
Introduction to PHP
Lesson 1: Int ro duct io n

Working in CodeRunner
Creating a File
Managing your Files

Four characteristics o f PHP
1. PHP is a server-side language, with HTML embedding.
2. PHP is a Parsed language.
3. PHP works jo intly with SQL.
4. PHP is part o f the LAMP, WAMP, and MAMP stack.

Lesson 2: PHP Basics
PHP Delimiters and Comments

Variables in PHP

Modifying Variables and Values with Operators

Superglobals
$GLOBALS
$_SERVER:
$_GET
$_POST

Lesson 3: Decisio ns
Comparison Operators and Conditions

IF and ELSE Contro l Structure

Logical Operators
A Brief Preview of Forms

Lesson 4: Mult iple Co nt ro l St ruct ures and Lo o ps
Multiple Contro l Structures

WHILE and FOR Loops

Lesson 5: Funct io ns
Creating Code Reusability with Functions

Function and Variable Scopes

Using Functions with Parameters and Return Values
Sneaking In with Parameters
Sneaking out with Return Values
Multiple Parameters and Default Values

Lesson 6 : Arrays
Creating an Array

Associative Arrays

Creating Multi-Dimensional Arrays

Traversing and Manipulating Arrays
Traversing Associative Arrays with list() and each()

More built- in functions

Lesson 7: St rings
What's a String Anyway?

Manipulating Strings
Other nifty string shortcuts

Built- in String Functions

Regular Expressions
Character Ranges and Number o f Occurrences
Excluding Characters
Escaping Characters

Lesson 8 : Fixing Bro ken PHP
Things Professors Don't Talk About Enough

Debugging Tips
Utilizing Error Messages
Riddle-Me-This Error Messages
Errors without Error Messages
Logical Errors
Infinite Loops, Infinite Headaches

Notes on Scalable Programming
Before you Code, Pseudocode
Make your Program Readable
Comment Until You're Blue in the Face
Code in Bite-Size Chunks
Debug as You Work
Reuse Functions as Much as Possible
Utilize Available Resources

Lesson 9 : Fo rms in PHP
Forms Review

Using Superglobals to Read Form Inputs

Extracting Superglobals into Variables

Nesting Variable Names

Lesson 10: Ut ilizing Int ernet T o o ls
Environment and Server Variables

Using HTTP Headers

Manipulating Query Strings
Customizing specific error messages

Sending Emails

Lesson 11: Dat e and T ime
Date and Time Standards

Date and Time Functions
Constructing Dates and Times

Lesson 12: Using Files
Including and Requiring Files

Reading and Writing Files

Allowing Users to Download Files

Lesson 13: Co o kies and Sessio ns
Using Cookies

Knowing the User Through Sessions
Deleting Sessions

Lesson 14: Final Pro ject
Final Pro ject

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction

Welcome to the O'Reilly School o f Technology Int ro duct io n t o PHP course!

In this PHP class, you will learn basic to intermediate programming aspects o f PHP--hypertext preprocessor. PHP is a versatile
server-side programming language that works hand-in-hand with front-end web languages such as HTML and JavaScript. PHP
can be used to create all types o f dynamic web interfaces, and because o f its open-source robustness, has become one o f the
most widely used programming languages for the internet.

Course Objectives
When you complete this course, you will be able to :

develop web applications using basic PHP elements such as delimiters, contro l structures, operators, variables,
arrays, and functions.
manipulate dates and strings using built- in PHP functions and regular expressions.
debug and improve code for better reusability and scalability.
create dynamic web forms using internet too ls such as input, environment and server variables, HTTP headers, and
query strings.
read, write, manage and download files through PHP-based web applications.
track user information using cookies and sessions.
build a full-fledged shopping cart system.

From beginning to end,you will learn by do ing your own PHP based pro jects. These pro jects, as well as the final pro ject, will
add to your portfo lio and provide needed experience. Besides a browser and internet connection, all so ftware is provided
online by the O'Reilly School o f Technology.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.

Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.
Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

The CodeRunner Screen
This course is presented in CodeRunner, OST's self-contained environment. We'll discuss the details later, but here's
a quick overview of the various areas o f the screen:

These videos explain how to use CodeRunner:

File Management Demo

Code Editor Demo

Coursework Demo

Working in CodeRunner
Since CodeRunner is a multi-purpose editor, you need to make sure you're using the correct synt ax. In this course,
you will be using HTML and PHP. To start using HTML, choose the HT ML option:

To change to PHP, choose the PHP option:

Creating a File

http://www.youtube.com/watch?v=45sATp529Mw
http://www.youtube.com/watch?v=SvbM6vPAG9k
http://www.youtube.com/watch?v=WmajY8bIXrA

Let's create a file now. Select the HTML syntax and type the code as shown below.

Make sure you're using HTML syntax and type the fo llowing into CodeRunner:

Four characteristics of PHP:

 PHP is a server-side language with HTML embedding.
 PHP is a parsed language.
 PHP works hand-in-hand with SQL.
 PHP is part of the LAMP stack.

Managing your Files

Click the button. In the Save As text box, type f o urf act s.ht ml (be sure to include the html extension when
you Save html files).

You can also use the Save As () button to save a file with a different name. Try it now with the name
f o urf act s2.ht ml. Note that you are now editing fourfacts2.html, not fourfacts.html.

After you successfully save your file, anybody can go on the web, type the URL
(http://yourusername.o reillystudent.com/fourfacts.html) in the location bar o f their browser, and see this page.

To retrieve the original f o urf act s.ht ml, click the Lo ad File () button or double-click the file name in the
File Bro wser window.

Four characteristics of PHP
Look again at the HTML top-four list you just typed into CodeRunner, and click Preview:

Note Keep in mind that every time you Preview a file, your changes will be saved. Think about whether you
want the previous code overwritten or not. If no t, use Save As before you Preview.

Four characterist ics of PHP:

1. PHP is a server-side language with HTML embedding.
2. PHP is a parsed language.
3. PHP works hand-in-hand with SQL.
4. PHP is part of the LAMP stack.

Note
If the Preview button doesn't work for you, you may be blocking pop-up windows in your browser. To fix
this, change your configuration settings to allow pop-ups from the OST servers, or view your page
directly at http://yourusername.o reillystudent.com/fourfacts.html.

This example serves more than one purpose for us. It demonstrates how to use CodeRunner and it introduces some
keys to using PHP. Of course there's much more to PHP than this, but let's start with this.

1. PHP is a server-side language, with HTML embedding.

On the web there are two sides to everything: the Client Side and the Server Side. The Client side is the side
you are on right now. It consists o f your computer and your web browser. The server side is the side where
the web pages are stored and where programs are executed to build dynamic web pages with PHP.

Still have your HTML list? It's time to convert it to PHP. Swit ch Co deRunner t o PHP , and retype the top four
list into the editor. Then add the blue code below:

Make sure you're using PHP then type the fo llowing into CodeRunner:

<?php echo "Four characteristics of PHP:"; ?>

 PHP is a server-side language with HTML embedding.
 PHP is a parsed language.
 PHP works hand-in-hand with SQL.
 PHP is part of the LAMP stack.

Click Preview. This time save with the php (.php) extension. It looks exactly the same, right? But something
more happened this time on the back end.

You see, HTML is a Client side language. When you clicked Preview while in HT ML, the Sandbox simply
asked your browser to process the HTML tags without any outside help.

Conversely, PHP is a server side scripting language and builds HTML dynamically before sending to your
browser. Here's a diagram of how PHP works:

When you used Preview after adding the PHP code while using PHP syntax, the Learning Sandbox:

Took your code back to your Lab Account on our web server
Parsed it using the PHP Engine that's installed within your account
Returned the results to the browser as HTML

Then your browser rendered the HTML to make it look pretty. Did you notice how the addition o f PHP code at
the top o f the file did nothing to change the HTML list below? This is because the HTML is embedded into the
PHP file, and doesn't require anything else to output it.

2. PHP is a Parsed language.

The fact that PHP is a parsed language as opposed to a compiled language is a technical concern and
probably only interesting to programmers with experience in Compiled programming languages like Java or
C++. Those languages perform an additional task called compiling that turns the text from the program into a
form the computer understands. A binary file is created that serves as the thing that gets executed when a
program is running.

PHP is a Parsed language, meaning that you can see the results o f your code immediately after saving the
file, without any compiling or linking steps in between. That's because the compiled PHP engine installed on
your account takes the PHP file you've created and "parses" it and uses the commands you created to make
the server do something. All the work is still done by a compiled program, but the program you created
doesn't have to be compiled, since it just tells the compiled program what to do.

For the geeks out there, this is similar to an Int erpret ed language such as Perl; however, the parsing
process has been optimized to use a combination o f interpreting and compiling at run-t ime , enabling PHP
to be powerful AND fast.

The bottom line is the parsing action o f PHP makes your life easier. If you want to know more about parsed,
interpreted, and compiled languages, here's a good link.

3. PHP works jointly with SQL.

Let's look at your first PHP script again and add one more little piece o f code. Don't worry yet about what the
code means, at this po int we're just playing around.

Type the fo llowing (in BLUE) into CodeRunner:

<?php echo "Four facts about PHP:"; ?>
<ol style="font-size:16px;">
 PHP is a server-side language with HTML embedding.
 PHP is a parsed language.
 PHP works hand-in-hand with SQL.
<? printf("MySQL client info: %s\n", mysqli_get_client_info()); ?>
 PHP is part of the LAMP stack.

Click Preview. Now you should see the version o f MySQL library that's included with your account's PHP
engine, embedded within your HTML list. You'll learn a lo t more about the MySQL database in later courses,
but fo r now just ro ll with it.

PHP makes it easy to add database-driven content to any website. It supports popular database systems -
MySQL, PostgreSQL, Oracle, and o thers - with libraries o f built- in f unct io ns like the one you added above.
These libraries can be referred to by the acronym DBI: Database Interface.

Other programming languages such as Perl contain their own sets o f DBI libraries too. However, unlike Perl,
PHP was designed with database-driven websites in mind, and has become so closely intertwined with
MySQL that the two organizations now work together to ensure continued reciprocal support.

Here's a good O'Reilly article about PHP and MySQL.

4. PHP is part of the LAMP, WAMP, and MAMP stack.

What's a (L|W|M)AMP St ack?

It's yet another acronym.

Linux, Windows, Mac
Apache
MySQL
PHP (or Perl, o r both)

The St ack part refers to a group o f techno logies which, when used together, create powerful and dynamic
web applications. There are competing stacks, such as Microsoft's .NET framework and Sun's Java/J2EE
technologies. However, corporations are realizing more and more that the free, open-source LAMP Stack can
be just as powerful, safe, and lucrative for their businesses as the expensive, proprietary competito rs.

And by the way, lucky you! You have all the LAMP techno logies you need at your fingertips RIGHT NOW:

Your Learning Lab account is on a Linux RedHat server.
It's equipped with its own Apache web server.
The Apache server has MySQL installed on it.
It also has PHP AND Perl on it.

Alright, you're do ing great so far! Don't fo rget to Save your first PHP file (call it " f irst .php"), and work on this lesson's
assignments on the syllabus page. Be sure to read the comments on each pro ject or quiz using the "Graded" link. See you in
the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

http://www.answerbag.com/q_view/948
http://www.oreillynet.com/pub/a/network/2000/06/16/magazine/php_mysql.html?page=1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

PHP Basics

Welcome back! In the next three lessons, we'll be playing around with a make-believe program to help demonstrate a few
programming concepts. While the faux-program isn't one you'd likely create while on the job, the concepts and techniques used
are the same. Let's get started!

PHP Delimiters and Comments
Open the file f irst .php. Or, if you're completely sick o f the Top Four list, start a new file. Make sure you're using PHP.

Type the fo llowing green and blue code into your chosen file in CodeRunner:

 <ol style="font-size:16px;">

 PHP is a server-side language, with HTML embedding.

 For instance:<br\>

 <?php
 echo "<li style='color:blue;'>
 This PHP code is INSIDE the PHP delimiters
 ";
 ?>
 <li style="color:green;">
 This HTML code is OUTSIDE the PHP delimiters

Now click Preview to see the results. What happened?

It should look something like this:

1. PHP is a server-side language, with HTML embedding.
For instance:

This PHP code is INSIDE the PHP delimiters.
This HTML code is OUTSIDE the PHP delimiters.

PHP co de is separated from embedded HT ML with delimit ers. The delimiters are the <?php and the ?> . All PHP is
written between these delimeters. An open delimiter <?php must have a closing delimiter ?> . Try taking the delimiters
away and see what happens.

Take a look at the PHP - notice that between the delimiters (<?php and ?>), the word echo showed up. That's a PHP
command that means "make this show up." Without echo, it won't show up. Remove the echo command and check
out the results.

Here the echo st at ement is used to return text to the web browser from a PHP script. The "echo" command just
means "print this out." And one more thing, all statements in PHP must end with a semico lon (;).

By the way, why did we put in those slashes (//) in the sample code above? Well, those are called "comments."
Commenting is a common practice in programming. Commenting records the specific reasons you had for writing the
program a particular way.

Type the blue text below into CodeRunner:

<ol style="font-size:16px;">
 PHP is a server-side language, with HTML embedding.

 For instance:

 <?php
 //Jerry says, "What's the deal with this line of PHP code?"
 /* Elaine says, "I want to talk about this line, that line, AND the other line!"
*/
 #George says, "...yadda yadda yadda..."
 echo "<li style='color:blue;'>
 This PHP code is INSIDE the PHP delimiters
 ";
 ?>
 <li style="color:green;">
 This HTML code is OUTSIDE the PHP delimiters

Now click Preview to see the results. Notice what ISN'T printed out on the screen. Our results look exactly the same
as before.

What happened to the entire conversation we added?

Ah, Jerry, Elaine, and George, always commenting on everything, yet do ing pretty much nothing. In fact, they behave a
lo t like co mment s in PHP, but in PHP, it's a developer who comments on the code without impacting the results at all.

Note Two slashes (//) o r one pound sign (#) will "comment out" the line that fo llows it. Or, you can comment
out multiple lines by surrounding them with /* and */. Play around a bit to get the hang o f it.

Comments may not seem like a big deal (they didn't to me at first either), but as our programs become more
complicated, it's useful to have reminders (in your own words) o f the specific reasons you chose to write your code a
certain way. Also, comments are essential fo r reusing and sharing code. They allow o ther developers to decipher and
understand the specifics o f the code you've written.

Let's experiment to discover the answers to these questions:

Can delimit ers share the same line as the PHP code?
Can they share the same line as HTML?
Can multiple st at ement s share one line?
Can st at ement s span multiple lines?
Does it matter whether you use <?php o r just <? ?
Can you mix a line o f code with a comment?

Variables in PHP
Every programming language has variables. Variables are places to store things. You can insert values into variables
and you can extract them. Variables are a lo t like dresser drawers. You can put things in and then take them out, and
you usually know what each drawer contains.

Add the fo llowing blue text to your file in CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 ?>

Now Preview that.

Not much happening, right? That's because we forgot to echo something. Let's go ahead and do that so we get an
output.

Add the fo llowing blue text to your file in CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 echo $lamp_a;
 ?>

Now you should see the word Apache printed on your page. Why do you suppose that is? After all, we wrote Echo
$lamp_a;, you'd think that would be the word that printed. Well, as it turns out, $lamp_a is a variable. Variables in PHP
always begin with a $. And, as if $lamp_a was a drawer, we put something in it, we inserted = "Apache" . Then, in
order to get something out o f the variable $lamp_a, we "echoed" by adding echo $lamp_a. Finally, "Apache," the
value we put into the variable (or drawer) in the first place was printed out. They are called "variables" because the
value can vary. We can change the contents o f the variable at anytime, and that makes them very useful fo r storing and
retrieving values dynamically.

Just like you can put different items in the appropriate drawers o f your dresser--you might have a sock drawer for your
socks, a shirt drawer for your shirts, etc.--you can put different kinds o f values in variables. In the example above,
we've entered words into our variables. In programming, these words are called st rings because they comprise a
string o f letters or characters.

Let's put different kinds o f values into some other variables.

Add the fo llowing blue text to your file in CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux"; $lamp_a = "Apache"; $lamp_m = "MySQL"; $lamp_p = "PHP";
 ?>
 /* Here are some imaginary numbers for a possible salary package associated with the
skills we're learning in this course (play along!): */
 <?php
 $base_salary = 158470;
 //whoa. we hit the jackpot
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476; //in dollars
 ?>

Here we're assigning different kinds o f values (like 158470) to variables. In this context, assigning simply means to
"fill" the variable with a value.

We've assigned the various PHP variables values o f three basic t ypes: int eger, f lo at ing po int (decimal) , and
st ring. Integers are whole numbers, including negative numbers and 0 . Floating po int numbers are numbers that may
have a decimal po int. Strings, as we already mentioned, are simply successive strings o f characters.

Below is a list o f the t ypes we've assigned to the variables listed:

Variable Name Assigned Value Value T ype

$lamp_l "Linux" string

$lamp_a "Apache" string

$lamp_m "MySQL" string

$lamp_p "PHP" string

$base_salary 158470 integer

$bonus 25815.25 float

$benefits 0 .2 float

$time_off 6476 integer

Let's go back to our dresser analogy for a moment. It will help us to understand the difference between "strongly typed"
programming languages and languages like PHP, which are not strongly typed. Programming languages that are
strongly typed require you to decide the types o f variables you're go ing to have upon creating your files. Once you've
created your variables, you are committed. They cannot be revised. It's like labeling your drawers, so that you can only
put socks in your sock labeled drawer and shirts in your shirt labeled drawer. And after you've labled these drawers,
you can't change them. PHP, however, is not strongly typed. Therefore, the variables remain flexible, we are allowed to
change them, and we can put any type o f information into a PHP file that we wish.

Since PHP is NOT a st ro ngly t yped programming language, the fo llowing won't break your script:

Type the fo llowing blue text below into CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 ?>
 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "this is a string now"; // You just changed the value of $benefits from
 a float number to a string!
 ?>

Go ahead and Preview it. Our variables are shy creatures! So far they've been hiding like comments when we
Preview. Let's add some HTML and echo out some of those variables.

Type the fo llowing blue and green text into your document in CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 ?>

 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "this is a string now"; // You just changed the value of $benefits from
 a float number to a string!
 ?>

 My Base Salary might be: <?php echo $base_salary; ?>
 My Bonus might be: <?php echo $bonus; ?>
 My Benefits might be: <?php echo $benefits; ?>
 My Time Off might be worth: <?php echo $time_off; ?>

Click Preview. Those variables should show up now.

1. PHP is part of the LAMP stack.
My Base Salary might be: 158470
My Bonus might be: 25815.25
My Benef its might be: To be determined
My Time Off might be worth: 6476

There they are. Actually, instead o f displaying themselves, our variables displayed the values they were ho lding.

By the way, they're not just sneaky; they're picky too. Turns out, variable names may consist o f only le t t ers,
numbers, and t he undersco re(_) charact er. Not just that, the first character o f the variable name CANNOT be a
number.

Here's a list o f valid and invalid variable names:

VALID variable names:

$_var
$heres_a_name
$t 12345
$x

INVALID variable names:

$1_var
$here 's-a-name

$t +12345
$x?

Modifying Variables and Values with Operators
Variables are not useful unless they've been modified. Operat o rs can be used to modify variables and their values.
Operators are fairly simple to use, in fact, you've already learned one: the assignment operator, represented by the
equal sign (=). The assignment operator is a quick, easy, and intuitive way to instruct a variable to ho ld a certain value.

But what if we want to change a variable's value?

Type the fo llowing into CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 ?>
 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "this is a string now"; // You just changed the value of $benefits from
 a float number to a string!
 ?>

 My Base Salary might be: <?php echo $base_salary; ?>
 My Bonus might be: <?php echo $bonus; ?>
 My Benefits might be: <?php echo $benefits; ?>
 My Time Off might be worth: <?php echo $time_off; ?>
 My Base Salary plus Bonus would total: <?php echo $base_salary + $bonus; ?> </l
i>

Preview this code. We added the values o f the variable's $base_salary and $bonus. Sweet.

1. PHP is part of the LAMP stack.
My Base Salary might be: 158470
My Bonus might be: 25815.25
My Benef its might be: To be determined
My Time Off might be worth: 6476
My Base Salary plus Bonus would total: 184285.25

The plus sign (+) is also an o perat o r. More specifically, a binary o perat o r, since it takes two variables or values (in
this case, called argument s), performs the addition operation on them, and returns the result - just like those shy
variables do. In this case, we displayed the result through the "echo" statement.

Below is a list o f some binary operators, and some examples o f them in action.

Assuming $i = 12 and $ j = 5 t hen...

