dollar

echo "
On sale for ".number_format($sale_price, 2). ",

?>

Before we move on, experiment with these questions in CodeRunner:

e Does it matter whether you use single quotation marks (') or double quotation m
arks (") with strings?

e Can you mix the two types of quotation marks? Do you have to escape them if yo
u do?

e Are there any built-in array functions that do work with strings?

e Would you have built the substr() function differently?

Regular Expressions

Notmany subjects can make a programmer groan like that of regular expressions. They are immensely useful, yes
- they are used to create "wildcard" strings so thatyou can, say, verify that someone has entered a valid email address
or a correct phone number format. However, learning "Regex" patterns can sometimes feel as though you're
deciphering the Rosetta Stone. Even the ever-helpful php.net pawns you off to a cryptic "man page" when dealing with
Regex rules. Aargh.

But hey! We've got"learning by doing" on our side. And when we learn by doing, we can accomplish anything.

http://www.php.net/manual/en/ref.regex.php

Type the following into a new PHP file in CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check regex($myregex, $mystring) {
if (preg_match("/$myregex/", $mystring)) {
echo "The pattern '$myregex' is found in $mystring.
";
}
else {
echo "The pattern '$myregex' is NOT found in $mystring.
";
}
}

$regex 1 = "log";

$string_1 = "bologna";
check regex($regex 1, $string 1);

?>

You should get:

The pattern 'log'is found in bologna.

[l

Here we have an example of a regular expression -- a simple string: "log." And by using the built-in PHP function
preg_match(), we are simply checking to see ifa "log" is found in "bologna." Of course itis. Notice the quotes and

forward slashes needed around the $myregex variable. These are needed because preg_match is a PERL style regex

matching function and regex's in PERL must have forward slashes. See what happens if you remove the slashes.

So, you may wonder why we didn't just use the built-in string function strpos(). We could have. But here's where it

gets interesting...

The plot thickens. Type the following into CodeRunner:

<?php
//here's a simple function to check Regex patterns against string parameters

function check regex($myregex, S$mystring) {
if (preg_match("/$myregex/", $mystring)) {
echo "The pattern 'Smyregex' is found in $mystring.
";
}
else {
echo "The pattern '$myregex' is NOT found in $mystring.
";
}

$regex_1 = "log$";

$string 1 = "bologna";
check_regex(Sregex_1, $string_1);

$string 2 = "catalog";
check regex($regex 1, $string 2);

?>

Preview this:

The pattern 'log$'is NOT found in bologna.
The pattern 'log$' is found in catalog.

[l

As itturns out, the dollar sign has a special meaning in regular expressions, and it's different from the meaning it
usually has for PHP variables. In regular expressions, placing a dollar sign ($) after a string means "at the end of the

string”.

D)

Now THIS result we could not getfrom strpos. Since when is a dollar sign ($) found in the word "catalog"?

Take another look:

<?php

$regex_1 = "log$";

$string 1 = "bologna";
check regex($regex 1, $string 1);

$string 2 = "catalog";
check regex($regex 1, $string 2);

?>

Because we specified $regex_1 to be "log$" and notjust"log", our function check_regex() now checks to see if

"log" is found at the end of each of our strings. This is why itreturned true for "catalog," butfalse for "bologna."

This is the key to regular expressions. More than justa random string tool, regular expressions are an entirely different
language for creating and comparing strings with very specific patterns in mind: the presence of specific characters, the

number of occurrences of each character, and their location in the string. In this case, we were concerned with the
location of the string "log." Let's try another one...

Type the following into CodeRunner:

<?php
//here's a simple function to check Regex patterns against string parameters

function check regex($myregex, S$mystring) {
if (preg_match("/$myregex/", $mystring)) {
echo "The pattern '$myregex' is found in $mystring.
";
}
else {
echo "The pattern 'S$myregex' is NOT found in S$mystring.
";
}

$regex 1 = "“cat";

$string 1 = "concatenate";
check regex(Sregex_1, $string 1);

$string 2 = "catalog";
check regex(Sregex 1, $string 2);

?>

The pattern '"Acat'is NOT found in concatenate.
The pattern "*cat'is found in catalog.

Kl

You guessed it. Placing a carat (*) in front of your Regex string means "at the beginning of the string."”

Character Ranges and Number of Occurrences

Type the following into CodeRunner:

<?php
//here's a simple function to check Regex patterns against string parameters

function check regex(S$Smyregex, $mystring) {
if (preg_match("/$myregex/", $mystring)) {
echo "The pattern 'S$myregex' is found in $mystring.
";
}
else {
echo "The pattern '$myregex' is NOT found in $mystring.
";
}

Sregex 1 = "cat.*a";

$string 1 = "concatenate";
check regex(Sregex_ 1, S$string 1);

$string 2 = "catalog";
check regex(Sregex 1, $string 2);

?>

Preview this:

The pattern'cat.*a' is found in concatenate.
The pattern 'cat.*a'is found in catalog.

[l

[»)

Whoa. Thatis a crazy Regex pattern. Yetit was found in the strings "concatenate” AND "catalog." What gives?

And speaking of concatenate, isn't that period (.) the concatenate operator in PHP? Not this time. Justlike the
dollar sign ($), the period (.) has a much different meaning when it comes to regular expressions. In this case,

itrepresents any character, like a wildcard.

As for the asterisk (*), that means "zero or more". Put it all together, and the regular expression "cat.*a"

means "the string 'cat,’ followed by zero or more characters, followed by an 'a™.

Is thatfound in "concatenate"? Yes: the string "cat’ is found, followed by two characters ‘e’ and 'n’,

followed by an 'a'. How about "catalog"? Yep: 'cat' is followed by zero characters, followed by an 'a’. Let's

try a REALLY crazy Regex:

Type the following into CodeRunner:

<?php
//here's a simple function to check Regex patterns against string parameters

function check regex(S$Smyregex, $mystring) {
if (preg_match("/$myregex/", $mystring)) {
echo "The pattern 'Smyregex' is found in $mystring.
";
}
else {
echo "The pattern '$myregex' is NOT found in $mystring.
";
}

$regex 1 = "cat(ale)+[a-z]{2,5}";

$string 1 = "concatenate";
check _regex(Sregex_ 1, S$string 1);

$string 2 = "catalog";
check regex(Sregex 1, $string 2);

$string_3 = "catamaran";
check_regex($regex 1, $string 3);

$string_4 = "scathing";
check regex($regex 1, $string_4);

$string 5 = "pontificates";
check_regex(sregex_l, $string_5);

2>

Preview this:

The pattern 'cat(ale)+[a-z]{2,5}" is found in concatenate.
The pattern 'cat(ale)+[a-z]{2,5}" is found in catalog.

The pattern 'cat(ale)+[a-z]{2,5}" is found in catamaran.

The pattern 'cat(ale)+[a-z]{2,5}' is NOT found in scathing.
The pattern 'cat(ale)+[a-z]{2,5}" is NOT found in pontificates.

(1 ——

Now, this may seem overwhelming, butit's actually justa series of simple Regex patterns. Let's break them
down:

cat(ale)+[a-z]{2,5}

e (ale): The pipe character (]) in regular expressions means OR, so in this case we're looking for
"either an 'a'or an 'e™. Parentheses(()) are used to separate out expressions when we are nesting
them, just like always.

e +:The plus sign (+) is justlike the asterisk (*), exceptit's looking forone or more ofthe
characters it follows. Since we preceded it with the expression (ale), in this case it means "one or
more of either 'a'or 'e™.

e [a-z]: To allow entire ranges of characters as a shortcut, we use square brackets ([]) and the dash
(-). So in this case, we're looking for "any lowercase letter from 'a’to ‘z".

e {2,5}:Curly braces ({}) are used like the plus sign and asterisk, indicating a range of occurrences
ofthe preceding expression. In this case, because {2,5} follows [a-z], we're looking for "2 to 5
occurrences of any lowercase letter from ‘a'to z".

Putit all together, and we find that the pattern cat (ale)+[a-z]{2,5} in Regex-speak means "The string ‘cat’,

followed by one or more ‘a’s or 'e’s, followed by at least 2, but not more than 5 lowercase letters, from 'a'to ‘z".

Can you figure outwhy it's notfound in "scathing" or "pontificates"?

Excluding Characters

Now, if you thought THAT was confusing, consider this: What if you had the all-important task of, say,
removing funky characters from a file name and replacing them with something benign? Here's where things
REALLY get screwy.

Type the following into CodeRunner:

<?php
//here's a simple function to check Regex patterns against string parameters

function check regex(Smyregex, $mystring) {
if (preg_match("/$myregex/", $mystring)) {
echo "The pattern 'S$myregex' is found in $mystring.
";
}
else {
echo "The pattern 'S$myregex' is NOT found in $mystring.
";
}

//here's a function that takes in a file name, and replaces all funky characters
with an underscore "_"

function clean_filename($file_name) {

$bad characters = "[%a-zA-Z0-9.]";
$new_filename = preg replace("/$bad characters/", "_", $file name);
return $new_filename;

}

$bad_filename = "file[3*1 name.doc";

$good filename = clean_filename ($bad_filename) ;

echo "'$bad filename' has been changed to '$good filename'.";

?>

Preview this:

'file[3*1 name.doc' has been changed to 'file_3_1_name.doc'.

We know, we know, this makes no sense atall. First of all, the carat (*) is supposed to mean "at the beginning

of the string." The period (.) is supposed to represent a wildcard character. And what's with the ranges of
characters -- a-z, A-Z, and 0-9 -- stuck together like that? Groan.

Well, as itturns out, when itcomes to whatever's in the square brackets ([]), the rules change. Let's take a
closerlook at brackets in regular expressions.

[*a-zA-Z0-9.]

e “:When used within square brackets, the carat (*) negates everything after it - just like the
exclamation point(!) in PHP. So in this case it's looking for characters that DON'T match what's
inside the brackets.

e a-zA-Z0-9: Everything within square brackets comes together to represent only one character.
Therefore, characters placed within the brackets are treated as if a pipe character (]) was inserted in
between each one. For instance, [abcd] is the same as (a]b|c|d), and in this case, a-zA-Z0-9 is
the same as ([a-z]|[A-Z]][0-9]), or more simply, "any alphanumeric character".

e .:Within square brackets, every character except for the carat(?), the dash(-), and the right bracket
itself(]) is taken as a literal character - including the period(.) that would normally be considered a
wildcard character.

Putit all together, and we find that the pattern [*a-zA-Z0-9.] actually means "any character which is NOT an
alphanumeric character or a period.".

Escaping Characters

Regular Expressions are extremely useful in PHP - especially since you'll be doing a lotof HTML form
processing. For instance, how can you ensure that someone's entered their phone number properly?

Type the following into CodeRunner:

<?php
//here's a simple function to check Regex patterns against string parameters

function check regex(Smyregex, $mystring) {
if (preg_match("/$myregex/", $mystring)) {
echo "The pattern '$myregex' is found in $mystring.
";
}
else {
echo "The pattern 'S$myregex' is NOT found in $mystring.
";
}
}

//here's a function that takes in a file name, and replaces all funky characters
with an underscore " "

function clean filename ($file name) {
$bad_characters = "[%a-zA-Z0-9.]";

$new_filename = preg_replace("/$bad_characters/", "_", $file name);
return $new_filename;

//here's a function which validates an American phone number

function validate_phone ($phone number) {
$good_phone = "\ (?[0-9]1{3}\)?(|-I\.) [0-91{3}(-I\.) [0-9]{4}$";

if (preg_match("/$good phone/", $phone_number)) {
echo "$phone_number is valid.
";

else echo ”$phone_number is NOT wvalid.
";
}

Sphone numberl = "34x.d98.1123";
Validate_phone($phone_number1);

$phone number2 = "(217) 555-1212";
validate_phone($phone_number2);

>

Preview this:

34x.d98.1123 is NOT valid.
(217) 555-1212 is valid.

(4] I D
Let's break this down: A\(?[0-91{3}\) 2(|-]\.)[0-91{3}(-|\.)[0-91{4}$

e “:Since we're outside any square brackets, the carat (*) takes on its original meaning—"at the
beginning of the string." By the same token, we use the dollar sign ($) to mean "at the end of the
string," so that we have an exact match.

e \(?: Some Americans use parentheses (()) to enclose the 3-digit area code of their phone
numbers. To allow this possibility, we use the question mark (?) much like the asterisk or plus
sign, only this time to denote "zero or one" of the leading parenthesis ((). However, because
parentheses usually mean nesting, we use a backslash (\) to escape the character. This must
always be done when not within the square brackets. The same is true with \)?.

e [0-9]{3}: Since the area code of the American phone number system uses exactly 3 digits, we use
{3} to require exactly 3 of any digit, denoted by [0-9]. We use the same logic with the 3-digit prefix,
as well as the ending 4 digits of the phone number.

. (|-|\.) Usually between the area code and the prefix of a phone number, folks use either a space ("
"),adash (=), ora period(.). Therefore, we use the parentheses(()) along with the pipe character (|)
to say "either a space or a dash or a per/od "We put a backslash before the period because we
mustescape it. An unescaped period matches a single character without caring what that character
is. So since we want a literal period, we add the backslash to "escape" the character having that
special meaning.

In case your eyes are crossing right now, remember that regular expressions take a lot of patience, practice, and
trial-and-error to get right. Refer back to this lesson, to books you may have, or to the web, often. Here's a great article
on regular expressions in PHP.

Whew! We've covered a lotof ground. Don'tforgetto Save your work and hand in your assignments from your syllabus. See
you in the nextlesson!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://www.phpbuilder.com/columns/dario19990616.php3
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Fixing Broken PHP

This lesson is all about frustration. Frustration that comes in the form of parse errors, infinite
loops, unmatched brackets, and logical mistakes. Frustration that makes your face
grimace and your fingers type furiously, pounding as if sheer force could will the keys into
assembling proper PHP code from the mangled mess thatis your own program. Ah yes, we
know this feeling well.

In previous lessons we focused on the basics of PHP, keeping examples and projects to finite
blocks of code. We're sure you've handled the frustrating errors like a trooper so far. In the
upcoming lessons, we'll begin constructing more complex programs to solve real-world
problems, which means the threat of frustration looms larger than ever. You're going to need
some serious ammo for creating and debugging scalable programs. Your sanity just may

depend onit.

So let's take a break from new PHP concepts and focus on technique for a while. Got CodeRunner in PHP syntax? Good - let's
getgoing.
Things Professors Don't Talk About Enough
We're guilty ofittoo. We introduce you to concepts that theoretically work just fine, assuming that everything typed in
justso, and that we've explained the concept perfectly. So of course these concepts will work perfectly for you, every

time you apply them, right?

Let's find out using the following silly program we assembled from concepts covered in previous lessons.

It's okay to copy and paste, JUST THIS ONCE! Paste this into CodeRunner:

<?
function mantra($the sound, $the number = 10) {
Schant = 1;
while ($chant <= $the number;) {
echo $the sound."... ";
}
}

function Mood Chant ($Smy mood) {

if ($my mood == "happy") {
mantra ("OM") ;
Safter_chant = "<pr/>I feel serene now.";
}
else if (Smy mood == "sad") {
mantra ("okay") ;
Safterfchant = "<pr/>I feel better now.";
}
else if (Smy mood == "angry") {
mantra ("mississippi");
$afterfchant = "
Ahhh, much better. I've calmed down now.";
}
else if (Smy outlook == "indifferent") ({
mantra ("Wake up");
Safter chant = "
I'm awake now.";
}
else {
mantra ("Try harder");
Safter chant = "
I'll try harder now.";

}

return S$after chant;

}

function whats my emotion($cereal prices, S$cash money) {
$total = array sum(S$cereal prices); //array sum is a built-in PHP function
if (Stotal < $my cash) {
Smood = "happy";
echo "I'll buy both Captain Crunch and Fruit Loops!";
}
else if (Scereal prices['Captain Crunch'] < $my cash) {
$mood = "indifferent";
echo "I'll buy Captain Crunch.";
}
else if (Scereal prices['Captain Crunch'] > Smy cash && Scereal prices['Fruit Loops'
] < $my cash) {

Smood = "angry";

echo "Fine! 1I'll get some Fruit Loops.";
}
else {

Smood = "sad";

echo "Oh well, I'm going home.";
}

return S$mood;

}

<h3>The emotional roller-coaster of buying breakfast cereal</h3>

<?

$cereal prices = array('Captain Crunch' => 5, 'Fruit Loops' => 3);
$my cash = 4;

2>

I have $<? echo $my cash; ?> in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $<? echo $cereal prices['Captain Crunch']; ?></1i>
Fruit Loops costs $<? echo Scereal prices['Fruit Loops']; ?>

$my mood = whats my emotion($cereal prices, $my cash);
if (! ($my mood == "sad")) {

Safter chant mood = Mood Chant (Smy mood, Schant number);
1

echo "
".$after chant mood;

?>

Preview this:

Parse error: syntax error, unexpected ';' in lusers/certjosh/useractivepreviewtmp123.ph
line 4

Okay, WRONG. Even a benign-looking program like the above works beautifully in theory, but neverin practice -- at

leastfor the first hundred times you try it. Trust us. Do you think our examples worked perfectly the firsttime we wrote
them? Hardly.

