

College

Dept. of C

1. General method

2. Recurrence equ

3. Algorithm: Bin

4. Algorithm: Fin

5. Algorithm: Me

6. Algorithm: Qui

7. Algorithm: Stra

8. Advantages and

9. Decrease and C

10. Algorithm: Top

Course

Module

Vivekananda
e of Engineering & Technolog

Lecture Notes

on

15CS43

Design and Analysis

Algorithms
(CBCS Scheme)

Prepared by

Mr. Harivinod N
Assistant Professor,

Dept. of Computer Science and Engineering,

VCET Puttur

Feb 2017

Contents

od

quation

inary search

inding the maximum and minimum

erge sort

uick sort

trassen’s matrix multiplication

and Disadvantages

 Conquer Approach

opological Sort

ourse website: www.techjourney.in

odule-2 : Divide and Conquer

gy

lysis of

Lecture Notes ||

Prepared by Harivinod N

1. General method:

Divide and Conquer is one of

according to the following gen

• Given a function to co

splitting the inputs into

• These sub problems m

solutions into a solutio

• If the sub problems are

possibly be reapplied.

• Often the sub problem

type as the original p

conquer principle is na

A typical case with k=2 is diag

Control Abstraction for divide

In the above specification,

• Initially DAndC(P) is i

• Small (P) is a Boolean

enough that the answe

is invoked. Otherwise,

problems P1, P2 …Pk a

• Combine is a function

sub problems.

Sub Problem

Solution to sub p

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

 of the best-known general algorithm design t

eneral plan:

 compute on ‘n’ inputs the divide-and-conque

nto ‘k’ distinct subsets, 1<k<=n, yielding ‘k’ su

 must be solved, and then a method must be fou

tion of the whole.

are still relatively large, then the divide-and-co

ems resulting from a divide-and-conquer desig

l problem. For those cases the reapplication

 naturally expressed by a recursive algorithm.

iagrammatically shown below.

de and conquer:

is invoked, where ‘P’ is the problem to be solve

an-valued function that determines whether the

er can be computed without splitting. If this s

se, the problem P is divided into smaller sub pr

are solved by recursive application of DAndC

on that determines the solution to P using the s

Problem of size n

lem of size n/2 Sub Problem o

ub problem 1 Solution to su

Solution to the original problem

nquer

Page| 2.2

n technique. It works

uer strategy suggests

 sub problems.

found to combine sub

conquer strategy can

sign are of the same

n of the divide-and-

lved.

the input size is small

s so, the function ‘S’

 problems. These sub

C.

e solutions to the ‘k’

m of size n/2

to sub problem 2

Lecture Notes ||

Prepared by Harivinod N

2. Recurrence equation f

If the size of problem ‘p’ is

respectively, then the comput

relation

Where,

• T(n) is the time for div

• g(n) is the time to com

• The function f(n) is the

to sub problems.

For divide and conquer based

original problem, it is very nat

More generally, an instance o

them needing to be solved. (H

size n is a power of b (i.e. n =

for the running time T(n):

where f(n) is a function that ac

ones and on combining their s

Substitution Method - One

substitution method. This me

function T in the right hand sid

Master Theorem - The efficie

simplified by the master theore

It states that, in recurrence equ

Analogous results hold for the

For example, the recurrence fo

conquer sum-computation algo

Thus, for this example, a = 2, b

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

n for Divide and Conquer:

 is n and the sizes of the ‘k’ sub problems

uting time of divide and conquer is described

ivide and conquer method on any input of size

mpute answer directly for small inputs.

the time for dividing the problem ‘p’ and comb

ed algorithms that produce sub problems of th

natural to first describe them by using recursion

 of size n can be divided into b instances of

 (Here, a and b are constants; a>=1 and b >

= b
k

), to simplify our analysis, we get the fo

 accounts for the time spent on dividing the pro

r solutions.

e of the methods for solving the recurrence re

ethod repeatedly makes substitution for each

 side until all such occurrences disappear.

iciency analysis of many divide-and-conquer alg

orem.

quation T(n) = aT(n/b) + f (n), If f (n)∈ Θ (n
d

he Ο and Ω notations, too.