Operat o r Name Usage Result

= assign $i = $j 5

+ add $i + $j 17

- subtract $i - $j 7

* multiply $i * $j 60

/ divide $i / $j 2.4

% mod (remainder o f division) $i % $j 2

Play around with these in your program and see what you get. Seriously, practice! Try applying different operators to
the example you've been working on in this lesson, and echo out the results.

The operations (except fo r addition) need to be executed in the order they appear, from left to right, to work properly.

By the way, the operators above only operate on integers and floating po int number values. There are different
operators that work on strings. Most specifically, the co ncat enat io n operator. Here is an example using
concatenation. Notice the period in front o f $lamp_l:

Type the fo llowing into CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 echo "
The stack begins with " . $lamp_l;
 ?>
 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "this is a string now"; // You just changed the value of $benefits from
 a float number to a string!
 ?>

 My Base Salary might be: <?php echo $base_salary; ?>
 My Bonus might be: <?php echo $bonus; ?>
 My Benefits might be: <?php echo $benefits; ?>
 My Time Off might be worth: <?php echo $time_off; ?>
 My Base Salary plus Bonus would total: <?php echo $base_salary + $bonus; ?> </
li>

Preview the code and see what happens. After you Preview you should see the fo llowing sentence on your page:

T he st ack begins wit h Linux.

Let's break it down. How did this:

echo "T he st ack begins wit h " . $ lamp_l;

become this?:

T he st ack begins wit h Linux.

Well, the first part in quotation marks is a string and the $lamp_l is a variable ho lding the string "Linux". To "add" them
together, we use a period . which is the concatenation operator. Did you understand that? If no t look again...

echo "T he st ack begins wit h " .$ lamp_l;

When used properly in PHP, suddenly that lowly punctuation mark, the period (.), becomes a powerful concatenation
too l. Yes, the concatenation operator (.) is yet another binary o perat o r in PHP, and an extremely useful one at that.

But the most useful characteristic o f these operators is that they can be nest ed. To nest operators essentially means
we can use them together.

Type the fo llowing blue code (notice the periods in red) into CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 echo "
The stack begins with " . $lamp_l . " and goes on to include " . $lamp_
a . ", and " . $lamp_p . "!
";
 ?>
 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "This is a string now."; // You just changed the value of $benefits fro
m a float number to a string!
 $total = $base_salary + $bonus + $time_off;
 $total_compensation = $total + ($total * 0.2); // Adding in benefits
 ?>

 My Base Salary might be: <?php echo $base_salary; ?>
 My Bonus might be: <?php echo $bonus; ?>
 My Benefits might be: <?php echo $benefits; ?>
 My Time Off might be worth: <?php echo $time_off; ?>
 My Base Salary plus Bonus would total: <?php echo $base_salary + $bonus; ?> </
li>
 My total compensation would be <?php echo $total . " without benefits, and " .
 $total_compensation . " with benefits."; ?>

In the code above there is operator nesting happening all over the place. Preview your file. You should get something
like this:

1. PHP is part of the LAMP stack.
The stack begins with Linux, and goes on to include Apache, MySQL, and PHP!

My Base Salary might be: 158470
My Bonus might be: 25815.25
My Benef its might be: To be determined
My Time Off might be worth: 6476
My Base Salary plus Bonus would total: 184285.25
Your total compensat ion would be 190761.25 without benef its, and 228913.5 with
benef its.

It appears that operator nesting worked just fine. That's not to say that our binary operators started taking on more
than two arguments. Instead, we've executed a succession o f binary operations, with the one operation taking the
results o f the last operation into consideration.

Here are a couple more things to consider:

Why do you suppose the "concat" operator (.) had no problem mixing strings, floats, and integers?
Were the parentheses (()) necessary in the $to tal_compensation line?
What ro le do you think the parentheses play?

Finally, here are some useful PHP "shortcut" operators. These operators reduce the need for nesting to execute some
common tasks and they are really handy. Can you figure out which operators are unary o perat o rs? (Hint: unary
operators need only one argument.)

Play around with these and see what you get:

Operat o r Equivalent

$i += $j $i = $i + $j

$i -= $j $i = $i - $j

$i *= $j $i = $i * $j

$i /= $j $i = $i / $j

$i++ $i = $i + 1

$i-- $i = $i - 1

$i .= $j $i = $i . $j

Superglobals
PHP has a set o f predefined variables to make our lives easier. Superglobals can be accessed by classes, functions,
or files at any time without having to do anything special! Very nice. So, what are these Superglobals?

Before we delve too deeply, let's get a small taste o f what's to come. After all, we can't simply give out all the secrets in
the beginning. There wouldn't be anything to look forward to !

$GLOBALS

1. References all variables that are in the global scope.
2. Associative array.
3. Variable names are keys o f $GLOBALS array.

CODE TO TYPE: $GLOBALS example

<?php
 function testScope() {
 echo "The variable in the main code doesn't extend to within the function: $sc
ope
";

 //assign a value to the variable named $scope that IS within function scope
 $scope = "WITHIN FUNCTION";
 echo "The local scope within the function: $scope
";

 //the superglobal DOES extend within the function
 echo "The global scope: {$GLOBALS['foo']}
";
 }

 //define $scope in the main code
 $scope = "MAIN CODE";
 echo "The local scope in the main code body: $scope
";

 //define a global value (
 $GLOBALS['foo'] = "SUPERGLOBAL";
 echo "The value in the superglobal is {$GLOBALS['foo']}
";

 //now run function, which has separate scope and $scope variable
 testScope();

 //show that main code's $scope is unaffected
 echo "The local scope in the main code body: $scope
";
?>

$_SERVER:

1. Array containing information to Headers, Paths, and Script locations.
2. Entries generated by web server.

CODE TO TYPE: $_SERVER example

<?php
echo $_SERVER['SERVER_NAME'];
?>

$_GET

1. Associative array.
2. Populated by URL parameters.

CODE TO TYPE: $_GET example

<form action="" method="get">
Enter your name: <input type="text" name="myname" placeholder="Tim O'Reilly"/>
<input type="submit" />
</form>
<?php
 echo "Your name is: " . htmlspecialchars($_GET["myname"]);
?>

$_POST

1. Associative array.
2. Array is passed via HTTP POST method.

CODE TO TYPE: $_POST example

<form action="" method="post">
Enter the next phrase: <input type="text" name="next_phrase" size="50" placehold
er="he played knick-knack on my door."/>
<input type="submit" />
</form>
<?php
 echo "This old man, he played four, " . htmlspecialchars($_POST["next_phrase"])
;
?>

Note This is not an exhaustive list o f PHP's Superglobals; however, click here for a full list with examples,
definitions, and a peek o f what's to come!

Phew! We've covered a lo t o f ground. Don't fo rget to Save your work, and hand in the assignments from your syllabus. See you
at the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://php.net/manual/en/language.variables.superglobals.php
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Decisions

In the last lesson we learned that storing values in variables and manipulating them with operators are among the most
important too ls we have for programming in PHP. Now let's talk about automating repetitive tasks and the decisions you'll
make based on the values present in your programs.

Comparison Operators and Conditions
We make comparisons everyday. When we shop, we look at prices o f similar items to determine which deals are best.
When we take a trip, we compare alternative routes to decide which will be most expedient. Well, it turns out that we can
do comparisons in PHP and o ther computer languages as well. Let's look at this process using a simple example.
Let's try a comparison o f Capt ain Crunch breakfast cereal to Fro st ed Flakes breakfast cereal.

Suppose Captain Crunch is 4 do llars a box, while Frosted Flakes is 5 do llars. We can use PHP to figure out which
price is greater. (We realize you can determine this fairly easily without PHP, but let's go ahead and work the example
anyway so we can see how PHP works.)

Add the fo llowing BLUE and GREEN code to your file in CodeRunner:

<?php
 $captain_crunch = 4;
 $frosted_flakes = 5;
?>
Does Captain Crunch cost less than Frosted Flakes? <?php echo ($captain_crunch < $frost
ed_flakes); ?>

Or, is Captain Crunch priced greater than Frosted Flakes? <?php echo ($captain_crunch >
 $frosted_flakes); ?>

Preview that. What was returned from the echo command here?

In the the last lesson we learned to modify variables using some of the standard operators: add, subtract, concatenate,
and o thers. The co mpariso n o perat o rs we're using now compare two variables, producing TRUE or FALSE results.

For instance, the program above compares two integers to determine if one is larger than the o ther. ("<" is a symbol
that means "less than," while ">" means "greater than").

This statement is TRUE:

4 < 5

We all know that 4 is less than 5.

This statement is FALSE:

4 > 5

So how did your program answer the question it was asked about Captain Crunch and Frosted Flakes?

Here's what you saw:

Does Captain Crunch cost less than Frosted Flakes? 1

Or, is Captain Crunch priced greater than Frosted Flakes?

Obviously, in our example, Captain Crunch is less (expensive) than Frosted Flakes, but what's with the number one (1)
at the end there? Was that a typo?

No, that wasn't a typo. Turns out, this is how PHP interprets the Bo o lean result "TRUE." (Boo lean, by the way, is just a
fancy programming word referring to the results o f "true or false" inquiries.) Similarly, instead o f returning "FALSE" or
"no" when asked if Captain Crunch is greater than Frosted Flakes, your program returned the NULL character. "Null" is
computer-speak for "nothing." When things are false, nothing gets returned, so nothing is printed.

Here's a table o f values that PHP can interpret as TRUE or FALSE:

FALSE T RUE No t es

0 (zero) any non-zero number non-zero examples: 1, -1, 0 .5

false true no quotes ("), o therwise it's just a string

NULL, null, '', o r "" any non-null string The space (" ") character is NOT the same as the null ("") character

Here's a list o f comparison operators you can experiment with in your program:

Operat o r Name Usage Result

== Equal $a == $b TRUE if $a and $b are equal.

=== Identical $a === $b TRUE if $a and $b are equal AND if they are o f the same
type (ie $a and $b are both integers).

!=
<> Not equal $a != $b

$a <> $b TRUE if $a and $b are not equal.

!== Not identical $a !== $b TRUE if $a is not equal to $b OR if $a and $b are not o f
the same type.

< Less than $a < $b TRUE if $a is less than $b.

> Greater than $a > $b TRUE if $a is greater than $b.

<= Less than or equal to $a <= $b TRUE if $a is less than OR equal to $b.

>= Greater than or equal to $a >= $b TRUE if $a is greater than OR equal to $b.

Note
In PHP we use two equal signs (==) to test fo r equality. (When you use "==" you're essentially asking:
Are t hese values equal?). Two equal signs, like $a == $b, compare $a to $b (in English it would read
"is $a equal to $b?"), whereas one equal sign $a = $b assigns $b to $a (in English it would read "set $a
is equal to $b").

IF and ELSE Control Structure
You may not know it, but you actually already understand if and else contro l structures. You use them everyday when
you decide things like " I' ll buy Capt ain Crunch if it 's less expensive t han Fro st ed Flakes, o r e lse I' ll buy
Fro st ed Flakes. You've set conditions and also decided on an alternative course o f action should those conditions
fail to be met. In a program, this is called a contro l structure.

In PHP, you would write the sentence above like this:

Type the fo llowing into a new file in CodeRunner:

<?php $Captain_Crunch = 4; $Frosted_Flakes = 5; if ($Captain_Crunch
 < $Frosted_Flakes) { echo "I'll buy Captain Crunch"; }
 else { echo "I'll buy Frosted Flakes"; } ?>

Preview the code above. Which cereal does PHP instruct you to buy? Try changing the numbers assigned to
$Captain_Crunch and $Frosted_Flakes to see what happens.

if statements have a specific fo rm.

OBSERVE:

if (expression){
 statement(s) executed if expression is TRUE } else {
 (optional) statement(s) executed if expression IS FALSE
 }

Again, this if statement is also referred to as a co nt ro l st at ement . PHP first evaluates the expressio n to see if it is
true or false. If the expressio n is true, then the statements in blue are executed. If no t, then the statements in BLUE
are not executed, but the green ones are.

Logical Operators
Questions can be more complicated than statements. For instance, if Captain Crunch is more (expensive) than
Frosted Flakes, but Fruit Loops are less (expensive) than Frosted Flakes, we might want to choose Fruit Loops. The
fo llowing code can handle these kinds o f complications:

Add the co lored code below into your document in CodeRunner:

<?php $Captain_Crunch = 5; $Frosted_Flakes = 4;
 $Fruit_Loops = 3;
 if ($Captain_Crunch < $Frosted_Flakes) {
 echo "I'll buy Captain Crunch";
 } else if ($Captain_Crunch > $Frosted_Flakes && $Frosted_Flakes > $Fruit_Loops) {
 echo "I'll buy Fruit Loops.";
 } else { echo "I'll buy Frosted Flakes.";
 }
?>

Preview this code. Which cereal does PHP recommend that you buy? Try changing the numbers representing the
prices and observe the results.

In this example, we've added a couple o f things for your consideration. First we added a lo gical o perat o r. We used
&& which simply means AND. The o ther addition was the else if . We can have as many o f those within an if
statement as we need.

So now the line reads:

OBSERVE:

else if ($Captain_Crunch > $Frosted_Flakes && $Frosted_Flakes > $Fruit_Loops) {
 echo "I'll buy Fruit Loops.";

In English, the line reads:

OBSERVE:

"Or else if Captain Crunch is greater than Frosted Flakes,
AND
Frosted Flakes is greater than Froot Loops, then I'll buy Fruit Loops.

Notice that when Captain Crunch is 6 do llars and Frosted Flakes is 5 do llars and Fruit Loops is 4 do llars, t hen
$Capt ain_Crunch > $Fro st ed_Flakes is T RUE, and that $Fro st ed_Flakes > $Fruit _Lo o ps is T RUE. So the
whole thing is TRUE and so you'll buy Fruit Loops!

Here are some rules to remember about logical operators:

(T RUE AND T RUE) is T RUE
(T RUE AND FALSE) is FALSE
(T RUE OR FALSE) is T RUE
(FALSE OR FALSE) is FALSE

Like comparison operators, the logical operator performs a comparison on two arguments, and returns a TRUE or
FALSE (1 or null) answer. However, the logical operator compares things that are already TRUE or FALSE.

Below is a list o f logical operators.

Operat o r Name Usage Result

AND AND $a AND $b TRUE if $a and $b are TRUE.

&& AND $a && $b TRUE if $a and $b are TRUE.

OR
|| OR $a OR $b

$a || $b TRUE if $a or $b is TRUE.

XOR Exclusive OR $a XOR $b TRUE if $a OR $b is TRUE, but not both.

Look again at this condition:

($Captain_Crunch >= 3 && $Frosted_Flakes < 10)

Remember that nested operators perform in a certain order, depending on certain rules? There are rules here too.
Specifically, the comparison operators are evaluated before the logical evaluator. This way, the logical evaluator only
needs to look at the TRUE or FALSE results, and act accordingly.

Like this:

 (($Captain_Crunch >= 3) &&
($Frosted_Flakes < 10)) ((TRUE) &&
(TRUE)) (TRUE)

Operat o r nest ing is really useful. And fortunately, you can do it with logical operators too.

Type the fo llowing into CodeRunner:

<?php
 $Captain_Crunch = 5;
 $Frosted_Flakes = 4;
 $Fruit_Loops = 5;
 $Oatmeal = 2;
 if ($Captain_Crunch < $Frosted_Flakes) {
 echo "I'll buy Captain Crunch";
 } else if ($Captain_Crunch > $Frosted_Flakes && $Frosted_Flakes > $Fruit_Loops) {
 echo "I'll buy Fruit Loops.";
 } else if ($Captain_Crunch > 4 && $Fruit_Loops > 4 && $Oatmeal < 4) {
 echo "I'll get some Oatmeal.";
 }
 ?>

Play with this one for a while—try entering different values for the different cereals. Be sure to Preview often to see what
happens.

NOT ICE: Before you move on, Save the PHP file you've been working on as co mpare.php.

A Brief Preview of Forms

Before we continue on with contro l structures, let's make these examples a little more interesting by getting
your PHP program to take input from a user on the web. We're go ing to make a form that will help us
understand these contro l structures better. This is a brief introduction. We'll cover fo rms in much more detail
later in the course.

So far in this lesson, we've been changing the values in the variables $Capt ain_Crunch,
$Fro st ed_Flakes, $Fruit _Lo o ps, and $Oat meal by hand. Typically though, contro l structures evaluate
changes made to variables and then react to those changes. If the user changes an input, we can account fo r
all the possibilities through contro l structures.

To make our program more interactive, we're go ing to make a web page with a few input fo rms we'll use to
submit values to our PHP program. Then we're go ing to take those inputs and assign them to the variables
listed above.

Let's make an HTML form.

Make sure you're in HTML and type the fo llowing into CodeRunner:

<body>
<h3>Choosing your Cereal</h3>
<form method="GET" action="compare.php"> Enter the price of Captain Crunch:
 <input type="text" size="25" name="crunch_price" value="" />

 Enter the price of Fruit Loops: <input type="text" size="25"
 name="loops_price" value="" />

 Cash in my wallet: <select name="cash_money">
<option value="">How much cash?</option>
<option value="1">$1.00</option>
<option value="2">$2.00</option>
<option value="3">$3.00</option>
<option value="4">$4.00</option>
<option value="5">$5.00</option>
<option value="10">$10.00</option>
</select>
<input type="submit" value="SUBMIT" />
</form>
</body>

Now Preview this in HTML. If you select an item and click submit, it won't do anything. You should see a page
that looks like this:

Choosing your cereal

Enter the price of Captain Crunch:
Enter the price of Fruit Loops:

Cash in my wallet : How much cash do you have? SUBMIT

Save this page as userinput .ht ml, o r anything you like, so long as you can remember the name.

Now we've made a web page that will take input from a web user, and then send that input to the PHP program
that we'll use to process it. Now we just need to make our PHP program retrieve the input. To do this, we have
to use something called a superglo bal array. Now that's a mouthful! We'll actually study superglobals in
detail in a later lesson. For now let's just try it!

Switch back to PHP with the co mpare.php PHP program we've been using, and make the fo llowing
changes.

Type the changes in BLUE into CodeRunner:

<?php
 $Captain_Crunch = $_GET["crunch_price"];
 $Frosted_Flakes = 4;
 $Fruit_Loops = $_GET["loops_price"];
 $Oatmeal = 2;
 $my_cash = $_GET["cash_money"];
 $total = $Captain_Crunch + $Frosted_Flakes;
 if ($total < $my_cash) {
 echo "I'll buy both Captain Crunch and Frosted Flakes!";
 } else if ($Captain_Crunch < $my_cash) {
 echo "I'll buy Captain Crunch.";
 } else if ($Captain_Crunch > $my_cash && $Fruit_Loops < $my_cash){
 echo "I'll buy some Fruit Loops.";
 } else {
 echo "Forget it, I'm going home.";
 }
?>

Now Save this PHP program as co mpare.php, then go back to your userinput .ht ml file in HTML. Preview

it. Enter different prices for the two cereals, select the amount o f cash you have in your wallet, then click
submit. Now your program should change according to the input you submitted in the form. Cool, huh?

We're just getting started with co nt ro l st ruct ures, so be sure to save your work and hand in your assignments. See you in the
next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Multiple Control Structures and Loops

Let's continue on from the last lesson. Make sure you've opened userinput .ht ml in HT ML, and co mpare.php in PHP .
Ready? Let's go!

Multiple Control Structures
In the last lesson we introduced the else if statement, which allows us to work with multiple conditions.

Check out this else if statement:

<?
 if ($total < $my_cash) {
 echo "I'll buy both Captain Crunch and Frosted Flakes!";
 }
 else if ($Captain_Crunch < $my_cash) {
 echo "I'll buy Captain Crunch.";
 }
 else if ($Captain_Crunch > $my_cash && $Fruit_Loops < $my_cash){
 echo "I'll get some Fruit Loops.";
 }
 else {
 echo "Forget it, I'm going home.";
 }

?>

When the first if statement fails, PHP checks the else if statement before go ing on to else . As long as you begin with
an if and end with an else , (if you have a default action), you can add any number o f else if statements in the middle.
This way we can check and react to a lo t o f conditions. Let's add some conditions to the example we worked on last
lesson.

Type the code in blue into your PHP program in CodeRunner:

<?

 $Captain_Crunch = 5;
 $Frosted_Flakes = 4;
 $Fruit_Loops = 3;
 $Oatmeal = 2;
 $my_cash = $_GET["cash_money"];

 $total = $Captain_Crunch + $Frosted_Flakes;

 if ($my_cash == 10) {
 echo "I'll buy both Captain Crunch and Frosted Flakes!";
 }
 else if ($my_cash == 5){
 echo "I'll buy Captain Crunch.";
 }
 else if ($my_cash == 4){
 echo "I'll buy Frosted Flakes.";
 }
 else if ($my_cash == 3){
 echo "I'll buy Fruit Loops.";
 }
 else if ($my_cash == 2){
 echo "I'll buy Oatmeal.";
 }
 else {
 echo "Forget it, I'm going home.";
 }

?>

Save this code using the filename compare.php, and open your userinput .ht ml file in HTML. Try entering some
numbers for the amount o f money you have and Preview it (the o ther variables are set in the program, so the input fo r
those fields won't matter in this example).