But even with this relatively small amount of code, where do you begin to debug it? Here is where you're usually on
yourown...

..buthey, notin this lesson! We're nottoo far removed from our humble beginnings to know how hard itis to master
debugging. Consider this a support group for frustrated coders, and you're invited.

Debugging Tips
Utilizing Error Messages

Let's Preview again:

Parse error: syntax error, unexpected ';' in lusers/certjosh/useractive previewtmp
line 4

Kl [

If you're lucky, you'll get an easy to see error message right away, like you're getting now. In other situations
you may have to ask your system administrator where she keeps the PHP errorlogs. In any case, the First
Rule of Debugging is: check the error messages first. They may seem cryptic at times, but they almost always
give you the information you need. In particular, the line number where the problem is located.

Since our error message indicated line 4, go to thatline. Whatdo you see?

Suddenly, our parse error is as loud as a mariachi band. There shouldn'tbe a semicolon (;) inside the
parentheses (()) ofa while loop! This is easy enough to fix: justremove the semicolon (;).

Good foryoul! You fixed the error, and now everything should work perfectly, right?

Riddle-Me-This Error Messages

Cross your fingers and Preview again:

Parse error: syntax error, unexpected '<'in lusers/certjosh/useractive previewtmj
line 53

(4] D

Yikes, another error message! Mild frustration ensues. Well, no problem, we'll justdo the same thing we did

before. But this time try the Go To Line @ button. Type in line 53:

Hmm, that's strange. This isn't even PHP code, it's HTML code -- and perfect HTML code, at that. Why would
PHP single outa line ofgood HTML code in its error message?

We're going to have to look around for more clues, which brings us to the Second Rule of Debugging: Check
lines closest to the error message second. Let's give that a shot, by looking atline 52:

And there you have it - a tiny curly bracket (}), indicative of PHP code. Were you able to solve the riddle ofthe
error message? We forgot to delimitthe PHP with a 2> between the PHP code and the HTML code, so the
PHP parser was attempting to read the HTML code as PHP! Hence the message: "unexpected '<' on line 53".
It didn't know any better.

Go ahead and add the delimiter (?>), and you have squashed another bug in our program. Let's hope that's
the lastone.

Errors without Error Messages

Chant'no error messages' three times, then Preview again:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and Iwant to buy some Captain Crunch!

e Captain Crunch costs $5
¢ Fruit Loops costs $3

$my_mood = whats_my_emotion($cereal prices, $my money); if ({($my_mood =="
$after_chant_mood = Mood_Chant($my_mood, $chant_number); } echo "
"$after_chant_mood; ?>

« D

Hey, the chant worked - no error messages! But wait - there's still an error. Looks like "no error messages" is
notthe same as "no errors". Which brings us to the Third Rule of Debugging: When there are no error
messages, check your output. Or, just work on your chant.

Look atyour Preview again. It seems that the trouble starts right after the statement: "Fruit Loops costs $3".
After that, chaos erupts. So let's take a look at our code now, and try to pinpoint the problem.

Pay attention to the errors we already fixed, and where the new error seems to be happening:

<?
function mantra($the sound, $the number = 10) {
Schant = 1;
while ($chant <= $the number) { //first we took out the rogue semicolon...
echo $the sound."... ";

}

function Mood Chant ($Smy mood) {

if ($my mood == "happy") {
mantra ("OM") ;
$after_chant = "<pr/>I feel serene now.";
}
else if (Smy mood == "sad") {
mantra ("okay") ;
$afterfchant = "<pr/>I feel better now.";
}
else if (Smy mood == "angry") {
mantra ("mississippi");
$afterfchant = "
Ahhh, much better. I've calmed down now.";
}
else if (Smy outlook == "indifferent") ({
mantra ("Wake up");
Safter chant = "
I'm awake now.";
}
else {
mantra ("Try harder");
Safter chant = "
I'll try harder now.";

}

return S$after chant;

function whats my emotion($cereal prices, S$cash money) {
Stotal = array sum($Scereal prices); //array_sum is a built-in PHP function
if (Stotal < $my cash) {
Smood = "happy";
echo "I'll buy both Captain Crunch and Fruit Loops!";
}
else if (Scereal prices['Captain Crunch'] < $my cash) {
Smood = "indifferent";
echo "I'll buy Captain Crunch.";
}
else if (Scereal prices['Captain Crunch'] > Smy cash && Scereal prices['Fruit
_Loops'] < S$my cash) {

Smood = "angry";

echo "Fine! 1I'll get some Fruit Loops.";
}
else {

$mood = "sad";

echo "Oh well, I'm going home.";

}

return $mood;
}
//then we added the delimiter here...
2>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal prices = array('Captain Crunch' => 5, 'Fruit Loops' => 3);
$my cash = 4;
?>
I have $<? echo $my cash; ?> in my pocket, and I want to buy some Captain Crunch
I

Captain Crunch costs $<? echo $cereal prices['Captain Crunch']; ?></1i>
Fruit Loops costs $<? echo S$cereal prices['Fruit Loops']; ?></1i>

//BUT NOW THE PROBLEM APPEARS TO BE HERE

$my mood = whats my emotion($cereal prices, S$my cash);
if (! ($my mood == "sad")) {
$after chant mood = Mood Chant ($my mood, $chant number);

}

echo "
".$after chant mood;

?>

Looking atthe code, we see now that we've done it again - we've forgotten a delimiter, this time an opening
delimiter (<?). Why didn't we get an error message like before? Because this time the code went from HTML
to PHP - so itwas HTML attempting to render the PHP code, not the other way around. HTML is more
forgiving in this sense, and simply prints out the code.

Be sure to add the delimiter <?. Are we done now?

Logical Errors

Signs pointto no:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and |want to buy some Captain Crunch!

¢ Captain Crunch costs $5
¢ Fruit Loops costs $3

Oh well, I'm going home. 4
4 [3

Atfirst glance, everything appears to be correct. No error messages, no garbled output. But before you
breathe that sigh of relief, remember that this silly program is supposed to determine our mood and
purchasing behavior, based on cereal prices and how much money we have.

Take another look at the code:

function whats my emotion ($cereal prices, Scash money) {
Stotal = array sum(Scereal prices); //array sum is a built-in PHP function
if (Stotal < $my cash) {
Smood = "happy";
echo "I'll buy both Captain Crunch and Fruit Loops!";
}
else if (Scereal prices['Captain Crunch'] < Smy cash) {
Smood = "indifferent";
echo "I'll buy Captain Crunch.";
}
else if ($cereal_prices['Captain_prunch'] > $my_pash && $cereal_prices['Fruit
_Loops'] < $my_cash) {
Smood = "angry";
echo "Fine! 1I'll get some Fruit Loops.";
}
else {
Smood = "sad";
echo "Oh well, I'm going home.";
}

return Smood;

From our output, we see that we have $4 -- not enough to buy Captain Crunch for $5, but enough to buy Fruit
Loops for $3. In our program, that's supposed to make us angry, but we'd rather invoke a calming mantra
chant and buy Fruit Loops anyway. So why are we dejected and going home?

This is called a logical error, and unfortunately it seems that the outputisn't helping us much in the way of

clues to fix it. Which brings us to the Fourth Rule of Debugging: When the output doesn't show the error, create
strategic output that does.

Type the following green code into CodeRunner:

<?
function mantra($the sound, $the number = 10) {
Schant = 1;
while ($chant <= $the number) { //first we took out the rogue semicolon...

echo $the sound."... ";

}

function Mood Chant ($Smy mood) {

if ($my mood == "happy") {
mantra ("OM") ;
$after_chant = "<pr/>I feel serene now.";
}
else if (Smy mood == "sad") {
mantra ("okay") ;
$afterfchant = "<pr/>I feel better now.";
}
else if (Smy mood == "angry") {
mantra ("mississippi");
$afterfchant = "
Ahhh, much better. I've calmed down now.";
}
else if (Smy outlook == "indifferent") {
mantra ("Wake up");
Safter chant = "
I'm awake now.";
}
else {
mantra ("Try harder™);
Safter chant = "
I'll try harder now.";

}

return S$after chant;

function whats my emotion($cereal prices, S$cash money) {
Stotal = array sum($cereal prices); //array_sum is a built-in PHP function
if (Stotal < $my cash) {
Smood = "happy";
echo "I'll buy both Captain Crunch and Fruit Loops!";
}
else if (Scereal prices['Captain Crunch'] < $my cash) {
Smood = "indifferent";
echo "I'll buy Captain Crunch.";
}
else if (Scereal prices['Captain Crunch'] > Smy cash && Scereal prices['Fruit
_Loops'] < S$my cash) {

Smood = "angry";

echo "Fine! 1I'll get some Fruit Loops.";
}
else {

$mood = "sad";

echo "Oh well, I'm going home.";

}

return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal prices = array('Captain Crunch' => 5, 'Fruit Loops' => 3);
$my cash = 4;
>
I have $<?
//We know it's not here, because the output has been correct
echo $my cash; ?> in my pocket, and I want to buy some Captain Crunch!

 -
Captain Crunch costs $<? echo $cereal prices['Captain Crunch']; ?></1i>
Fruit Loops costs $<? echo Scereal prices['Fruit Loops']; ?>

<?
//then we added the delimiter here...

$my mood = whats my emotion($cereal prices, $my cash);
//Let's add some echo statements to figure out our logic.
echo "\$my mood is $my mood";

if (! ($my mood == "sad")) {
$after chant mood = Mood Chant ($my mood, $chant number);

}

echo "
".Safter chant mood;

?>

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and Iwant to buy some Captain Crunch!

e Captain Crunch costs $5
¢ Fruit Loops costs $3

Oh well, 'm going home $mv mood is sad D

[+]

So we find that when the function whats_my_emotion() returns, its value is sad, not angry. Since we know
the values of $my_cash and $cereal_prices are correct, itlooks like we've narrowed the problem down to
whats_my_emotion(). Now whatdo we do?

Let's add some more echo statements - but this time use them within whats_my_emotion(), justto see
what happens.

Add the following green code into CodeRunner:

<?
function mantra($the sound, $the number = 10) {
Schant = 1;
while ($chant <= $the number) { //first we took out the rogue semicolon...
echo $the sound."... ";

}
}

function Mood Chant ($Smy mood) {

if ($my mood == "happy") {
mantra ("OM") ;
$after_chant = "<pr/>I feel serene now.";
}
else if (Smy mood == "sad") {
mantra ("okay") ;
$afterfchant = "<pr/>I feel better now.";
}
else if (Smy mood == "angry") {
mantra ("mississippi");
$afterfchant = "
Ahhh, much better. I've calmed down now.";
}
else if (Smy outlook == "indifferent") {
mantra ("Wake up");
Safter chant = "
I'm awake now.";
}
else {
mantra ("Try harder™);
Safter chant = "
I'll try harder now.";

}

return S$after chant;

}

function whats my emotion($cereal prices, S$cash money) {
Stotal = array sum($cereal prices); //array_sum is a built-in PHP function
if (Stotal < $my cash) {
Smood = "happy";
echo "I'll buy both Captain Crunch and Fruit Loops!";
}
else if (Scereal prices['Captain Crunch'] < $my cash) {
Smood = "indifferent";
echo "I'll buy Captain Crunch.";
}
else if (Scereal prices['Captain Crunch'] > Smy cash && Scereal prices['Fruit
_Loops'] < S$my cash) {

Smood = "angry";

echo "Fine! 1I'll get some Fruit Loops.";
}
else {

//We know the output is coming from here, so let's add echo statements:
echo "Within whats my emotion, \$cereal prices:<pre>";

print_r($cereal prices);

echo "\$my cash = ".$my cash."</pre>";

Smood = "sad";
echo "Oh well, I'm going home.";
}
return S$mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal prices = array('Captain Crunch' => 5, 'Fruit Loops' => 3);
$my cash = 4;
?>

I have $<?
//We know it's not here, because the output has been correct
echo $my cash; ?> in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $<? echo S$cereal prices['Captain Crunch']; ?></1i>
Fruit Loops costs $<? echo $cereal prices|['Fruit Loops']; ?></1li>

<?

//then we added the delimiter here...

$my mood = whats my emotion($cereal prices, S$my cash);
//Let's add some echo statements to figure out our logic.
echo "\$my mood is $my mood";

if (! ($my mood == "sad")) {
$after chant mood = Mood Chant ($Smy mood, $chant number);

}

echo "
".$after chant mood;

?>

Preview this:
The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and Iwant to buy some Captain Crunch!

e Captain Crunch costs $5
e Fruit Loops costs $3

Within whats_my_emotion, $cereal prices:

Array
(
[Captain Crunch] => 5
[Fruit Loops] => 3
)

Smy cash =

Oh well, 'm going home.$my_mood is sad

o

D

This is starting to look pretty messy, butitdoes tell us everything we need to know. Through our echo and
print_r statements, we can see thatthe logical error is definitely within whats_my_emotion(). Why?
Because the parameter $my_cash was never properly passed in -- causing the resulting mood to be sad
instead of angry.

Take a closerlook at whats_my_emotion():

function whats my emotion ($cereal prices, $cash _money) {
Stotal = array sum(Scereal prices); //array sum is a built-in PHP function
if (Stotal < $my cash) {
Smood = "happy";
echo "I'll buy both Captain Crunch and Fruit Loops!";
}
else if (Scereal prices['Captain Crunch'] < $my_cash) |
Smood = "indifferent";
echo "I'll buy Captain Crunch.";
}
else if (Scereal prices['Captain Crunch'] > $my cash && Scereal prices['Fruit
_Loops'] < $my cash) {
Smood = "angry";
echo "Fine! 1I'll get some Fruit Loops.";
}

else {
//We know the output is coming from here, so let's add echo statements:

echo "Within whats my emotion, \$cereal prices:<pre>";
print r(Scereal prices);
echo "\S$my cash = ".$my cash."</pre>";

Smood = "sad";
echo "Oh well, I'm going home.";
}

return Smood;

Looking atourif/else statements, we can see that we make all kinds of comparisons between $my_cash
and the various cereal prices, yet no matter whatwe set $my_cash to before we pass itto
whats_my_emotion(),itcomes up blank within whats_my_emotion(). And then the error becomes
clear: within whats_my_emotion(), the parameter should be called $cash_money, NOT $my_cash!

And so, Sherlock, itlooks like we have solved the mystery of the logical error. We can now remove the
extraneous echo and print_r statements and fix the problem, once and for all.

Type the following green code into CodeRunner:

<?
function mantra($the sound, $the number = 10) {
Schant = 1;
while ($chant <= $the number) { //first we took out the rogue semicolon...

echo $the sound."... ";

}

function Mood Chant ($Smy mood) {

if ($my mood == "happy") {
mantra ("OM") ;
$after_chant = "<pr/>I feel serene now.";
}
else if (Smy mood == "sad") {
mantra ("okay") ;
$afterfchant = "<pr/>I feel better now.";
}
else if (Smy mood == "angry") {
mantra ("mississippi");
$afterfchant = "
Ahhh, much better. I've calmed down now.";
}
else if (Smy outlook == "indifferent") ({
mantra ("Wake up");
Safter chant = "
I'm awake now.";
}
else {
mantra ("Try harder™);
Safter chant = "
I'll try harder now.";

}

return S$after chant;

function whats my emotion($cereal prices, S$cash money) {
Stotal = array sum($cereal prices); //array_sum is a built-in PHP function
if (Stotal < $cash_money) ({
Smood = "happy";
echo "I'll buy both Captain Crunch and Fruit Loops!";
}
else if ($cereal prices['Captain Crunch'] < $cash money) {
Smood = "indifferent";
echo "I'll buy Captain Crunch.";
}
else if (Scereal prices['Captain Crunch'] > $cash_money && Scereal prices['Fr
uit Loops'] < S$Scash money) {

Smood = "angry";

echo "Fine! 1I'll get some Fruit Loops.";
}
else {

$mood = "sad";

echo "Oh well, I'm going home.";

}

return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal prices = array('Captain Crunch' => 5, 'Fruit Loops' => 3);
$my cash = 4;
?>
I have $<? echo $my cash; ?> in my pocket, and I want to buy some Captain Crunch
I

Captain Crunch costs $<? echo $cereal prices['Captain Crunch']; ?></1i>
Fruit Loops costs $<? echo S$cereal prices['Fruit Loops']; ?></1i>

<?
//then we added the delimiter here...

$my _mood = whats_my emotion($cereal prices, S$my cash);
if (! ($my mood == "sad")) {

$after chant mood = Mood Chant ($my mood, $chant number);
}

echo "
".Safter chant mood;

>

Infinite Loops, Infinite Headaches

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and Iwant to buy some Captain Crunch!

