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1. General method: 

Divide and Conquer is one of

according to the following gen

• Given a function to co

splitting the inputs into

• These sub problems m

solutions into a solutio

• If the sub problems are

possibly be reapplied. 

• Often the sub problem

type as the original p

conquer principle is na

 

A typical case with k=2 is diag

 

 

 

 

 

 

 

 

 

 

Control Abstraction for divide

In the above specification,  

• Initially DAndC(P) is i

• Small (P) is a Boolean

enough that the answe

is invoked. Otherwise,

problems P1, P2 …Pk a

• Combine is a function

sub problems. 

Sub Problem

Solution to sub p
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 of the best-known general algorithm design t

eneral plan: 

 compute on ‘n’ inputs the divide-and-conque

nto ‘k’ distinct subsets, 1<k<=n, yielding ‘k’ su

 must be solved, and then a method must be fou

tion of the whole. 

are still relatively large, then the divide-and-co

 

ems resulting from a divide-and-conquer desig

l problem. For those cases the reapplication 

 naturally expressed by a recursive algorithm. 

iagrammatically shown below.  

de and conquer: 

is invoked, where ‘P’ is the problem to be solve

an-valued function that determines whether the

er can be computed without splitting. If this s

se, the problem P is divided into smaller sub pr

are solved by recursive application of DAndC

on that determines the solution to P using the s

Problem      of size n 

lem of size n/2 Sub Problem o

ub problem 1 Solution to su

Solution to the original problem 

nquer 
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n technique. It works 

uer strategy suggests 

 sub problems. 

found to combine sub 

conquer strategy can 

sign are of the same 

n of the divide-and-

 

lved. 

the input size is small 

s so, the function ‘S’ 

 problems. These sub 

C. 

e solutions to the ‘k’ 

m of size n/2 

to sub problem 2 
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2. Recurrence equation f

If the size of problem ‘p’ is

respectively, then the comput

relation 

 

Where, 

• T(n) is the time for div

• g(n) is the time to com

• The function f(n) is the

to sub problems. 

For divide and conquer based

original problem, it is very nat

More generally, an instance o

them needing to be solved. (H

size n is a power of b (i.e. n =

for the running time T(n): 

                             

 

where f(n) is a function that ac

ones and on combining their s

Substitution Method -  One 

substitution method. This me

function T in the right hand sid

Master Theorem - The efficie

simplified by the master theore

It states that, in recurrence equ

Analogous results hold for the

 

For example, the recurrence fo

conquer sum-computation algo

Thus, for this example, a = 2, b
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n for Divide and Conquer: 

 is n and the sizes of the ‘k’ sub problems

uting time of divide and conquer is described

ivide and conquer method on any input of size 

mpute answer directly for small inputs.  

the time for dividing the problem ‘p’ and comb

ed algorithms that produce sub problems of th

natural to first describe them by using recursion

 of size n can be divided into b instances of 

 (Here, a and b are constants; a>=1 and b > 

= b
k 

), to simplify our analysis, we get the fo

 accounts for the time spent on dividing the pro

r solutions. 

e of the methods for solving the recurrence re

ethod repeatedly makes substitution for each

 side until all such occurrences disappear.  

iciency analysis of many divide-and-conquer alg

orem.   

quation T(n) = aT(n/b) + f (n), If f (n)∈ Θ (n
d

 
he Ο and Ω notations, too. 

 for the number of additions A(n) made by the 

lgorithm (see above) on inputs of size n = 2
k
 is 

 

2, b = 2, and d = 0; hence, since a >b
d
, 

 

nquer 
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ms are n1, n2 ….nk, 

ed by the recurrence 

ze n and  

mbining the solutions 

 the same type as the 

on.  

f size n/b, with a of 

> 1.). Assuming that 

 following recurrence 

..... (1) 

roblem into smaller 

 relation is called the 

ch occurrence of the 

 algorithms is greatly 

d 
) where d ≥ 0 then 

 divide-and-
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Problems on Substitutio

recurrence relation 
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ion method  &  Master theorem to solv

nquer 

Page| 2.4 

olve the 
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3. Binary Search 

Problem definition: Let ai, 1

order. The problem is to find

present we have to determine

list, then j is set to zero. 