Even though the above code works just fine, the procedure could be streamlined by using a swit ch statement. The
switch contro l structure is similar to the if contro l structure, but it's especially useful when you have one variable with
many possible values. The switch contro l structure is a more efficient means o f accomplishing the same task. It's up to
you decide which contro l structure you like better.

This is how we'd change our code into a switch statement:

 switch($my_cash) {
 case "10":
 echo "I'll buy both Captain Crunch and Frosted Flakes.";
 break;
 case "5":
 echo "I'll buy Captain Crunch.";
 break;
 case "4":
 echo "I'll buy Frosted Flakes.";
 break;
 case "3":
 echo "I'll buy Fruit Loops.";
 break;
 case "2":
 echo "I'll buy Oatmeal.";
 break;
 default:
 echo "Forget it, I'm going home.";
 }

Give it a try. Save the o ld file as new_file.php (don't fo rget to make a new HTML file as well), then replace the block o f
code that contains the if statements with the switch statements above. Use whichever method you prefer, it's your call.

And o f course we want you to practice! Especially since we're go ing to assign this task as an objective later.

Before we go on, experiment and find answers to these questions:

 What happens when you nest comparison operators?
 Would (null == 0) be TRUE or FALSE?
 How about (null === 0)?
 In an If statement, do you have to have parentheses (()) around the condition?

 What about brackets ({})?
Hint: Try this with one action statement AND with two.

 Can you put the whole if control structure in one line?
 Do you always need to have an else statement?
 When nesting logical operators, do you need parentheses?
 What happens when you remove break; statements?

WHILE and FOR Loops
A lo o p is a repetitive task that goes on while something is true or for some number o f steps. That's why they are
called "while" and "for" loops.

A while lo o p has the fo llowing structure:

while (something is t rue) { do so me st uf f } ;

As soon as that something is false, the while loop stops.

Whereas a f o r lo o p has the fo llowing structure:

f o r (so me number o f st eps) { do so me st uf f } ;

Let's look at an example. Type this into a new PHP file in CodeRunner:

<?

 echo "Hide and go seek, I'm counting to 25:
";

 $counts = 1;
 while ($counts <= 25) {
 echo $counts." Mississippi...
";
 $counts++;
 }

 echo "Ready or not, here I come!
";

?>

In case you didn't play hide-and-seek in your childhood, this is how you'd count out loud while giving the o ther kids a
chance to hide. Such fun!

We have introduced a new form of contro l structure - the WHILE lo o p. And like with any contro l structure, the WHILE
loop does something in response to a TRUE conditional statement. In this case, however, the loop continues to

repeat the action until the conditional statement is FALSE.

All lo o ps have f o ur essent ial part s:

1. The init ial value st at ement , in this case $co unt s = 1;
2. The co ndit io nal st at ement , in this case $co unt s <= 25
3. The act io n st at ement (s) , in this case echo $co unt s." Mississippi...
";
4. The increment st at ement , in this case $co unt s++; (Remember this unary o perat o r?)

In order fo r a loop to work, it has to have a starting po int, an ending po int, and something to do in between. What would
happen if any o f the four elements in our example were missing? Try messing with them, and you'll find out. (Go
ahead, try. I'll wait.)

Note
Loops fo llow the same scheme as any contro l structure, in that you can nest all kinds o f conditional
statements and actions within them, including more loops. This can be lo ts o f fun -- especially fo r duping
your buddies into thinking the computer screen is possessed by gremlins!

Our counting loop example above is a really common loop--so common, in fact, that almost all programming
languages have developed an alternate type o f loop that can be used as a shortcut: the FOR lo o p.

The FOR loop structure looks like this:

for ($counts = 1; $counts <= 25; $counts++) {
 echo $counts." Mississippi...
";
}

Try replacing your WHILE loop with this FOR loop, then Preview the code. You should see the exact same result. In
fact, the FOR loop has exactly the same four elements as the WHILE loop. The only difference is the order o f the
elements in the syntax. Well, that, and if you forget the increment st at ement in this one, PHP will yell at you. Sounds
mean, but sometimes we need a little kick to keep from inadvertently causing an inf init e lo o p. Yuck.

You may think that learning both WHILE loops and FOR loops in PHP is needless and redundant, and it's true that
most o f the time they are interchangeable. However, as your scripts gain more complexity, you'll find that some tasks
are a perfect fit fo r using FOR, while using WHILE is best fo r o thers.

You've come really far! Now you can program the majority o f what you'll need in PHP. Congratulations! You are one o f the best
PHP programmers in the world!

...Circa 1995, that is. To create cutting-edge web software for this century, we have a ways to go. Take heart—you've
accomplished a lo t already. Save your work, and don't fo rget the assignments. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Functions

A f unct io n acts like a small program within your larger program. You invoke a function, send it information, and get something
back. A great way to learn to use functions, is to create one and use it. Let's go!

Creating Code Reusability with Functions
Let's create a new program so we can practice using functions. Our new program will take user input just like our
previous programs, only this time we'll inquire about the user's state o f mind and recommend a mantra for them to
repeat.

Make sure you're in HTML syntax and type the fo llowing into CodeRunner:

<body>

 <h3>OST's Mantra generator</h3>

 <form method="GET" action="mantra.php">

 My current mood:
 <select name="my_mood">
 <option value="">Please choose...</option>
 <option value="happy">I'm happy.</option>
 <option value="sad">I'm sad.</option>
 <option value="angry">I'm angry.</option>
 <option value="indifferent">I'm indifferent.</option>
 </select>

 <input type="submit" value="SUBMIT" />

 </form>

 </body>

Save this HTML file as mo o dinput .ht ml

In PHP Mode, type the fo llowing code highlighted in BLUE into CodeRunner:

<?
$my_mood = $_GET["my_mood"];

 if ($my_mood == "happy") {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " OM... ";
 }

 }
 else if ($my_mood == "sad") {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " okay... ";
 }

 }
 else if ($my_mood == "angry") {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " Mississippi... ";
 }

 }
 else if ($my_mood == "indifferent") {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " Wake up... ";
 }

 }
 else {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " Try harder... ";
 }

 }

?>

Save this code as mant ra.php and, once again, open up the HTML file moodinput.html.

Preview the HTML. Enter different values for your mood (after all, we're all pretty moody).

We have used pretty much the same PHP code in several places. When you have the same code or similar code in
lo ts o f different places, use a f unct io n. It will make your program more readable and save time. Say we decided to
recommend chanting our mantra 20 times instead o f 10. Unless we used a function, we'd have to change the code by
hand in each o f the "for" loops. Even for a simple code like ours, that would be truly annoying. You can imagine trying
to do this with long and complicated code--it could get downright ugly. Fortunately, f unct io ns enable us to avo id
such unpleasantness. We can create a function to execute a particular task each time we enter the name of the function
into our program. This is referred to as "calling" a function. Change your program so it looks like the stuff below—be
sure to remove the "for" loops within the "else if" statements.

Switch back to PHP and add the fo llowing code in BLUE into CodeRunner:

<?

function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }
}

$my_mood = $_GET["my_mood"];

 if ($my_mood == "happy") {

 mantra("OM");

 }
 else if ($my_mood == "sad") {

 mantra("okay");

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");

 }
 else {

 mantra("Try harder");

 }
?>

Save this file as mant ra.php and then switch back to your mo o dinput .ht ml file. Try entering different moods. You
should get the same results as before, but this time you used functions.

Each time the mant ra("so met hing") function is encountered by PHP, it calls the function definition f unct io n
mant ra($t he_so und) . The variable ($t he_so und in this case) is set to whatever is in between the parentheses
when mantra("something") is encountered. For instance, mant ra("OM") is calling the f unct io n
mant ra($t he_so und) and setting $t he_so und = "OM" . This is known in functions as "setting a parameter." This
particular function takes one parameter: $the_sound. However, functions can take no parameters at all o r many
different parameters.

Much like a variable ho lds values, f unct io ns ho ld pro cesses (snippets o f code) that we want to reuse. So instead o f
having to add the same code over and over again, we can simply call the f unct io n. In this case, when mant ra() is
encountered, the code inside o f the brackets { and } in the definition f unct io n mant ra(){ } is executed. Functions will
only be executed when they are called. Try removing the calls to mantra(). You'll see that the function doesn't do
anything then.

Note
If the function you've created doesn't have any parameters, you still need to have the parentheses in
place, they just won't contain anything. Notice how no do llar signs ($) are used in the function name
mant ra, but instead we fo llow the name with parentheses(()). They need to be there, that's just the way it
is.

Congratulations—you've just worked through your first example o f co de reusabilit y!

Function and Variable Scopes

Sco pe refers to a variable's area o f influence. If a variable is defined inside o f a function, then its area o f influence is
only within that function. That means we can use that variable name again in another function--setting values to it in
one function won't affect the setting in another function. Let's try using a function to encapsulate those "if" statements in
our example from the last section. In the process, we can see how scope may affect the outcome of our program.

Revise your PHP program so it looks like this in CodeRunner:

<?

function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant(){

 if ($my_mood == "happy") {

 mantra("OM");

 }
 else if ($my_mood == "sad") {

 mantra("okay");

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");

 }
 else {

 mantra("Try harder");

 }

}

$my_mood = $_GET["my_mood"];

Mood_Chant();

?>

Save this as mant ra.php, then open your mo o dinput .ht ml file. Try altering ANY of the moods on the list. No matter
what you choose, this code will always return T ry Harder as the output.

So why is the program returning T ry Harder as a result, no matter what we select? Let's perform some diagnostic
tests to find out. We'll enter some echo statements to print out variable values in different parts o f our program. Then
we can use the information we get to determine the path our program is taking and the steps we need to take to correct
our problem. Let's try it.

Add some echo statements into CodeRunner:

<?
function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant(){

echo "INSIDE the Mood_Chant function, your mood is ".$my_mood.".
";

 if ($my_mood == "happy") {

 mantra("OM");

 }
 else if ($my_mood == "sad") {

 mantra("okay");

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");

 }
 else {

 mantra("Try harder");

 }

}

$my_mood = $_GET["my_mood"];

echo "OUTSIDE the Mood_Chant function, your mood is ".$my_mood.".
";

Mood_Chant();

 ?>

Once again, Save this as mant ra.php, then go back to your mo o dinput .ht ml page. Select angry from the drop
down list and submit it.

You should get something like this:

OUTSIDE the Mood_Chant funct ion, your mood is angry.
INSIDE the Mood_Chant funct ion, your mood is .
Try Harder...Try Harder...Try Harder...Try Harder...Try Harder...Try Harder...Try Harder...Try Harder...Try
Harder...Try Harder...

Look closely. What printed out? What didn't? The first result printed out OUT SIDE t he Mo o d_Chant f unct io n, yo ur
mo o d is angry. We asked PHP to print it with the statement echo "OUT SIDE t he Mo o d_Chant f unct io n, yo ur
mo o d is " .$my_mo o d." ." ;. So as expected, the variable $my_mood was defined as angry. However, the second
result printed INSIDE t he Mo o d_Chant f unct io n, yo ur mo o d is . Even though we asked PHP to print echo
"INSIDE t he Mo o d_Chant f unct io n, yo ur mo o d is " .$my_mo o d." ." ; , it didn't print a value for $my_mood.

" INSIDE t he Mo o d_Chant f unct io n, yo ur mo o d is " .$my_mo o d." ." ; , it didn't print a value for $my_mood.

In the above example, you would think the value o f $my_mo o d ("angry") would print both inside and outside o f the
function Mo o d_Chant () . But, once the function was called, the value $my_mo o d wasn't seen INSIDE of the
Mood_Chant() function at all. This is because the variable $my_mo o d is completely different depending on whether it
is located outside or inside o f the function. Although variables may share the same name, their location determines
their effect on the program. When a variable within a function is encapsulated, as if the function was its own program,
this is referred to in programming as the function's sco pe .

In the next section, we'll learn to set parameters so that scope doesn't prevent us from using functions to the fullest.

Note
PHP isn't as strict with scope as some other languages are. Since PHP isn't strongly typed, you're not
required to declare variables before you use them. Therefore, within a PHP function, a variable declared
within a loop will retain its value outside o f that loop. To see this concept at work, try using echo to
output $chant after the f o r lo o p is finished in mant ra() .)

Using Functions with Parameters and Return Values
As interesting as scope can be, it doesn't help lighten your work load. What's the use o f reusing your code in a
function, if you have to re-define $my_mo o d within the function? Worse, what if you want to have different values for
$my_mo o d anytime you use the function Mo o d_Chant ()? We could save ourselves a lo t o f work if we could feed
our function different values and get an output each time. We already did this in the first section above using
paramet ers.

Sneaking In with Parameters

Type the fo llowing into CodeRunner:

<?

function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant($my_mood){

echo "INSIDE the Mood_Chant function, your mood is ".$my_mood.".
";

 if ($my_mood == "happy") {

 mantra("OM");

 }
 else if ($my_mood == "sad") {

 mantra("okay");

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");

 }
 else {

 mantra("Try harder");

 }

}

$my_mood = $_GET["my_mood"];

echo "OUTSIDE the Mood_Chant function, your mood is ".$my_mood.".
";
Mood_Chant($my_mood);

 ?>

Save this as mant ra.php, open mo o dinput .ht ml, and select angry from the drop-down list. This time, you
should have gotten the results you expected.

Look at your function again:

function Mood_Chant($my_mood) {

//code that processes the value of $my_mood

}

.

.

.

//passing the value of $my_mood UP to the Mood_Chant function above
Mood_Chant($my_mood);

Passing a paramet er essentially drills through the wall o f your function's scope, making it a more useful
machine.

Whatever paramet er we call to Mo o d_Chant (paramet er); becomes the value for $my_mo o d. And you
don't even have to use the name $my_mo o d, since it's a completely different variable within the function and
outside the function. Try using this on your own.

Look at your function again:

function Mood_Chant($my_mood) {

//code that processes the value of $my_mood
}

.

.

.

//passing the value of $my_mood up to the Mood_Chant function above
Mood_Chant("happy");

The value o f $my_mo o d inside o f the function Mood_Chant($my_mood) is "happy" . It's like setting
$my_mood = "happy" INSIDE of the function.

Now that we've snuck in with parameters, let's sneak out with return values.

Sneaking out with Return Values

In the examples above, we saw that we can sneak into a function using parameters. We can also sneak out
using ret urn values. The best way to understand "return" is to use it. Let's get to it.

Type the fo llowing into CodeRunner:

<?

function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant($my_mood){

 if ($my_mood == "happy") {

 mantra("OM");
 $after_chant = "
I feel serene now.";

 }
 else if ($my_mood == "sad") {

 mantra("okay");
 $after_chant = "
I feel better now.";

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");
 $after_chant = "
I've calmed down now.";

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");
 $after_chant = "
I'm awake now.";

 }
 else {

 mantra("Try harder");
 $after_chant = "
I'll try harder now.";

 }

 return $after_chant;
}

$my_mood = $_GET["my_mood"];

$after_chant_mood = Mood_Chant($my_mood);

echo $after_chant_mood;

?>

Save this as mant ra.php, open up mo o dinput .ht ml, and select anything you like from the drop down list.
Now you should get the chant and at the end you should have an "after-chant mood" expressed. All we did
here was add some statements into the variable $after_chant and then use ret urn $af t erchant at the end o f
the function. When we use return, we are setting a value in place o f the function.

But instead o f just letting a parameter sneak in, you've allowed a ret urn value to sneak out o f the function
scope. Suddenly, your function is an efficient factory, taking in raw ingredients (parameters) and spitting out a
refined product -- that is, it returned a value. Allowing a return value to sneak out o f the function scope is used
often in programming to return true or false values in functions that perform tests.

Multiple Parameters and Default Values

We practiced using parameters earlier in the lesson and now we can pass parameters to a function. Let's
change our function so that the end user can set how many times we chant our mantra.

Type the fo llowing code into your moodinput.html file in CodeRunner:

<body>

 <h3>OST's Mantra generator</h3>

 <form method="GET" action="mantra.php">

 My current mood:
 <select name="my_mood">
 <option value="">Please choose...</option>
 <option value="happy">I'm happy.</option>
 <option value="sad">I'm sad.</option>
 <option value="angry">I'm angry.</option>
 <option value="indifferent">I'm indifferent.</option>
 </select>

 Pick a number:
 <select name="my_number">
 <option value="2">Please choose...</option>
 <option value="10">10</option>
 <option value="20">20</option>
 <option value="30">30</option>
 <option value="40">40</option>
 </select>

 <input type="submit" value="SUBMIT" />

 </form>
</body>

Save this as mo o dinput .ht ml again. We've added the option o f selecting a number, so let's change our
program to accept this information and process it.

Type the fo llowing in your PHP file in CodeRunner:

<?

function mantra($the_sound,$the_number = 10) {

 for ($chant = 1; $chant <= $the_number; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant($my_mood, $chant_number = 10){

 if ($my_mood == "happy") {

 mantra("OM",$chant_number);
 $after_chant = "
I feel serene now.";

 }
 else if ($my_mood == "sad") {

 mantra("okay",$chant_number);
 $after_chant = "
I feel better now.";

 }
 else if ($my_mood == "angry") {

 mantra("mississippi",$chant_number);
 $after_chant = "
I've calmed down now.";

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up",$chant_number);
 $after_chant = "
I'm awake now.";

 }
 else {

 mantra("Try harder",$chant_number);
 $after_chant = "
I'll try harder now.";

 }

 return $after_chant;
}

$my_mood = $_GET["my_mood"];
$chant_number = $_GET["my_number"];

$after_chant_mood = Mood_Chant($my_mood, $chant_number);

echo $after_chant_mood;

?>

Save this as mant ra.php, open mo o dinput .ht ml, and Preview.

In this program we let the user select a number. Then inside o f the mood_chant function we call Mantra(first
parameter, second paramter) where the second parameter is the number the end user chose on the form in
the first place. Notice we changed the function Mantra() to accept two parameters.

By adding a def ault value to the parameter $t he_number, you made that parameter completely optional
when you call Mant ra. To see this in action, try changing the program so that one o f the calls to Mantra() has
only one parameter being set.

Note
You can have as many parameters and default values as you want in a function. But you have to
make sure that the default-valued parameters are at the end o f the parameter list. Any idea why?
Experiment to find out!

Be sure to save your work and hand in your assignments. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Arrays

Have you ever used one o f those weekly pill containers? You know, the ones that keep your vitamins or medicine organized for
each day? Surely you've at least seen one:

This is an excellent representation o f this entire lesson—that box is just an array o f containers with objects in them. Let's get
started with a fresh file and take a breather from the monster we've created.

Creating an Array

Open a new PHP file and type this code into CodeRunner:

<?php

$names = array("scott","kendell","Trish","Tony","Mike","Debra","Curt");

echo "<pre>";
print_r($names);
echo "</pre>";

?>

Save and preview the file:

Array
(
 [0] => scott
 [1] => kendell
 [2] => Trish
 [3] => Tony
 [4] => Mike
 [5] => Debra
 [6] => Curt
)

You've just defined an array named names, by passing the seven names as parameters to the built- in PHP array()
construct. If you think in terms o f the pill box above—a huge, people-sized pill box—it would look like this:

Now, the great thing about arrays is that you can access and mess with any one o f the element s—names, pills,
whatever values are in the boxes—by using the array keys. Let's give Mike a call:

Type the fo llowing into CodeRunner:

<?php

$names = array("scott","kendell","Trish","Tony","Mike","Debra","Curt");

echo "Who is it? ...".$names[4]."
";

echo "<pre>";
print_r($names);
echo "</pre>";

?>

Preview this. Did you see Mike's name? All you did here is retrieve the value o f the array element at the 4th position,
or index. In this case, you used the index 4 as the key. For kicks, let's replace Mike:

Type the fo llowing into CodeRunner:

<?php

$names = array("scott","kendell","Trish","Tony","Mike","Debra","Curt");

echo $names[4];

$names[4] = "Josh";
echo "Who is it? ...".$names[4]."
";

echo "<pre>";
print_r($names);
echo "</pre>";

?>

See, this is why we love arrays. No scope to contend with, just a simple organization o f values that we can mess with
at will. So now the $names array looks like this:

Note
Notice the new, super-handy, built- in function called print _r, which prints out an array in a really nice,
readable format. With a little experimentation, you can figure out why we used the <pre> and </pre> tags,
too. You can find out more about this function at php.net.