¢ Captain Crunch costs $5
¢ Fruit Loops costs $3

Fine! I'll get some Fruit Loops.mississippi... mississippi... mississippi... Mississippi... mis

MISSiSSippi... MISSISSIPPI... MiSSiSSIppi... MISSISSIppi... MISSISSIpPi...
MIsSisSippi... MISSISSIpPI... Mississippi... Mississippi... Mississippi...
MISSISSIPpI... MiSSiSSippI... MiSSiSSippi... MiSsissippi... Mississippi...
MIisSisSippi... MISSISSIpPI... Mississippi... Mississippi... Mississippi...

MIsSissippi... MISSISSIf

MIisSisSsippi... MISSISSif

MIsSSiSSIppi... MisSissif

MIisSissippi... mississDip[IJ
F

YIKES, MAKE IT STOP! This is one ofthe worsterrors of all: infinite loops. It causes memory leaks in your
computer, aching in your head, and it may very well have crashed your entire browser...we hope that wasn't

the case.

This brings us to the Fifth Rule of Debugging: Always end your loops!

Take a look at our while loop:

}

function mantra($the sound, $the number =

Schant = 1;

while ($chant <= $the number) {
echo $the sound."... ";

10) {

The good news is, in our case it's easy to see what wentwrong. The while loop is setto end when $chant is

greater than $the_number, which defaults to 10. But we never increased $chant. Let's fix it!

Type the following into CodeRunner:

<?
function mantra($the sound, $the number = 10) {
Schant = 1;
while (Schant <= $the number) { //first we took out the rogue semicolon...

echo $the sound."... ";
Schant++;

function Mood Chant ($Smy mood) {

if (Smy mood == "happy") {
mantra ("OM") ;
Safter chant = "
I feel serene now.";
}
else if (Smy mood == "sad") {
mantra ("okay") ;
Safter chant = "
I feel better now.";
}
else if (Smy mood == "angry") {
mantra ("mississippi");
Safter chant = "
Ahhh, much better. I've calmed down now.";
}
else if (Smy outlook == "indifferent") {
mantra ("Wake up");
$after_chant = "<pr/>I'm awake now.";
}
else {
mantra ("Try harder");
$afterfchant = "
I'll try harder now.";

}

return $after chant;

function whats my emotion($cereal prices, Scash money) {
$total = array sum(Scereal prices); //array sum is a built-in PHP function
if ($total < $cash money)
Smood = "happy";
echo "I'll buy both Captain Crunch and Fruit Loops!";
}
else if (Scereal prices['Captain Crunch'] < $cash money) {
Smood = "indifferent";
echo "I'll buy Captain Crunch.";
}
else if (Scereal prices['Captain Crunch'] > $Scash money && $cereal prices['Fr
uit Loops'] < $Scash money) {

Smood = "angry";

echo "Fine! 1I'll get some Fruit Loops.";
}
else {

Smood = "sad";

echo "Oh well, I'm going home.";

}

return S$mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?

$cereal prices = array('Captain Crunch' => 5, 'Fruit Loops' => 3);
$my cash = 4;
?>

I have $<? echo $my cash; ?> in my pocket, and I want to buy some Captain Crunch
I

Captain Crunch costs $<? echo $cereal prices['Captain Crunch']; ?></1i>
Fruit Loops costs $<? echo Scereal prices['Fruit Loops']; ?>

<?
//then we added the delimiter here...

Smy mood = whats my emotion($cereal prices, $my cash);
if (l($my_mood == "sad")) {
$after chant mood = Mood Chant ($my mood, $chant number);
}
echo "
".$after chant mood;

?>

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and | want to buy some Captain Crunch!

e Captain Crunch costs $5
e Fruit Loops costs $3

Fine! I'l get some Fruit Loops.mississippi... mississippi... Mississippi... mississippi... mississippi
MIisSissippi... MiSSiSSIppI... Mississippi... Mississippi... Mississippi...

Ahhh miich hattar e calmad down now E]EJ
Ahh, much better. And although it was quite the ordeal, we're all the better for it. Pat yourself on the back and raise your
glass to stress relief through Debugging!

Notes on Scalable Programming

Now that you know the Rules of Debugging, you're almostready to put them to the test by building some large-scale
projects. However, before you go on, it's important to stress some very important points to help reduce your stress.

Before you Code, Pseudocode

What's pseudocode? Justa little jot-down of your program logic in English (or whatever your native
language may be). Like this:

Here's how we might pseudocode whats_my_emotion():

If T have enough money to buy both cereals,
My mood is happy.

Otherwise, if I have enough money to buy Captain Crunch,
My mood is indifferent.

Otherwise, if I can't buy Captain Crunch, but can buy Fruit Loops,
My mood is angry.

Otherwise, I'm sad no matter what.

Pseudocode is a way for you to organize your thoughts and design your logic before you start coding your
program. Think of it as a blueprint for your software development. Using pseudocode, you can take a look at
the big picture and catch any flaws in your design--before they cause you a week's worth of debugging. Plus,
you can refer back to itas you go to ensure that you're sticking to your original design.

Make your Program Readable

What if we had coded whats_my_emotion() like this?

function what is it ($a, $b = false) {
if (Sa >= $b) {
sc — "happy";
}
else if ($d[0] < $b) {
Sc = "indifferent";
}
else if ($d[0] > Sb && $d[1] < Sb) {

$C = nangryn o
}
else {

Sc = "sad";

}

return Sc;

Sure, we know exactly what it means at the time we write it, but when we go back later, we might not have a
clue what any of it means, rendering it essentially worthless. And by the way, if you write code like this, forget
ever getting promoted - you won't find anyone who can decipher your code enough to take over your lower
position. You'd be stuck with it, buddy.

So justbe sure to use readable, intuitive variable, and function names all the time, every time. If you find
yourself slipping into using vague names, justremember what we told you about promotion. That should
snap you back into shape.

Comment Until You're Blue in the Face

By the same token, you can kick your program's readability up a notch by using comments whenever you can.
Use them to help recall what you've done, or to indicate to other programmers what your functions do. That's
why they're there after all.

In particular, it's imperative that you start off each program, and every function within it, with a synopsis of the
functions it performs, parameters it takes, and what it returns.

Like this:

function whats my emotion ($cereal prices, S$cash money) {
#whats my emotion returns an emotion of happy, indifferent, angry or sad base
d upon
#two parameters, $cereal prices -- an array of floats -- and float S$Scash mone
Y-
Stotal = array sum($Scereal prices); //array_sum is a built-in PHP function
if (Stotal < S$cash money)
Smood = "happy";
echo "I'll buy both Captain Crunch and Fruit Loops!";
}
else if (Scereal prices['Captain Crunch'] < $cash money) {
Smood = "indifferent";
echo "I'll buy Captain Crunch.";
}
else if (Scereal prices['Captain Crunch'] > $Scash money && $cereal prices['Fr
uit Loops'] < $Scash money) {
Smood = "angry";
echo "Fine! 1I'll get some Fruit Loops.";
}
else {
Smood = "sad";
echo "Oh well, I'm going home.";
}

return S$mood;

This will become more and more important as you build more reusable code, and even libraries which can be

shared by others--either within your company, or within the open-source community.

Code in Bite-Size Chunks

You'll notice throughout these lessons that our chosen process of learning to build programs is extremely
repetitious - we typed a bitof code, Previewed it, added a little more code, Previewed it, and so on.

If you program one small partof your code at a time, you'll be much less likely to be overwhelmed with bugs
and logical errors when itcomes time to test. This is where your pseudocode can help as well, by showing
you where you can divide your large program into smaller, "bite-size" chunks to make it more manageable.

Debug as You Work

There's nothing worse than writing a HUGE amount of code, only to find it's a complete mess. As long as you
Preview often, you'll catch bugs as you go along, which will make your life much easier in the long run.

Reuse Functions as Much as Possible

What if we had written several different functions instead of one whats_my_emotion(), or simply copied
and pasted the same code throughout our program? Instead of fixing the code once, we would have had to
deal with it over and over again.

The biggestargument for creating functions for anything and everything: if something goes wrong with the
code, you only have to debug itonce, then every time it's called, it works.

Always create a function for any finite task, even if you're not sure you'll use it more than once. You'll be
surprised at how useful it will become as you continue programming.

Utilize Available Resources

As if we haven't been preaching itenough: we live in an age where information is always available. There are
reference books, Safari accounts, and web sites like PHP.net. Use them. And if you can't find your answer,

there are communities of millions of PHP programmers just like yourself you can consult. Don't be afraid to
ask questions!

Can you believe how far you've come? So far you've learned all the basics of PHP you need to get going with some meaty web
projects. And from now on, that's exactly whatyou're going to do.

Don'tforgetto Save your work and hand in your assignments from your syllabus. See you in the nextlesson!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://oreilly.com/
http://my.safaribooksonline.com/?portal=oreilly
http://www.php.net/manual/en/function.number-format.php
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Forms in PHP

As promised, you're aboutto putthe material you've learned into robust, real-world applications. Until now, there has been only
one thing missing from your skillset preventing this: user input.

PHP was created specifically to work with the internet - to make the web surfer's life easier by customizing his experience, and
to make the programmer's life easier by making that customization convenient for her. But without a way to gather information
from the web surfer, all the convenience and power of PHP is worthless. What good is customization if the user's needs aren't
met?

We are able to gather userinput through a little HTML tag called <form>. Since we'll be using HTML and PHP in tandem, be
prepared to use both HTML and PHP syntax. Let's go!

Forms Review

Start with an HTML form. Make sure you're using HT ML syntax, and TYPE the following:

CODE TO TYPE:

<body>

<h3>Contact ACME Corporation</h3>

<form method="POST" action="contact.php">

<table>

<tr>

<td align="right">

Name:

</td>

<td align="left">

<input type="text" size="25" name="name" wvalue="">

</td>

</tr>

<tr>

<td align="right">

Email:

</td><td align="left">

<input type="text" size="25" name="email" value="">

</td>

</tr>

<tr>

<td align="right">

Type of Request:

</td>

<td align="left">

<select name="whoami">

<option value="" />Please choose...

<option value="newcustomer" />I am interested in becoming a customer.
<option value="customer" />I am a customer with a general question.
<option value="support" />I need technical help using the website.
<option value="billing" />I have a billing question.

</select>

</td>

</tr>

<tr>

<td align="right">

Subject:

</td>

<td align="left">

<input type="text" size="50" max="50" name="subject" value="">
</td>

</tr>

<tr>

<td align="right" wvalign="top">

Message:

</td>

<td align="left">

<textarea name="message" cols="50" rows="8">

</textarea>

</td>

</tr>

<tr>

<td colspan="2" align="left">

How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>

</tr>

<tr>

<td colspan="2">

<input type='"checkbox" name="updatel" checked="checked">Please email me updates about y

our products.

<input type="checkbox" name="update2">Please email me updates about products from third
-party partners.

</td>

</tr>

<tr>

<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>

</table>

</form>

</body>

You'll see this:

Contact ACME Corporation

Name: | |

Email: | |

Type of Request: Please choose..

Subject: |
Message:

How did you hear about us?

¢ Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.
I~ Please email me updates about products from third-party partners.

SUBMIT D
(1 BN

Look familiar? This is a simple contact form, where a user can inquire about the services on a website and give a little
information about him/herself. Also noteworthy is that it contains all the major form types: text,textarea, select,
radio, checkbox, and submit.

Each form element has a name attribute and a value attribute, except for textarea, which has an ending tag instead of
a value attribute. Furthermore, radio buttons all have the same name to ensure only one is checked, while
checkboxes have different names so thatany of them can be checked. select tags contain their names and values
within separate option tags, for that nice drop-down-menu effect.

Note You mean it doesn'tlook familiar? We're assuming this is review for you - if you're completely lost, you
may want to take alook atour HTML and CSS course.

It's a nice-looking form, but if you want something done with thatinformation, you're going to have to create a PHP
scriptto process the input. Go ahead and Save your form -- you can name itcontact.html.

Using Superglobals to Read Form Inputs

Now, let's switch CodeRunner to PHP and start a new file.

In PHP, type the following:

<?php

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$ POST['name']."
";

echo "Email: ".$_POST['email']."
";

echo "Type of Request: ".$ POST['whoami']."
";

echo "Subject: ".$ POST['subject']."
";

echo "Message: ".$ POST['message']."
";

echo "How you heard about us: ".$_POST['found']."
";

echo "Update you about our products: ".$_POST['updatel']."
";

echo "Update you about partners' products: ".$ POST['update2']."
";

?>

Preview this:

Thank You!

Here is a copy of your request:

Name:

Email:

Type of Request:

Subiject:

Message:

How you heard about us:

Update you about our products:
Update you about partners' products:

Well, that didn'tdo much good. And what's this $_POST([] array anyway??

But wait, there's more. Save this PHP file and call it contact.php. Now, switch back to HT ML in CodeRunner, where
you should still have your contact.htmli file ready.

Preview this, and fill in the form:

https://oreillyschool.com/courses/html5css/

Contact ACME Corporation

Name: Trish |

Email: |trish@myemai|.com |

Type of Request: |need technical help using the website.

Subiject: |Please help!

Message: || can't get the darn thing to work!

How did you hear about us?

c Word of Mouth

¢ Online Search

¢ Printed publication/article
& Online link/article

c Other

¥ Please email me updates about your products.
I~ Please email me updates about products from third-party partners.

SUBMIT
(1

Now, within your Preview window, click SUBMIT. What did you get?

Hopefully you got something like this:

Thank You!

Here is a copy of your request:

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can't get the darn thing to work!
How you heard about us: website

Update you about our products: on
Update you about partners' products:

[l

So why did it work this time? Here's where the magic ofthat $_POST|[] array is revealed.

Take anotherlook at the form tag in contact.html:

<form method="POST" action="contact.php">

If you remember, forms themselves can be submitted using several different methods - two of the mostimportant
methods are GET and POST. If you've ever programmed a web application in a differentlanguage - say Perl or C -
you might also remember using complicated CGl libraries to extract form data from either the query string in the case
ofthe GET method, or from the environment variables in the case of the POST method.

However, because PHP was created with the web in mind, this process has been greatly simplified, using special
variables called superglobals.

Let's look at contact.php again:

<?php

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$ POST['name']."
";

echo "Email: ".$ POST['email']."
";

echo "Type of Request: ".$ POST['whoami']."
";

echo "Subject: ".$ POST['subject']."
";

echo "Message: ".$_POST['message']."
";

echo "How you heard about us: ".$_POST['found']."
";

echo "Update you about our products: ".$ POST['updatel']."
";

echo "Update you about partners' products: ".$ POST['update2']."
";
?2>

Did you notice something familiar about the key indices of $_POST([] -- name, email, whoami, etc.? You see, PHP
does all the work for you here - it processes the form input and places all the values into the superglobal array
$_POST[], an associative array with the key indices corresponding to the form element names. This is done
automatically, whenever a form is submitted using the POST method, and the array works in any scope - that's why
it's called a superglobal variable.

By convention, we don't normally use the underscore at the beginning of variable names (as in
Note $_POST).However, they are used in superglobals to prevent any clashing with your own variable '
names. '

What do you do ifyou use the GET method in your form? Experiment with this and find out. If you need help, check
out php.net.
Extracting Superglobals into Variables

As if the superglobal variables weren't easy enough, PHP goes even further to make reading form inputs easy for
you.

http://www.php.net/manual/en/language.variables.predefined.php

In PHP, change contact.php with the following blue code:

echo
echo

echo
echo
echo
echo
echo
echo
echo
echo

?>

<?php

extract ($_POST, EXTR PREFIX SAME, "post");

"<h3>Thank you!</h3>";
"Here is a copy of your request:

";

"Name: ".$name."
";

"Email: ".$email."
";

"Type of Request: ".$whoami."
";

"Subject: ".$subject."
";

"Message: ".$message."
";

"How you heard about us: ".$found."
";

"Update you about our products: ".$updatel."
";
"Update you about partners' products: ".S$update2."
";

Save contact.php again, then go back to contact.html and Preview. What did you get?

Preview contact.html and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can't get the darn thing to work!
How you heard about us: website

Update you about our products:on
Update you about partners' products:

Kl

Note

Superglobals are brilliantinnovations in web programming - all builtinto PHP to make your world an easier place to

In previous versions of PHP, a php config directive called register globals automatically created global
variables from GET and POST form elements. However, many dangers arose in using register globals,

and as a result, PHP has removed them from PHP 5 and newer versions.

live. Notto mention ourworld - did you notice justhow short this lesson is? Exactly.

Nesting Variable Names

Justone more cool feature before we move on...