Solution: Let P = (n, ai…al , x

number of elements in the lis

searched for in the given list. B

Step 1: Pick an index q in th

Step 2: if x = aq  i.e key elem

Step 3:  if x < aq in this case 

Therefore problem re

Step 4:  if x > aq , x has to be

reduces to (l-i, aq+1…

For the above solution proced

recursive algorithm. 

 

 

 

Recursive binary search algo

Iterative binary search: 
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, 1 ≤ i ≤ n be a list of elements that are sorted

nd whether a given element x is present in the

ne a value j (element’s position) such that aj=x

, x) denote an arbitrary instance of search prob

list, ai…al  is the list of elements and x is the 

Binary search on the list is done as follows: 

 the middle range [i, l] i.e. q=��� � 1�/2	  and c

ement is equal to mid element, the problem is im

se x has to be searched for only in the sub-list a

 reduces to (q-i, ai…aq-1, x). 

 be searched for only in the sub-list aq+1, ...,., al . T

…al, x). 

cedure, the Algorithm can be implemented as

lgorithm 

nquer 
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ed in non-decreasing 

the list or not. If x is 

=x. If x is not in the 

oblem where n is the 

he key element to be 

 

d compare x with aq.  

 immediately solved. 

t ai, ai+1, ……, aq-1. 

Therefore problem 

 as recursive or non-
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Analysis  

 In binary search the basic ope

the best, worst, and average c

the recursive and iterative ver

relaxed slightly. For Recursive

as one comparison. For Iterati

one comparison. Let us find o

an array of n elements. 

Best case – Θ(1)   In the best

comparisons (actually just 1) a
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operation is key comparison. Binary Search ca

e case number of comparisons. The numbers o

ersions of Binary Search are the same, if comp

ive Binary Search, count each pass through the

rative Binary Search, count each pass through 

 out how many such key comparison does the 

est case, the key is the middle in the array. A c

) are required. 

nquer 
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can be analyzed with 

s of comparisons for 

mparison counting is 

the if-then-else block 

h the while block as 

e algorithm make on 

 constant number of 
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Worst case - Θ(log2 n)   In th

each recursion or iteration of 

halving can be done ceiling (lo

Sometimes, in case of the suc

	�	log�	n	�.  So worst case com

Average case - Θ (log2 n)  To 

comparisons required to find 

To simplify the analysis, assu

that the probabilities of search

 

 

How to compute Average case

Space Complexity - The spac

search are different. Iterative 

Recursive Binary Search req

maintain the recursion stack. 

Advantages: Efficient on very

 Limitations:  

• Interacts poorly with th

• Requires sorted list as 

• Due to random access 
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 the worst case, the key does not exist in the ar

of Binary Search, the size of the admissible ran

(log2 n ) times. Thus, �	log�	n	� comparisons ar

uccessful search, it may take maximum numb

mplexity of successful binary search is Θ (log2

o find the average case, take the sum of the pro

d each element and the probability of searchin

sume that no item which is not in array will be

ching for each element are uniform. 

ase complexity? 

ace requirements for the recursive and iterative

e Binary Search requires only a constant amou

requires space proportional to the number o

 

ery big list, Can be implemented iteratively/rec

 the memory hierarchy 

as an input  

ss of list element, needs arrays instead of linked

 

nquer 
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 array at all. Through 

range is halved. This 

 are required. 

ber of comparisons. 

2 n).  

product of number of 

ing for that element. 

 be searched for, and 

ive versions of binary 

ount of space, while 

r of comparisons to 

ecursively.  

ed list. 



Lecture Notes   ||  

Prepared by Harivinod N 

 

4. Finding the maximum 

Problem statement: Given a

minimum items.  

StraightMaxMin: A simple a

Explanation: 

� StraightMaxMin requi

� By realizing the comp

done. Hence we can re

If(a[i]>Max) 

� On the average a[i] is >

 

Algorithm based on Divide a

Let P = (n, a [i],……,a [j]) den

elements in the list (a[i],….,a[

of the list. If the list has more 

For example, we might divide

P1=( [n/2],a[1],……..a

P2= ( n-[n/2], a[[n/2]+

After having divided ‘P’ into 2

invoking the same divide-and-

Algorithm:  

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque
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um and minimum 

 a list of n elements, the problem is to find 

e and straight forward algorithm to achieve this

quires 2(n-1) comparisons in the best, average &

parison of a[i]>max is false, improvement in 

 replace the contents of the for loop by,  

 then Max = a[i]; Else if (a[i]< min)

is > max half the time. So, the avg. no. of comp

e and Conquer strategy   

denote an arbitrary instance of the problem.   H

,a[j]) and we are interested in finding the maxim

re than 2 elements, P has to be divided into sma

de ‘P’ into the 2 instances,  

..a[n/2])  

]+1],….., a[n])  

o 2 smaller sub problems, we can solve them by

-conquer algorithm. 

nquer 
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d the maximum and 

is is given below.  