Associative Arrays
If we wanted to represent the pill box in PHP, it would make sense to use the labels that already exist to mark each box
for our purposes as well. Here's one way to do it:

http://www.php.net/manual/en/function.print-r.php

Type the fo llowing into CodeRunner:

<?php

$weekly_pills = array("S" => "vitamin C",
 "M" => "Echinacea",
 "T" => "antibiotic",
 "W" => "calcium",
 "Th" => "zinc",
 "F" => "multivitamin",
 "Sa" => "alka seltzer");

echo "<pre>";
print_r($weekly_pills);
echo "</pre>";

?>

Save it as pills.php and preview:

Array
(
 [S] => vitamin C
 [M] => Echinacea
 [T] => antibiotic
 [W] => calcium
 [Th] => zinc
 [F] => multivitamin
 [Sa] => alka seltzer
)

You've just defined an associative array. By using the => operator, you've associated each array element value to its
own index, or key, so that you can access it more intuitively. In o ther words, an associative array is a way o f naming
each slo t o f the array. In this case, the slo ts are named S ,M, T , W, T h, F, and Sa, respectively. So now we can store
and access values in an array based on these names instead o f using indices. Experiment with this:

Type the fo llowing into CodeRunner:

<?php

$weekly_pills = array("S" => "vitamin C",
 "M" => "Echinacea",
 "T" => "antibiotic",
 "W" => "calcium",
 "Th" => "zinc",
 "F" => "multivitamin",
 "Sa" => "alka seltzer");

echo "<pre>";
print_r($weekly_pills);
echo "</pre>";

//assign a new pill to Thursday
$weekly_pills["Th"] = 'aspirin';

//Does Thursday correspond to index 4? Let's see...
$weekly_pills[4] = 'garlic';

//Let's be lazy and see what happens...
$weekly_pills[] = 'glucose';

echo "<pre>";
print_r($weekly_pills);
echo "</pre>";

?>

Save and preview this:

Array
(
 [S] => vitamin C
 [M] => Echinacea
 [T] => antibiotic
 [W] => calcium
 [Th] => zinc
 [F] => multivitamin
 [Sa] => alka seltzer
)

Array
(
 [S] => vitamin C
 [M] => Echinacea
 [T] => antibiotic
 [W] => calcium
 [Th] => aspirin
 [F] => multivitamin
 [Sa] => alka seltzer
 [4] => garlic
 [5] => glucose
)

By the way, all arrays in PHP are associative. Every array value is assigned to a key index, regardless o f whether we
defined it. When you don't define a key index for an element value, PHP automatically assigns a default index to that
value for you. Specifically, it assigns the next increment after the highest integer index used. That's why 'glucose' was
assigned to the index 5—we'd already used 4 .

Type the fo llowing into CodeRunner:

<?php

$months_of_the_year = array(1 => "January", "February", 4 => "April", 3 => "March",
 "May", "June", "July", "August", "September", 12 => "Decemb
er",
 10 => "October", 11 => "November");

echo "<pre>";
print_r($months_of_the_year);
echo "</pre>";

?>

Save it as mo nt hs.php and preview it. Play around with it. Become one with array elements and keys. Oh, and don't
fo rget to study your book or php.net fo r more fun examples.

Creating Multi-Dimensional Arrays
A multi-dimensional array is simply an array o f arrays. That is, we can put arrays in fo r the values o f an array which
would be a two-dimensional array. A three-dimensional array would be an array o f arrays o f arrays. Ah, nesting. One o f
PHP's little joys. Let's modify our pills.php to see how it works.

Type the fo llowing into CodeRunner:

<?php

$weekly_pills = array("S" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "M" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "T" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "W" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Th" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "F" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Sa" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"));

echo "<pre>";
print_r($weekly_pills);
echo "</pre>";

echo "What pill should I pop right now? ...".$weekly_pills["Th"]["6pm"];

?>

http://www.php.net/manual/en/function.array.php

Save and preview this code. Wow. That's a lo t o f pills! But it seems that there are enough people taking enough pills
that a container indeed exists that represents this matrix o f dosages:

Creating a multi-dimensional array is as simple as nesting the array() construct to your heart's content, to create useful
representations o f just about anything.

Traversing and Manipulating Arrays
Let's have some fun and send a shout-out to everyone in the $names array. Modify array.php as shown

We're feeling friendly. Type the fo llowing into CodeRunner:

<?php

$names = array("scott","kendell","Trish","Tony","Mike","Debra","Curt");

echo "There are ".count($names)." names in the \$names array.
";
for ($i = 0; $i < count($names); $i++) {
 echo "Dialing index ".$i."...";
 echo "Hey there, ".$names[$i]."!!
";
}

?>

Note Yet another excellent built- in PHP function is co unt () . We're sure you can guess what it does, but we still
encourage you to check it out at php.net.

Preview this code and feel the love:

There are 7 names in the $names array.
Dialing index 0...Hey there, scott !!
Dialing index 1...Hey there, kendell!!
Dialing index 2...Hey there, Trish!!
Dialing index 3...Hey there, Tony!!
Dialing index 4...Hey there, Mike!!
Dialing index 5...Hey there, Debra!!
Dialing index 6...Hey there, Curt !!

Just by being friendly, you've traversed an array. Traversing simply requires that you hopscotch through all the
elements o f your array and do something with each value. "For" and "while" loops are great fo r that, especially when
you use numerical indices.

Traversing Associative Arrays with list() and each()

http://www.php.net/manual/en/function.count.php

Here's one guarantee: you're go ing to use arrays a lot. You can create, access, traverse, and manipulate
arrays fairly easily IF you know exactly what is go ing into them, how many elements they have, and how deep
the nesting goes in every case. But most o f the time, you won't know all that. You'll need to work around any
gaps with some nifty programming or some great built- in PHP array functions, like co unt () .

For instance, how would you traverse the associative $weekly_pills array? Using numerical counters won't
help. But don't worry, you have options. Here's our recommended way to do it:

Type the fo llowing into CodeRunner:

<?php

$weekly_pills = array("Sunday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Monday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Tuesday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Wednesday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Thursday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Friday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Saturday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"));

while (list($key, $value) = each($weekly_pills)) {
 echo "Here's what you should take on ".$key.":
";

 echo "<pre>";
 print_r($value);
 echo "</pre>";
}

?>

Save and preview it:

Here's what you should take on Sunday:
Array
(
 [8am] => vitamin C
 [1pm] => antibiotic
 [6pm] => zinc
 [11pm] => alka seltzer
)

How did you get all that output? Well, there are two built- in functions working together here.

Let's break it down:

while (list($key, $value) = each($weekly_pills)) {
 echo "Here's what you should take on ".$key.":
";
.
.
.
}

list () is not really considered a function, but a language construct, because it doesn't fo llow the normal
"Parameter in/Return value out" function rule. list () is simply a shortcut which, when used with the
assignment operator (=) and an array, assigns each value o f that array to the parameter variables within
list () .

In o ther words, this:

list($parameter1, $parameter2, $parameter3) = array("value1", "value2", "value3"
);

...is the same as this:

$parameter1 = "value1";
$parameter2 = "value2";
$parameter3 = "value3";

Now let's go on to each() , which may be even trickier than list () . Trickier, because it introduces an aspect o f
arrays that we haven't discussed until now: the array cursor.

Take a look at the graphical representation o f $names again:

Now, take your mouse cursor and point to each box, one by one, starting with the first entry. You've just
demonstrated the way an array cursor works: it points to array elements. The array cursor always begins by
po inting to an array's first element, and stays where it is until moved by a built- in PHP function.

Here's where each() comes in:

Type the fo llowing into CodeRunner:

<?
$test_array = array("key1" => "value1",
 "key2" => "value2",
 "key3" => "value3");

//start with the beginning
$new_array1 = each($test_array);

echo "<pre>";
print_r($new_array1);
echo "</pre>";

?>

Save it as each.php and preview it:

Array
(
 [1] => value1
 [value] => value1
 [0] => key1
 [key] => key1
)

As you may have guessed, each() takes an array as its parameter. But what you may not have guessed is
that it also has an array as its return value. Only the array returned is different from the array passed in.

each() uses the array cursor to access the element currently being po inted to by that cursor. This is called the
current element. In our above example, the current element is the first element o f $t est _array. After
accessing the element, each() creates a new array with four elements—using the key and value from the
current element o f the parameter array—and returns that array. In our example, we assigned that array to
$new_array1. Finally, each() increments the array cursor so it po ints to the next element in the array.

Why four elements in the return array? So that the new array can be accessed both numerically AND
associatively. The key o f the parameter array's current element becomes the value fo r two o f the new array's
elements, accessed by the keys 0 and "key" . The value o f the parameter array's current element becomes
the value fo r the o ther two elements o f the new array, accessed by the keys 1 and "value" .

Since list () can only deal with numerical keys (it ignores associative keys), the four-element return array is
especially handy.

Let's put it all together:

while (list($key, $value) = each($weekly_pills)) {
 echo "Here's what you should take on ".$key.":
";
.
.
.
}

In this example, the "while" loop is monitoring the cursor o f our $weekly_pills array. We can trust that the
loop won't be infinite because o f each() . The array cursor will eventually reach the end o f the array and po int
to null, but each time it loops, the current element's key (in this case, the day o f the week) would be assigned
to the variable $key. Similarly, the current element's value (in this case, another array containing that day's
pills) would be assigned to the variable $value .

Yikes! That's not just tricky, that's downright eye-crossing. When you do get the hang o f it though, this little
PHP concoction will serve you well, no t only with arrays, but with SQL commands and lo ts o f o ther
programming.

Note As an alternative to using list() and each() inside the condition o f a while loop, check out
foreach() loops at php.net.

More built-in functions
How do you know if an element exists in an array? What if you need distinct array elements? How about sorting and
merging? All these questions can be answered with built- in PHP functions. Like we said earlier, it would take ages to
go through them all, but we should definitely go over some of the major ones.

To cap o ff our intensive array workout, we leave you with a montage o f fun PHP functions. Play, experiment, and refer
back to your book or to php.net o ften. Think about how the functions work. Are array cursors used? What are the
parameters? What is the function returning?

Finally, think about how you would write your own PHP functions to perform the same tasks. Would you make the
same cho ices as the PHP fo lks?

http://php.net/manual/en/control-structures.foreach.php
http://php.net

Type the fo llowing into CodeRunner:

<?php

$scotts_phonebook = array("kendell" => "555-1234",
 "Trish" => "555-2345",
 "Tony" => "555-3456",
 "Mike" => "555-4567",
 "Debra" => "555-5678",
 "Curt" => "555-6789");

$kendells_phonebook = array("scott" => "555-7890",
 "Trish" => "555-2345",
 "Tony" => "555-3456",
 "Debra" => "555-5678",
 "Kate" => "555-8901");

//here's a phonebook combining both Scott's and Kendell's contacts, no duplicates

$combined_phonebook = array_unique(array_merge($scotts_phonebook, $kendells_phonebook))
;

echo "<pre> Combined Phonebook:";
print_r($combined_phonebook);
echo "</pre>";

//sort by name - why do you suppose we aren't assigning the return value to anything?

ksort($combined_phonebook);

echo "<pre>Sorted Phonebook:";
print_r($combined_phonebook);
echo "</pre>";

//here's a phonebook containing only mutual friends of Scott and Kendell

$mutual_friends = array_intersect($scotts_phonebook, $kendells_phonebook);

echo "<pre>Mutual Friends:";
print_r($mutual_friends);
echo "</pre>";

//in this custom function called "invite_friend," a phone number is
//called and that friend is invited to a party.

function invite_friend($phone_number, $name) {
 echo "Calling phone number $phone_number...";
 echo "Hello $name! You're invited to a party!
";
}

//Here's a REALLY tricky built-in function we can use to invite ALL friends to the part
y.
//Careful, this one has lots of rules regarding the second parameter.

array_walk($combined_phonebook, 'invite_friend');

//Finally, generate a random phone number and see if it's in the phonebook.

$random_phonenumber = "555-".strval(rand(1000,9999));

if (in_array($random_phonenumber, $combined_phonebook)) {
 echo "Phone number ".$random_phonenumber." is in the phonebook.";
}
else {

 echo "Phone number ".$random_phonenumber." is not in the phonebook.";
}

?>

Save it as pho nebo o ks.php and preview.

Were you able to figure them out? If no t, give yourself some time and don't stress—remember, these are functions
built by someone else to save time. If any built- in function doesn't suit your purpose, look for another one...o r just write
one yourself.

Don't fo rget to Save your work! And be sure to work on the assignments in your syllabus when you're done here. See
you at the next lesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Strings

Welcome back. So, you already know that st rings are one type o f PHP variable . And you've been using strings throughout the
last five lessons with echo , the concat operator (.), and in all kinds o f functions and loops. You've got strings down, baby.

So why spend an entire lesson on the letters, numbers, and symbols that make up strings?

The truth is, we've only explored the tip o f the proverbial iceberg when it comes to strings. In fact, they are the cornerstones o f
many a web-based, database-driven application. Like piranha, you should never underestimate the feisty little critters.

So get your waist-high galoshes on, fire up PHP in CodeRunner, and let's get cracking.

What's a String Anyway?
And what is it hiding from us? String is its real name, right? Let's see what's go ing on here. Remember our LAMP
acronym?:

Type the fo llowing into a new PHP file in CodeRunner:

<?php

$lamp_l = "Linux";
$lamp_a = "Apache";
$lamp_m = "MySQL";
$lamp_p = "PHP";

echo "
The stack begins with ".$lamp_l.", and goes on to include "
 .$lamp_a.", ".$lamp_m.", and ".$lamp_p."!
";

//These supposedly simple strings are hiding something...

echo "Gimme an L! ".$lamp_l[0]."!
";
echo "Gimme an A! ".$lamp_a[0]."!
";
echo "Gimme an M! ".$lamp_m[0]."!
";
echo "Gimme a P! ".$lamp_p[0]."!
";

?>

Save it as st rings.php, then click Preview. You should see this:

The stack begins with Linux, and goes on to include Apache, MySQL, and PHP!
Gimme an L! L!
Gimme an A! A!
Gimme an M! M!
Gimme a P! P!

Wait a minute. Why were we just able to use the array operator [] to access the first letters o f the LAMP acronym? Aha,
now the truth comes forth.

That sneaky string doesn't want you to know it has a secret identity. You see, a st ring is a special type o f array, one
where each charact er -- letter, number, symbol, newline, whatever takes up one byte o f space -- is assigned a
numerical key index. Here's what the string "Linux" would look like in our pillbox representation from the arrays lesson:

Note The last box you see contains simply the NULL character, which has always been used to terminate
strings in the C language - the language PHP is based upon. (Check out the history o f PHP.)

Manipulating Strings
Let's explore strings further. We're go ing to make a new PHP file called bo lo gna.php.

http://en.wikipedia.org/wiki/Character_%28computing%29
http://www.php.net/history

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My ".$string_1." has a first name, it's ";
spell_me($string_2);
echo "
";

echo "My ".$string_1." has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That ".$string_2." ".$string_3." has a way

 With ";
spell_me($string_1);
echo "!";

?>

Note For reference here's the Oscar Mayer bo logna song

Preview for the lyrics o f the song:

My bologna has a f irst name, it 's o - s - c - a - r
My bologna has a second name, it 's m - a - y - e - r
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b - o - l - o - g - n - a!

Through the power o f commercial jingles, we're able to uncover two more truths about strings: not only can we access
the characters within a string using the [] operator, but we can use the same operator to traverse and manipulate
strings, just like arrays.

http://www.youtube.com/watch?v=rmPRHJd3uHI

Take another look:

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

.

.

.

In our function spell_me() , we used a while lo o p to traverse the string parameter, stopping when we reached the null
character. Then we manipulated $st ring_3 by assigning new characters to the indices we wanted to change. In no
time, "oscar" turned to "mayer," and all were spelled correctly.

Go ahead, keep humming the tune - we don't mind.

Other nifty string shortcuts

Type the BLUE stuff into your document in CodeRunner:

<?php

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

?>

Preview this. Nothing changed, right? This is a coo l shortcut created especially fo r strings in PHP, called
embedding variables. Since you'll most likely use PHP in web pages, you can thank us later fo r showing you
this shortcut. It provides a more intuitive method o f creating and outputting dynamic strings without the need
for all those annoying concat operators and quotation marks.

There's only one small complication with this shortcut. What happens if you want to display an actual do llar
sign ($) along with all the embedded variables?

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

echo "
As you can see, $string_1 was passed into the parameter $mystring.";

?>

You should get something like this:

My bologna has a f irst name, it 's o - s - c - a - r
My bologna has a second name, it 's m - a - y - e - r
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b - o - l - o - g - n - a!
As you can see, bologna was passed into the parameter .

Well, that's a bunch o f bo logna. While we wanted to output the actual variable names, the echo command
tried to replace them with their values instead. This happens anytime echo sees a do llar sign ($) fo llowed by
something that could pass as a variable name.

How can we stop it? Escape it.

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

echo "
As you can see, \$string_1 was passed into the parameter \$mystring."
;

?>

You should get this:

My bologna has a f irst name, it 's o - s - c - a - r
My bologna has a second name, it 's m - a - y - e - r
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b - o - l - o - g - n - a!
As you can see, $string_1 was passed into the parameter $mystring.

Ah, much better. Just by adding a little backslash (\) before each do llar sign ($), we're able to tell PHP that we
really do want the name itself displayed, not the value.

That backslash is handy for escaping several o ther characters too. Refer to your book or to php.net to embed
them all into your subconscious.

Built-in String Functions
"String functions?" you say, "I don't need no stinking string functions. I could use all the built- in array functions on
strings too!"

While that may be true in C, PHP treats strings as a different t ype with its own set o f built- in functions, generally
keeping their secret identity under wraps. Try using an array function to traverse a string:

http://www.php.net/manual/en/language.types.string.php

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 for ($i = 0; $i < count($mystring); $i++) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

echo "
As you can see, \$string_1 was passed into the parameter \$mystring.";

?>

Preview it and you should get this:

My bologna has a f irst name, it 's o
My bologna has a second name, it 's m
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b!
As you can see, $string_1 was passed into the parameter $mystring.

Not exactly the catchiest lyrics anymore. Now try it with a built- in string function.

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 for ($i = 0; $i < strlen($mystring); $i++) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

echo "
As you can see, \$string_1 was passed into the parameter \$mystring.";

?>

You should get this:

My bologna has a f irst name, it 's o - s - c - a - r
My bologna has a second name, it 's m - a - y - e - r
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b - o - l - o - g - n - a!
As you can see, $string_1 was passed into the parameter $mystring.

See, it's not such a bad thing. Having specialized string functions means they'll be faster, easier, and more intuitive to
use.

Soon we'll be working with HTML forms and dynamic inputs, which really flex the muscles o f built- in PHP string
functions. However, even without fo rms, string functions have thousands o f uses. Here we have peppered our oscar
mayer song with a plethora o f useful string functions. Play, experiment, and refer back to your book or to php.net as
much as you need. Try out the code below. Can you figure out how they all work?

http://www.php.net/manual/en/function.substr.php

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 for ($i = 0; $i < strlen($mystring); $i++) {
 if ($i == 0) {
 echo strtoupper($mystring[$i]);
 }
 else {
 echo " - ".strtoupper($mystring[$i]);
 }
 }
}

$string_1 = "bologna";
$string_2 = "oscar mayer";
$space_index = strpos($string_2, " ");

//let's spell boloney how we really say it...
echo "My ".str_replace('gna','ney',$string_1)." has a first name, it's ";
spell_me(substr($string_2,0,$space_index));
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me(substr($string_2,$space_index+1)); //notice this has only two parameters
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

//we're tired of putting in the HTML
 tags...
echo "That $string_2 ".nl2br("has a way
 With ");
spell_me($string_1);
echo "!";

$sale_price = 1; //a dollar
echo "
On sale for ".number_format($sale_price, 2)."!";

?>

Before we move on, experiment with these questions in CodeRunner:

Does it matter whether you use single quotation marks (') or double quotation m
arks (") with strings?
Can you mix the two types of quotation marks? Do you have to escape them if yo
u do?
Are there any built-in array functions that do work with strings?
Would you have built the substr() function differently?

Regular Expressions
Not many subjects can make a programmer groan like that o f regular expressio ns. They are immensely useful, yes
- they are used to create "wildcard" strings so that you can, say, verify that someone has entered a valid email address
or a correct phone number format. However, learning "Regex" patterns can sometimes feel as though you're
deciphering the Rosetta Stone. Even the ever-helpful php.net pawns you o ff to a cryptic "man page" when dealing with
Regex rules. Aargh.

But hey! We've got "learning by do ing" on our side. And when we learn by do ing, we can accomplish anything.

http://www.php.net/manual/en/ref.regex.php

Type the fo llowing into a new PHP file in CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "log";

$string_1 = "bologna";
check_regex($regex_1, $string_1);

?>

You should get:

The pattern 'log' is found in bologna.