[+

Wow - itworked even withoutthe $_POST([] array! This is yet another simplification in the process that can be done
through the built-in function extract (). In this case, the form elements passed through the $_POST][] array have been
extracted into PHP variables, accessible by anything within the program. We indicated to extract() that we wanted the
PHP variable names to correspond to the form element names by passing in the flag EXTR_PREFIX_SAME as a
parameter. You can read more about extract() here: http:/www.php.net/manual/en/function.extract.php.

http://www.php.net/manual/en/function.extract.php
http://www.php.net/manual/en/security.globals.php

In PHP, change contact.php with the following, in blue:

<?php
extract($7POST, EXTR PREFIX SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".S$name."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".Swhoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".S$message.'"
";

echo "How you heard about us: ".S$found."
";

for ($i = 1; $i <= 2; $i++) {
Selement name = "update".$i;
echo $element name.": ";
echo $$element name;
echo "
";

?>

Preview contact.ntml and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can't get the darn thing to work!
How you heard about us: website
updatel:on

update2:

Kl

Did you see what happened there? We were able to dynamically construct the name of our "update#" form elements
through a for loop, and then access the value of that element through the variables we created with extract(). This
was done by nesting variable names.

Take another look:

for ($1i = 1; $i <= 2; S$Si++) {

Selement name = "update".$i;

echo $element name.": "; << evaluates to "updatel" or "update2"

echo $$element name; << evaluates to $updatel or $update2, whose values are "on" or
" off "

echo "
";

Nesting variable names is justlike all the nesting we did in previous lessons - first$element_name is evaluated,
and then that value is used to evaluate the nested $($element_name). Name nesting can be done with ALL
variables, however, it's especially useful when you create dynamic form names and then need to read them with the
variables passed in through superglobals and extract(). It's definitely worth learning this handy trick.

We're just getting warmed up with forms. Don'tforgetto Save your work and hand in your assignments from your syllabus.
See you in the nextlesson!

Copyright © 1998-2014 QO'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Utilizing Internet Tools

In the lastlesson, we created a contact form for customers to communicate with the customer support departmentofa
corporation. Butit's not quite ready for prime time yet. So far, we have no way of knowing what kind of computer or browser the
customer is using, no way to catch incomplete form entries, and no way to, well, send the message out.

It's time to fix this! Fire up CodeRunner and open the two files we were working on before: contact.html and contact.php.

Environment and Server Variables

Preview contact.ntml and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subiject: Please help!

Message: | can't get the darn thing to work!
How you heard about us: website
update1:on

update2:

(1 D

Have you ever received a customer support request like this? We have. It's more common than you may think, and it
can leave you scratching your head—this customer can't get the darn website to work, yet leaves the details of the
problem to your mind-reading skills.

Let's look into our crystal ball...

In PHP, change contact.php as shown in blue:

<?php
extract($7POST, EXTR PREFIX SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".S$name."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".Swhoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".S$message.'"
";

echo "How you heard about us: ".S$found."
";

for ($1 = 1; $1i <= 2; $i++) {
Selement name = "update".$i;
echo Selement name.": ";
echo $Selement name;

echo "
";

echo "You are currently working on ".S SERVER['HTTP USER AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP X FORWA
RDED FOR'];

?>

Switch to contact.html, Preview, and submitthe form like before:

Thank You!

Here is a copy of your request:

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can't get the darn thing to work!

How you heard about us: website

update1:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/4 1
(KHT ML, like Gecko) Safari/417.9.2

The IP address of the computer you're working on is 63.171.219.74

Kl B

When itcomes to customer support, justas important as the customer's requestis knowing where the customeris
coming from—perhaps geographically, but more importantly in the sense of what operating system (Windows, Mac)
and browser (Safari, Internet Explorer, Firefox) they're using.

Luckily, the folks who worked on our very first web browsers way back in the day, already thought of this. They created
something called CGl (Common Gateway Interface) Environment Variables, which tell us a lotabout both the
client—that's the customer's computer—as well as the server -- that's the computer where your PHP script resides
(in our case, it's sitting in Champaign, lllinois).

Take another look at this code:

echo "You are currently working on ".$_SERVER[‘HTTP_USER;AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP X FORWA
RDED_FOR'];

You guessed it—$_SERVER[] is another superglobal array in PHP. That underscore(_) at the beginning tends to
give itaway. The information that $_SERVER[] holds? Environment variables like HTTP_USER_AGENT and
HTTP_X_FORWARDED_FOR. Butwhat do they mean?

Now take another look at the output:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/4
18 (KHTML, like Gecko)

Safari/417.9.2

The IP address of the computer you're working on is 63.171.219.74

Not so luckily, the folks who created the environment variables didn't make them easy to decipher. Here's a little
translation for the two we're using:

e HTTP_USER_AGENT gives you information aboutthe computer and web software your customer is
using. Since you're testing your own form, it should be telling you what computer and web software you're
using. The formatis something like this: operating system/version (more info) web library/version
(more info) web browser/version (more info).

In our case, we gotthe information Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/418 (KHT ML,
like Gecko) Safari/417.9.2. Very cryptically, this tells us that we are on a Macintosh computer with a Mac OS X
operating system, using the Safari web browser. Obviously, your result will most likely be different from this—you
might be on a Windows XP computer, for instance, using Internet Explorer (MSIE). Here is a listof more browsers than
you'll ever care to know, and their HTTP_USER_AGENT translations. Can you find yours?

e HTTP_X_FORWARDED_FOR gives you the IP address of either your customer's computer, or if your
customer is using an Internet Service Provider like AOL, the IP address of one of its servers. What's an IP
(Internet Protocol) address? Every computer on the internet has one -- a unique identifier, chosen
within the Internet Protocol Standard. It's useful to know, because it can indicate the customer's country of
origin, through any Whois tool. More importantly, ifit has been determined that a particular customeris a
fraud, there are ways to block the IP address from ever getting to your site—something you will learn in a
later course.

There are lots of useful environment variables. Here is a very useful list to reference.

Using HTTP Headers

Anotherimportantissue in customer support—and really any interface that requires form input—is ensuring that all
fields are properly filled in. How can you help a customer if he doesn'tinclude his email address or contactinfo? But of
course he'll include it, right? You'd be surprised.

http://www.zytrax.com/tech/web/browser_ids.htm
http://whois.arin.net/ui/
http://en.wikipedia.org/wiki/Environment_variable

In PHP, change contact.php with the following blue code:

<?php

#We used the superglobal $ POST here
if (! ($_POST['name'] && $ POST['email'] && $ POST['whoami']
&& $ _POST['subject'] && S _POST['message'l])) {
echo "Please make sure you've filled in all required information.";
exit () ;

}
extract ($_POST, EXTR PREFIX SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".Sname."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".$subject."
";

echo "Message: ".S$message."
";

echo "How you heard about us: ".S$found."
";

for ($i = 1; $i <= 2; $i++) |
Selement name = "update".S$i;
echo $element name.": ";
echo $Selement name;
echo "
";

1

echo "You are currently working on ".$ SERVER['HTTP USER AGENT'];

echo "
The IP address of the computer you're working on is ".S SERVER['HTTP_ X FORWA
RDED FOR'];

>

Notice the new built-in PHP function we used here: exit(). This essentially stops the program in its
tracks. How's that for lack of commitment?

Switch to contact.html, Preview, and submit the form like before—only this time, try leaving something blank:

Please make sure you've filled in all required information.

£l

shot:

]

So essentially when someone leaves something blank, we're letting them know about it. But now the customer has to
go back to the form and find out what's wrong. What if we could take them back to the form automatically? Let's give ita

In PHP, change contact.php with the following, in blue:

<?php

#We used the superglobal $ POST here
if (!($_POST['name'] && $ POST['email'] && $ POST['whoami']
&& $ _POST['subject'] && $_POST['message'l])) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

Surl = "http://".$ SERVER['HTTP_HOST']."/contact.html";
header ("Location: ".Surl);
exit () ;

}
extract ($_POST, EXTR PREFIX SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".Sname."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".Smessage.'"
";

echo "How you heard about us: ".S$found."
";

for ($1 = 1; $1 <= 2; Si++) {
Selement name = "update".$i;
echo $element7name.": ",
echo $Selement name;
echo "
";

1
echo "You are currently working on ".S$ SERVER['HTTP_ USER AGENT'];

echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP_ X FORWA
RDED FOR'];

?>

Switch to contact.html, Preview your form, and submit it, leaving something blank. You should get this:

Contact ACME Corporation

Name: | |

Email: | |

Type of Request: Please choose..

Subiject: |
Message:

How did you hear about us?

c Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.
I~ Please email me updates about products from third-party partners.

SUBMIT v
(4)

Whoa! What just happened? If you left something blank on your form and submitted it, you just got the same form back,
blank again.

Let's take another look at this code:

Surl = "http://". $_SERVER['"HTTP_HOST']."/contact.html";
header ("Location: ".S$url);
exit ();

You may already know that all HTML-based web pages use the HyperText Transfer Protocol (HTTP) to render
properly in your web browser—that's why you always see http:// at the beginning of every web address. Butwhat you
may NOT know is that before any HTML is rendered on your web browser, a series ofinvisible headers are passed
so thatyour browser knows exactly what to do with the code. Most of these headers are pretty obscure, but a few are
extremely useful. Click here for a reference.

Of course, since PHP embeds HTML within its code, it can also manipulate HTTP headers through the built-in
function header(). In this case, we were able to setthe header "Location: " with the URL of the contact form
contact.html we created. As a result of sending that header, the browser redirected the user back to the form.

Any headers that are sentusing header() mustcome BEFORE any PHP or HTML output. Otherwise, the
browser will get confused, and next thing you know, you're debugging.

Note

You'll also notice we used another environment variable, called HTTP_HOST. This variable returns the domain
name of the web address where your contact.php scriptresides.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

In our case, ourdomain name, or HTTP_HOST, is josh.onza.net. ltis a live web site, on the internet for everyone to
see: hitp://josh.onza.net/. Pretty lame web site, huh? Keep this in mind when you create your website using your own
domain name—you could have a lame web site like us, or you could have a professional online portfolio to show to
all your friends, colleagues, and potential employers when you apply for your first LAMP-based programming job.

Manipulating Query Strings

But we digress. And in the meantime, simply redirecting our poor customer to a blank form is a horrible way to treat
someone who's already frustrated with the website. There has to be a more user-friendly way to ask the customer to
fix a form field before we submit it.

The problem is, since contact.html is a static HTML page, we can't dynamically add anything to it—that's why it's
blank. And simply giving the error message "Please fix this" to the customer, like we did before, isn't user-friendly
either. What we need is a way to show the customer, nicely, exactly what he needs to fix on the form, withoutlosing any
ofthe answers he's already filled in.

We can do this by converting the HTML form into a PHP script of its own. What you need to do is Save contact.html
in PHP syntax, but sure to call it "contact_form.php". Orifyou'd rather, just copy and paste the HTML code
into a new PHP file.

http://josh.onza.net/

Be sure you're in PHP, and add the following blue code to contact_form.php:

<body>
<h3>Contact ACME Corporation</h3>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="<? echo $ GET['name']; ?>" />
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="<? echo $ GET['email']; 2>" />
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") ({
echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
echo " selected";
}
?> />I have a billing question.
</select>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $ GET['subject']; ?
>mo/>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
<? echo $ GET['message']; ?>

</textarea>

</td>

</tr>

<tr>

<td colspan="2" align="left">

How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>

</tr>

<tr>

<td colspan="2">

<input type="checkbox" name="updatel" checked="checked" />Please email me updates about
your products.

<input type="checkbox" name="update2" />Please email me updates about products from thi
rd-party partners.

</td>

</tr>

<tr>

<td colspan="2" align="center">

<input type="submit" value="SUBMIT" />

</td></tr>

</table>

</form>

</body>

Now, Preview contact_form.php:

Contact ACME Corporation

Name: | |

Email: | |

Type of Request: Please choose..

Subiject: |
Message:

How did you hear about us?

c Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.
I~ Please email me updates about products from third-party partners.

SUBMIT v
(4)

You'll notice here that we've switched the method attribute in the HTML form tag from POST to GET, and we've
introduced some PHP echo statements using the $_GET[] superglobal. Butso far, no changes have taken place—
we still getthe same blank form with contact_form.php as we did with contact.html.

The htmlispecialchars() function can be used when obtaining the values for the input tags. For example:

<input type="text" size="25" name="email" value="<? echo
htmlspecialchars($_GET[email',ENT_QUOTES, 'UTF-8'); ?>" /> </td>

against cross site scripting. A detailed discussion of web application security in beyond the scope of this

Note This function converts some predefined characters to HTML entities and will help to protect your code
course, but please check out the following links for additional information: E

Be sure to Save contact_form.php, since the Location: header will redirect you back to the saved version of
contact_form.php, NOT the Preview version.

http://www.php.net/manual/en/function.htmlspecialchars.php
https://en.wikipedia.org/wiki/Cross-site_scripting

Switch to contact.php, and make the following changes in blue:

<?php

#We used the superglobal $ GET here

if (! ($_GET['name'] && $ GET['email'] && $ GET['whoami']
&& $_GET['subject'] && $_GET['message'])) {
#with the header () function, no output can come before it.

#echo "Please make sure you've filled in all required information.";

$query string = $ SERVER['QUERY STRING'];

$url = "http://".$ _SERVER['HTTP_HOST']."/contact form.php?".Squery string;
header ("Location: ".$url);
exit () ;

extract($7GET, EXTR PREFIX SAME, "get");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".S$name."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".S$Swhoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".Smessage.'"
";

echo "How you heard about us: ".S$found."
";

for ($1 = 1; $1i <= 2; S$i++) {
Selement name = "update".$i;
echo $element_name.": ",
echo $Selement name;
echo "
";

echo "You are currently working on ".S$ SERVER['HTTP_USER AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP_ X FORWA
RDED FOR'];

?>

Remember to save contact.php, then switch back to contact_form.php and Preview.

When you submit the form, be sure that you leave one field blank to see what happens:

Contact ACME Corporation

Name: Trish |

Email: |trish@myemai|.com |

Type of Request: |need technical help using the website.

Subiject: |Woops, | left the message field blank!

Message:

How did you hear about us?

c Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.
I~ Please email me updates about products from third-party partners.

SUBMIT
(1

D

Now here's some real progress. When you submit the form with a field or two blank, the form still comes back—but
this time, all the fields at the top have been filled in. This is much better, because now the user doesn't have to redo

everything.

Let's take another look at the code we used in contact.php:

#We used the superglobal $ GET here
if (! ($_GET['name'] && $ GET['email'] && $ GET['whoami']
&& $ GET['subject'] && $ GET['message'])) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

Squery string = $ SERVER['QUERY STRING']

Surl = "http://".$ SERVER['HTTP HOST']."/contact form.php?".Squery string;
header ("Location: ".Surl);
exit () ;

}

extract($_GET, EXTR PREFIX SAME, "get");

|
[+]

We switched our form to have method=GET so that our data will come through to our scriptfrom the query string.
The query string consists of all the encoded data you see after the question mark (?) in your URL when you submit

the form:

(%) http:/ /josh.onza.net/contact_form.php?name=Trish&email=trish¥40myemail.com8whoami=support&subject=Woopsk2C+|+left+the+message+field+blank¥21 *

And, since we have the handy environment variable QUERY_STRING, we can simply use the $_SERVER]]
superglobal to grab itand send itback to contact_form.php.

And if you look again at contact_form.php:

<input type="text" size="25" name="name" value="<? echo $_GET['name']; 2>" />

You'll see that we were able to harness the query string yet again—through the superglobal $_GET[]—to fill in the
input tags with the customer's original data.

Customizing specific error messages

Now it's time to use our newly-formed scriptcontact_form.php to tell the customer exactly what needs to
be done. To do this, however, we first need to manipulate the query string a bit:

In PHP, switch to contact.php, and make the following changes, in blue:

<?php

#We used the superglobal $ GET here
if (!($_GET[‘name'] && $ GET['email'] && $ GET['whoami']
&& S GET['subject'] && $ GET['message'l)) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

$query string = $ SERVER['QUERY STRING'];
#add a flag called "error" to tell contact form.php that something needs fixe

d

$url = "http://".$ SERVER['HTTP HOST']."/contact form.php?".$query string."&e
rror=1";

header ("Location: ".Surl);

exit () ;

}
extract ($_GET, EXTR PREFIX SAME, "get");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".S$name."
";

echo "Email: ".S$email."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".Smessage."
";

echo "How you heard about us: ".S$found."
";

for ($1i = 1; $1i <= 2; Si++) {
Selement name = "update".$i;
echo Selement name.": ";
echo $Selement name;
echo "
";

}

echo "You are currently working on ".$ SERVER['HTTP USER AGENT'];

echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP
X FORWARDED FOR'];

?>

Make sure you Save contact.php, and switch to contact_form.php:

In PHP, add the following to contact_form.php, in blue:

<?php

if ($ GET['error'] == "1") {

Serror code = 1; //this means that there's been an error and we need to noti
fy the customer
} else {

Serror code = 0;

?>

<body>
<h3>Contact ACME Corporation</h3>
<?
if (Serror code) {
echo "<div style='color:red'>Please help us with the following:</div>";
}
>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="<? echo $ GET['name']; °?>" />
<?
if ($error code && ! ($_GET['name'])) {
echo "Please include your name.";
}
>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="<? echo $ GET['email']; 2>" />
<?
if (Serror code && ! (S_GET['email']l)) {
echo "Please include your email address.";
}
>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($ GET['whoami'] == "newcustomer") {
echo " selected";
}
?> /> am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
echo " selected";

}

?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
echo " selected";
}
?> />I have a billing question.