 for the number of additions A(n) made by the

lgorithm (see above) on inputs of size n = 2
k
 is

2, b = 2, and d = 0; hence, since a >b
d
,

nquer

Page| 2.3

ms are n1, n2 ….nk,

ed by the recurrence

ze n and

mbining the solutions

 the same type as the

on.

f size n/b, with a of

> 1.). Assuming that

 following recurrence

..... (1)

roblem into smaller

 relation is called the

ch occurrence of the

 algorithms is greatly

d
) where d ≥ 0 then

 divide-and-

Lecture Notes ||

Prepared by Harivinod N

Problems on Substitutio

recurrence relation

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

ion method & Master theorem to solv

nquer

Page| 2.4

olve the

Lecture Notes ||

Prepared by Harivinod N

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

nquer

Page| 2.5

Lecture Notes ||

Prepared by Harivinod N

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

nquer

Page| 2.6

Lecture Notes ||

Prepared by Harivinod N

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

nquer

Page| 2.7

Lecture Notes ||

Prepared by Harivinod N

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

nquer

Page| 2.8

Lecture Notes ||

Prepared by Harivinod N

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

nquer

Page| 2.9

Lecture Notes ||

Prepared by Harivinod N

3. Binary Search

Problem definition: Let ai, 1

order. The problem is to find

present we have to determine

list, then j is set to zero.

Solution: Let P = (n, ai…al , x

number of elements in the lis

searched for in the given list. B

Step 1: Pick an index q in th

Step 2: if x = aq i.e key elem

Step 3: if x < aq in this case

Therefore problem re

Step 4: if x > aq , x has to be

reduces to (l-i, aq+1…

For the above solution proced

recursive algorithm.

Recursive binary search algo

Iterative binary search:

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

, 1 ≤ i ≤ n be a list of elements that are sorted

nd whether a given element x is present in the

ne a value j (element’s position) such that aj=x

, x) denote an arbitrary instance of search prob

list, ai…al is the list of elements and x is the

Binary search on the list is done as follows:

 the middle range [i, l] i.e. q=��� � 1�/2	 and c

ement is equal to mid element, the problem is im

se x has to be searched for only in the sub-list a

 reduces to (q-i, ai…aq-1, x).

 be searched for only in the sub-list aq+1, ...,., al . T

…al, x).

cedure, the Algorithm can be implemented as

lgorithm

nquer

Page| 2.10

ed in non-decreasing

the list or not. If x is

=x. If x is not in the

oblem where n is the

he key element to be

d compare x with aq.

 immediately solved.

t ai, ai+1, ……, aq-1.

Therefore problem

 as recursive or non-

Lecture Notes ||

Prepared by Harivinod N

Analysis

 In binary search the basic ope

the best, worst, and average c

the recursive and iterative ver

relaxed slightly. For Recursive

as one comparison. For Iterati

one comparison. Let us find o

an array of n elements.

Best case – Θ(1) In the best

comparisons (actually just 1) a

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

operation is key comparison. Binary Search ca

e case number of comparisons. The numbers o

ersions of Binary Search are the same, if comp

ive Binary Search, count each pass through the

rative Binary Search, count each pass through

 out how many such key comparison does the

est case, the key is the middle in the array. A c

) are required.

nquer

Page| 2.11

can be analyzed with

s of comparisons for

mparison counting is

the if-then-else block

h the while block as

e algorithm make on

 constant number of

Lecture Notes ||

Prepared by Harivinod N

Worst case - Θ(log2 n) In th

each recursion or iteration of

halving can be done ceiling (lo

Sometimes, in case of the suc

	�	log�	n	�. So worst case com

Average case - Θ (log2 n) To

comparisons required to find

To simplify the analysis, assu

that the probabilities of search

How to compute Average case

Space Complexity - The spac

search are different. Iterative

Recursive Binary Search req

maintain the recursion stack.

Advantages: Efficient on very

 Limitations:

• Interacts poorly with th

• Requires sorted list as

• Due to random access

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

 the worst case, the key does not exist in the ar

of Binary Search, the size of the admissible ran

(log2 n) times. Thus, �	log�	n	� comparisons ar

uccessful search, it may take maximum numb

mplexity of successful binary search is Θ (log2

o find the average case, take the sum of the pro

d each element and the probability of searchin

sume that no item which is not in array will be

ching for each element are uniform.

ase complexity?

ace requirements for the recursive and iterative

e Binary Search requires only a constant amou

requires space proportional to the number o

ery big list, Can be implemented iteratively/rec

 the memory hierarchy

as an input

ss of list element, needs arrays instead of linked

nquer

Page| 2.12

 array at all. Through

range is halved. This

 are required.

ber of comparisons.