Here we have an example o f a regular expressio n -- a simple string: "log." And by using the built- in PHP function
preg_mat ch() , we are simply checking to see if a "log" is found in "bo logna." Of course it is. Notice the quotes and
forward slashes needed around the $myregex variable. These are needed because preg_match is a PERL style regex
matching function and regex's in PERL must have forward slashes. See what happens if you remove the slashes.

So, you may wonder why we didn't just use the built- in string function st rpo s() . We could have. But here's where it
gets interesting...

The plo t thickens. Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "log$";

$string_1 = "bologna";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

?>

Preview this:

The pattern 'log$' is NOT found in bologna.
The pattern 'log$' is found in catalog.

Now THIS result we could not get from st rpo s. Since when is a do llar sign ($) found in the word "catalog"?

As it turns out, the do llar sign has a special meaning in regular expressions, and it's different from the meaning it
usually has for PHP variables. In regular expressions, placing a do llar sign ($) after a string means "at the end of the
string".

Take another look:

<?php

.

.

.

$regex_1 = "log$";

$string_1 = "bologna";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

?>

Because we specified $regex_1 to be " lo g$" and not just " lo g" , our function check_regex() now checks to see if
" lo g" is found at the end o f each o f our strings. This is why it returned t rue fo r "catalog," but f alse fo r "bo logna."

This is the key to regular expressions. More than just a random string too l, regular expressions are an entirely different
language for creating and comparing strings with very specific patterns in mind: the presence o f specific characters, the
number o f occurrences o f each character, and their location in the string. In this case, we were concerned with the
location o f the string "log." Let's try another one...

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "^cat";

$string_1 = "concatenate";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

?>

The pattern '^cat ' is NOT found in concatenate.
The pattern '^cat ' is found in catalog.

You guessed it. Placing a carat (^) in front o f your Regex string means "at the beginning of the string."

Character Ranges and Number of Occurrences

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "cat.*a";

$string_1 = "concatenate";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

?>

Preview this:

The pattern 'cat .*a' is found in concatenate.
The pattern 'cat .*a' is found in catalog.

Whoa. That is a crazy Regex pattern. Yet it was found in the strings "concatenate" AND "catalog." What gives?

And speaking o f concatenate, isn't that period (.) the concatenate operator in PHP? Not this time. Just like the
do llar sign ($), the period (.) has a much different meaning when it comes to regular expressions. In this case,
it represents any character, like a wildcard.

As for the asterisk (*), that means "zero or more". Put it all together, and the regular expression "cat .*a"
means "the string 'cat,' followed by zero or more characters, followed by an 'a'".

Is that found in "co ncat enat e"? Yes: the string 'cat ' is found, fo llowed by two characters 'e ' and 'n' ,
fo llowed by an 'a' . How about "cat alo g"? Yep: 'cat ' is fo llowed by zero characters, fo llowed by an 'a' . Let's
try a REALLY crazy Regex:

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "cat(a|e)+[a-z]{2,5}";

$string_1 = "concatenate";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

$string_3 = "catamaran";
check_regex($regex_1, $string_3);

$string_4 = "scathing";
check_regex($regex_1, $string_4);

$string_5 = "pontificates";
check_regex($regex_1, $string_5);

?>

Preview this:

The pattern 'cat(a|e)+[a-z]{2,5}' is found in concatenate.
The pattern 'cat(a|e)+[a-z]{2,5}' is found in catalog.
The pattern 'cat(a|e)+[a-z]{2,5}' is found in catamaran.
The pattern 'cat(a|e)+[a-z]{2,5}' is NOT found in scathing.
The pattern 'cat(a|e)+[a-z]{2,5}' is NOT found in pont if icates.

Now, this may seem overwhelming, but it's actually just a series o f simple Regex patterns. Let's break them
down:

cat (a|e)+[a-z]{2,5}

(a|e) : The pipe character (|) in regular expressions means OR, so in this case we're looking for
"either an 'a' or an 'e'". Parentheses(()) are used to separate out expressions when we are nesting
them, just like always.
+ : The plus sign (+) is just like the asterisk (*), except it's looking for o ne o r mo re o f the
characters it fo llows. Since we preceded it with the expression (a|e) , in this case it means "one or
more of either 'a' or 'e'".
[a-z] : To allow entire ranges o f characters as a shortcut, we use square brackets ([]) and the dash
(-). So in this case, we're looking for "any lowercase letter from 'a' to 'z'".
{2,5} : Curly braces ({}) are used like the plus sign and asterisk, indicating a range o f occurrences
of the preceding expression. In this case, because {2,5} fo llows [a-z] , we're looking for "2 to 5
occurrences of any lowercase letter from 'a' to 'z'".

Put it all together, and we find that the pattern cat (a|e)+[a-z]{2,5} in Regex-speak means "The string 'cat',
followed by one or more 'a's or 'e's, followed by at least 2, but not more than 5 lowercase letters, from 'a' to 'z'."

Can you figure out why it's not found in "scat hing" o r "po nt if icat es"?

Excluding Characters

Now, if you thought THAT was confusing, consider this: What if you had the all- important task o f, say,
removing funky characters from a file name and replacing them with something benign? Here's where things
REALLY get screwy.

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

//here's a function that takes in a file name, and replaces all funky characters
 with an underscore "_"

function clean_filename($file_name) {
 $bad_characters = "[^a-zA-Z0-9.]";
 $new_filename = preg_replace("/$bad_characters/", "_", $file_name);
 return $new_filename;
}

$bad_filename = "file[3*1 name.doc";

$good_filename = clean_filename($bad_filename);

echo "'$bad_filename' has been changed to '$good_filename'.";

?>

Preview this:

'f ile[3*1 name.doc' has been changed to 'f ile_3_1_name.doc'.

We know, we know, this makes no sense at all. First o f all, the carat (^) is supposed to mean "at the beginning
of the string." The period (.) is supposed to represent a wildcard character. And what's with the ranges o f
characters -- a-z , A-Z , and 0-9 -- stuck together like that? Groan.

Well, as it turns out, when it comes to whatever's in the square brackets ([]), the rules change. Let's take a
closer look at brackets in regular expressions.

[^a-zA-Z 0-9.]

^: When used within square brackets, the carat (^) negates everything after it - just like the
exclamation po int(!) in PHP. So in this case it's looking for characters that DON'T match what's
inside the brackets.
a-zA-Z 0-9 : Everything within square brackets comes together to represent only one character.
Therefore, characters placed within the brackets are treated as if a pipe character (|) was inserted in
between each one. For instance, [abcd] is the same as (a|b|c|d) , and in this case, a-zA-Z 0-9 is
the same as ([a-z]|[A-Z]|[0-9]) , o r more simply, "any alphanumeric character".
.: Within square brackets, every character except fo r the carat(^), the dash(-), and the right bracket
itself(]) is taken as a literal character - including the period(.) that would normally be considered a
wildcard character.

Put it all together, and we find that the pattern [^a-zA-Z 0-9.] actually means "any character which is NOT an
alphanumeric character or a period.".

Escaping Characters

Regular Expressio ns are extremely useful in PHP - especially since you'll be do ing a lo t o f HTML form
processing. For instance, how can you ensure that someone's entered their phone number properly?

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

//here's a function that takes in a file name, and replaces all funky characters
 with an underscore "_"

function clean_filename($file_name) {
 $bad_characters = "[^a-zA-Z0-9.]";
 $new_filename = preg_replace("/$bad_characters/", "_", $file_name);
 return $new_filename;
}

//here's a function which validates an American phone number

function validate_phone($phone_number) {
 $good_phone = "^\(?[0-9]{3}\)?(|-|\.)[0-9]{3}(-|\.)[0-9]{4}$";

 if (preg_match("/$good_phone/", $phone_number)) {
 echo "$phone_number is valid.
";
 }
 else echo "$phone_number is NOT valid.
";
}

$phone_number1 = "34x.d98.1123";
validate_phone($phone_number1);

$phone_number2 = "(217) 555-1212";
validate_phone($phone_number2);

?>

Preview this:

34x.d98.1123 is NOT valid.
(217) 555-1212 is valid.

Let's break this down: ^\(?[0-9]{3} \)?(|-|\.)[0-9]{3} (-|\.)[0-9]{4}$

^: Since we're outside any square brackets, the carat (^) takes on its original meaning—"at the
beginning of the string." By the same token, we use the do llar sign ($) to mean "at the end of the
string," so that we have an exact match.
\(?: Some Americans use parentheses (()) to enclose the 3-digit area code o f their phone
numbers. To allow this possibility, we use the question mark (?) much like the asterisk or plus
sign, only this time to denote "zero or one" o f the leading parenthesis ((). However, because
parentheses usually mean nesting, we use a backslash (\) to escape the character. This must
always be done when not within the square brackets. The same is true with \)?.
[0-9]{3} : Since the area code o f the American phone number system uses exactly 3 digits, we use
{3} to require exactly 3 o f any digit, denoted by [0-9] . We use the same logic with the 3-digit prefix,
as well as the ending 4 digits o f the phone number.

(|-|\.) Usually between the area code and the prefix o f a phone number, fo lks use either a space ("
"), a dash (-), o r a period(.). Therefore, we use the parentheses(()) along with the pipe character (|)
to say "either a space or a dash or a period." We put a backslash before the period because we
must escape it. An unescaped period matches a single character without caring what that character
is. So since we want a literal period, we add the backslash to "escape" the character having that
special meaning.

In case your eyes are crossing right now, remember that regular expressio ns take a lo t o f patience, practice, and
trial-and-error to get right. Refer back to this lesson, to books you may have, or to the web, o ften. Here's a great article
on regular expressions in PHP.

Whew! We've covered a lo t o f ground. Don't fo rget to Save your work and hand in your assignment s from your syllabus. See
you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://www.phpbuilder.com/columns/dario19990616.php3
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Fixing Broken PHP

This lesson is all about frustration. Frustration that comes in the form of parse erro rs, inf init e
lo o ps, unmat ched bracket s, and lo gical mist akes. Frustration that makes your face
grimace and your fingers type furiously, pounding as if sheer fo rce could will the keys into
assembling proper PHP code from the mangled mess that is your own program. Ah yes, we
know this feeling well.

In previous lessons we focused on the basics o f PHP, keeping examples and pro jects to finite
blocks o f code. We're sure you've handled the frustrating errors like a trooper so far. In the
upcoming lessons, we'll begin constructing more complex programs to so lve real-world
problems, which means the threat o f frustration looms larger than ever. You're go ing to need
some serious ammo for creating and debugging scalable programs. Your sanity just may

depend on it.

So let's take a break from new PHP concepts and focus on technique for a while. Got CodeRunner in PHP syntax? Good - let's
get go ing.

Things Professors Don't Talk About Enough
We're guilty o f it too . We introduce you to concepts that theoretically work just fine, assuming that everything typed in
just so , and that we've explained the concept perfectly. So o f course these concepts will work perfectly fo r you, every
time you apply them, right?

Let's find out using the fo llowing silly program we assembled from concepts covered in previous lessons.

It's okay to copy and paste, JUST THIS ONCE! Paste this into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number;) {
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit_Loops'
] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<? echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
if (!($my_mood == "sad")) {

 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Preview this:

Parse error: syntax error, unexpected ';' in /users/cert josh/useract ivepreviewtmp123.php3
line 4

Okay, WRONG. Even a benign-looking program like the above works beautifully in theory, but never in practice -- at
least fo r the first hundred times you try it. Trust us. Do you think our examples worked perfectly the first time we wrote
them? Hardly.

But even with this relatively small amount o f code, where do you begin to debug it? Here is where you're usually on
your own...

...but hey, not in this lesson! We're not too far removed from our humble beginnings to know how hard it is to master
debugging. Consider this a support group for frustrated coders, and you're invited.

Debugging Tips

Utilizing Error Messages

Let's Preview again:

Parse error: syntax error, unexpected ';' in /users/cert josh/useract ivepreviewtmp123.php3
line 4

If you're lucky, you'll get an easy to see error message right away, like you're getting now. In o ther situations
you may have to ask your system administrator where she keeps the PHP error logs. In any case, the First
Rule o f Debugging is: check the error messages first. They may seem cryptic at times, but they almost always
give you the information you need. In particular, the line number where the problem is located.

Since our error message indicated line 4 , go to that line. What do you see?

Suddenly, our parse erro r is as loud as a mariachi band. There shouldn't be a semico lon (;) inside the
parentheses (()) o f a while lo o p! This is easy enough to fix: just remove the semico lon (;).

Good for you! You fixed the error, and now everything should work perfectly, right?

Riddle-Me-This Error Messages

Cross your fingers and Preview again:

Parse error: syntax error, unexpected '<' in /users/cert josh/useract ivepreviewtmp128.php3
line 53

Yikes, another error message! Mild frustration ensues. Well, no problem, we'll just do the same thing we did

before. But this time try the Go To Line button. Type in line 53:

Hmm, that's strange. This isn't even PHP code, it's HTML code -- and perfect HTML code, at that. Why would
PHP single out a line o f good HTML code in its error message?

We're go ing to have to look around for more clues, which brings us to the Second Rule o f Debugging: Check
lines closest to the error message second. Let's give that a shot, by looking at line 52:

And there you have it - a tiny curly bracket (}), indicative o f PHP code. Were you able to so lve the riddle o f the
error message? We forgot to delimit the PHP with a ?> between the PHP code and the HTML code, so the
PHP parser was attempting to read the HTML code as PHP! Hence the message: "unexpected '<' on line 53".
It didn't know any better.

Go ahead and add the delimiter (?>), and you have squashed another bug in our program. Let's hope that's
the last one.

Errors without Error Messages

Chant 'no error messages' three times, then Preview again:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

$my_mood = whats_my_emotion($cereal_prices, $my_money); if (!($my_mood == "sad")) {
$after_chant_mood = Mood_Chant($my_mood, $chant_number); } echo "
".$after_chant_mood; ?>

Hey, the chant worked - no error messages! But wait - there's still an error. Looks like "no error messages" is
not the same as "no errors". Which brings us to the Third Rule o f Debugging: When there are no error
messages, check your output. Or, just work on your chant.

Look at your Preview again. It seems that the trouble starts right after the statement: "Fruit Loops costs $3".
After that, chaos erupts. So let's take a look at our code now, and try to pinpo int the problem.

Pay attention to the errors we already fixed, and where the new error seems to be happening:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<? echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch
!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

//BUT NOW THE PROBLEM APPEARS TO BE HERE

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Looking at the code, we see now that we've done it again - we've forgotten a delimit er, this time an opening
delimiter (<?). Why didn't we get an error message like before? Because this time the code went from HTML
to PHP - so it was HTML attempting to render the PHP code, not the o ther way around. HTML is more
forgiving in this sense, and simply prints out the code.

Be sure to add the delimiter <?. Are we done now?

Logical Errors

Signs po int to no:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Oh well, I'm going home.

At first glance, everything appears to be correct. No error messages, no garbled output. But before you
breathe that sigh o f relief, remember that this silly program is supposed to determine our mood and
purchasing behavior, based on cereal prices and how much money we have.

Take another look at the code:

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}

From our output, we see that we have $4 -- not enough to buy Captain Crunch for $5, but enough to buy Fruit
Loops for $3. In our program, that's supposed to make us angry, but we'd rather invoke a calming mantra
chant and buy Fruit Loops anyway. So why are we dejected and go ing home?

This is called a lo gical erro r, and unfortunately it seems that the output isn't helping us much in the way o f

clues to fix it. Which brings us to the Fourth Rule o f Debugging: When the output doesn't show the error, create
strategic output that does.

Type the fo llowing green code into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<?
//We know it's not here, because the output has been correct
echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

<?
//then we added the delimiter here...

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
//Let's add some echo statements to figure out our logic.
echo "\$my_mood is $my_mood";

if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Oh well, I'm going home.$my_mood is sad

So we find that when the function what s_my_emo t io n() returns, its value is sad, no t angry. Since we know
the values o f $my_cash and $cereal_prices are correct, it looks like we've narrowed the problem down to
what s_my_emo t io n() . Now what do we do?

Let's add some more echo statements - but this time use them within what s_my_emo t io n() , just to see
what happens.

Add the fo llowing green code into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 //We know the output is coming from here, so let's add echo statements:
 echo "Within whats_my_emotion, \$cereal_prices:<pre>";
 print_r($cereal_prices);
 echo "\$my_cash = ".$my_cash."</pre>";

 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>

I have $<?
//We know it's not here, because the output has been correct
echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

<?
//then we added the delimiter here...

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
//Let's add some echo statements to figure out our logic.
echo "\$my_mood is $my_mood";

if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Within whats_my_emotion, $cereal_prices:
Array
(
 [Captain_Crunch] => 5
 [Fruit_Loops] => 3
)
$my_cash =

Oh well, I'm going home.$my_mood is sad

This is starting to look pretty messy, but it does tell us everything we need to know. Through our echo and
print_r statements, we can see that the lo gical erro r is definitely within what s_my_emo t io n() . Why?
Because the parameter $my_cash was never properly passed in -- causing the resulting mood to be sad
instead o f angry.

Take a closer look at whats_my_emotion():

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 //We know the output is coming from here, so let's add echo statements:
 echo "Within whats_my_emotion, \$cereal_prices:<pre>";
 print_r($cereal_prices);
 echo "\$my_cash = ".$my_cash."</pre>";

 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}

Looking at our if /e lse st at ement s, we can see that we make all kinds o f comparisons between $my_cash
and the various cereal prices, yet no matter what we set $my_cash to before we pass it to
what s_my_emo t io n() , it comes up blank within what s_my_emo t io n() . And then the error becomes
clear: within what s_my_emo t io n() , the parameter should be called $cash_mo ney, NOT $my_cash!

And so, Sherlock, it looks like we have so lved the mystery o f the lo gical erro r. We can now remove the
extraneous echo and print_r statements and fix the problem, once and for all.

Type the fo llowing green code into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $cash_money) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $cash_money) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $cash_money && $cereal_prices['Fr
uit_Loops'] < $cash_money){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<? echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch
!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

<?
//then we added the delimiter here...

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Infinite Loops, Infinite Headaches

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Fine! I'll get some Fruit Loops.mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi...

YIKES, MAKE IT STOP! This is one o f the worst errors o f all: inf init e lo o ps. It causes memory leaks in your
computer, aching in your head, and it may very well have crashed your entire browser...we hope that wasn't
the case.

This brings us to the Fifth Rule o f Debugging: Always end your loops!

Take a look at our while loop:

function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) {
 echo $the_sound."... ";
 }
}

The good news is, in our case it's easy to see what went wrong. The while loop is set to end when $chant is
great er t han $t he_number, which defaults to 10. But we never increased $chant . Let's fix it!

Type the fo llowing into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 $chant++;
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $cash_money) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $cash_money) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $cash_money && $cereal_prices['Fr
uit_Loops'] < $cash_money){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<? echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch
!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

<?
//then we added the delimiter here...

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Fine! I'll get some Fruit Loops.mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi...

Ahhh, much better. I've calmed down now.

Ahh, much better. And although it was quite the ordeal, we're all the better fo r it. Pat yourself on the back and raise your
glass to stress relief through Debugging!

Notes on Scalable Programming
Now that you know the Rules o f Debugging, you're almost ready to put them to the test by building some large-scale
pro jects. However, before you go on, it's important to stress some very important po ints to help reduce your stress.

Before you Code, Pseudocode

What's pseudo co de? Just a little jo t-down of your program logic in English (or whatever your native
language may be). Like this:

Here's how we might pseudocode whats_my_emotion():

If I have enough money to buy both cereals,
 My mood is happy.
Otherwise, if I have enough money to buy Captain Crunch,
 My mood is indifferent.
Otherwise, if I can't buy Captain Crunch, but can buy Fruit Loops,
 My mood is angry.
Otherwise, I'm sad no matter what.

Pseudo co de is a way for you to organize your thoughts and design your logic before you start coding your
program. Think o f it as a blueprint fo r your so ftware development. Using pseudocode, you can take a look at
the big picture and catch any flaws in your design--before they cause you a week's worth o f debugging. Plus,
you can refer back to it as you go to ensure that you're sticking to your original design.

Make your Program Readable

What if we had coded whats_my_emotion() like this?

function what_is_it($a, $b = false) {
 if ($a >= $b) {
 $c = "happy";
 }
 else if ($d[0] < $b) {
 $c = "indifferent";
 }
 else if ($d[0] > $b && $d[1] < $b) {
 $c = "angry";
 }
 else {
 $c = "sad";
 }
 return $c;
}

Sure, we know exactly what it means at the time we write it, but when we go back later, we might not have a
clue what any o f it means, rendering it essentially worthless. And by the way, if you write code like this, fo rget
ever getting promoted - you won't find anyone who can decipher your code enough to take over your lower
position. You'd be stuck with it, buddy.