</select>
<?
if (Serror code && ! (S _GET['whoami'])) {

echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $ GET['subje
ct'l; >" />
<?
if (Serror code && ! (S _GET['subject']l)) {
echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">

<? echo $ GET['message']; ?>

</textarea>

<?

if (Serror code && ! (S_GET['message'])) {

echo "Please fill in a message for us.";
}
2>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article<b
r/>
<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="updatel" checked="checked" />Please email me update
s about your products.

<input type="checkbox" name="update2" />Please email me updates about products f
rom third-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>

</table>
</form>
</body>

Again, be sure to Save contact_form.php, and then Preview, leaving one field blank. What did you get?

We get something like this:

Contact ACME Corporation

Please help us with the following:
Name: | | Please include your name.

Email: |trish@myemai|.com |

Type of

Request: I need technical help using the website.

Subject: |Woops, | left the message field blank!

Message:

Please fill i

us.
How did you hear about us?

¢ Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.

Er—nl‘--- PRGN | EVIUR A [P Ry Fg R R [N PG VR RO N SRS G T iy @
[+]

MUCH better. Now the customer knows exactly what's wrong, he can fix it, and submit the support request
easily.

Sending Emails

Finally, we can do what we wanted to do all along: send the supportrequestvia email. Never one to letus down, PHP
has justthe function for us: mail(). Let's try it:

In PHP, switch to contact.php, and make the following changes, in blue:

<?php

#We used the superglobal $ GET here
if (l($_GET['name'] && S GET['email'] && $ GET['whoami']
&& S GET['subject'] && $ GET['message'l]l)) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

$query_string = S_SERVER[‘QUERY_STRING‘];
#add a flag called "error" to tell contact form.php that something needs fixed

S$url = "http://".S$ SERVER['HTTP_HOST']."/contact form.php?".Squery string."&error=1"
header ("Location: ".S$Surl);
exit(); //stop the rest of the program from happening

extract($_GET, EXTR PREFIX SAME, "get");

#construct email message

$email message = "Name: ".S$name."

Email: ".Semail."

Type of Request: ".S$Swhoami."

Subject: ".S$subject."

Message: ".Smessage."

How you heard about us: ".S$found."

User Agent: ".$_SERVER['HTTP_USER_AGENT']."
IP Address: ".$_SERVER['REMOTE_ADDR'J;

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address

//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

S$email subject = $ GET['subject'];

#now mail
mail ($to, Semail subject, $email message, "From: ".Sfrom);

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".S$name."
";

echo "Email: ".S$email."
";

echo "Type of Request: ".S$Swhoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".S$message.'"
";

echo "How you heard about us: ".S$found."
";

for ($1i = 1; $i <= 2; Si++) {
Selement name = "update".$i;
echo Selement name.": ";
echo $Selement name;
echo "
";

echo "You are currently working on ".S$ SERVER['HTTP_USER AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP_ X FORWA
RDED FOR'];

?>

Save contact.php, switch to contact_form.php, Preview, and submit the form.

If you filled in all the required fields, you should get something like before:

Thank You!

Here is a copy of your request:

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can't get the darn thing to work!

How you heard about us: website

update1:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/4 1
(KHT ML, like Gecko) Safari/417.9.2

The IP address of the computer you're working on is 63.171.219.74

However, this time, if you included your own email in the $t o variable, you should have a brand new customer support
message in your email inbox.

Don'tforgetto Save your work and hand in the assignments from your syllabus. See you in the nextlesson!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Date and Time

You'll find that Date and Time play a huge partin programming - they are useful for timestamps, logs, and are needed in just

about every database entry you'll create. And although they're somewhat tricky to harness, PHP has done well in simplifying the
process.

Open the two files we were working on before: contact_form.php and contact.php.

Date and Time Standards

Switch to contact.php, and make the following changes, in green:

<?php

#We used the superglobal $ GET here instead of the register globals, for safety

if (! ($_GET['name'] && $ GET['email'] && $ GET['whoami']
&& $ GET['subject'] && $ GET['message'])) {
#with the header () function, no output can come before it.

#echo "Please make sure you've filled in all required information.";

$query string = $ SERVER['QUERY STRING'];
#add a flag called "error" to tell contact form.php that something needs fixed

Surl = "http://".$ SERVER['HTTP HOST']."/contact form.php?".S$query string."&error=1"
header ("Location: ".$url);
exit(); //stop the rest of the program from happening

extract ($_GET, EXTR PREFIX SAME, "get");

#construct email message

Semail message = "Name: ".S$name."
Email: ".Semail."
Type of Request: ".S$Swhoami."
Subject: ".S$subject."
Message: ".Smessage."
How you heard about us: ".S$found."
User Agent: ".$ SERVER['HTTP USER AGENT']."
IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address

//We will send the emails from our own server
Sfrom = "anything@yourlogin.oreillystudent.com";

Semail subject = "CONTACT #".time().": ".$ GET['subject'];

#now mail
mail ($to, Semail subject, $email message, "From: ".Sfrom);

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";

echo "Name: ".Sname."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".$subject."
";

echo "Message: ".Smessage.'"
";

echo "How you heard about us: ".S$found."
";

for ($1 = 1; $1 <= 2; Si++) {
Selement name = "update".$i;
echo $element7name.": ",
echo $Selement name;
echo "
";

echo "You are currently working on ".S$ SERVER['HTTP_ USER AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP_ X FORWA
RDED FOR'];

?>

Notice we're breaking one of our own cardinal rules here - doubling up on code that could be taken care

Note of with one function. Feel free to punish us within your own code.

Save contact.php, switch to contact_form.php, Preview, and submit the form.

If you filled in all the required fields, you should get something like this:

Thank You!
Here is a copy of your request:

CONTACT #1148955473:

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subiject: Please help!

Message: | can't get the darn thing to work!

How you heard about us: website

update1:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /-
(KHTML, like Gecko) Safari/i417.9.2 —
The IP address of the computer you're working on is 63.171.219.74 E]EJ

Although we're using itas a timestamp here, the number we got actually measures how many seconds have passed
since Unix Epoch -- that's a fancy name for January 1st, 1970, at midnight (00:00:00) GMT. Why is thattime the Unix
Epoch? No good reason really, except that some early computer scientists agreed on italong time ago as a date
and time standard.

Sounds nerdy, butit's really a good thing - it enables us to harness date and time, notonly in PHP, butalso in mySQL
and lots of other technology languages. For instance, you'll be using PHP functions to process SQL timestamps in
later courses.

Date and Time Functions

Obviously, date and time standards weren't created for us to use merely as a unique identification number -
although that's handy. What else can they do for us? Enter the built-in PHP functions.

http://en.wikipedia.org/wiki/Unix_time

Switch to contact.php, and make the following changes, in green:

<?php

#We used the superglobal $ GET here instead of the register globals, for safety
if (l($_GET['name'] && S GET['email'] && $ GET['whoami']
&& $ GET['subject'] && $ GET['message'l]l)) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

$query_string = S_SERVER[‘QUERY_STRING‘];
#add a flag called "error" to tell contact form.php that something needs fixed

S$url = "http://".S$ SERVER['HTTP_HOST']."/contact form.php?".Squery string."&error=1"
header ("Location: ".S$Surl);
exit(); //stop the rest of the program from happening

extract($_GET, EXTR PREFIX SAME, "get");

#construct email message

Semail message = "Message Date: ".date("F d, Y h:i a")."
Name: ".S$name."

Email: ".$Semail."

Type of Request: ".S$Swhoami."

Subject: ".S$subject."

Message: ".Smessage."

How you heard about us: ".$found."

User Agent: ".$_SERVER['HTTP_USER_AGENT']."

IP Address: ".$ SERVER['HTTP X FORWARDED FOR'];

#construct the email headers
$Sto = "support@example.com"; //for testing purposes, this should be YOUR email address

//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

Semail subject = "CONTACT #".time().": ".S GET['subject'];

#now mail
mail ($to, Semail subject, $email message, "From: ".Sfrom);

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "CONTACT #".time().":
";

echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".S$name."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".$subject."
";

echo "Message: ".Smessage."
";

echo "How you heard about us: ".S$found."
";

for ($1 = 1; $1i <= 2; Si++) {
Selement name = "update".$i;
echo Selement name.": ";
echo $Selement name;
echo "
";

echo "You are currently working on ".$ SERVER['HTTP USER AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP X FORWA
RDED FOR'];

?>

Again, ifyou Save contact.php, then Preview contact_form.php, you might get something like this:

Thank You!

Here is a copy of your request:

CONTACT #1148955473:

Message Date: May 29, 2006 10:25 pm
Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can't get the darn thing to work!
How you heard about us: website
update1:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/4 1
(KHT ML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Kl

[

This time, instead of a cryptic timestamp, the date of the message has been nicely formatted for us through the date()

function.

Let's take another look:

echo "Message Date:

".date("F d, Y h:i a")."
";

The parameter for the date() function is a special coded format that PHP replaces with the proper time/date data.
Forinstance, "F" is replaced with the name ofthe month - in our case, May, and "a" is replaced with am or pm,

depending on the time - in our case, pm. Here is the php.net reference for time/date formats.

format Describtion Example
character P returned values
Day --- ---
d Day of the month, 2 digits with leading zeros 01to 31
A textual representation of a day, three letters Mon through Sun
J Day of the month without leading zeros 1to 31
!
(lowercase | A full textual representation of the day of the week gunday through
L) aturday
1 (for Monday)
N ISO-8601 numeric representation of the day of the week (added in PHP 5.1.0) through 7 (for
Sunday)
. . st,nd, rd or th.
S English ordinal suffix for the day of the month, 2 characters Works well with |
0 (for Sunday)
w Numeric representation of the day of the week through 6 (for
Saturday)
z The day of the year (starting from 0) 0 through 365
Week |--- ---

http://www.php.net/manual/en/function.date.php

Example: 42 (the

w ISO-8601 week number of year, weeks starting on Monday (added in PHP 4.1.0) |42nd week in the
year)
Month |--- ---
F A full textual representation of a month, such as January or March January through
December
m Numeric representation of a month, with leading zeros 01 through 12
M A shorttextual representation of a month, three letters Jan through Dec
n Numeric representation of a month, without leading zeros 1 through 12
t Number of days in the given month 28 through 31
Year --- ---
L Whether it's a leap year Tifitis a leap year,
0 otherwise.
ISO-8601 year number. This has the same value as Y, except that if the ISO week .
. . . Examples: 1999 or
o) number (W) belongs to the previous or next year, that year is used instead. 2003
(added in PHP 5.1.0)
Y A full numeric representation of a year, 4 digits gzg?ples: 7999 or
y A two digitrepresentation of a year Examples: 99 or 03
Time --- ---
a Lowercase Ante meridiem and Post meridiem amorpm
A Uppercase Ante meridiem and Post meridiem AMor PM
B Swatch Internettime 000 through 999
g 12-hour format of an hour without leading zeros 1 through 12
G 24-hour format of an hour without leading zeros 0 through 23
h 12-hour format of an hour with leading zeros 01 through 12
H 24-hour format of an hour with leading zeros 00 through 23
i Minutes with leading zeros 00to 59
s Seconds, with leading zeros 00 through 59
Timezone |--- ---
Examples: UTC,
e Timezone identifier (added in PHP 5.1.0) GMT,
Atlantic/Azores
1 if Daylight
I (capital i) | Whether or notthe date is in daylights savings time Savings Time, 0
otherwise.
0] Difference to Greenwich time (GMT) in hours Example: +0200
Difference to Greenwich time (GMT) with colon between hours and minutes . .
P (added in PHP 5.1.3) Example: +02:00
) . . . Examples: EST,
T Timezone setting of this machine MDT .
7 Timezone offsetin seconds. The offset for timezones westof UTC is always -43200 through
negative, and for those eastof UTC is always positive. 43200
Full L L
Date/Time
c ISO 8601 date (added in PHP 5) 2004-02-

12T15:19:21+00:00

RFC 2822 formatted date

Example: Thu, 21
Dec 2000 16:01:.07
+0200

http://www.faqs.org/rfcs/rfc2822.html

|u | Seconds since the Unix Epoch (January 11970 00:00:00 GMT) |

Constructing Dates and Times

Now, suppose Acme, Inc. had a customer service policy claiming "We'll get back to you in 48 hours." You'll
wantto use the date of the message to give the customer support representative an idea of the deadline she
has.

Make sure you have contact.php, and make the following changes, in green:

<?php

#We used the superglobal $ GET here instead of the register globals, for safety
if (!($_GET['name'] && S GET['email'] && $ GET['whoami']
&& S GET['subject'] && $ GET['message'l)) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

$query string = $ SERVER['QUERY STRING'];
#add a flag called "error" to tell contact form.php that something needs fixe

d

Surl = "http://".$ SERVER['HTTP HOST']."/contact form.php?".$query string."&e
rror=1";

header ("Location: ".Surl);

exit(); //stop the rest of the program from happening

}

extract(S_GET, EXTR PREFIX SAME, "get");
#construct email message

#we want a deadline 2 days after the message date.

$dead1ine_array = getdate() ;
$deadline day = $deadline_array['mday'] + 2;

$deadline str = $deadline_array['month']." ".$deadline day." ".$deadline array['
year'];

Semail message = "Message Date: ".date("F d, Y h:i a")."
Please reply by: ".$deadline str."

Name: ".S$name."

Email: ".Semail."

Type of Request: ".Swhoami."

Subject: ".S$subject."

Message: ".Smessage."

How you heard about us: ".$found."

User Agent: ".$_SERVER['HTTP_USER_AGENT']."

IP Address: ".$ SERVER['HTTP X FORWARDED FOR'I];

#construct the email headers

Sto = "support@example.com"; //for testing purposes, this should be YOUR email
address.

//We will send the emails from our own server

$from = "anything@yourlogin.oreillystudent.com";

$email subject = "CONTACT #".time().": ".S GET['subject'];

#now mail
mail ($to, Semail subject, $email message, "From: ".Sfrom);

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline str.".
";
echo "Here is a copy of your request:

";

echo "CONTACT #".time () .":
";

echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".Sname."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".$subject."
";

echo "Message: ".Smessage.'"
";

echo "How you heard about us: ".S$found."
";

for ($1i = 1; $1i <= 2; Si++) {

$element name = "update".S$i;
echo $element7name.": ",
echo $Selement name;

echo "
";

}

echo "You are currently working on ".S$ SERVER['HTTP USER AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP
X FORWARDED FOR'];

?>

Save contact.php, switch to contact_form.php and Preview:

Thank You!

We'll get back to you by May 31 2006.
Here is a copy of your request:

CONTACT #1148955473:

Message Date: May 29, 2006 10:25 pm

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can't get the darn thing to work!

How you heard about us: website

update1:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWe
(KHTML, like Gecko) Safari/417.9.2

The IP address of the computer you're working on is 63.171.219.74

(4] D

Take another look:

#we want a deadline 2 days after the message date.

$deadline array = getdate();

$deadline day = $deadline array['mday']l + 2;

$deadline str = $deadline array['month']." ".$deadline day." ".$deadline array['
year'];

Here, the function getdate(), like time(), gets a stamp of the currenttime. However, instead of justan
integer, getdate() extracts the data and outputs an associative array thatlooks a bit like this:

Here's what a getdate() output array mightlook like:

Array

(
seconds] => 40
minutes] => 58

[

[

[hours] => 21
[mday] => 29
[wday] => 1
[mon] => 5
[year] => 2006
[yday] => 160
[weekday] => Monday
[month] => May
[0

] => 1055901520

This array makes it easy to construct a new date relative to the current date - all we have to do is add 2 to the
‘mday’ array value, and suddenly we have a deadline for the customer support representative. Fast service
means happy customers.

But wait a minute - whatif today was, say, the 31st of May? Justadding 2 to that will give you an invalid date.
We could do a series of if statements to fix this, but that's a lot of unwieldy code. Luckily, PHP has yet another
handy function to help us.

In PHP, try adding the following green code to contact.php:

<?php

#We used the superglobal $ GET here instead of the register globals, for safety
if (!($_GET['name'] && $ GET['email'] && $ GET['whoami']
&& S GET['subject'] && $ GET['message'l)) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

$query string = $ SERVER['QUERY STRING'];
#add a flag called "error" to tell contact form.php that something needs fixe

d

$url = "http://".$ SERVER['HTTP HOST']."/contact form.php?".$query string."&e
rror=1";

header ("Location: ".Surl);

exit(); //stop the rest of the program from happening

}
extract ($_GET, EXTR PREFIX SAME, "get");

#construct email message

#we want a deadline 2 days after the message date.
$deadline array = getdate();

$deadline day = $deadline array['mday'l + 2;

$deadline stamp = mktime ($deadline array['hours'],$deadline array['minutes'], $de
adline_array|['seconds'],

$deadline array['mon'],Sdeadline day,$deadline array['year']);
$deadline str = date("F d, Y", $deadline_ stamp) ;

$email message = "Message Date: ".date("F d, Y h:i a")."
Please reply by: ".Sdeadline str."