 

e & worst cases. 

in a algorithm can be 

) min=a[i] 

parison is 3n/2-1. 

Here ‘n’ is the no. of 

ximum and minimum 

aller instances. 

 by recursively 
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Example:  

 

Analysis - Time Complexity 

 

of recursive calls of MaxMin i
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in is as follows 
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Compared with the straight for

 

Space Complexity 

Compared to the straight forw

i, j, max, min, max1 and mi

recursion and we need to save

 

5. Merge Sort 

Merge sort is a perfect exa

technique. It sorts a given arra

and A [ ��/2	 .. n-1], sorting

sorted arrays into a single sort

The merging of two sorted arr

� Two pointers (array in

being merged.  

� The elements pointed 

array being constructed

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque
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forward method (2n-2) this method saves 25% 

rward method, the MaxMin method requires ex

min1.  Given n elements there will be ����

ve seven values for each recursive call. (6 + 1 f

xample of a successful application of the d

rray A [O  ... n - 1] by dividing it into two halv

ing each of them recursively, and then mergin

rted one. 

rrays can be done as follows.  

 indices) are initialized to point to the first elem

ed to are compared, and the smaller of them 

ted  

nquer 
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% in comparisons.  

 extra stack space for 

�����	 � 1  levels of 

for return address).  

 divide-and conquer 

alves A [0 .. ��/2	-1] 

ging the two smaller 

 

lements of the arrays 

m is added to a new 
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� After that, the index o

successor in the array 

two given arrays is exh

copied to the end of the

 

 

Example:  

The operation of the algorithm

list 8, 3, 2, 9, 7, 1, 5, 4 is illust

the figure 

 
 

 

 

 

 

 

 

 

Analysis  

Here the basic operation is key

order of the data, best case and

Worst case: During key com

other one contains just one e

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque
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 of the smaller element is incremented to poin

y it was copied from. This operation is repeat

exhausted, and then the remaining elements of 

 the new array. 

hm on the 

ustrated in 

ey comparison. As merge sort execution does n

nd average case runtime are the same as worst 

omparison, neither of the two arrays becomes

e element leads to the worst case of merge s

nquer 
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oint to its immediate 

ated until one of the 

of the other array are 

 

s not depend on the 

st case runtime. 

es empty before the 

e sort. Assuming for 
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simplicity that total number o

number of key comparisons C

where, Cmerge(n) is the n

Let us analyze Cmerge(n), the n

At each step, exactly one com

two arrays still needing to be 

arrays becomes empty before 

may come from the alternating

Now,  

Solving the recurrence equatio

Here a = 2,  b = 2,  f (n) = n,  d

Cworst (n) = Θ (n
d
 log n) = Θ (n

 

Advantages:  

• Number of comparison

• For large n, the numb

turns out to be about 0

• Mergesort will never d

• Another advantage o

sorting algorithm is sa

order in sorted output 

 Limitations: 

• The principal shortcom

the algorithm requires

is quite complicated an

 

Variations of merge sort 

1. The algorithm can b

elements, then mergin

slight bookkeeping co

using a stack to handle

2. We can divide a list t

then merge them toge

residing on secondary 
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r of elements n is a power of 2, the recurren

C(n) is 

 number of key comparison made during the m

 number of key comparisons performed during

mparison is made, after which the total number

e processed is reduced by 1. In the worst case,

re the other one contains just one element (e.g

ing arrays). Therefore, for the worst case, Cmerg

tion using master theorem: 

d = 1.  Therefore 2 = 2
1
, case 2 holds in the m

Θ (n
1
 log n) = Θ (n log n)   Therefore Cworst(n) = 

sons performed is nearly optimal.  

ber of comparisons made by this algorithm i

t 0.25n less and hence is also in Θ(n log n). 

r degrade to O (n
2
)  

 of mergesort over quicksort and heapsort i

 said to be stable if two objects with equal keys 

ut as they appear in the input array to be sorted.

oming of mergesort is the linear amount [ O(n

es. Though merging can be done in-place, the 

 and of theoretical interest only. 

 be implemented bottom up by merging pa

ging the sorted pairs, and so on. (If n is not a

complications arise.) This avoids the time and

dle recursive calls.  

t to be sorted in more than two parts, sort eac

gether. This scheme, which is particularly usef

ry memory devices, is called multiway mergeso

 

nquer 
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ence relation for the 

 

 merging stage. 

ng the merging stage. 

ber of elements in the 

se, neither of the two 

.g., smaller elements 

ge(n) = n – 1. 