So just be sure to use readable, intuitive variable, and function names all the time, every time. If you find
yourself slipping into using vague names, just remember what we to ld you about promotion. That should
snap you back into shape.

Comment Until You're Blue in the Face

By the same token, you can kick your program's readability up a notch by using comments whenever you can.
Use them to help recall what you've done, or to indicate to o ther programmers what your functions do. That's
why they're there after all.

In particular, it's imperative that you start o ff each program, and every function within it, with a synopsis o f the
functions it performs, parameters it takes, and what it returns.

Like this:

function whats_my_emotion($cereal_prices, $cash_money) {
 #whats_my_emotion returns an emotion of happy, indifferent, angry or sad base
d upon
 #two parameters, $cereal_prices -- an array of floats -- and float $cash_mone
y.
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $cash_money) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $cash_money) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $cash_money && $cereal_prices['Fr
uit_Loops'] < $cash_money){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}

This will become more and more important as you build more reusable code, and even libraries which can be

shared by o thers--either within your company, or within the o pen-so urce co mmunit y.

Code in Bite-Size Chunks

You'll no tice throughout these lessons that our chosen process o f learning to build programs is extremely
repetitious - we typed a bit o f code, Previewed it, added a little more code, Previewed it, and so on.

If you program one small part o f your code at a time, you'll be much less likely to be overwhelmed with bugs
and logical errors when it comes time to test. This is where your pseudocode can help as well, by showing
you where you can divide your large program into smaller, "bite-size" chunks to make it more manageable.

Debug as You Work

There's nothing worse than writing a HUGE amount o f code, only to find it's a complete mess. As long as you
Preview o ften, you'll catch bugs as you go along, which will make your life much easier in the long run.

Reuse Functions as Much as Possible

What if we had written several different functions instead o f one what s_my_emo t io n() , o r simply copied
and pasted the same code throughout our program? Instead o f fixing the code once, we would have had to
deal with it over and over again.

The biggest argument fo r creating f unct io ns fo r anything and everything: if something goes wrong with the
code, you only have to debug it o nce , then every time it's called, it works.

Always create a function for any finite task, even if you're not sure you'll use it more than once. You'll be
surprised at how useful it will become as you continue programming.

Utilize Available Resources

As if we haven't been preaching it enough: we live in an age where information is always available. There are
reference books, Safari accounts, and web sites like PHP.net. Use them. And if you can't find your answer,
there are communities o f millions o f PHP programmers just like yourself you can consult. Don't be afraid to
ask questions!

Can you believe how far you've come? So far you've learned all the basics o f PHP you need to get go ing with some meaty web
pro jects. And from now on, that's exactly what you're go ing to do.

Don't fo rget to Save your work and hand in your assignment s from your syllabus. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://oreilly.com/
http://my.safaribooksonline.com/?portal=oreilly
http://www.php.net/manual/en/function.number-format.php
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Forms in PHP

As promised, you're about to put the material you've learned into robust, real-world applications. Until now, there has been only
one thing missing from your skillset preventing this: user input .

PHP was created specifically to work with the internet - to make the web surfer's life easier by customizing his experience, and
to make the programmer's life easier by making that customization convenient fo r her. But without a way to gather information
from the web surfer, all the convenience and power o f PHP is worthless. What good is customization if the user's needs aren't
met?

We are able to gather user input through a little HTML tag called <f o rm> . Since we'll be using HTML and PHP in tandem, be
prepared to use bo t h HT ML and PHP synt ax. Let's go!

Forms Review
Start with an HTML form. Make sure you're using HT ML syntax, and TYPE the fo llowing:

CODE TO TYPE:

<body>
<h3>Contact ACME Corporation</h3>
<form method="POST" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="">
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="">
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer" />I am interested in becoming a customer.
<option value="customer" />I am a customer with a general question.
<option value="support" />I need technical help using the website.
<option value="billing" />I have a billing question.
</select>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="">
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
</textarea>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked">Please email me updates about y

our products.

<input type="checkbox" name="update2">Please email me updates about products from third
-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>
</body>

You'll see this:

Contact ACME Corporation

Name:

Email:

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Look familiar? This is a simple contact fo rm, where a user can inquire about the services on a website and give a little
information about him/herself. Also noteworthy is that it contains all the major fo rm types: t ext , t ext area, select ,
radio , checkbo x, and submit .

Each form element has a name attribute and a value attribute, except fo r t ext area, which has an ending tag instead o f
a value attribute. Furthermore, radio buttons all have the same name to ensure only one is checked, while
checkbo xes have different names so that any o f them can be checked. select tags contain their names and values
within separate o pt io n tags, fo r that nice drop-down-menu effect.

Note You mean it doesn't look familiar? We're assuming this is review for you - if you're completely lost, you
may want to take a look at our HTML and CSS course.

It's a nice-looking form, but if you want something done with that information, you're go ing to have to create a PHP
script to process the input. Go ahead and Save yo ur f o rm -- you can name it co nt act .ht ml.

Using Superglobals to Read Form Inputs
Now, let's switch CodeRunner to PHP and start a new file.

In PHP, type the fo llowing:

<?php

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$_POST['name']."
";
echo "Email: ".$_POST['email']."
";
echo "Type of Request: ".$_POST['whoami']."
";
echo "Subject: ".$_POST['subject']."
";
echo "Message: ".$_POST['message']."
";
echo "How you heard about us: ".$_POST['found']."
";
echo "Update you about our products: ".$_POST['update1']."
";
echo "Update you about partners' products: ".$_POST['update2']."
";

?>

Preview this:

Thank You!

Here is a copy of your request:

Name:
Email:
Type of Request:
Subject :
Message:
How you heard about us:
Update you about our products:
Update you about partners' products:

Well, that didn't do much good. And what's this $_POST [] array anyway??

But wait, there's more. Save this PHP file and call it co nt act .php. Now, switch back to HT ML in CodeRunner, where
you should still have your co nt act .ht ml file ready.

Preview this, and fill in the form:

https://oreillyschool.com/courses/html5css/

Contact ACME Corporation

Name: Trish

Email: t rish@myemail.com

Type of Request: I need technical help using the website.

Subject : Please help!
Message: I can't get the darn thing to work!

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Now, within your Preview window, click SUBMIT. What did you get?

Hopefully you got something like this:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
Update you about our products: on
Update you about partners' products:

So why did it work this time? Here's where the magic o f that $_POST [] array is revealed.

Take another look at the form tag in contact.html:

<form method="POST" action="contact.php">

If you remember, fo rms themselves can be submitted using several different methods - two o f the most important
methods are GET and POST . If you've ever programmed a web application in a different language - say Perl o r C -
you might also remember using complicated CGI libraries to extract fo rm data from either the query st ring in the case
of the GET method, or from the enviro nment variables in the case o f the POST method.

However, because PHP was created with the web in mind, this process has been greatly simplified, using special
variables called superglo bals.

Let's look at contact.php again:

<?php

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$_POST['name']."
";
echo "Email: ".$_POST['email']."
";
echo "Type of Request: ".$_POST['whoami']."
";
echo "Subject: ".$_POST['subject']."
";
echo "Message: ".$_POST['message']."
";
echo "How you heard about us: ".$_POST['found']."
";
echo "Update you about our products: ".$_POST['update1']."
";
echo "Update you about partners' products: ".$_POST['update2']."
";

?>

Did you notice something familiar about the key indices o f $_POST [] -- name , email, who ami, etc.? You see, PHP
does all the work for you here - it processes the form input and places all the values into the superglo bal array
$_POST [] , an associative array with the key indices corresponding to the form element names. This is done
automatically, whenever a form is submitted using the POST met ho d, and the array works in any scope - that's why
it's called a superglo bal variable.

Note
By convention, we don't normally use the underscore at the beginning o f variable names (as in
$_POST). However, they are used in superglo bals to prevent any clashing with your own variable
names.

What do you do if you use the GET met ho d in your fo rm? Experiment with this and find out. If you need help, check
out php.net.

Extracting Superglobals into Variables
As if the superglo bal variables weren't easy enough, PHP goes even further to make reading form inputs easy for
you.

http://www.php.net/manual/en/language.variables.predefined.php

In PHP, change contact.php with the fo llowing blue code:

<?php

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";
echo "Update you about our products: ".$update1."
";
echo "Update you about partners' products: ".$update2."
";

?>

Save co nt act .php again, then go back to co nt act .ht ml and Preview. What did you get?

Preview contact.html and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
Update you about our products: on
Update you about partners' products:

Wow - it worked even without the $_POST [] array! This is yet another simplification in the process that can be done
through the built- in function ext ract () . In this case, the form elements passed through the $_POST [] array have been
extracted into PHP variables, accessible by anything within the program. We indicated to ext ract () that we wanted the
PHP variable names to correspond to the form element names by passing in the flag EXT R_PREFIX_SAME as a
parameter. You can read more about ext ract () here: http://www.php.net/manual/en/function.extract.php.

Note
In previous versions o f PHP, a php config directive called regist er glo bals automatically created global
variables from GET and POST form elements. However, many dangers arose in using register globals,
and as a result, PHP has removed them from PHP 5 and newer versions.

Superglo bals are brilliant innovations in web programming - all built into PHP to make your world an easier place to
live. Not to mention our world - did you notice just how short this lesson is? Exactly.

Nesting Variable Names
Just one more coo l feature before we move on...

http://www.php.net/manual/en/function.extract.php
http://www.php.net/manual/en/security.globals.php

In PHP, change contact.php with the fo llowing, in blue:

<?php

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

?>

Preview contact.html and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:

Did you see what happened there? We were able to dynamically construct the name of our "update#" fo rm elements
through a f o r lo o p, and then access the value o f that element through the variables we created with ext ract () . This
was done by nesting variable names.

Take another look:

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": "; << evaluates to "update1" or "update2"
 echo $$element_name; << evaluates to $update1 or $update2, whose values are "on" or
 "off"
 echo "
";
}

Nesting variable names is just like all the nesting we did in previous lessons - first $element _name is evaluated,
and then that value is used to evaluate the nested $($element _name) . Name nesting can be done with ALL
variables, however, it's especially useful when you create dynamic form names and then need to read them with the
variables passed in through superglo bals and ext ract () . It's definitely worth learning this handy trick.

We're just getting warmed up with forms. Don't fo rget to Save your work and hand in your assignment s from your syllabus.
See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Utilizing Internet Tools

In the last lesson, we created a contact fo rm for customers to communicate with the customer support department o f a
corporation. But it's not quite ready for prime time yet. So far, we have no way o f knowing what kind o f computer or browser the
customer is using, no way to catch incomplete form entries, and no way to , well, send the message out.

It's time to fix this! Fire up CodeRunner and open the two files we were working on before: co nt act .ht ml and co nt act .php.

Environment and Server Variables
Preview contact.html and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:

Have you ever received a customer support request like this? We have. It's more common than you may think, and it
can leave you scratching your head—this customer can't get the darn website to work, yet leaves the details o f the
problem to your mind-reading skills.

Let's look into our crystal ball...

In PHP, change contact.php as shown in blue:

<?php

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Switch to contact.html, Preview, and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

When it comes to customer support, just as important as the customer's request is knowing where the customer is
coming from—perhaps geographically, but more importantly in the sense o f what operating system (Windows, Mac)
and browser (Safari, Internet Explorer, Firefox) they're using.

Luckily, the fo lks who worked on our very first web browsers way back in the day, already thought o f this. They created
something called CGI (Common Gateway Interface) Enviro nment Variables, which tell us a lo t about both the
client —that's the customer's computer—as well as the server -- that's the computer where your PHP script resides
(in our case, it's sitting in Champaign, Illino is).

Take another look at this code:

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

You guessed it—$_SERVER[] is another superglo bal array in PHP. That underscore(_) at the beginning tends to
give it away. The information that $_SERVER[] ho lds? Enviro nment variables like HT T P_USER_AGENT and
HT T P_X_FORWARDED_FOR. But what do they mean?

Now take another look at the output:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/4
18 (KHTML, like Gecko)
Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Not so luckily, the fo lks who created the environment variables didn't make them easy to decipher. Here's a little
translation for the two we're using:

HT T P_USER_AGENT gives you information about the computer and web software your customer is
using. Since you're testing your own form, it should be telling you what computer and web software you're
using. The format is something like this: o perat ing syst em/versio n (mo re inf o) web library/versio n
(mo re inf o) web bro wser/versio n (mo re inf o) .

In our case, we got the information Mo zilla/5 .0 (Macint o sh; U; PPC Mac OS X; en) AppleWebKit /418 (KHT ML,
like Gecko) Saf ari/417.9 .2. Very cryptically, this tells us that we are on a Macintosh computer with a Mac OS X
operating system, using the Safari web browser. Obviously, your result will most likely be different from this—you
might be on a Windows XP computer, fo r instance, using Internet Explorer (MSIE). Here is a list o f more browsers than
you'll ever care to know, and their HTTP_USER_AGENT translations. Can you find yours?

HT T P_X_FORWARDED_FOR gives you the IP address o f either your customer's computer, o r if your
customer is using an Internet Service Provider like AOL, the IP address o f one o f its servers. What's an IP
(Int ernet Pro t o co l) address? Every computer on the internet has one -- a unique identifier, chosen
within the Internet Pro toco l Standard. It's useful to know, because it can indicate the customer's country o f
origin, through any Whois too l. More importantly, if it has been determined that a particular customer is a
fraud, there are ways to block the IP address from ever getting to your site—something you will learn in a
later course.

There are lo ts o f useful enviro nment variables. Here is a very useful list to reference.

Using HTTP Headers
Another important issue in customer support—and really any interface that requires form input—is ensuring that all
fields are properly filled in. How can you help a customer if he doesn't include his email address or contact info? But o f
course he'll include it, right? You'd be surprised.

http://www.zytrax.com/tech/web/browser_ids.htm
http://whois.arin.net/ui/
http://en.wikipedia.org/wiki/Environment_variable

In PHP, change contact.php with the fo llowing blue code:

<?php

#We used the superglobal $_POST here
if (!($_POST['name'] && $_POST['email'] && $_POST['whoami']
 && $_POST['subject'] && $_POST['message'])) {
 echo "Please make sure you've filled in all required information.";
 exit();
}

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Note Notice the new built- in PHP function we used here: exit () . This essentially stops the program in its
tracks. How's that fo r lack o f commitment?

Switch to contact.html, Preview, and submit the form like before—only this time, try leaving something blank:

Please make sure you've f illed in all required informat ion.

So essentially when someone leaves something blank, we're letting them know about it. But now the customer has to
go back to the form and find out what's wrong. What if we could take them back to the form automatically? Let's give it a
shot:

In PHP, change contact.php with the fo llowing, in blue:

<?php

#We used the superglobal $_POST here
if (!($_POST['name'] && $_POST['email'] && $_POST['whoami']
 && $_POST['subject'] && $_POST['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $url = "http://".$_SERVER['HTTP_HOST']."/contact.html";
 header("Location: ".$url);
 exit();
}

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Switch to contact.html, Preview your fo rm, and submit it, leaving something blank. You should get this:

Contact ACME Corporation

Name:

Email:

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Whoa! What just happened? If you left something blank on your fo rm and submitted it, you just got the same form back,
blank again.

Let's take another look at this code:

 $url = "http://".$_SERVER['HTTP_HOST']."/contact.html";
 header("Location: ".$url);
 exit();

You may already know that all HTML-based web pages use the HyperT ext T ransf er Pro t o co l (HT T P) to render
properly in your web browser—that's why you always see ht t p:// at the beginning o f every web address. But what you
may NOT know is that before any HTML is rendered on your web browser, a series o f invisible headers are passed
so that your browser knows exactly what to do with the code. Most o f these headers are pretty obscure, but a few are
extremely useful. Click here for a reference.

Of course, since PHP embeds HTML within its code, it can also manipulate HT T P headers through the built- in
function header() . In this case, we were able to set the header "Lo cat io n: " with the URL of the contact fo rm
co nt act .ht ml we created. As a result o f sending that header, the browser redirected the user back to the form.

Note Any headers that are sent using header() must come BEFORE any PHP or HTML output. Otherwise, the
browser will get confused, and next thing you know, you're debugging.

You'll also notice we used another enviro nment variable , called HT T P_HOST . This variable returns the do main
name o f the web address where your co nt act .php script resides.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

In our case, our domain name, or HTTP_HOST, is jo sh.o nza.net . It is a live web site, on the internet fo r everyone to
see: http://josh.onza.net/. Pretty lame web site, huh? Keep this in mind when you create your website using your own
domain name—you could have a lame web site like us, or you could have a pro fessional online portfo lio to show to
all your friends, co lleagues, and potential employers when you apply fo r your first LAMP-based programming job.

Manipulating Query Strings
But we digress. And in the meantime, simply redirecting our poor customer to a blank form is a horrible way to treat
someone who 's already frustrated with the website. There has to be a more user-friendly way to ask the customer to
fix a form field before we submit it.

The problem is, since co nt act .ht ml is a static HTML page, we can't dynamically add anything to it—that's why it's
blank. And simply giving the error message "Please fix this" to the customer, like we did before, isn't user-friendly
either. What we need is a way to show the customer, nicely, exactly what he needs to fix on the form, without losing any
of the answers he's already filled in.

We can do this by converting the HTML form into a PHP script o f its own. What you need to do is Save co nt act .ht ml
in PHP synt ax, but sure t o call it "co nt act _f o rm.php" . Or if you'd rather, just copy and paste the HTML code
into a new PHP file.

http://josh.onza.net/

Be sure you're in PHP, and add the fo llowing blue code to contact_form.php:

<body>
<h3>Contact ACME Corporation</h3>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subject']; ?
>" />
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>

</textarea>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me updates about
 your products.

<input type="checkbox" name="update2" />Please email me updates about products from thi
rd-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>
</body>

Now, Preview contact_form.php:

Contact ACME Corporation

Name:

Email:

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

You'll no tice here that we've switched the met ho d attribute in the HTML form tag from POST to GET , and we've
introduced some PHP echo statements using the $_GET [] superglo bal. But so far, no changes have taken place—
we still get the same blank form with co nt act _f o rm.php as we did with co nt act .ht ml.

Note

The ht mlspecialchars() function can be used when obtaining the values for the input tags. For example:

<input type="text" size="25" name="email" value="<? echo
htmlspecialchars($_GET['email'],ENT_QUOTES, 'UTF-8 '); ?>" /> </td>

This function converts some predefined characters to HTML entities and will help to pro tect your code
against cross site scripting. A detailed discussion o f web application security in beyond the scope o f this
course, but please check out the fo llowing links for additional information:

link
link.

Be sure to Save co nt act _f o rm.php, since the Lo cat io n: header will redirect you back to the saved version o f
co nt act _f o rm.php, NOT the Preview version.

http://www.php.net/manual/en/function.htmlspecialchars.php
https://en.wikipedia.org/wiki/Cross-site_scripting

Switch to contact.php, and make the fo llowing changes in blue:

<?php

#We used the superglobal $_GET here
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string;

 header("Location: ".$url);
 exit();

}

extract($_GET, EXTR_PREFIX_SAME, "get");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Remember to save contact.php, then switch back to contact_form.php and Preview.

When you submit the form, be sure that you leave one field blank to see what happens:

Contact ACME Corporation

Name: Trish

Email: t rish@myemail.com

Type of Request: I need technical help using the website.

Subject : Woops, I lef t the message f ield blank!
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Now here's some real progress. When you submit the form with a field or two blank, the form still comes back—but
this time, all the fields at the top have been filled in. This is much better, because now the user doesn't have to redo
everything.

Let's take another look at the code we used in contact.php:

#We used the superglobal $_GET here
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING']
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string;
 header("Location: ".$url);
 exit();

}

extract($_GET, EXTR_PREFIX_SAME, "get");

We switched our fo rm to have met ho d=GET so that our data will come through to our script from the query st ring.
The query st ring consists o f all the encoded data you see after the question mark (?) in your URL when you submit

the form:

And, since we have the handy enviro nment variable QUERY_ST RING, we can simply use the $_SERVER[]
superglobal to grab it and send it back to co nt act _f o rm.php.

And if you look again at contact_form.php:

<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />

You'll see that we were able to harness the query st ring yet again—through the superglobal $_GET []—to fill in the
input tags with the customer's original data.

Customizing specific error messages

Now it's time to use our newly-formed script co nt act _f o rm.php to tell the customer exactly what needs to
be done. To do this, however, we first need to manipulate the query st ring a bit:

In PHP, switch to contact.php, and make the fo llowing changes, in blue:

<?php

#We used the superglobal $_GET here
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixe
d
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&e
rror=1";
 header("Location: ".$url);
 exit();

}

extract($_GET, EXTR_PREFIX_SAME, "get");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_
X_FORWARDED_FOR'];

?>

Make sure you Save contact.php, and switch to co nt act _f o rm.php:

In PHP, add the fo llowing to contact_form.php, in blue:

<?php

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to noti
fy the customer
} else {
 $error_code = 0;
}

?>

<body>
<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
 echo "<div style='color:red'>Please help us with the following:</div>";
}
?>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
<?
if ($error_code && !($_GET['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
<?
if ($error_code && !($_GET['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}

?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subje
ct']; ?>" />
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article<b
r/>
<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me update
s about your products.