2 n).

product of number of

ing for that element.

 be searched for, and

ive versions of binary

ount of space, while

r of comparisons to

ecursively.

ed list.

Lecture Notes ||

Prepared by Harivinod N

4. Finding the maximum

Problem statement: Given a

minimum items.

StraightMaxMin: A simple a

Explanation:

� StraightMaxMin requi

� By realizing the comp

done. Hence we can re

If(a[i]>Max)

� On the average a[i] is >

Algorithm based on Divide a

Let P = (n, a [i],……,a [j]) den

elements in the list (a[i],….,a[

of the list. If the list has more

For example, we might divide

P1=([n/2],a[1],……..a

P2= (n-[n/2], a[[n/2]+

After having divided ‘P’ into 2

invoking the same divide-and-

Algorithm:

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

um and minimum

 a list of n elements, the problem is to find

e and straight forward algorithm to achieve this

quires 2(n-1) comparisons in the best, average &

parison of a[i]>max is false, improvement in

 replace the contents of the for loop by,

 then Max = a[i]; Else if (a[i]< min)

is > max half the time. So, the avg. no. of comp

e and Conquer strategy

denote an arbitrary instance of the problem. H

,a[j]) and we are interested in finding the maxim

re than 2 elements, P has to be divided into sma

de ‘P’ into the 2 instances,

..a[n/2])

]+1],….., a[n])

o 2 smaller sub problems, we can solve them by

-conquer algorithm.

nquer

Page| 2.13

d the maximum and

is is given below.

e & worst cases.

in a algorithm can be

) min=a[i]

parison is 3n/2-1.

Here ‘n’ is the no. of

ximum and minimum

aller instances.

 by recursively

Lecture Notes ||

Prepared by Harivinod N

Example:

Analysis - Time Complexity

of recursive calls of MaxMin i

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

in is as follows

nquer

Page| 2.14

Lecture Notes ||

Prepared by Harivinod N

Compared with the straight for

Space Complexity

Compared to the straight forw

i, j, max, min, max1 and mi

recursion and we need to save

5. Merge Sort

Merge sort is a perfect exa

technique. It sorts a given arra

and A [��/2	 .. n-1], sorting

sorted arrays into a single sort

The merging of two sorted arr

� Two pointers (array in

being merged.

� The elements pointed

array being constructed

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

forward method (2n-2) this method saves 25%

rward method, the MaxMin method requires ex

min1. Given n elements there will be ����

ve seven values for each recursive call. (6 + 1 f

xample of a successful application of the d

rray A [O ... n - 1] by dividing it into two halv

ing each of them recursively, and then mergin

rted one.

rrays can be done as follows.

 indices) are initialized to point to the first elem

ed to are compared, and the smaller of them

ted

nquer

Page| 2.15

% in comparisons.

 extra stack space for

�����	 � 1 levels of

for return address).

 divide-and conquer

alves A [0 .. ��/2	-1]

ging the two smaller

lements of the arrays

m is added to a new

Lecture Notes ||

Prepared by Harivinod N

� After that, the index o

successor in the array

two given arrays is exh

copied to the end of the

Example:

The operation of the algorithm

list 8, 3, 2, 9, 7, 1, 5, 4 is illust

the figure

Analysis

Here the basic operation is key

order of the data, best case and

Worst case: During key com

other one contains just one e

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

 of the smaller element is incremented to poin

y it was copied from. This operation is repeat

exhausted, and then the remaining elements of

 the new array.

hm on the

ustrated in

ey comparison. As merge sort execution does n

nd average case runtime are the same as worst

omparison, neither of the two arrays becomes

e element leads to the worst case of merge s

nquer

Page| 2.16

oint to its immediate

ated until one of the

of the other array are

s not depend on the

st case runtime.