 

 master theorem 

= Θ (n log n) 

 in the average case 

t is its stability. (A 

ys appear in the same 

d. ) 

(n) ] of extra storage 

e resulting algorithm 

pairs of the array’s 

t a power of 2, only 

nd space overhead of 

each recursively, and 

seful for sorting files 

esort. 
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6. Quick sort 

Quicksort is the other import

approach. Unlike mergesort, w

the array, quicksort divides ( o

A partition is an arrangement

some element A[s] are less tha

greater than or equal to it: 

Obviously, after a partition is

and we can continue sortin

independently (e.g., by the sam

In quick sort, the entire work h

the solutions to the sub proble

Partitioning 

We start by selecting a pivot—

the subarray. There are sev

sophisticated method suggeste

who invented quicksort. 

Select the subarray’s first e

comparing the subarray’s elem

� The left-to-right scan

element. Since we wa

subarray, this scan skip

encountering the first e

� The right-to-left scan, 

the subarray. Since we

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque
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ortant sorting algorithm that is based on the d

t, which divides its input elements according 

( or partitions) them according to their value. 

ent of the array’s elements so that all the elem

than or equal to A[s], and all the elements to th

 is achieved, A[s] will be in its final position i

ting the two subarrays to the left and to 

ame method). 

happens in the division stage, with no work re

lems. 

—an element with respect to whose value we 

everal different strategies for selecting a p

sted by C.A.R. Hoare, the prominent British 

element: p = A[l]. Now scan the subarray

ements to the pivot.  

an, denoted below by index pointer i, starts

ant elements smaller than the pivot to be in 

kips over elements that are smaller than the pi

t element greater than or equal to the pivot.  

n, denoted below by index pointer j, starts with

e want elements larger than the pivot to be in t

nquer 
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e divide-and-conquer 

g to their position in 

lements to the left of 

 the right of A[s] are 

 

n in the sorted array, 

o the right of A[s] 

 required to combine 

 

e are going to divide 

 pivot. We use the 

sh computer scientist 

ray from both ends, 

rts with the second 

in the left part of the 

 pivot and stops upon 

ith the last element of 

n the right part of the 
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subarray, this scan sk

encountering the first e

After both scans stop, three s

indices have crossed.  

1. If scanning indices i a

A[j ] and resume the s

2. If the scanning indice

subarray after exchang

3. If the scanning indice

they are pointing to m

the split position s = i 

We can combine this w

 

ALGORITHM HoarePartitio

//Partitions a subarray by Hoar

//Input: Subarray of array A[0.

//Output: Partition of A[l..r], w

               

Note that index i can go out of

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque
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skips over elements that are larger than the p

t element smaller than or equal to the pivot. 

 situations may arise, depending on whether o

i and j have not crossed, i.e., i < j, we simply 

e scans by incrementing I and decrementing j, re

ices have crossed over, i.e., i > j, we will ha

nging the pivot with A[j]: 

ces stop while pointing to the same element, i

 must be equal to p. Thus, we have the subarra

 i = j : 

with the case-2 by exchanging the pivot with 

tion(A[l..r]) 

oare’s algorithm, using the first element as a piv

..n − 1], defined by its left and right indices l 

, with the split position returned as this function

 

 of the subarray’s bounds in this pseudocode. 

nquer 
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e pivot and stops on 

r or not the scanning 

ly exchange A[i] and 

, respectively: 

 

 have partitioned the 

 

t, i.e., i = j, the value 

rray partitioned, with 

 

th A[j] whenever iӋj  

pivot 

l and r (l<r) 

ion’s value 
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Example: Example of quicks

bold. (b) Tree of recursive call

split position s of a partition ob

Analysis 

Best Case - Here the basic op

before a partition is achieved i

If all the splits happen in the 

The number of key compariso

According to the Master Theo

Cbest(n) = n log2 n. 