<input type="checkbox" name="update2" />Please email me updates about products f
rom third-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>

</table>
</form>
</body>

Again, be sure to Save contact_form.php, and then Preview, leaving one field blank. What did you get?

We get something like this:

Contact ACME Corporation

Please help us with the following:
Name: Please include your name.
Email: t rish@myemail.com

Type of
Request: I need technical help using the website.

Subject : Woops, I lef t the message f ield blank!
Message:

 Please f ill in a message for
us.

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

MUCH better. Now the customer knows exactly what's wrong, he can fix it, and submit the support request
easily.

Sending Emails
Finally, we can do what we wanted to do all along: send the support request via email. Never one to let us down, PHP
has just the function for us: mail() . Let's try it:

In PHP, switch to contact.php, and make the fo llowing changes, in blue:

<?php

#We used the superglobal $_GET here
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message
$email_message = "Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['REMOTE_ADDR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address
.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = $_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Save co nt act .php, switch to contact_form.php, Preview, and submit the form.

If you filled in all the required fields, you should get something like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

However, this time, if you included your own email in the $t o variable, you should have a brand new customer support
message in your email inbox.

Don't fo rget to Save your work and hand in the assignment s from your syllabus. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Date and Time

You'll find that Date and Time play a huge part in programming - they are useful fo r timestamps, logs, and are needed in just
about every database entry you'll create. And although they're somewhat tricky to harness, PHP has done well in simplifying the
process.

Open the two files we were working on before: co nt act _f o rm.php and co nt act .php.

Date and Time Standards

Switch to contact.php, and make the fo llowing changes, in green:

<?php

#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message
$email_message = "Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address
.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Note Notice we're breaking one o f our own cardinal rules here - doubling up on code that could be taken care
of with one function. Feel free to punish us within your own code.

Save co nt act .php, switch to contact_form.php, Preview, and submit the form.

If you filled in all the required fields, you should get something like this:

Thank You!

Here is a copy of your request:

CONTACT #1148955473:
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Although we're using it as a t imest amp here, the number we got actually measures how many seconds have passed
since Unix Epo ch -- that's a fancy name for January 1st, 1970, at midnight (00:00:00) GMT. Why is that time the Unix
Epo ch? No good reason really, except that some early computer scientists agreed on it a long time ago as a dat e
and t ime st andard.

Sounds nerdy, but it's really a good thing - it enables us to harness date and time, not only in PHP, but also in mySQL
and lo ts o f o ther techno logy languages. For instance, you'll be using PHP functions to process SQL timestamps in
later courses.

Date and Time Functions
Obviously, dat e and t ime st andards weren't created for us to use merely as a unique identification number -
although that's handy. What else can they do for us? Enter the built- in PHP functions.

http://en.wikipedia.org/wiki/Unix_time

Switch to contact.php, and make the fo llowing changes, in green:

<?php

#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message
$email_message = "Message Date: ".date("F d, Y h:i a")."
 Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address
.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Again, if you Save co nt act .php, then Preview contact_form.php, you might get something like this:

Thank You!

Here is a copy of your request:

CONTACT #1148955473:
Message Date: May 29, 2006 10:25 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

This time, instead o f a cryptic timestamp, the date o f the message has been nicely fo rmatted for us through the dat e()
function.

Let's take another look:

echo "Message Date: ".date("F d, Y h:i a")."
";

The paramet er fo r the dat e() function is a special coded f o rmat that PHP replaces with the proper time/date data.
For instance, "F" is replaced with the name of the month - in our case, May, and "a" is replaced with am o r pm ,
depending on the time - in our case, pm . Here is the php.net reference for time/date formats.

f o rmat
charact er Descript io n Example

ret urned values

Day --- ---

d Day o f the month, 2 digits with leading zeros 01 to 31

D A textual representation o f a day, three letters Mon through Sun

j Day o f the month without leading zeros 1 to 31

l
(lowercase
'L')

A full textual representation o f the day o f the week Sunday through
Saturday

N ISO-8601 numeric representation o f the day o f the week (added in PHP 5.1.0)
1 (fo r Monday)
through 7 (fo r
Sunday)

S English ordinal suffix fo r the day o f the month, 2 characters st, nd, rd o r th.
Works well with j

w Numeric representation o f the day o f the week
0 (fo r Sunday)
through 6 (fo r
Saturday)

z The day o f the year (starting from 0) 0 through 365

Week --- ---

http://www.php.net/manual/en/function.date.php

W ISO-8601 week number o f year, weeks starting on Monday (added in PHP 4.1.0)
Example: 42 (the
42nd week in the
year)

Month --- ---

F A full textual representation o f a month, such as January or March January through
December

m Numeric representation o f a month, with leading zeros 01 through 12

M A short textual representation o f a month, three letters Jan through Dec

n Numeric representation o f a month, without leading zeros 1 through 12

t Number o f days in the given month 28 through 31

Year --- ---

L Whether it's a leap year 1 if it is a leap year,
0 o therwise.

o
ISO-8601 year number. This has the same value as Y, except that if the ISO week
number (W) belongs to the previous or next year, that year is used instead.
(added in PHP 5.1.0)

Examples: 1999 o r
2003

Y A full numeric representation o f a year, 4 digits Examples: 1999 o r
2003

y A two digit representation o f a year Examples: 99 o r 03

Time --- ---

a Lowercase Ante meridiem and Post meridiem am o r pm

A Uppercase Ante meridiem and Post meridiem AM o r PM

B Swatch Internet time 000 through 999

g 12-hour fo rmat o f an hour without leading zeros 1 through 12

G 24-hour fo rmat o f an hour without leading zeros 0 through 23

h 12-hour fo rmat o f an hour with leading zeros 01 through 12

H 24-hour fo rmat o f an hour with leading zeros 00 through 23

i Minutes with leading zeros 00 to 59

s Seconds, with leading zeros 00 through 59

Timezone --- ---

e Timezone identifier (added in PHP 5.1.0)
Examples: UTC,
GMT,
Atlantic/Azores

I (capital i) Whether or not the date is in daylights savings time
1 if Daylight
Savings Time, 0
otherwise.

O Difference to Greenwich time (GMT) in hours Example: +0200

P Difference to Greenwich time (GMT) with co lon between hours and minutes
(added in PHP 5.1.3) Example: +02:00

T Timezone setting o f this machine Examples: EST,
MDT ...

Z Timezone o ffset in seconds. The o ffset fo r timezones west o f UTC is always
negative, and for those east o f UTC is always positive.

-43200 through
43200

Full
Date/Time --- ---

c ISO 8601 date (added in PHP 5) 2004-02-
12T15:19:21+00:00

r RFC 2822 formatted date
Example: Thu, 21
Dec 2000 16:01:07
+0200

http://www.faqs.org/rfcs/rfc2822.html

U Seconds since the Unix Epoch (January 1 1970 00:00:00 GMT)

Constructing Dates and Times

Now, suppose Acme, Inc. had a customer service po licy claiming "We'll get back to you in 48 hours." You'll
want to use the date o f the message to give the customer support representative an idea o f the deadline she
has.

Make sure you have contact.php, and make the fo llowing changes, in green:

<?php

#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixe
d
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&e
rror=1";
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message

#we want a deadline 2 days after the message date.
$deadline_array = getdate();
$deadline_day = $deadline_array['mday'] + 2;
$deadline_str = $deadline_array['month']." ".$deadline_day." ".$deadline_array['
year'];

$email_message = "Message Date: ".date("F d, Y h:i a")."
 Please reply by: ".$deadline_str."
 Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email
address.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {

 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_
X_FORWARDED_FOR'];

?>

Save contact.php, switch to contact_form.php and Preview:

Thank You!

We'll get back to you by May 31 2006.
Here is a copy of your request:

CONTACT #1148955473:
Message Date: May 29, 2006 10:25 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Take another look:

#we want a deadline 2 days after the message date.
$deadline_array = getdate();
$deadline_day = $deadline_array['mday'] + 2;
$deadline_str = $deadline_array['month']." ".$deadline_day." ".$deadline_array['
year'];

Here, the function get dat e() , like t ime() , gets a stamp of the current time. However, instead o f just an
integer, get dat e() extracts the data and outputs an asso ciat ive array that looks a bit like this:

Here's what a getdate() output array might look like:

Array
(
 [seconds] => 40
 [minutes] => 58
 [hours] => 21
 [mday] => 29
 [wday] => 1
 [mon] => 5
 [year] => 2006
 [yday] => 160
 [weekday] => Monday
 [month] => May
 [0] => 1055901520
)

This array makes it easy to construct a new date relative to the current date - all we have to do is add 2 to the
'mday' array value, and suddenly we have a deadline for the customer support representative. Fast service
means happy customers.

But wait a minute - what if today was, say, the 31st o f May? Just adding 2 to that will give you an invalid date.
We could do a series o f if statements to fix this, but that's a lo t o f unwieldy code. Luckily, PHP has yet another
handy function to help us.

In PHP, try adding the fo llowing green code to contact.php:

<?php

#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixe
d
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&e
rror=1";
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message
#we want a deadline 2 days after the message date.
$deadline_array = getdate();
$deadline_day = $deadline_array['mday'] + 2;

$deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$de
adline_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
$deadline_str = date("F d, Y", $deadline_stamp);

$email_message = "Message Date: ".date("F d, Y h:i a")."
 Please reply by: ".$deadline_str."
 Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email
address.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_
X_FORWARDED_FOR'];

?>

Save contact.php, switch to contact_form.php and Preview:

Thank You!

We'll get back to you by June 2 2006.
Here is a copy of your request:

CONTACT #1148962509:
Message Date: May 31, 2006 12:20 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Take one more look:

$deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$de
adline_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
$deadline_str = date("F d, Y", $deadline_stamp);

The function mkt ime() fixes all those pesky date problems. It takes in the parameter data o f the date you
want to fo rmat, and creates the original t imest amp, which we then plug into dat e() to fo rmat properly.
Problem so lved!

Don't fo rget to Save your work and hand in your assignment s from your syllabus. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Using Files

So far, we've created a simple corporate contact fo rm that accounts for user error and friendly reminders, successful output, and
sending o f the proper message. Pretty robust, but at the same time, you have to admit, it's pretty ugly. And it's not the most
pro fessional- looking interface on the web either.

In a perfect world, we'd have lo ts o f time to keep tweaking the PHP script to make every page look just so . But in most
situations, you won't have the luxury o f extra time, and you probably won't even be allowed to dictate how the page looks. Not
when there's a graphic designer down the hall. Just the same, you don't want the graphic designer down the hall messing with
your PHP scripts either. Here's where f ile t emplat es come in real handy.

Including and Requiring Files
Fire up CodeRunner and open up the two files we were working on before: co nt act _f o rm.php and co nt act .php.
After you do this, switch CodeRunner to HT ML synt ax. For just a moment, we're go ing to pretend that we are the
graphic designers down the hall.

In HTML, type the fo llowing, in blue:

<html>
<head>
<title>Acme, Inc.</title>
<link rel="stylesheet" href="http://students.oreillyschool.com/resource/php_lesson.css"
 type="text/css" />
</head>
<body>
<div class="topbar">
ACME, INC.
</div>
<table>
<tr><td class="sidebar" valign="top">
links go here
</td><td class="content">
Content goes here

</td></tr></table>
<div class="bottombar">
</div>
</body>
</html>

Preview this:

ACME, INC.
links go here Content goes here

What we have here is a basic "C-Clamp" design template for a corporate web page: logo on top, links on the side,
something on the bottom to wrap the content nicely, and a CSS file to add a little style (here we've provided one for
you). This will make our contact fo rm look slightly better than it did before.

But how do you most easily place our content within this C-Clamp? You could simply embed the HTML into the PHP
script itself, but this creates a big problem - if the graphic designer decides to make a change, you're stuck making that

same change in every PHP script you've written. And if you work for a large corporation, this could mean dozens, even
hundreds o f files.

It would be great is if you could reuse the code, like when you create PHP functions.

In HTML, remove the second half o f our C-Clamp:

<html>
<head>
<title>Acme, Inc.</title>
<link rel="stylesheet" href="http://students.oreillyschool.com/resource/php_lesson.css"
 type="text/css" />
</head>
<body>
<div class="topbar">
ACME, INC.
</div>
<table>
<tr><td class="sidebar" valign=top>
links go here
</td><td class="content">

Now, Save this file and name it t emplat e_t o p.inc.

Note Why use .inc? Just fo r clarity - this isn't a complete HTML file, so no need to name it with a .html suffix.

In HTML, create a NEW file, containing the second half o f our C-Clamp:

</td></tr></table>
<div class="bottombar">
</div>
</body>
</html>

Save this file and name it t emplat e_bo t t o m.inc.

Add the fo llowing to contact_form.php, in green:

<?php

 require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to notify the
customer
}

?>
<body>
<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
 echo "Please help us with the following:";
}
?>
<form method=GET action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>">
<?
if ($error_code && !($_GET['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>">
<?
if ($error_code && !($_GET['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="">Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?>>I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?>>I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";

}
?>>I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?>>I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subject']; ?
>">
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols=50 rows=8>
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth">Word of Mouth

<input type="radio" name="found" value="search">Online Search

<input type="radio" name="found" value="article">Printed publication/article

<input type="radio" name="found" value="website">Online link/article

<input type="radio" name="found" value="other">Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked>Please email me updates about your produc
ts.

<input type="checkbox" name="update2">Please email me updates about products from third
-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT">
</td></tr>

</table>
</form>

<?
 require($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");
?>

</body>

Be sure and Save co nt act _f o rm.php.

Now PREVEIW:

ACME, INC.
links go here

Contact ACME Corporation

Name:

Email:

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Even with the extreme simplicity o f our C-Clamp template, this looks much better than it did before.

Take another look at the code:

 require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

The PHP built- in function require() takes a filename as its paramet er, and imports all the data from that filename into
that exact place within the PHP code. It's as if you had written the code right in.

We can do this with co nt act .php as well.

Switch to contact.php and add the fo llowing green code:

<?php

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}
extract($_GET, EXTR_PREFIX_SAME, "get");
#construct email message
#we want a deadline 2 days after the message date.
$deadline_array = getdate();
$deadline_day = $deadline_array['mday'] + 2;

$deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadline_
array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
$deadline_str = date("F d, Y", $deadline_stamp);

$email_message = "Message Date: ".date("F d, Y h:i a")."

 Please reply by: ".$deadline_str."

 Name: ".$name."

 Email: ".$email."

 Type of Request: ".$whoami."

 Subject: ".$subject."

 Message: ".$message."

 How you heard about us: ".$found."

 User Agent: ".$_SERVER['HTTP_USER_AGENT']."

 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address
.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

$headers = "From: " . $from . "\r\n";
$headers .= 'MIME-Version: 1.0' . "\n"; //these headers will allow our HTML tags to be
 displayed in the email
$headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n";

#now mail
mail($to, $email_subject, $email_message, $headers);

 include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWAR
DED_FOR'];

 include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php. Now when you view co nt act _f o rm.php and submit the form, you should see something like
this:

ACME, INC.
links go here

Thank you!

We'll get back to you by June 07, 2006.
Here is a copy of your request:

CONTACT #1149489921:
Message Date: June 05, 2006 01:45 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can/'t get the darn thing to work!
How you heard about us: other
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en)
AppleWebKit /418 (KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Note This time, instead o f require() we used include() . What's the difference? If fo r some reason the URL
doesn't exist, require() will give you a PHP error, whereas include() will just skip that URL.

Reading and Writing Files
Now that we've got the web interface looking better, let's work on the email. In this case, there's no clear-cut beginning
and ending template, rather, the data is peppered throughout the email. So if we want to use a template with this, we'll
have to find a way to insert the data into the template, instead o f the o ther way around.

First, let's see how we want the template to look. Switch to HT ML, and create a t ext -o nly f ile that looks something
like below.

Make sure you're in HTML, and type the fo llowing into a new file:

You have just received a customer email. Please respond to this email by #DEADLINE#.
Details are below:

<table>
<tr><td width="100" align="right">Message Type: </td><td>#WHOAMI#</td></tr>
<tr><td width="100" align="right">Message Date: </td><td>#DATE#</td></tr>
<tr><td width="100" align="right">Name: </td><td>#NAME#</td></tr>
<tr><td width="100" align="right">Email: </td><td>#EMAIL#</td></tr>
<tr><td width="100" align="right">IP Address: </td><td>#IP#</td></tr>
<tr><td width="100" align="right">Platform: </td><td>#AGENT#</td></tr>
</table>

Subject: #SUBJECT#

#MESSAGE#

This customer found us through #FOUND#.

#CONTACT#

Save this text file, and call it email_t emplat e .t xt . Now let's go back to co nt act .php.

Switch to contact.php and make the fo llowing changes, in green:

<?php

function mail_message($data_array, $template_file, $deadline_str) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);
 $email_message = str_replace("#DATE#", date("F d, Y h:i a"), $email_message);
 $email_message = str_replace("#NAME#", $data_array['name'], $email_message);
 $email_message = str_replace("#EMAIL#", $data_array['email'], $email_message);
 $email_message = str_replace("#IP#", $_SERVER['HTTP_X_FORWARDED_FOR'], $email_messag
e);
 $email_message = str_replace("#AGENT#", $_SERVER['HTTP_USER_AGENT'], $email_message)
;
 $email_message = str_replace("#SUBJECT#", $data_array['subject'], $email_message);
 $email_message = str_replace("#MESSAGE#", $data_array['message'], $email_message);
 $email_message = str_replace("#FOUND#", $data_array['found'], $email_message);

 #include whether or not to contact the customer with offers in the future
 $contact = "";
 if (isset($data_array['update1'])) {
 $contact = $contact." Please email updates about your products.
";
 }
 if (isset($data_array['update2'])) {
 $contact = $contact." Please email updates about products from third-party partne
rs.
";
 }
 $email_message = str_replace("#CONTACT#", $contact, $email_message);

 #construct the email headers
 $to = "support@example.com"; //for testing purposes, this should be YOUR email addr
ess.
 $from = $data_array['email'];
 $email_subject = "CONTACT #".time().": ".$data_array['subject'];

 $headers = "From: " . $from . "\r\n";
 $headers .= 'MIME-Version: 1.0' . "\n"; //these headers will allow our HTML tags to
 be displayed in the email
 $headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n";

 #now mail
 mail($to, $email_subject, $email_message, $headers);

}

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#we want a deadline 2 days after the message date.
 $deadline_array = getdate();
 $deadline_day = $deadline_array['mday'] + 2;

 $deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadli
ne_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
 $deadline_str = date("F d, Y", $deadline_stamp);

//DOCUMENT_ROOT is the file path leading up to the template name.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str);

include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php, then view and submit the form in co nt act _f o rm.php. If you used your own email address as the
$t o variable, you should have received an email in your INBOX like before. However, this time it should look a little
better.

You should have received an email like this:

Date: Thu, 8 Jun 2006 17:03:11 -0500
From: trish@myemail.com
To: support@acmeinc.com
Subject: CONTACT #1149804191: Please help!

You have just received a customer email. Please respond to this email by June 10, 2006.
Details are below:

 Message Type: support
 Message Date: June 08, 2006 05:03 pm
 Name: Trish
 Email: trish@myemail.com
 IP Address: 12.149.132.162
 Platform: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/418 (KHTML, like Gecko) Safari/417.9.2

Subject: Please help!

I can't get the darn thing to work!

This customer found us through wordofmouth.
Please email updates about your products.

Take another look at the code:

function mail_message($data_array, $template_file, $deadline_str) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);

.

.

.
}
.
.
.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str);

Here, we created a function called mail_message() , which takes three parameters -- $dat a_array, $t emplat e_f ile ,
and $deadline_st r. $dat a_array contains all the form data, because we pass the $_GET superglobal array into it.
$t emplat e_f ile is the full path to the template file we want to use - in our case, we passed in the path to
"email_t emplat e .t xt " that we created earlier. And $deadline_st r is the formatted string o f the date by which we
want the message answered.

We used the built- in PHP function f ile_get _co nt ent s() to import our email template file into a string,
$email_message . Then, one by one, we replace each o f our template variables with the corresponding form data,
using the built- in function st r_replace() . Go to php.net to read more about file_get_contents() or str_replace().

By making the support email easier to read -- and obtaining as much user information as possible -- you've improved
efficiency in Acme's customer support process. Go ahead, demand a raise. You deserve it.

Allowing Users to Download Files
To make things a little more interesting, it turns out that Acme wants every customer who sends in a support email to

http://us3.php.net/manual/en/function.file-get-contents.php
http://us3.php.net/manual/en/function.str-replace.php

be allowed to download its informational brochure, a PDF document.