Name: ".S$name."

Email: ".$email."

Type of Request: ".S$Swhoami."

Subject: ".S$subject."

Message: ".Smessage."

How you heard about us: ".S$found."

User Agent: ".$ SERVER['HTTP USER AGENT']."

IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers

$to = "support@example.com"; //for testing purposes, this should be YOUR email
address.

//We will send the emails from our own server

Sfrom = "anything@yourlogin.oreillystudent.com";

$email subject = "CONTACT #".time().": ".S$ GET['subject'];

#now mail
mail ($to, Semail subject, $email message, "From: ".Sfrom);

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".Sdeadline str.".
";
echo "Here is a copy of your request:

";

echo "CONTACT #".time () .":
";

echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".S$name."
";

echo "Email: ".$email."
";

echo "Type of Request: ".S$Swhoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".S$message."
";

echo "How you heard about us: ".S$found."
";

for ($1 = 1; $1i <= 2; S$i++) {
Selement name = "update".$i;
echo Selement name.": ";
echo $Selement name;
echo "
";

}

echo "You are currently working on ".S$S SERVER['HTTP_USER AGENT'];

echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP
X _FORWARDED FOR'];

?>

Save contact.php, switch to contact_form.php and Preview:

Thank You!

We'll get back to you by June 2 2006.
Here is a copy of your request:

CONTACT #11489625009:

Message Date: May 31, 2006 12:20 pm

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can't get the darn thing to work!

How you heard about us: website

update1:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWe
(KHTML, like Gecko) Safari/i417.9.2

The IP address of the computer you're working on is 63.171.219.74

Kl [

Take one more look:

$deadline stamp = mktime ($deadline array['hours'],$deadline array['minutes'], $de
adline_array|['seconds'],

Sdeadline array['mon'],$deadline day,S$deadline array|['year']);
$deadline str = date("F d, Y", $deadline stamp);

The function mktime () fixes all those pesky date problems. It takes in the parameter data of the date you
want to format, and creates the original timestamp, which we then plug into date() to format properly.
Problem solved!

Don'tforgetto Save your work and hand in your assignments from your syllabus. See you in the nextlesson!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Using Files

So far, we've created a simple corporate contact form that accounts for user error and friendly reminders, successful output, and
sending of the proper message. Pretty robust, but at the same time, you have to admit, it's pretty ugly. And it's notthe most
professional-looking interface on the web either.

In a perfect world, we'd have lots of time to keep tweaking the PHP scriptto make every page look justso. Butin most
situations, you won't have the luxury of extra time, and you probably won't even be allowed to dictate how the page looks. Not
when there's a graphic designer down the hall. Justthe same, you don'twant the graphic designer down the hall messing with
your PHP scripts either. Here's where file templates come in real handy.

Including and Requiring Files

Fire up CodeRunner and open up the two files we were working on before: contact_form.php and contact.php.
After you do this, switch CodeRunner to HTML syntax. Forjusta moment, we're going to pretend that we are the
graphic designers down the hall.

In HTML, type the following, in blue:

<html>

<head>

<title>Acme, Inc.</title>

<link rel="stylesheet" href="http://students.oreillyschool.com/resource/php lesson.css"
type="text/css" />

</head>

<body>

<div class="topbar">

ACME, INC.

</div>

<table>

<tr><td class="sidebar" valign="top">

links go here

</td><td class="content">

Content goes here

</td></tr></table>
<div class="bottombar">
</div>
</body>
</html>
Preview this:
ACME, INC.
links go here

Content goes here

What we have here is a basic "C-Clamp" design template for a corporate web page: logo on top, links on the side,

something on the bottom to wrap the content nicely, and a CSS file to add a little style (here we've provided one for
you). This will make our contact form look slightly better than it did before.

Buthow do you most easily place our content within this C-Clamp? You could simply embed the HTML into the PHP
scriptitself, but this creates a big problem - if the graphic designer decides to make a change, you're stuck making that

same change in every PHP script you've written. And if you work for a large corporation, this could mean dozens, even
hundreds offiles.

Itwould be greatis if you could reuse the code, like when you create PHP functions.

In HTML, remove the second half of our C-Clamp:

<html>

<head>

<title>Acme, Inc.</title>

<link rel="stylesheet" href="http://students.oreillyschool.com/resource/php lesson.css"
type="text/css" />

</head>

<body>

<div class="topbar">

ACME, INC.

</div>

<table>

<tr><td class="sidebar" valign=top>
links go here

</td><td class="content">

Now, Save this file and name ittemplate_top.inc.

<
o
[
®
>
<
c
(2]
(]
5
(2]
-~
(S
C
%]
~—
I}
]
o
V)
3.
<
1
—
=
(2]
&
35
—_
)
Q
o
3
=2
(]
—
®
T
—
<
—
=
o
(7]
o
]
o
>
(]
(]
o
=
(]
]
V)
3
(0]
=
=
=
>
)
=
—
3
(2]
C
=]
x

In HTML, create a NEW file, containing the second half of our C-Clamp:

</td></tr></table>
<div class="bottombar">
</div>

</body>

</html>

Save this file and name ittemplate_bottom.inc.

Add the following to contact_form.php, in green:

<?php

require ($_SERVER['DOCUMENT ROOT']."/template top.inc");

if ($ GET['error'] == "1") {
$eEror code = 1; //this means that there's been an error and we need to notify the
customer a
}
?>
<body>
<h3>Contact ACME Corporation</h3>
<?

if (Serror code) {
echo "Please help us with the following:";

}

?>

<form method=GET action="contact.php">
<table>

<tr>

<td align="right">

Name:

</td>

<td align="left">

<input type="text" size="25" name="name" value="<? echo $ GET['name']; ?>">
<?

if (Serror code && ! ($_GET['name'])) {

echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="<? echo $ GET['email']; ?2>">
<?
if ($error code && ! ($_GET['email'l)) {
echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="">Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
echo " selected";
}
?>>1 am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") ({
echo " selected";
}
?>>1 am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
echo " selected";

}

?>>1 need technical help using the website.

<option value="billing"<?

if ($_GET['whoami'] == "billing") {
echo " selected";

}

?>>1 have a billing question.

</select>

<?

if (Serror code && ! (S _GET['whoami'])) {
echo "Please choose a request type.";

}

?>

</td>

</tr>

<tr>

<td align="right">

Subject:

</td>

<td align="left">

<input type="text" size="50" max="50" name="subject" value="<? echo $ GET['subject']; ?

>">

<?

if (Serror code && ! (S _GET['subject'l)) {
echo "Please add a subject for your request.";

}

?>

</td>

</tr>

<tr>

<td align="right" valign="top">

Message:

</td>

<td align="left">

<textarea name="message" cols=50 rows=8>

<? echo $ GET['message']; 2>

</textarea>

<?

if (Serror code && ! (S_GET['message'])) {

echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth">Word of Mouth

<input type="radio" name="found" value="search">Online Search

<input type="radio" name="found" value="article">Printed publication/article

<input type="radio" name="found" value="website">Online link/article

<input type="radio" name="found" value="other">Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="updatel" checked>Please email me updates about your produc
ts.

<input type="checkbox" name="update2">Please email me updates about products from third
-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT">
</td></tr>

</table>
</form>

<?
require($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");
?2>

</body>

Be sure and Save contact_form.php.

Now PREVEIW:

ACME, INC.

links go here

Contact ACME Corporation

Name: | |

Email: | |

Type of Request: Please choose..

Subject: |
Message:

How did you hear about us?

¢ Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.
I~ Please email me updates about products from third-party partners.

QIIRMTT D

Kl BT

Even with the extreme simplicity of our C-Clamp template, this looks much better than it did before.

Take another look at the code:

require ($_SERVER['DOCUMENT ROOT']."/template top.inc");

The PHP built-in function require () takes a filename as its parameter, and imports all the data from that filename into
that exact place within the PHP code. It's as if you had written the code rightin.

We can do this with contact.php as well.

Switch to contact.php and add the following green code:

<?php

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $ GET here instead of the register globals, for safety
if (! ($_GET['name'] && $ GET['email'] && $ GET['whoami']

&& S GET['subject'] && $ GET['message'l]l)) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

$query_string = S_SERVER[‘QUERY_STRING‘];
#add a flag called "error" to tell contact form.php that something needs fixed

S$url = "http://".S$ SERVER['HTTP_HOST']."/contact form.php?".Squery string."&error=1"
header ("Location: ".S$Surl);
exit(); //stop the rest of the program from happening

}

extract ($_GET, EXTR PREFIX SAME, "get");
#construct email message

#we want a deadline 2 days after the message date.
$deadline array = getdate();

$deadline day = $deadline array['mday'] + 2;

$deadline stamp = mktime ($deadline array['hours'],$deadline array['minutes'],$deadline
array(['seconds'],

$deadline array['mon'],Sdeadline day, $deadline arrayl['year']);
$deadline str = date("F d, Y", $deadline stamp);

S$email message = "Message Date: ".date("F d, Y h:i a")."

Please reply by: ".S$deadline str."

Name: ".S$name."

Email: ".$email."

Type of Request: ".$whoami."

Subject: ".S$subject."

Message: ".Smessage."

How you heard about us: ".S$found."

User Agent: ".$_SERVER['HTTP_USER_AGENT']."

IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
Sto = "support@example.com"; //for testing purposes, this should be YOUR email address

//We will send the emails from our own server

$from = "anything@yourlogin.oreillystudent.com";

$email subject = "CONTACT #".time().": ".S GET['subject'];

Sheaders = "From: " . $from . "\r\n";

Sheaders .= 'MIME-Version: 1.0' . "\n"; //these headers will allow our HTML tags to be
displayed in the email

Sheaders .= 'Content-type: text/html; charset=iso0-8859-1' . "\r\n";

#now mail
mail ($to, Semail subject, $email message, Sheaders);

include ($_SERVER['DOCUMENT ROOT']."/template top.inc");

echo "<h3>Thank you!</h3>";

echo "We'll get back to you by ".S$deadline str.".
";
echo "Here is a copy of your request:

";

echo "CONTACT #".time () .":
";

echo "Message Date: ".date("F d, Y h:i a")."
";

echo "Name: ".S$name."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".Smessage."
";

echo "How you heard about us: ".S$found."
";

for ($1 = 1; $1i <= 2; Si++) {
$element name = "update".S$i;
echo Selement name.": ";
echo $Selement name;
echo "
";

}

echo "You are currently working on ".$ SERVER['HTTP USER AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP X FORWAR
DED FOR'];

include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save contact.php. Now when you view contact_form.php and submitthe form, you should see something like
this:

ACME, INC.

links go here

Thank you!

We'll get back to you by June 07, 2006.
Here is a copy of your request:

CONTACT #1149489921:

Message Date: June 05, 2006 01:45 pm

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can/'t get the darn thing to work!

How you heard about us: other

updatei:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; er
AppleWebKit/418 (KHT ML, like Gecko) Safari/417.9.2

The IP address of the computer you're working on is 63.171.219.74

Note This time, instead of require() we used include (). What's the difference? If for some reason the URL
' doesn'texist, require() will give you a PHP error, whereas include () will just skip that URL.

Reading and Writing Files

Now that we've gotthe web interface looking better, let's work on the email. In this case, there's no clear-cut beginning
and ending template, rather, the data is peppered throughout the email. So if we want to use a template with this, we'll
have to find a way to insert the data into the template, instead of the other way around.

First, let's see how we want the template to look. Switch to HT ML, and create a text-only file thatlooks something
like below.

Make sure you're in HTML, and type the following into a new file:

You have just received a customer email. Please respond to this email by #DEADLINE#.
Details are below:

<table>

<tr><td width="100" align="right">Message Type: </td><td>#WHOAMI#</td></tr>
<tr><td width="100" align="right">Message Date: </td><td>#DATE#</td></tr>
<tr><td width="100" align="right">Name: </td><td>#NAME#</td></tr>

<tr><td width="100" align="right">Email: </td><td>#EMAIL#</td></tr>
<tr><td width="100" align="right">IP Address: </td><td>#IP#</td></tr>
<tr><td width="100" align="right">Platform: </td><td>H#AGENTH#</td></tr>
</table>

Subject: #SUBJECT#

#MESSAGE#

This customer found us through #FOUND#.

#CONTACT#

Save this textfile, and call itemail_template.txt. Now let's go back to contact.php.

Switch to contact.php and make the following changes, in green:

<?php

function mail message($data_array, S$template file, $deadline str) {

#iget template contents, and replace variables with data

Semail message = file get contents($template file);

Semail message = str_replace ("#DEADLINE#", $deadline str, $email message);

Semail message = str_replace ("#WHOAMI#", $data array['whoami'], $email message);

Semail message = str_replace ("#DATE#", date("F d, Y h:i a"), S$email message) ;

Semail message = str_replace ("#NAME#", $data_array['name'], Semail message) ;

Semail message = str_replace ("#EMAIL#", $data_array['email'], Semail message) ;

Semail message = str_replace ("#IP#", $_SERVER['HTTP_X FORWARDED FOR'], $email messag
e);

Semail message = str_replace ("#AGENT#", $ SERVER['HTTP USER AGENT'], $email message)

Semail message = str_replace ("#SUBJECT#", $data array['subject'], S$email message) ;
Semail message = str_replace ("#MESSAGE#", $data array['message'], $email message) ;
Semail message = str_replace ("#FOUND#", $data_array['found'], Semail message) ;

#include whether or not to contact the customer with offers in the future
Scontact = "";
if (isset($data_array[‘updatel'])) {
$contact = $contact." Please email updates about your products.
";
}
if (isset($data_array['update2'])) {
$contact = $contact." Please email updates about products from third-party partne
rs.
";
}

Semail message = str_replace ("#CONTACT#", S$contact, $email message) ;

#iconstruct the email headers

$to = "support@example.com"; //for testing purposes, this should be YOUR email addr
ess.

$from = $data_array['email'];

Semail subject = "CONTACT #".time().": ".$data array['subject'];

Sheaders = "From: " . $from . "\r\n";

$headers .= 'MIME-Version: 1.0' . "\n"; //these headers will allow our HTML tags to
be displayed in the email

S$headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n";

#now mail
mail ($to, $email subject, $email message, $headers);

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $ GET here instead of the register globals, for safety
if (! ($_GET['name'] && $ GET['email'] && $ GET['whoami']

&& S GET['subject'] && $ GET['message']l)) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

Squery string = $ SERVER['QUERY STRING'];
#add a flag called "error" to tell contact form.php that something needs fixed
Surl = "http://".$ SERVER['HTTP_HOST']."/contact form.php?".Squery string."&error=1"

header ("Location: ".Surl);
exit(); //stop the rest of the program from happening

}
extract($_GET, EXTR PREFIX SAME, "get");

#we want a deadline 2 days after the message date.
$deadline array = getdate();
$deadline day = $deadline array['mday']l + 2;

$deadline stamp = mktime ($deadline array['hours'], Sdeadline array['minutes'], $deadli
ne array|['seconds'],
$deadline array['mon'],Sdeadline day, $deadline arrayl['year']);
$deadline str = date("F d, Y", $Sdeadline stamp);

//DOCUMENT ROOT is the file path leading up to the template name.
mail message ($_GET, $ SERVER['DOCUMENT ROOT']."/email template.txt", $deadline str);

include ($_SERVER['DOCUMENT ROOT']."/template top.inc");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".S$deadline str.".
";
echo "Here is a copy of your request:

";

echo "CONTACT #".time () .":
";

echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".S$name."
";

echo "Email: ".Semail."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".S$message."
";

echo "How you heard about us: ".S$found."
";

for ($1i = 1; $1i <= 2; S$i++) {
Selement name = "update".$i;
echo $element name.": ";
echo $Selement name;
echo "
";

}

echo "You are currently working on ".$ SERVER['HTTP USER AGENT'];
echo "
The IP address of the computer you're working on is ".S$ SERVER['HTTP_ X FORWA
RDED FOR'];

include ($_SERVER['DOCUMENT ROOT']."/template bottom.inc");

?>

Save contact.php, then view and submitthe form in contact_form.php. If you used your own email address as the
$to variable, you should have received an email in your INBOX like before. However, this time it should look a little
better.

You should have received an email like this:

Date: Thu, 8 Jun 2006 17:03:11 -0500

From: trish@myemail.com

To: support@acmeinc.com

Subject: CONTACT #1149804191: Please help!

You have just received a customer email. Please respond to this email by June 10,
Details are below:

Message Type: support
Message Date: June 08, 2006 05:03 pm
Name: Trish
Email: trish@myemail.com
IP Address: 12.149.132.162
Platform: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWe

Subject: Please help!

I can't get the darn thing to work!

This customer found us through wordofmouth.
Please email updates about your products.