es empty before the

e sort. Assuming for

Lecture Notes ||

Prepared by Harivinod N

simplicity that total number o

number of key comparisons C

where, Cmerge(n) is the n

Let us analyze Cmerge(n), the n

At each step, exactly one com

two arrays still needing to be

arrays becomes empty before

may come from the alternating

Now,

Solving the recurrence equatio

Here a = 2, b = 2, f (n) = n, d

Cworst (n) = Θ (n
d
 log n) = Θ (n

Advantages:

• Number of comparison

• For large n, the numb

turns out to be about 0

• Mergesort will never d

• Another advantage o

sorting algorithm is sa

order in sorted output

 Limitations:

• The principal shortcom

the algorithm requires

is quite complicated an

Variations of merge sort

1. The algorithm can b

elements, then mergin

slight bookkeeping co

using a stack to handle

2. We can divide a list t

then merge them toge

residing on secondary

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

r of elements n is a power of 2, the recurren

C(n) is

 number of key comparison made during the m

 number of key comparisons performed during

mparison is made, after which the total number

e processed is reduced by 1. In the worst case,

re the other one contains just one element (e.g

ing arrays). Therefore, for the worst case, Cmerg

tion using master theorem:

d = 1. Therefore 2 = 2
1
, case 2 holds in the m

Θ (n
1
 log n) = Θ (n log n) Therefore Cworst(n) =

sons performed is nearly optimal.

ber of comparisons made by this algorithm i

t 0.25n less and hence is also in Θ(n log n).

r degrade to O (n
2
)

 of mergesort over quicksort and heapsort i

 said to be stable if two objects with equal keys

ut as they appear in the input array to be sorted.

oming of mergesort is the linear amount [O(n

es. Though merging can be done in-place, the

 and of theoretical interest only.

 be implemented bottom up by merging pa

ging the sorted pairs, and so on. (If n is not a

complications arise.) This avoids the time and

dle recursive calls.

t to be sorted in more than two parts, sort eac

gether. This scheme, which is particularly usef

ry memory devices, is called multiway mergeso

nquer

Page| 2.17

ence relation for the

 merging stage.

ng the merging stage.

ber of elements in the

se, neither of the two

.g., smaller elements

ge(n) = n – 1.

 master theorem

= Θ (n log n)

 in the average case

t is its stability. (A

ys appear in the same

d.)

(n)] of extra storage

e resulting algorithm

pairs of the array’s

t a power of 2, only

nd space overhead of

each recursively, and

seful for sorting files

esort.

Lecture Notes ||

Prepared by Harivinod N

6. Quick sort

Quicksort is the other import

approach. Unlike mergesort, w

the array, quicksort divides (o

A partition is an arrangement

some element A[s] are less tha

greater than or equal to it:

Obviously, after a partition is

and we can continue sortin

independently (e.g., by the sam

In quick sort, the entire work h

the solutions to the sub proble

Partitioning

We start by selecting a pivot—

the subarray. There are sev

sophisticated method suggeste

who invented quicksort.

Select the subarray’s first e

comparing the subarray’s elem

� The left-to-right scan

element. Since we wa

subarray, this scan skip

encountering the first e

� The right-to-left scan,

the subarray. Since we

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

ortant sorting algorithm that is based on the d

t, which divides its input elements according

(or partitions) them according to their value.

ent of the array’s elements so that all the elem

than or equal to A[s], and all the elements to th

 is achieved, A[s] will be in its final position i

ting the two subarrays to the left and to

ame method).

happens in the division stage, with no work re

lems.

—an element with respect to whose value we

everal different strategies for selecting a p

sted by C.A.R. Hoare, the prominent British

element: p = A[l]. Now scan the subarray

ements to the pivot.

an, denoted below by index pointer i, starts

ant elements smaller than the pivot to be in

kips over elements that are smaller than the pi

t element greater than or equal to the pivot.

n, denoted below by index pointer j, starts with

e want elements larger than the pivot to be in t

nquer

Page| 2.18

e divide-and-conquer

g to their position in

lements to the left of

 the right of A[s] are

n in the sorted array,

o the right of A[s]

 required to combine

e are going to divide

 pivot. We use the

sh computer scientist

ray from both ends,

rts with the second

in the left part of the

 pivot and stops upon

ith the last element of

n the right part of the

Lecture Notes ||

Prepared by Harivinod N

subarray, this scan sk

encountering the first e

After both scans stop, three s

indices have crossed.