Now, technically you could just include a link to the PDF document itself, if the document is in a web-accessible
directory. However, most o f the time corporations don't want their downloadable files to be in a public area for anyone
and everyone to download. This is especially true when electronic documents are for purchase, like marketing reports
or copyrighted materials.

In your case, we've placed the brochure, called acme_bro chure.pdf , in a hidden directory called .php_f iles/ within
your account. You can't view this file through the web, but you need to allow web users o f your choosing to download
it. What do you do?

In PHP, create a new file, called download.php:

<?php

$filepath = $_SERVER['DOCUMENT_ROOT']."/.php_files/acme_brochure.pdf";
if (file_exists($filepath)) {
 header("Content-Type: application/force-download");
 header("Content-Disposition:filename=\"brochure.pdf\"");
 $fd = fopen($filepath,'rb');
 fpassthru($fd);
 fclose($fd);
}

?>

Save do wnlo ad.php.

Now, switch back to contact.php and make the fo llowing changes, in green and blue:

<?php

function mail_message($data_array, $template_file, $deadline_str) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);
 $email_message = str_replace("#DATE#", date("F d, Y h:i a"), $email_message);
 $email_message = str_replace("#NAME#", $data_array['name'], $email_message);
 $email_message = str_replace("#EMAIL#", $data_array['email'], $email_message);
 $email_message = str_replace("#IP#", $_SERVER['HTTP_X_FORWARDED_FOR'], $email_messag
e);
 $email_message = str_replace("#AGENT#", $_SERVER['HTTP_USER_AGENT'], $email_message)
;
 $email_message = str_replace("#SUBJECT#", $data_array['subject'], $email_message);
 $email_message = str_replace("#MESSAGE#", $data_array['message'], $email_message);
 $email_message = str_replace("#FOUND#", $data_array['found'], $email_message);

 #include whether or not to contact the customer with offers in the future
 $contact = "";
 if (isset($data_array['update1'])) {
 $contact = $contact." Please email updates about your products.
";
 }
 if (isset($data_array['update2'])) {
 $contact = $contact." Please email updates about products from third-party partne
rs.
";
 }
 $email_message = str_replace("#CONTACT#", $contact, $email_message);

 #construct the email headers
 $to = "support@example.com"; //for testing purposes, this should be YOUR email addr
ess.
 $from = $data_array['email'];
 $email_subject = "CONTACT #".time().": ".$data_array['subject'];

 $headers = "From: " . $from . "\r\n";
 $headers .= 'MIME-Version: 1.0' . "\n"; //these headers will allow our HTML tags to
 be displayed in the email
 $headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n";

 #now mail
 mail($to, $email_subject, $email_message, $headers);

}

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#we want a deadline 2 days after the message date.
 $deadline_array = getdate();
 $deadline_day = $deadline_array['mday'] + 2;

 $deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadli
ne_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
 $deadline_str = date("F d, Y", $deadline_stamp);

//DOCUMENT_ROOT is the file path leading up to the template name.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str);

include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Download our PDF brochure!
<?

include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php, then view co nt act _f o rm.php and submit the form:

It should look something like this:

ACME, INC.
links go here

Thank you!

We'll get back to you by June 10, 2006.
Here is a copy of your request:

CONTACT #1149809625:
Message Date: June 08, 2006 06:33 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please Help!
Message: I can/'t get the darn thing to work!
How you heard about us: wordofmouth
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en)
AppleWebKit /418 (KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Download our PDF brochure!

Now click the link. Did the PDF file download to your computer? You may have seen something like this:

How were we able to do that? Take another look at the code in download.php:

OBSERVE:

$filepath = $_SERVER['DOCUMENT_ROOT']."/.php_files/acme_brochure.pdf";
if (file_exists($filepath)) {
 header("Content-Type: application/force-download");
 header("Content-Disposition:filename=\"brochure.pdf\"");
 $fd = fopen($filepath,'rb');
 fpassthru($fd);
 fclose($fd);
}

First, the built- in function f ile_exist s() does exactly what it says - it returns TRUE or FALSE based upon the existence
of the parameter $f ilepat h, which we set to the path o f Acme's hidden PDF brochure in our account. Since it does
exist, we use header() to output two HT T P headers. The header "Co nt ent -T ype" is extremely important, as it tells
the web browser that we are preparing to download data that is NOT in an HTML or text fo rmat, but in fact an
application. Find out what happens if you leave this header out. The header "Co nt ent -Dispo sit io n" is optional, but
we used it to create a generic name for the downloaded file.

Note
In the case o f PDF files, you can also use the header "Co nt ent -T ype: applicat io n/pdf " . What's the
difference? Some browsers allow PDF files to be opened within the browser itself, without having to
download them to the computer's hard drive. Try it out and see what happens in your own browser.

Then, the built- in function f o pen() creates a f ile st ream po inting to our acme_brochure.pdf file, and binds it to the
handle $f d. The parameter ' rb' specifies that the file should be opened in read-o nly, binary mo de -- binary, again,
because it's not a text file. f passt hru() then sends all the file data through to the o ut put buf f er -- and because we
specified through header() what the browser should do with that output, this launches your computer's download
manager. f clo se() simply closes the f ile st ream $f d, to clean things up.

Don't fo rget to Save your work and hand in your assignment s from your syllabus. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Cookies and Sessions

Learning about co o kies and sessio ns is essential fo r programming PHP in the 21st century. You see, web users just aren't as
patient as they used to be - they want websites that are incredibly easy for them to use and reuse, without having to repeat
themselves over and over again. And their attention spans are shorter as well, meaning corporate websites in particular must
compete by targeting the user as specifically as possible.

"Know Thy User", as they say. But how?

Using Cookies

Mmmm, cookies. Well, no , not those kinds o f cookies. Although we would certainly revisit a web
site fo r free cookies any day, unfortunately, downloading choco late-chip goodness just hasn't
been invented yet. Sigh...

Okay, so what are bro wser co o kies? Let's find out. Fire up CodeRunner in PHP , and open your files
co nt act _f o rm.php and co nt act .php.

Add the fo llowing to contact_form.php, in green and blue:

<?php

require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to notify the
customer
}

?>

<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
echo "<div style='color:red'>Please help us with the following:</div>";
}
?>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<?
if ($_COOKIE['name']) {
 echo $_COOKIE['name'];
}
else {
?>
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
<input type="checkbox" name="remember" /> Remember me on this computer
<?
}
if ($error_code && !($_GET['name'] || $_COOKIE['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<?
if ($_COOKIE['email']) {
 echo $_COOKIE['email'];
}
else {
?>
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
<?
}
if ($error_code && !($_GET['email'] || $_COOKIE['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>

<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subject']; ?
>" />
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me updates about
 your products.

<input type="checkbox" name="update2" />Please email me updates about products from thi
rd-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>

<?
 require($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");
?>

Be sure and Save co nt act _f o rm.php, then Preview.

You should see something like this:

ACME, INC.
links go here

Contact ACME Corporation

Name: Remember me on this
computer

Email:
Type of

Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

Now, switch back to contact.php and make the fo llowing changes, in green:

<?php

function mail_message($data_array, $template_file, $deadline_str, $myname, $myemail) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);
 $email_message = str_replace("#DATE#", date("F d, Y h:i a"), $email_message);
 $email_message = str_replace("#NAME#", $myname, $email_message);
 $email_message = str_replace("#EMAIL#", $myemail, $email_message);
 $email_message = str_replace("#IP#", $_SERVER['HTTP_X_FORWARDED_FOR'], $email_messag
e);
 $email_message = str_replace("#AGENT#", $_SERVER['HTTP_USER_AGENT'], $email_message)
;
 $email_message = str_replace("#SUBJECT#", $data_array['subject'], $email_message);
 $email_message = str_replace("#MESSAGE#", $data_array['message'], $email_message);
 $email_message = str_replace("#FOUND#", $data_array['found'], $email_message);

 #include whether or not to contact the customer with offers in the future
 $contact = "";
 if (isset($data_array['update1'])) {
 $contact = $contact." Please email updates about your products.
";
 }
 if (isset($data_array['update2'])) {
 $contact = $contact." Please email updates about products from third-party partne
rs.
";
 }
 $email_message = str_replace("#CONTACT#", $contact, $email_message);

 #construct the email headers
 $to = " ReplaceWithYourOwnEmailAddress@oreillyschool.com"; //for testing purposes,
this should be YOUR email address.
 $from = $data_array['email'];
 $email_subject = "CONTACT #".time().": ".$data_array['subject'];

$headers = "From: " . $from . "\r\n";
$headers .= 'MIME-Version: 1.0' . "\n";
$headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n"; #now mail
 mail($to, $email_subject, $email_message, $headers);

}

$customer_name = $_COOKIE['name'];
if (!($customer_name)) {
 $customer_name = $_GET['name'];
}
$customer_email = $_COOKIE['email'];
if (!($customer_email)) {
 $customer_email = $_GET['email'];
}

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here
if (!($customer_name && $customer_email && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"

;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

#we want a deadline 2 days after the message date.
 $deadline_array = getdate();
 $deadline_day = $deadline_array['mday'] + 2;

 $deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadli
ne_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
 $deadline_str = date("F d, Y", $deadline_stamp);

if (isset($_GET['remember'])) {
 #the customer wants us to remember him/her for next time
 ### set errcode cookie
 /*
 cookie expires in one year
 365 days in a year
 24 hours in a day
 60 minutes in an hour
 60 seconds in a minute
 */
 $mytime = time() + (365 * 24 * 60 * 60);
 setcookie("name",$customer_name,$mytime);
 setcookie("email",$customer_email,$mytime);
}

//DOCUMENT_ROOT is the file path leading up to the template name.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str, $cu
stomer_name, $customer_email);

include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

extract($_GET, EXTR_PREFIX_SAME, "get");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$customer_name."
";
echo "Email: ".$customer_email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Download our PDF brochure!
<?

include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php, switch to co nt act _f o rm.php, and Preview. This time, however, when you submit the form, be
sure to check the box that says "Remember me on this computer."

ACME, INC.
links go here

Thank you!

We'll get back to you by June 11, 2006.
Here is a copy of your request:

CONTACT #1149880113:
Message Date: June 09, 2006 02:08 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can/'t get the darn thing to work!
How you heard about us: wordofmouth
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7
The IP address of the computer you're working on is 63.171.219.74

Download our PDF brochure!

Looks pretty much the same as before. What's changed? To find out, now go back to co nt act _f o rm.php and
RELOAD the page:

ACME, INC.
links go here

Contact ACME Corporation

Name: Trish
Email: t rish@myemail.com

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

And there we are! The form is indeed remembering us, and even if you exit your browser entirely and come back, your
name and email would still be there. But how were we able to do it? Using co o kies.

Take another look at the code in contact.php:

if (isset($_GET['remember'])) {
 #the customer wants us to remember him/her for next time
 ### set errcode cookie
 /*
 cookie expires in one year
 365 days in a year
 24 hours in a day
 60 minutes in an hour
 60 seconds in a minute
 */
 $mytime = time() + (365 * 24 * 60 * 60);
 setcookie("name",$customer_name,$mytime);
 setcookie("email",$customer_email,$mytime);
}

Here, we're using the built- in PHP function set co o kie() with three parameters: "name" and "email" are the names
we're giving the respective cookies, and $cust o mer_name and $cust o mer_email are the values that we got from
the $_GET superglobal. $myt ime is the t imest amp at which we want the cookies to expire - since it's measured in
seconds, we simply took t ime() and added enough seconds to make 1 year.

Bro wser co o kies are simply variables that are stored within the user's browser on his/her computer. If you look in
your own browser preferences, you can actually view all the cookies that are set:

Now take another look at the code in contact_form.php

if ($_COOKIE['name']) {
 echo $_COOKIE['name'];
}

Just like $_GET and $_POST store values set by the user, and $_SERVER and $_ENV store values set by the
environment, $_COOKIE is a superglo bal array -- but this time the values being stored are set by you, the
programmer.

Before cookies, once a user left a website, that site had no way recognizing that user when she came back. Basically,
the user had to start from scratch every time. No shopping carts, personalized home pages, or pre-filled forms. So as
you can see, introducing cookies opened up a world o f power and convenience that have made them invaluable to
web programming.

Knowing the User Through Sessions
Of course, there are a couple o f downfalls to using cookies. One is that different browsers have different restrictions on
the number and size o f cookies - some allow unlimited numbers but small sizes, o thers allow large cookies but only
up to 10.

But the main problem with cookies is privacy. Anyone who uses the same browser that you used - unless you deleted
your cookies before you left - can now view your name and email in the browser cookie list. Think if that had been even
more sensitive information, like usernames or financial information. Yikes! Let's try fixing this.

Add the fo llowing to contact_form.php, in green:

<?php

#start the session before any output
session_start();

require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to notify the
customer
}

?>

<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
echo "<div style='color:red'>Please help us with the following:</div>";
}
?>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<?
if ($_SESSION['name']) {
 echo $_SESSION['name'];
}
else {
?>
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
<input type="checkbox" name="remember" /> Remember me on this computer
<?
}
if ($error_code && !($_GET['name'] || $_SESSION['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<?
if ($_SESSION['email']) {
 echo $_SESSION['email'];
}
else {
?>
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
<?
}
if ($error_code && !($_GET['email'] || $_SESSION['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">

Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subject']; ?
>" />
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me updates about
 your products.

<input type="checkbox" name="update2" />Please email me updates about products from thi
rd-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>

<?
 require($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");
?>

Be sure to Save co nt act _f o rm.php.

Now switch to contact.php and make the fo llowing changes, in green:

<?php

function mail_message($data_array, $template_file, $deadline_str, $myname, $myemail) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);
 $email_message = str_replace("#DATE#", date("F d, Y h:i a"), $email_message);
 $email_message = str_replace("#NAME#", $myname, $email_message);
 $email_message = str_replace("#EMAIL#", $myemail, $email_message);
 $email_message = str_replace("#IP#", $_SERVER['HTTP_X_FORWARDED_FOR'], $email_messag
e);
 $email_message = str_replace("#AGENT#", $_SERVER['HTTP_USER_AGENT'], $email_message)
;
 $email_message = str_replace("#SUBJECT#", $data_array['subject'], $email_message);
 $email_message = str_replace("#MESSAGE#", $data_array['message'], $email_message);
 $email_message = str_replace("#FOUND#", $data_array['found'], $email_message);

 #include whether or not to contact the customer with offers in the future
 $contact = "";
 if (isset($data_array['update1'])) {
 $contact = $contact." Please email updates about your products.
";
 }
 if (isset($data_array['update2'])) {
 $contact = $contact." Please email updates about products from third-party partne
rs.
";
 }
 $email_message = str_replace("#CONTACT#", $contact, $email_message);

 #construct the email headers
 $to = " ReplaceWithYourOwnEmailAddress@oreillyschool.com"; //for testing purposes,
this should be YOUR email address.
 $from = $data_array['email'];
 $email_subject = "CONTACT #".time().": ".$data_array['subject'];

$headers = "From: " . $from . "\r\n";
$headers .= 'MIME-Version: 1.0' . "\n";
$headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n"; #now mail
 mail($to, $email_subject, $email_message, $headers);

}

#start the session
session_start();

$customer_name = $_SESSION['name'];
if (!($customer_name)) {
 $customer_name = $_GET['name'];
}

$customer_email = $_SESSION['email'];
if (!($customer_email)) {
 $customer_email = $_GET['email'];
}

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here
if (!($customer_name && $customer_email && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

#we want a deadline 2 days after the message date.
 $deadline_array = getdate();
 $deadline_day = $deadline_array['mday'] + 2;

 $deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadli
ne_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
 $deadline_str = date("F d, Y", $deadline_stamp);

if (isset($_GET['remember'])) {
 #the customer wants us to remember him/her for next time
 $_SESSION['name'] = $customer_name;
 $_SESSION['email'] = $customer_email;
}

//DOCUMENT_ROOT is the file path leading up to the template name.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str, $cu
stomer_name, $customer_email);

include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

extract($_GET, EXTR_PREFIX_SAME, "get");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$customer_name."
";
echo "Email: ".$customer_email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Download our PDF brochure!
<?

include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php, then switch to contact_form.php and Preview. You'll no tice that you have to re-enter your name

and email address again, but not fo r long. Be sure to click the "Remember me on this computer" checkbox when you
submit the form. What did you get?

It should look something like this:

ACME, INC.
links go here

Thank you!

We'll get back to you by June 11, 2006.
Here is a copy of your request:

CONTACT #1149880113:
Message Date: June 09, 2006 02:08 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can\'t get the darn thing to work!
How you heard about us: wordofmouth
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7
The IP address of the computer you're working on is 63.171.219.74

Download our PDF brochure!

Again, it looks exactly the same as always. But, if you go back to co nt act _f o rm.php and RELOAD, you'll get:

Something like this:

ACME, INC.
links go here

Contact ACME Corporation

Name: Trish
Email: t rish@myemail.com

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

Yes, it's exactly the same output as when you used co o kies -- your name and email address are now magically
saved within the browser.

So what's the difference? If you check out your browser's preferences and view the cookies stored there, you won't
see your name and email address in there anymore. Instead, you'll see something like this:

Take another look at the code in contact.php:

#start the session
session_start();

$customer_name = $_SESSION['name'];
if (!($customer_name)) {
 $customer_name = $_GET['name'];
}

$customer_email = $_SESSION['email'];
if (!($customer_email)) {
 $customer_email = $_GET['email'];
}
.
.
.
if (isset($_GET['remember'])) {
 #the customer wants us to remember him/her for next time
 $_SESSION['name'] = $customer_name;
 $_SESSION['email'] = $customer_email;
}

Any time you want to use sessio ns in your PHP script, you must start the session first - using the PHP function
sessio n_st art () . This way, the browser knows to pull up the $_SESSION superglo bal using the SESSION ID that
was set in your browser cookies. Once it's been pulled up, you can not only access the values using $_SESSION,
you can set the values too.

Note It's important to stress that sessio n_st art () must be called bef o re any output - much like header() .

Deleting Sessions

In case someone else visits our site using the same browser, we should give the user a way to end the
session without waiting for it to expire.

Add the fo llowing to contact_form.php, in green and blue:

<?php

if (isset($_GET['delete_session'])) {
 session_start(); //must always use this command to access the session and its
variables
 session_destroy(); //force the session to end

 //Add in a page reload so that the session_destroy() will take effect
 if($_SESSION && $_SESSION['name']){
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php";
 header("Location: ".$url);
 }
}
else {
 #start the session before any output
 session_start();
}

 require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to noti
fy the customer
}

?>

<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
 echo "<div style='color:red'>Please help us with the following:</div>";
}
?>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<?
if ($_SESSION['name']) {
 echo $_SESSION['name'];
?>
 Not <? echo $_SESSION['name']; ?>?<
/a>
<?
}
else {
?>
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
<input type="checkbox" name="remember" /> Remember me on this computer
<?
}
if ($error_code && !($_GET['name'] || $_SESSION['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<?

if ($_SESSION['email']) {
 echo $_SESSION['email'];
}
else {
?>
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
<?
}
if ($error_code && !($_GET['email'] || $_SESSION['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subje
ct']; ?>" />
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">

<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article<b
r/>
<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me update
s about your products.

<input type="checkbox" name="update2" />Please email me updates about products f
rom third-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>

<?
 require($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");
?>

Be sure to Save co nt act _f o rm.php, then Preview.

It should look something like this:

ACME, INC.
links go here

Contact ACME Corporation

Name: Trish Not Trish?
Email: t rish@myemail.com

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

Try clicking the link to see what happens:

ACME, INC.
links go here

Contact ACME Corporation

Name: Remember me on this
computer

Email:
Type of

Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.

Ending the session was pretty straightforward, because session_destroy() will destroy all the session data
for a user. If we wanted to delete just one session variable, we would use
unset ($_SESSION['so me_var']) .

Congratulations! You've now learned the PHP skills needed to make a vast range o f robust, commercial applications for the
web. Are you ready for those skills to be tested? Make sure you have Saved your work and handed in the assignment s fo r this
lesson. Then, it's time for your f inal pro ject .

Good luck! We know you can do it.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Final Project

Final Project
The overall goal o f this pro ject is to create a shopping cart, with products, prices, registration, and a checkout area. You
can make this shopping cart any way you wish.

For the sake o f evaluation, try to include as many elements discussed in this course as you can. For instance, you
should use arrays for products, functions for various program tasks, template files, fo rm validation, and
cookies/sessions for cart persistence. You are encouraged to observe good programming practices, with comments,
code reusability and readability.

You can hand in up to five files, but you don't have to create that many if you don't want to .

Be creative and have fun! You want to present yourself in a pro fessional yet friendly way, so feel free to express
yourself!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