Take another look at the code:

function mail message ($data_array, Stemplate file, $deadline str) {

#iget template contents, and replace variables with data

Semail message = file get contents($template file);

$email message = str replace ("#DEADLINE#", $deadline str, $email message);
$email message = str replace ("#WHOAMI#", S$data array['whoami'], $email message) ;

mail message ($_GET, $ SERVER['DOCUMENT ROOT']."/email template.txt", $deadline str);

Here, we created a function called mail_message(), which takes three parameters -- $data_array, $template_file,
and $deadline_str. $data_array contains all the form data, because we pass the $_GET superglobal array into it.
$template_file is the full path to the template file we wantto use - in our case, we passed in the path to
"email_template.txt" that we created earlier. And $deadline_str is the formatted string of the date by which we
want the message answered.

We used the built-in PHP function file_get_contents() to importour email template file into a string,
$email_message. Then, one by one, we replace each of our template variables with the corresponding form data,
using the built-in function str_replace(). Go to php.netto read more aboutfile_get contents() or str_replace().

By making the support email easier to read -- and obtaining as much user information as possible -- you've improved
efficiency in Acme's customer support process. Go ahead, demand a raise. You deserve it.

Allowing Users to Download Files

To make things a litle more interesting, it turns out that Acme wants every customer who sends in a support email to

http://us3.php.net/manual/en/function.file-get-contents.php
http://us3.php.net/manual/en/function.str-replace.php

be allowed to download its informational brochure, a PDF document.

Now, technically you could justinclude a link to the PDF documentitself, if the documentis in a web-accessible
directory. However, most of the time corporations don't want their downloadable files to be in a public area for anyone
and everyone to download. This is especially true when electronic documents are for purchase, like marketing reports
or copyrighted materials.

In your case, we've placed the brochure, called acme_brochure.pdf, in a hidden directory called .php_files/ within
your account. You can't view this file through the web, but you need to allow web users of your choosing to download
it. Whatdo you do?

In PHP, create a new file, called download.php:

<?php

$filepath = $ SERVER['DOCUMENT ROOT']."/.php files/acme brochure.pdf";
if (file_exists($filepath)) {

header ("Content-Type: application/force-download") ;

header ("Content-Disposition:filename=\"brochure.pdf\"") ;

$fd = fopen($filepath, 'rb');

fpassthru ($£d) ;

fclose ($£d) ;

?>

Save download.php.

Now, switch back to contact.php and make the following changes, in green and blue:

<?php
function mail message (Sdata array, S$template file, Sdeadline str) {

#get template contents, and replace variables with data
Semail message = file get contents($template file);

Semail message = str replace ("#DEADLINE#", S$deadline str, Semail message);
Semail message = str_ replace ("#WHOAMI#", S$Sdata array['whoami'], S$email message);
Semail message = str replace ("#DATE#", date("F d, Y h:i a"), Semail message);
Semail message = str replace ("#NAME#", $data array['name'], Semail message);
Semail message = str replace ("#EMAIL#", $data array['email'], Semail message);

(

Semail message = str replace ("#IP#", $ SERVER['HTTP X FORWARDED FOR'], S$email messag
e);
Semail message = str replace ("#AGENT#", $ SERVER['HTTP USER AGENT'], Semail message)

Semail message = str replace ("#SUBJECT#", Sdata array['subject'], $email message);
Semail message = str replace ("#MESSAGE#", Sdata arrayl['message'], $email message);
Semail message = str_ replace ("#FOUND#", Sdata array['found'], Semail message);

#include whether or not to contact the customer with offers in the future
Scontact = "";
if (isset(Sdata_arrayl['updatel'])) {
Scontact = S$Scontact." Please email updates about your products.
";
}
if (isset(Sdata_array['update2'])) {
Scontact = $contact." Please email updates about products from third-party partne
rs.
";
}

Semail message = str replace ("#CONTACT#", Scontact, Semail message);

#construct the email headers

$to = "support@example.com"; //for testing purposes, this should be YOUR email addr
ess.

$from = $data array['email'];

Semail subject = "CONTACT #".time().": ".Sdata arrayl['subject'];

Sheaders = "From: " . $from . "\r\n";

$headers .= 'MIME-Version: 1.0' . "\n"; //these headers will allow our HTML tags to
be displayed in the email

Sheaders .= 'Content-type: text/html; charset=iso0-8859-1' . "\r\n";

#now mail
mail ($to, Semail subject, $email message, Sheaders);

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $ GET here instead of the register globals, for safety
if (! ($_GET['name'] && $ GET['email'] && $ GET['whoami']

&& $ _GET['subject'] && $ _GET['message'])) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

$query string = $ SERVER['QUERY STRING'];
#add a flag called "error" to tell contact form.php that something needs fixed

Surl = "http://".$ SERVER['HTTP HOST']."/contact form.php?".Squery string."&error=1"
header ("Location: ".Surl);
exit(); //stop the rest of the program from happening

}

extract ($_GET, EXTR PREFIX SAME, "get");

#we want a deadline 2 days after the message date.
Sdeadline_array = getdate();
$deadline day = $deadline array['mday'l + 2;

$deadline stamp = mktime ($deadline array['hours'],$deadline array['minutes'], $deadli
ne array|['seconds'],
$deadline array['mon'],Sdeadline day, $deadline arrayl['year']);
$deadline str = date("F d, Y", $Sdeadline stamp);

//DOCUMENT ROOT is the file path leading up to the template name.
mail message($_GET, $ SERVER['DOCUMENT ROOT']."/email template.txt", $deadline str);

include ($_SERVER['DOCUMENT ROOT']."/template top.inc");
echo "<h3>Thank you!</h3>";

echo "We'll get back to you by ".Sdeadline str.".
";
echo "Here is a copy of your request:

";

echo "CONTACT #".time().":
";

echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".S$Sname."
";

echo "Email: ".S$email."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".S$subject."
";

echo "Message: ".S$message."
";

echo "How you heard about us: ".S$found."
";

for ($1i = 1; $1i <= 2; S$i++) {
Selement name = "update".$i;
echo Selement name.": ";
echo $Selement name;
echo "
";

}

echo "You are currently working on ".$ SERVER['HTTP USER AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP X FORWA
RDED FOR'];

?>

Download our PDF brochure!
<?

include ($_SERVER['DOCUMENT ROOT']."/template bottom.inc");

?>

Save contact.php, then view contact_form.php and submit the form:

It should look something like this:

ACME, INC.

links go here

Thank you!

We'll get back to you by June 10, 2006.
Here is a copy of your request:

CONTACT #1149809625:

Message Date: June 08, 2006 06:33 pm

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subiject: Please Help!

Message: | can/'t get the darn thing to work!

How you heard about us: wordofmouth

updatel:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; er
AppleWebKit/418 (KHT ML, like Gecko) Safari/417.9.2

The IP address of the computer you're working on is 63.171.219.74

Download our PDF brochure!
e

4 4

Now click the link. Did the PDF file download to your computer? You may have seen something like this:

r — — ¢
atala Downloads Acme, Inc.
. brochure. pdf ntact.php?name=Trish&email=trish}40myemail.col

*l |

= KB of 7 (4.2 KB/sec
ne 10, 2006.
nest
i

How were we able to do that? Take anotherlook at the code in download.php:

OBSERVE:

$filepath = $§ SERVER['DOCUMENT ROOT']."/.php files/acme brochure.pdf";
if (file_exists($filepath)) {

header ("Content-Type: application/force-download");

header ("Content-Disposition:filename=\"brochure.pdf\"") ;

$fd = fopen($filepath, 'rb');

fpassthru ($£d) ;

fclose ($£d) ;

First, the built-in function file_exists() does exactly whatitsays - itreturns TRUE or FALSE based upon the existence
ofthe parameter $filepath, which we setto the path of Acme's hidden PDF brochure in our account. Since it does
exist, we use header() to outputtwo HTTP headers. The header "Content-Type" is extremely important, as ittells
the web browser that we are preparing to download data thatis NOT in an HTML or text format, but in fact an
application. Find out what happens if you leave this header out. The header "Content-Disposition" is optional, but
we used itto create a generic name for the downloaded file.

In the case of PDF files, you can also use the header "Content-Type: application/pdf"”. What's the
Note difference? Some browsers allow PDF files to be opened within the browser itself, without having to '
download them to the computer's hard drive. Try it out and see what happens in your own browser. :

Then, the built-in function fopen() creates a file stream pointing to our acme_brochure.pdffile, and binds it to the
handle $fd. The parameter 'rb' specifies that the file should be opened in read-only, binary mode -- binary, again,
because it's not a textfile. fpasst hru() then sends all the file data through to the output buffer -- and because we
specified through header() what the browser should do with that output, this launches your computer's download
manager. fclose() simply closes the file stream $fd, to clean things up.

Don'tforgetto Save your work and hand in your assignments from your syllabus. See you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Cookies and Sessions

Learning about cookies and sessions is essential for programming PHP in the 21st century. You see, web users justaren't as
patient as they used to be - they want websites that are incredibly easy for them to use and reuse, without having to repeat
themselves over and over again. And their attention spans are shorter as well, meaning corporate websites in particular must
compete by targeting the user as specifically as possible.

"Know Thy User", as they say. Buthow?

Using Cookies

Mmmm, cookies. Well, no, not those kinds of cookies. Although we would certainly revisita web
site for free cookies any day, unfortunately, downloading chocolate-chip goodness just hasn't
been invented yet. Sigh...

Okay, so what are browser cookies? Let's find out. Fire up CodeRunner in PHP, and open your files
contact_form.php and contact.php.

Add the following to contact_form.php, in green and blue:

<?php

require ($_SERVER['DOCUMENT ROOT']."/template top.inc");

if ($ GET['error'] == "1") {
Serror_code = 1; //this means that there's been an error and we need to notify the
customer
}
?>

<h3>Contact ACME Corporation</h3>

<?

if (Serror code) {

echo "<div style='color:red'>Please help us with the following:</div>";

}

>

<form method="GET" action="contact.php">

<table>

<tr>

<td align="right">

Name:

</td>

<td align="left">

<?

if ($_COOKIE['name']) {
echo $ COOKIE['name'];

}

else {

?>

<input type="text" size="25" name="name" value="<? echo $ GET['name']; ?>" />

<input type="checkbox" name="remember" /> Remember me on this computer

<?

}

if (Serror code && ! (S _GET['name'] || $_COOKIE['name‘])) {
echo "Please include your name.";

}

>

</td>

</tr>

<tr>

<td align="right">

Email:

</td><td align="left">

<?

if ($ _COOKIE['email']) {
echo $ COOKIE['email'];

}

else {

?2>

<input type="text" size="25" name="email" value="<? echo $ GET['email']l; 2>" />

<?

}

if (Serror code && ! ($_GET['email'] || $_COOKIE['email'])) ({
echo "Please include your email address.";

}

?>

</td>

</tr>

<tr>

<td align="right">

Type of Request:

</td>

<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($ GET['whoami'] == "customer") {
echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
echo " selected";
}
?> />I have a billing question.

</select>
<?
if (Serror code && ! ($_GET['whoami'])) {

echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $ GET['subject']; ?
> /> -
<?
if (Serror code && ! ($_GET['subject'])) {
echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">

<? echo $ GET['message']; ?>

</textarea>

<?

if (Serror code && ! (S _GET['message'])) {

echo "Please fill in a message for us.";
}
>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>

</tr>

<tr>

<td colspan="2">

<input type="checkbox" name="updatel" checked="checked" />Please email me updates about
your products.

<input type="checkbox" name="update2" />Please email me updates about products from thi
rd-party partners.

</td>

</tr>

<tr>

<td colspan="2" align="center">

<input type="submit" value="SUBMIT" />

</td></tr>

</table>

</form>

<?
require($_SERVER[‘DOCUMENT_ROOT']."/template_bottom.inc");
>

Be sure and Save contact_form.php, then Preview.

You should see something like this:

ACME, INC.

links go here

Contact ACME Corporation

| I~ Remember me on th

Name: |
computer

Email: | |

Type of
Request:

Subject: |
Message:

Please choose..

How did you hear about us?

c Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.
[~ Please email me updates about products from third-party partners. 0]

D

Now, switch back to contact.php and make the following changes, in green:

<?php
function mail message ($data array, S$template file, S$deadline str, $myname, $myemail) ({

#get template contents, and replace variables with data

Semail message = file get contents($template file);

Semail message = str replace ("#DEADLINE#", S$deadline str, Semail message);

Semail message = str_ replace ("#WHOAMI#", S$data array['whoami'], S$email message);

Semail message = str replace ("#DATE#", date("F d, Y h:i a"), Semail message);

$email message = str replace ("#NAME#", $myname, S$email message);

$email message = str replace ("#EMAIL#", $myemail, Semail message);

Semail message = str replace ("#IP#", $ SERVER['HTTP X FORWARDED FOR'], S$email messag
e);

Semail message = str replace ("#AGENT#", $ SERVER['HTTP USER AGENT'], Semail message)

Semail message = str replace ("#SUBJECT#", Sdata array['subject'], $email message);
Semail message = str replace ("#MESSAGE#", Sdata arrayl['message'], $email message);
Semail message = str_ replace ("#FOUND#", $Sdata array['found'], Semail message);

#include whether or not to contact the customer with offers in the future
Scontact = "";
if (isset(Sdata_arrayl['updatel'])) {
Scontact = S$Scontact." Please email updates about your products.
";
}
if (isset(Sdata_array['update2'])) {
Scontact = $contact." Please email updates about products from third-party partne
rs.
";
}

Semail message = str_ replace ("#CONTACT#", Scontact, Semail message);

#construct the email headers

$to = " ReplaceWithYourOwnEmailAddress@oreillyschool.com"; //for testing purposes,
this should be YOUR email address.

$from = $data array(['email'];

Semail subject = "CONTACT #".time().": ".Sdata arrayl['subject'];
Sheaders = "From: " . $from . "\r\n";
Sheaders .= 'MIME-Version: 1.0' . "\n";
Sheaders .= 'Content-type: text/html; charset=iso0-8859-1' . "\r\n"; #now mail

mail ($to, Semail subject, $email message, Sheaders);

Scustomer name = $ COOKIE['name'];
if (! (Scustomer name)) {

Scustomer name = $ GET['name'];
}
Scustomer email = $_COOKIE['email'];
if (! (Scustomer email)) {

Scustomer email = $_GET['email'];

}

#Remember, 1f you place any output before a header() call, you'll get an error.
#We used the superglobal $ GET here
if (! ($customer name && Scustomer email && $ GET['whoami']

&& S GET['subject'] && $ GET['message'l]l)) {

#with the header () function, no output can come before it.
#echo "Please make sure you've filled in all required information.";

$query_string = S_SERVER[‘QUERY_STRING‘];
#add a flag called "error" to tell contact form.php that something needs fixed
S$url = "http://".S$ SERVER['HTTP_HOST']."/contact form.php?".Squery string."&error=1"

header ("Location: ".S$Surl);
exit(); //stop the rest of the program from happening

}

#we want a deadline 2 days after the message date.
$deadline array = getdate();
$deadline day = $deadline array['mday'l + 2;

Sdeadline stamp = mktime ($deadline array['hours'],$deadline array['minutes'], $deadli
ne array['seconds'],
$deadline array['mon'], Sdeadline day, $deadline arrayl['year']);
S$deadline str = date("F d, Y", $deadline stamp);

if (isset($_GET['remember'])) {
#the customer wants us to remember him/her for next time
set errcode cookie
/*
cookie expires in one year
365 days in a year
24 hours in a day
60 minutes in an hour
60 seconds in a minute
*/
Smytime = time() + (365 * 24 * 60 * 60);
setcookie ("name", $customer name, $mytime) ;
setcookie("email",$customer_gmail,$mytime);

//DOCUMENT ROOT is the file path leading up to the template name.
mail message($_GET, $ SERVER['DOCUMENT ROOT']."/email template.txt", $deadline str, $cu
stomer_ name, $customer_email);

include ($_SERVER['DOCUMENT ROOT']."/template top.inc");
extract($_GET, EXTR PREFIX SAME, "get");
echo "<h3>Thank you!</h3>";

echo "We'll get back to you by ".$deadline str.".
";
echo "Here is a copy of your request:

";

echo "CONTACT #".time().":
";

echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$customer_name."
";

echo "Email: ".Scustomer email."
";

echo "Type of Request: ".S$Swhoami."
";

echo "Subject: ".$subject."
";

echo "Message: ".Smessage.'"
";

echo "How you heard about us: ".S$found."
";

for ($1 = 1; $1i <= 2; $i++) {
Selement name = "update".$i;
echo $element_name.": ",
echo $Selement name;
echo "
";

}

echo "You are currently working on ".S$ SERVER['HTTP_USER AGENT'];
echo "
The IP address of the computer you're working on is ".$ SERVER['HTTP_ X FORWA
RDED FOR'];

>

Download our PDF brochure!
<?

include ($ SERVER['DOCUMENT ROOT']."/template bottom.inc");

?>

Save contact.php, switch to contact_form.php, and Preview. This time, however, when you submit the form, be
sure to check the box that says "Remember me on this computer.”