1. If scanning indices i a

A[j] and resume the s

2. If the scanning indice

subarray after exchang

3. If the scanning indice

they are pointing to m

the split position s = i

We can combine this w

ALGORITHM HoarePartitio

//Partitions a subarray by Hoar

//Input: Subarray of array A[0.

//Output: Partition of A[l..r], w

Note that index i can go out of

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

skips over elements that are larger than the p

t element smaller than or equal to the pivot.

 situations may arise, depending on whether o

i and j have not crossed, i.e., i < j, we simply

e scans by incrementing I and decrementing j, re

ices have crossed over, i.e., i > j, we will ha

nging the pivot with A[j]:

ces stop while pointing to the same element, i

 must be equal to p. Thus, we have the subarra

 i = j :

with the case-2 by exchanging the pivot with

tion(A[l..r])

oare’s algorithm, using the first element as a piv

..n − 1], defined by its left and right indices l

, with the split position returned as this function

 of the subarray’s bounds in this pseudocode.

nquer

Page| 2.19

e pivot and stops on

r or not the scanning

ly exchange A[i] and

, respectively:

 have partitioned the

t, i.e., i = j, the value

rray partitioned, with

th A[j] whenever iӋj

pivot

l and r (l<r)

ion’s value

Lecture Notes ||

Prepared by Harivinod N

Example: Example of quicks

bold. (b) Tree of recursive call

split position s of a partition ob

Analysis

Best Case - Here the basic op

before a partition is achieved i

If all the splits happen in the

The number of key compariso

According to the Master Theo

Cbest(n) = n log2 n.

Worst Case – In the worst ca

subarrays will be empty, and

subarray being partitioned.

increasing arrays.

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

ksort operation. (a) Array’s transformations wi

alls to Quicksort with input values l and r of su

 obtained.

 operation is key comparison. Number of key

d is n + 1 if the scanning indices cross over and

 middle of corresponding subarrays, we will

sons in the best case satisfies the recurrence,

eorem, Cbest(n) ∈ Θ(n log2 n); solving it exact

 case, all the splits will be skewed to the extrem

nd the size of the other will be just 1 less th

. This unfortunate situation will happen,

nquer

Page| 2.20

with pivots shown in

 subarray bounds and

y comparisons made

nd n if they coincide.

ll have the best case.

ctly for n = 2
k
 yields

reme: one of the two

 than the size of the

, in particular, for

Lecture Notes ||

Prepared by Harivinod N

Indeed, if A[0..n − 1] is a stri

right scan will stop on A[1]

indicating the split at position

and exchanging the pivot A

increasing array A[1..n − 1] t

sizes will continue until the la

key comparisons made will be

Average Case - Let Cavg(n) be

a randomly ordered array of s

after n+1comparisons are mad

subarrays will have s and n −

can happen in each position s

relation:

Its solution, which is much tric

Thus, on the average, quicks

Moreover, its innermost loop

randomly ordered arrays of n

algorithm by its inventor.

Variations

Because of quicksort’s import

the basic algorithm. Among se

� Better pivot selection

element or the medi

rightmost, and the mid

� Switching to insertion

most computer system

algorithm with insertio

� Modifications of the

segments smaller than

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

trictly increasing array and we use A[0] as the

] while the right-to-left scan will go all the w

ion 0: So, after making n + 1 comparisons to g

 A[0] with itself, the algorithm will be left

] to sort. This sorting of strictly increasing arr

 last one A[n−2 .. n−1] has been processed. T

 be equal to

 be the average number of key comparisons ma

f size n. A partition can happen in any positi

ade to achieve the partition. After the partition

− 1− s elements, respectively. Assuming tha

 s with the same probability 1/n, we get the fo

trickier than the worst- and best-case analyses,

ksort makes only 39% more comparisons tha

op is so efficient that it usually runs faster

f nontrivial sizes. This certainly justifies the

ortance, there have been persistent efforts over

 several improvements discovered by researche

on methods such as randomized quicksort th

edian-of-three method that uses the median

iddle element of the array

ion sort on very small subarrays (between 5 an

tems) or not sorting small subarrays at all

rtion sort applied to the entire nearly sorted arra

he partitioning algorithm such as the three-

an, equal to, and larger than the pivot

nquer

Page| 2.21

the pivot, the left-to-

e way to reach A[0],

o get to this partition

left with the strictly

arrays of diminishing

 The total number of

made by quicksort on

ition s (0 ӊ s ӊ n−1)

ion, the left and right

hat the partition split

 following recurrence

s, turns out to be

han in the best case.

r than mergesort on

e name given to the

er the years to refine

hers are:

 that uses a random

ian of the leftmost,

 and 15 elements for

ll and finishing the

rray

-way partition into

Lecture Notes ||

Prepared by Harivinod N

Limitations

� It is not stable.

� It requires a stack to st

� While Performance on

implementation details

data type.

7. Stassen’s Matrix multip

Direct Method: Suppose we

C=AB, will be an n by n m

multiplications involved in pro

Divide and Conquer method

Multiplication of 2 × 2 ma

the number of multiplications.

principal insight of the algorith

× 2 matrices A and B with j

the brute-force algorithm. This

where

Thus, to multiply two 2×2 m

18 additions/subtractions, wh

and four additions.

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

 store parameters of subarrays that are yet to be

on randomly ordered arrays is known to be se

ils of the algorithm but also to both compute

ultiplication

e want to multiply two n x n matrices, A and

 matrix and will therefore have n
2
 elements

producing the product in this way is Θ(n
3
)

od

matrices: By using divide-and-conquer appro

ns. Such an algorithm was published by V. Str

rithm lies in the discovery that we can find the

just seven multiplications as opposed to the

his is accomplished by using the following form

 matrices, Strassen’s algorithm makes seven m

hereas the brute-force algorithm requires eig

nquer

Page| 2.22

be sorted.

 sensitive not only to

uter architecture and

nd B. Their product,

nts. The number of

roach we can reduce

trassen in 1969. The

e product C of two 2

the eight required by

rmulas:

n multiplications and

eight multiplications

Lecture Notes ||

Prepared by Harivinod N

Multiplication of n × n mat

of 2. (If n is not a power of 2,

can divide A, B, and their prod

It is not difficult to verify tha

product. For example, C00 ca

M5 + M7 where M1, M4, M5

replaced by the corresponding

computed recursively by th

multiplication.

Analysis

Here the basic operation is mu

Strassen’s algorithm in multip

following recurrence relation f

This implies M(n) = Θ(n
2.807

)

8. Advantages and Disadv

Advantages

� Parallelism: Divide an

Once the division pha

can therefore be solve

concurrency to keep t

processor machines.

� Cache Performance:

performance. Once a

reuses the cached data

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

atrices – Let A and B be two n × n matrices

 2, matrices can be padded with rows and colu

roduct C into four n/2 × n/2 submatrices each a

hat one can treat these submatrices as number

can be computed either as A00 * B00 + A01 * B

5, and M7 are found by Strassen’s formulas,

ing submatrices. If the seven products of n/2

the same method, we have Strassen’s algo

ultiplication. If M(n) is the number of multipl

tiplying two n × n matrices (where n is a power

n for it:

 which is smaller than n
3
 required by the brute

isadvantages of Divide & Conquer

 and conquer algorithms tend to have a lot of in

hase is complete, the sub-problems are usuall

lved in parallel. This approach typically gene

 the machine busy and can be adapted for e

e: divide and conquer algorithms also tend to

a sub-problem fits in the cache, the standard

ta until the sub-problem has been completely so

nquer

Page| 2.23

 where n is a power

lumns of zeros.) We

h as follows:

ers to get the correct

B10 or as M1 + M4 –

as, with the numbers

/2 × n/2 matrices are

lgorithm for matrix

iplications made by

er of 2), we get the

ute-force algorithm.

 inherent parallelism.

ally independent and

nerates more enough

r execution in multi-

 to have good cache

rd recursive solution

 solved.

Lecture Notes ||

Prepared by Harivinod N

� It allows solving diffi

Hanoi. It reduces the

problems that are easil

� Another advantage to

efficient algorithms, a

merge sort algorithms.

Disadvantages

� One of the most com

recursion is slow, wh

conquer process.