ACME, INC.

links go here

Thank you!

We'll get back to you by June 11, 2006.
Here is a copy of your request:

CONTACT #1149880113:

Message Date: June 09, 2006 02:08 pm

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can/'t get the darn thing to work!

How you heard about us: wordofmouth

updatei:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mz
en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7

The IP address of the computer you're working on is 63.171.219.74

Download our PDF brochure!
e

4 4

Looks pretty much the same as before. What's changed? To find out, now go back to contact_form.php and
RELOAD the page:

ACME, INC.

£l

links go here

Contact ACME Corporation

Name: Trish
Email: trish@myemail.com

Type of Request: Please choose..

Subject: |
Message:

How did you hear about us?

¢ Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.
[~ Please email me updates about products from third-party partners.

SUBMIT D
[

And there we are! The form is indeed remembering us, and even if you exit your browser entirely and come back, your
name and email would still be there. But how were we able to do it? Using cookies.

Take another look at the code in contact.php:

if (isset($ _GET['remember'])) {
#the customer wants us to remember him/her for next time
set errcode cookie
/ *
cookie expires in one year
365 days in a year
24 hours in a day
60 minutes in an hour
60 seconds in a minute
=
Smytime = time() + (365 * 24 * 60 * 60);
setcookie ("name", $customer name, $mytime) ;
setcookie ("email", $customer email, $mytime) ;

Here, we're using the built-in PHP function setcookie() with three parameters: "name™ and "email"” are the names
we're giving the respective cookies, and $customer_name and $customer_email are the values that we gotfrom
the $_GET superglobal. $mytime is the timestamp at which we want the cookies to expire - since it's measured in
seconds, we simply took time() and added enough seconds to make 1 year.

Browser cookies are simply variables that are stored within the user's browser on his/her computer. Ifyou look in
your own browser preferences, you can actually view all the cookies that are set:

http://josh.onza.net - Acme, Inc.
A(: View and remove cookies that are stored on your computer.
Site Cookie Name
josh.onza.net ermail
links go] josh.onza.net narme
Information about the selected Cookie
Mame: ermail
Content: trish%40myemail.com
Host: josh.onza.net
Path: ¢
Send For: Any type of connection
Expires: at end of session
| Remowve Cookie | | Remove All Cookies |
N : Don't allow sites that set removed cookies to set future cookies

Now take another look at the code in contact_form.php

if ($ COOKIE['name']) {
echo $ COOKIE['name'];
}

Justlike $_GET and $_POST store values set by the user, and $_SERVER and $_ENV store values set by the
environment, $_COOKIE is a superglobal array -- but this time the values being stored are setby you, the
programmer.

Before cookies, once a user left a website, that site had no way recognizing that user when she came back. Basically,
the user had to start from scratch every time. No shopping carts, personalized home pages, or pre-filled forms. So as
you can see, introducing cookies opened up a world of power and convenience that have made them invaluable to
web programming.

Knowing the User Through Sessions

Of course, there are a couple of downfalls to using cookies. One is that different browsers have different restrictions on
the number and size of cookies - some allow unlimited numbers but small sizes, others allow large cookies butonly
up to 10.

But the main problem with cookies is privacy. Anyone who uses the same browser that you used - unless you deleted
your cookies before you left- can now view your name and email in the browser cookie list. Think if that had been even
more sensitive information, like usernames or financial information. Yikes! Let's try fixing this.

Add the following to contact_form.php, in green:

<?php

#start the session before any output
session_start();

require ($_SERVER['DOCUMENT ROOT']."/template top.inc");
if ($ GET['error'] == "1") {
$errorfcode =1; //this means that there's been an error and we need to notify the
customer
}
2>

<h3>Contact ACME Corporation</h3>

<?

if (Serror code) {

echo "<div style='color:red'>Please help us with the following:</div>";

}

?>

<form method="GET" action="contact.php">

<table>

<tr>

<td align="right">

Name:

</td>

<td align="left">

<?

if ($_SESSION['name']) {
echo $ SESSION['name'];

}

else {

?2>

<input type="text" size="25" name="name" value="<? echo $ GET['name']; °?>" />

<input type="checkbox" name="remember" /> Remember me on this computer

<?

}

if (Serror code && ! ($_GET['name'] || $_SESSION['name'])) ({
echo "Please include your name.";

}

?>

</td>

</tr>

<tr>

<td align="right">

Email:

</td><td align="left">

<?

if ($_SESSION['email']) {
echo $ SESSION['email'];

}

else {

2>

<input type="text" size="25" name="email" value="<? echo $ GET['email']; ?>" />

<?

}

if (Serror code && ! ($ GET['email'] || $_SESSION['email'])) {
echo "Please include your email address.";

}

?>

</td>

</tr>

<tr>

<td align="right">

Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
echo " selected";
}
?> /> am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") ({
echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
echo " selected";
}

?> />I have a billing question.

</select>
<?
if (Serror code && ! ($_GET['whoami'])) {

echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $ GET['subject']; ?
>"/>
<?
if (Serror code && ! (S _GET['subject']l)) {
echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">

<? echo $ GET['message']; ?>

</textarea>

<?

if (Serror code && ! (S _GET['message'l])) {

echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>

</tr>

<tr>

<td colspan="2">

<input type="checkbox" name="updatel" checked="checked" />Please email me updates about
your products.

<input type="checkbox" name="update2" />Please email me updates about products from thi
rd-party partners.

</td>

</tr>

<tr>

<td colspan="2" align="center">

<input type="submit" value="SUBMIT" />

</td></tr>

</table>

</form>

<?
require ($ SERVER['DOCUMENT ROOT']."/template bottom.inc");
?>

Be sure to Save contact_form.php.

Now switch to contact.php and make the following changes, in green:

<?php
function mail message (Sdata array, S$template file, Sdeadline str, Smyname, $myemail) {

#get template contents, and replace variables with data

Semail message = file get contents($template file);

Semail message = str replace ("#DEADLINE#", S$deadline str, Semail message);

Semail message = str_ replace ("#WHOAMI#", S$data array['whoami'], S$email message);

Semail message = str replace ("#DATE#", date("F d, Y h:i a"), Semail message);

Semail message = str replace ("#NAME#", Smyname, Semail message);

Semail message = str replace ("#EMAIL#", Smyemail, $email message);

Semail message = str replace ("#IP#", $ SERVER['HTTP X FORWARDED FOR'], S$email messag
e);

Semail message = str replace ("#AGENT#", $ SERVER['HTTP USER AGENT'], Semail message)

Semail message = str replace ("#SUBJECT#", Sdata arrayl['subject'], $email message);
Semail message = str replace ("#MESSAGE#", Sdata arrayl['message'], $email message);
Semail message = str_ replace ("#FOUND#", Sdata array['found'], Semail message);

#include whether or not to contact the customer with offers in the future
Scontact = "";
if (isset(Sdata_arrayl['updatel'])) {
Scontact = S$Scontact." Please email updates about your products.
";
}
if (isset(Sdata_array['update2'])) {
Scontact = $contact." Please email updates about products from third-party partne
rs.
";
}

Semail message = str replace ("#CONTACT#", Scontact, Semail message);

#construct the email headers

$to = " ReplaceWithYourOwnEmailAddress@oreillyschool.com"; //for testing purposes,
this should be YOUR email address.

$from = $data array['email'];

Semail subject = "CONTACT #".time().": ".Sdata arrayl['subject'];
Sheaders = "From: " . $from . "\r\n";
Sheaders .= 'MIME-Version: 1.0' . "\n";
Sheaders .= 'Content-type: text/html; charset=iso0-8859-1' . "\r\n"; #now mail

mail ($to, Semail subject, $email message, Sheaders);

f#istart the session
session_start();

Scustomer name = $ SESSION['name'];
if (! (Scustomer name)) {
Scustomer name = $ GET['name'];

}

$Scustomer email = $ SESSION['email'];
if (! ($customer email)) {
Scustomer email = $§ GET['email'];

}

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $ GET here

if (! ($customer name && $customer email && $ GET['whoami']
&& $ GET['subject'] && $ GET['message'])) {
#with the header () function, no output can come before it.

#echo "Please make sure you've filled in all required information.";

$query string = $ SERVER['QUERY STRING'];
#add a flag called "error" to tell contact form.php that something needs fixed

Surl = "http://".$ SERVER['HTTP HOST']."/contact form.php?".Squery string."&error=1"
header ("Location: ".S$url);
exit(); //stop the rest of the program from happening

}

#we want a deadline 2 days after the message date.
$deadlineiarray = getdate();
$deadline day = $deadline array['mday']l + 2;

Sdeadline stamp = mktime ($deadline array['hours'],Sdeadline array['minutes'],$deadli
ne array|['seconds'],
$deadline array['mon'],Sdeadline day, $deadline arrayl['year']);
$deadline str = date("F d, Y", $deadline stamp);

if (isset($_GET['remember'])) {
f#ithe customer wants us to remember him/her for next time
$_SESSION['name'] = $customer name;
$_SESSION['email'] = $customer email;

//DOCUMENT ROOT is the file path leading up to the template name.
mail message ($_GET, $ SERVER['DOCUMENT ROOT']."/email template.txt", S$deadline str, S$Scu
stomer name, $customer_email);

include ($_ SERVER['DOCUMENT ROOT']."/template top.inc");
extract($_GET, EXTR PREFIX SAME, "get");
echo "<h3>Thank you!</h3>";

echo "We'll get back to you by ".S$deadline str.".
";
echo "Here is a copy of your request:

";

echo "CONTACT #".time () .":
";

echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".Scustomer name."
";

echo "Email: ".Scustomer email."
";

echo "Type of Request: ".S$whoami."
";

echo "Subject: ".$subject."
";

echo "Message: ".S$message."
";

echo "How you heard about us: ".S$found."
";

for ($1 = 1; $1i <= 2; S$i++) {
Selement name = "update".$i;
echo $element name.": ";
echo $Selement name;
echo "
";

}

echo "You are currently working on ".$ SERVER['HTTP USER AGENT'];
echo "
The IP address of the computer you're working on is ".S$ SERVER['HTTP_ X FORWA
RDED FOR'];

>

Download our PDF brochure!
<?

include ($_SERVER['DOCUMENT ROOT']."/template bottom.inc");

?>

Save contact.php, then switch to contact form.php and Preview. You'll notice that you have to re-enter your name

and email address again, butnotforlong. Be sure to click the "Remember me on this computer" checkbox when you
submit the form. What did you get?

It should look something like this:

ACME, INC.

links go here

Thank you!

We'll get back to you by June 11, 2006.
Here is a copy of your request:

CONTACT #1149880113:

Message Date: June 09, 2006 02:08 pm

Name: Trish

Email: trish@myemail.com

Type of Request: support

Subject: Please help!

Message: | can\'t get the darn thing to work!

How you heard about us: wordofmouth

update1:on

update2:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X |
en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7

The IP address of the computer you're working on is 63.171.219.74

Download our PDF brochure!

. ___ |

4

4

Again, itlooks exactly the same as always. But, if you go back to contact_form.php and RELOAD, you'll get:

Something like this:

ACME, INC.

links go here

Contact ACME Corporation

Name: Trish
Email: trish@myemail.com

Type of Request: Please choose..

Subject: |
Message:

How did you hear about us?

¢ Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.
‘ : . 8

Yes, it's exactly the same output as when you used cookies -- your name and email address are now magically
saved within the browser.

So what's the difference? If you check out your browser's preferences and view the cookies stored there, you won't
see your name and email address in there anymore. Instead, you'll see something like this:

nttp://josh.onza.net - Acme, Inc.

ACD View and remowve cookies that are stored on your computer.
Site Cookie Name

josh.onza.net PHPSESSID

links go here

Information about the selected Cookie

Mame: PHPSESSID
Content: c20470aec4506068e4fbad564293800bd
Host: josh.onza.net
Path:
Send For: Any type of connection
Expires: at end of session

[Remove Cookie ._.' L Remove All Cookies b

Take another look at the code in contact.php:

#start the session
session_start();

$customer name = $ SESSION['name'];
if (! (Scustomer name)) {
Scustomer name = $ GET['name'];

}

Scustomer email = $§ SESSION['email'];
if (! (Scustomer email)) {
Scustomer email = $§ GET['email'];

}

if (isset (S _GET['remember'])) {
#the customer wants us to remember him/her for next time
$_SESSION['name'] = Scustomer name;
$_SESSION['email'] = Scustomer email;

Any time you want to use sessions in your PHP script, you must start the session first - using the PHP function
session_start(). This way, the browser knows to pull up the $_SESSION superglobal using the SESSION ID that
was setin your browser cookies. Once it's been pulled up, you can notonly access the values using $_SESSION,
you can set the values too.

! Note It'simportantto stress thatsession_start() mustbe called before any output - much like header().

Deleting Sessions

In case someone else visits our site using the same browser, we should give the user a way to end the
session without waiting for it to expire.

Add the following to contact_form.php, in green and blue:

<?php

if (isset($_GET['delete session'])) {

session_start(); //must always use this command to access the session and its
variables

session_destroy(); //force the session to end

//Add in a page reload so that the session_destroy() will take effect
if ($_SESSION && $ SESSION['name']) {
S$url = "http://".$_SERVER['HTTP HOST']."/contact form.php";

header ("Location: ".$url);

}
}
else {

fistart the session before any output

session_start();
}

require ($ SERVER['DOCUMENT ROOT']."/template top.inc");
if ($_GET['error'] == "1") {

Serror code = 1; //this means that there's been an error and we need to noti
fy the customer

}
?>

<h3>Contact ACME Corporation</h3>
<?
if (Serror code) {
echo "<div style='color:red'>Please help us with the following:</div>";
}
?>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<?
if ($_SESSION['name']) {
echo $ SESSION['name'];
?>
Not <? echo $ SESSION['name']; ?>?<
/a>
<?
}
else {
?>
<input type="text" size="25" name="name" value="<? echo $ GET['name']; °?>" />
<input type="checkbox" name="remember" /> Remember me on this computer
<?
}
if (Serror code && ! (S_GET['name'] || $ _SESSION['name'])) {
echo "Please include your name.";
}
>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<?

if ($_SESSION['email'l) ({
echo $ SESSION['email'];
}

else {

?>

<input type="text" size="25" name="email" value="<? echo $ GET['email']l; 2>" />
<?

}

if (Serror code && ! (S _GET['email'] || $ SESSION['email'])) {

echo "Please include your email address.";
}
>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($ GET['whoami'] == "newcustomer") {
echo " selected";
}
?> /> am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") ({
echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
echo " selected";
}

?> />I have a billing question.

</select>
<?
if (Serror code && ! (S _GET['whoami'])) {

echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $ GET['subje
ct'l; »>" />
<?
if ($error code && ! ($_GET['subject'])) {
echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">

<textarea name="message" cols="50" rows="8">
<? echo $ GET['message']; ?>
</textarea>
<?
if ($error code && ! (S_GET['message'])) {
echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article<b
r/>
<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="updatel" checked="checked" />Please email me update
s about your products.

<input type="checkbox" name="update2" />Please email me updates about products f
rom third-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>

<?
require ($ SERVER['DOCUMENT ROOT']."/template bottom.inc");
?>

Be sure to Save contact_form.php, then Preview.

It should look something like this:

ACME, INC.

links go here

o

Contact ACME Corporation

Name: Trish Not Trish?
Email: trish@myemail.com

Type of Request: Please choose..

Subject: |
Message:

How did you hear about us?

¢ Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products.

Try clicking the link to see what happens:

ACME, INC.

links go here

Contact ACME Corporation

| " Remember m

Name: |
computer

Email: | |

Type of
Request:

Subiject: |
Message:

Please choose...

How did you hear about us?

¢ Word of Mouth

¢ Online Search

¢ Printed publication/article
¢ Online link/article

c Other

¥ Please email me updates about your products. D

Kl [)

Ending the session was pretty straightforward, because session_destroy() will destroy all the session data
for a user. If we wanted to delete just one session variable, we would use
unset($_SESSION['some_var']).

Congratulations! You've now learned the PHP skills needed to make a vastrange of robust, commercial applications for the
web. Are you ready for those skills to be tested? Make sure you have Saved your work and handed in the assignments for this
lesson. Then, it's time for your final project.

Good luck! We know you can do it.

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Final Project

Final Project

The overall goal of this projectis to create a shopping cart, with products, prices, registration, and a checkout area. You
can make this shopping cart any way you wish.

For the sake of evaluation, try to include as many elements discussed in this course as you can. Forinstance, you
should use arrays for products, functions for various program tasks, template files, form validation, and
cookies/sessions for cart persistence. You are encouraged to observe good programming practices, with comments,
code reusability and readability.

You can hand in up to five files, but you don't have to create that many if you don't want to.

Be creative and have fun! You want to present yourselfin a professional yet friendly way, so feel free to express
yourselfl

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