� Another concern with

than a basic iterative

someone wanted to ad

simple loop to add the

than it would be to

recursively, and then a

� Another downfall is

problems, the same su

like these, it can often

problem, which is com

9. Decrease and Conquer

Decrease-and-conquer is a g

relationship between a solutio

instance of the same problem

either top down (usually recur

There are three major variation

� decrease-by-a-constant

� decrease-by-a-constant

� variable-size-decrease

In the decrease-by-a-constan

constant on each iteration of t

other constant size reductions

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

fficult and often impossible looking problems

he degree of difficulty since it divides the

sily solvable, and usually runs faster than other

to this paradigm is that it often plays a part

, and in fact it was the central role in finding

s.

ommon issues with this sort of algorithm is

hich in some cases outweighs any advantages

th it is the fact that sometimes it can become

ve approach, especially in cases with a large n

 add a large amount of numbers together, if

them together, it would turn out to be a much

o divide the numbers up into two groups,

 add the sums of the two groups together.

s that sometimes once the problem is broke

 sub problem can occur many times. It is solv

en be easier to identify and save the solution t

mmonly referred to as memorization.

quer Approach

 general algorithm design technique, based

tion to a given instance of a problem and a so

em. Once such a relationship is established, i

ursively) or bottom up.

ions of decrease-and-conquer:

ant, most often by one (e.g., insertion sort)

ant-factor, most often by the factor of two (e.g.,

se (e.g., Euclid’s algorithm)

tant variation, the size of an instance is red

f the algorithm. Typically, this constant is equ

ns do happen occasionally.

nquer

Page| 2.24

s like the Tower of

e problem into sub

er algorithms would.

art in finding other

ng the quick sort and

 is the fact that the

es of this divide and

e more complicated

e n. In other words, if

if they just create a

ch simpler approach

s, add these groups

oken down into sub

lved again. In cases

n to the repeated sub

sed on exploiting a

 solution to a smaller

, it can be exploited

g., binary search)

educed by the same

qual to one although

Lecture Notes ||

Prepared by Harivinod N

Figure: Decrease-(by one)-and

Example: a
n
 = a

n-1
 × a

The decrease-by-a-constant-

same constant factor on each

factor is equal to two.

Figure: Decrease-(by half)-and

Example:

Finally, in the variable-size-

pattern varies from one iteratio

Example: Euclid’s algorithm

formula. gcd

Though the value of the secon

left-hand side, it decreases nei

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

nd-conquer technique

-factor technique suggests reducing a proble

ch iteration of the algorithm. In most applicat

and-conquer technique.

-decrease variety of decrease-and-conquer,

tion of an algorithm to another.

m for computing the greatest common divisor.

cd(m, n) = gcd(n, m mod n).

ond argument is always smaller on the right-han

either by a constant nor by a constant factor.

Sub Problem

of size n-1

Solution to sub

problem

Solution to the original pro

Problem of size n

Sub Problem

of size n/2

Solution to sub

problem

Solution to the original p

Problem of

nquer

Page| 2.25

blem instance by the

cations, this constant

r, the size-reduction

or. It is based on the

hand side than on the

l problem

ize n

nal problem

 size n

Lecture Notes ||

Prepared by Harivinod N

10. Topological Sort

Background

A directed graph, or digraph

The adjacency matrix and ad

digraph.

There are only two notabl

representing them: (1) the a

symmetric; (2) an edge in a di

digraph’s adjacency lists.

Depth-first search and breadt

digraphs as well, but the stru

undirected graphs. Thus, even

(Figure b) exhibits all four typ

• tree edges (ab, bc, de),

• back edges (ba) from v

• forward edges (ac) fr

children, and

• cross edges (dc), which

Note that a back edge in a DF

Whether or not it is the case,

directed cycle. A directed cycl

starts and ends with the same

predecessor by an edge directe

a directed cycle in the digra

digraph has no back edges, the

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

h for short, is a graph with directions specifie

 adjacency lists are the two principal means

ble differences between undirected and d

 adjacency matrix of a directed graph doe

 directed graph has just one (not two) correspo

dth-first search are principal traversal algorit

tructure of corresponding forests can be more

en for the simple example of Figure, the depth

ypes of edges possible in a DFS forest of a dire

,

 vertices to their ancestors,

from vertices to their descendants in the tre

ich are none of the aforementioned types.

DFS forest of a directed graph can connect a v

se, the presence of a back edge indicates that

ycle in a digraph is a sequence of three or more

e vertex and in which every vertex is connecte

cted from the predecessor to the successor. For

raph in Figure given above. Conversely, if

the digraph is a dag, an acronym for directed ac

nquer

Page| 2.26

fied for all its edges.

ns of representing a

directed graphs in

oes not have to be

ponding nodes in the

rithms for traversing

re complex than for

pth-first search forest

irected graph:

tree other than their

a vertex to its parent.

at the digraph has a

ore of its vertices that

cted to its immediate

or example, a, b, a is

if a DFS forest of a

 acyclic graph.

Lecture Notes ||

Prepared by Harivinod N

Motivation for topological so

Consider a set of five required

in some degree program. The

course prerequisites are met:

requires C3, and C5 requires

which order should the studen

The situation can be modeled

courses and directed edges ind

In terms of this digraph, the qu

in such an order that for every

edge starts is listed before the

an ordering of this digraph’s v

Topological Sort

For topological sorting to be p

has no directed cycles, the top

There are two efficient algori

produce an ordering of vertic

based on depth-first search; th

technique.

Topological Sorting based on

Method

1. Perform a DFS travers

2. Reversing this order y

course, no back edge

been encountered, the

impossible.

Illustration

a) Digraph for which the

b) DFS traversal stack wi

c) Solution to the problem

point from left to right

check visually the cor

problem.

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

 sorting

red courses {C1, C2, C3, C4, C5} a part-time

he courses can be taken in any order as lon

t: C1 and C2 have no prerequisites, C3 requir

 C3 and C4. The student can take only one c

ent take the courses?

ed by a digraph in which vertices represent

indicate prerequisite requirements.

 question is whether we can list its vertices

ery edge in the graph, the vertex where the

he vertex where the edge ends. In other words,

s vertices? This problem is called topological so

e possible, a digraph in question must be a da

opological sorting problem for it has a solution.

orithms that both verify whether a digraph is

tices that solves the topological sorting proble

 the second is based on a direct application of th

 on DFS

ersal and note the order in which vertices becom

r yields a solution to the topological sorting pro

ge has been encountered during the traversal.

he digraph is not a dag, and topological sortin

e topological sorting problem needs to be solve

with the subscript numbers indicating the poppi

lem. Here we have drawn the edges of the dig

ght as the problem’s statement requires. It is a

orrectness of a solution to an instance of the

nquer

Page| 2.27

e student has to take

ong as the following

uires C1 and C2, C4

e course per term. In

ds, can you find such

l sorting.

dag. i.e., if a digraph

n.

 a dag and, if it is,

lem. The first one is

f the decrease-by-one

ome dead-ends

roblem, provided, of

l. If a back edge has

ting of its vertices is

lved.

ping off order.

digraph, and they all

 a convenient way to

 topological sorting

Lecture Notes ||

Prepared by Harivinod N

Topological Sorting using d

Method: The algorithm is ba

conquer technique:

1. Repeatedly, identify i

incoming edges, and d

several sources, break

cannot be solved.)

2. The order in which the

problem.

Illustration - Illustration of th

is given here. On each iteration

Note: The solution obtained

obtained by the DFS-based a

sorting problem may have sev

Applications of Topological S

• Instruction scheduling

• Cell evaluation orderin

• Resolving symbol depe

s || 10CS43 – DAA || Module 2: Divide and Conque

www.techjourney.in

 decrease-and-conquer technique:

based on a direct implementation of the decr

y in a remaining digraph a source, which is

d delete it along with all the edges outgoing fr

ak the tie arbitrarily. If there are none, stop be

the vertices are deleted yields a solution to the

 the source-removal algorithm for the topologic

tion, a vertex with no incoming edges is deleted

ed by the source-removal algorithm is diffe

 algorithm. Both of them are correct, of cour

everal alternative solutions.

l Sorting

g in program compilation

ring in spreadsheet formulas,

ependencies in linkers.

nquer

Page| 2.28

crease-(by one)-and-

 is a vertex with no

 from it. (If there are

 because the problem

e topological sorting

gical sorting problem

ed from the digraph.

ferent from the one

urse; the topological