Worst Case – In the worst ca

subarrays will be empty, and

subarray being partitioned. 

increasing arrays.  

s   ||   10CS43 – DAA  ||  Module 2: Divide and Conque
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ksort operation. (a) Array’s transformations wi

alls to Quicksort with input values l and r of su

 obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 operation is key comparison. Number of key 

d is n + 1 if the scanning indices cross over and

 middle of corresponding subarrays, we will 

sons in the best case satisfies the recurrence, 

eorem, Cbest(n) ∈ Θ(n log2 n); solving it exact

 case, all the splits will be skewed to the extrem

nd the size of the other will be just 1 less th

. This unfortunate situation will happen, 

nquer 
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with pivots shown in 

 subarray bounds and 

y comparisons made 

nd n if they coincide. 

ll have the best case. 

 

ctly for n = 2
k
 yields 

reme: one of the two 

 than the size of the 

, in particular, for 
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Indeed, if A[0..n − 1] is a stri

right scan will stop on A[1] 

indicating the split at position

and exchanging the pivot A

increasing array A[1..n − 1] t

sizes will continue until the la

key comparisons made will be

Average Case - Let Cavg(n) be

a randomly ordered array of s

after n+1comparisons are mad

subarrays will have s and n −

can happen in each position s 

relation: 

Its solution, which is much tric

Thus, on the average, quicks

Moreover, its innermost loop

randomly ordered arrays of n

algorithm by its inventor. 

Variations 

Because of quicksort’s import

the basic algorithm. Among se

� Better pivot selection

element or the medi

rightmost, and the mid

� Switching to insertion

most computer system

algorithm with insertio

� Modifications of the 

segments smaller than
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trictly increasing array and we use A[0] as the

] while the right-to-left scan will go all the w

ion 0: So, after making n + 1 comparisons to g

 A[0] with itself, the algorithm will be left

] to sort. This sorting of strictly increasing arr

 last one A[n−2 .. n−1] has been processed. T

 be equal to 

 be the average number of key comparisons ma

f size n. A partition can happen in any positi

ade to achieve the partition. After the partition

− 1− s elements, respectively. Assuming tha

 s with the same probability 1/n, we get the fo

trickier than the worst- and best-case analyses, 

 

ksort makes only 39% more comparisons tha

op is so efficient that it usually runs faster 

f nontrivial sizes. This certainly justifies the 

ortance, there have been persistent efforts over

 several improvements discovered by researche

on methods such as randomized quicksort th

edian-of-three method that uses the median

iddle element of the array 

ion sort on very small subarrays (between 5 an

tems) or not sorting small subarrays at all 

rtion sort applied to the entire nearly sorted arra

he partitioning algorithm such as the three-

an, equal to, and larger than the pivot 

nquer 
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the pivot, the left-to-

e way to reach A[0], 

o get to this partition 

left with the strictly 

arrays of diminishing 

 The total number of 

 

made by quicksort on 

ition s (0 ӊ s ӊ n−1) 

ion, the left and right 

hat the partition split 

 following recurrence 

 

s, turns out to be 

han in the best case. 

r than mergesort on 

e name given to the 

er the years to refine 

hers are: 

 that uses a random 

ian of the leftmost, 

 and 15 elements for 

ll and finishing the 

rray 

-way partition into 
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Limitations 

� It is not stable.  

� It requires a stack to st

� While Performance on

implementation details

data type. 

 

7. Stassen’s Matrix multip

Direct Method: Suppose we 

C=AB, will be an n by n m

multiplications involved in pro

Divide and Conquer method

Multiplication of  2 × 2 ma

the number of multiplications.

principal insight of the algorith

× 2 matrices A and B with j

the brute-force algorithm. This

where 

Thus, to multiply two 2×2 m

18 additions/subtractions, wh

and four additions. 
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 store parameters of subarrays that are yet to be

on randomly ordered arrays is known to be se

ils of the algorithm but also to both compute

ultiplication 

e want to multiply two n x n matrices, A and

 matrix and will therefore have n
2
 elements

producing the product in this way is Θ(n
3
) 

 

od 

matrices: By using divide-and-conquer appro

ns. Such an algorithm was published by V. Str

rithm lies in the discovery that we can find the 

just seven multiplications as opposed to the

his is accomplished by using the following form

 

 

 matrices, Strassen’s algorithm makes seven m

hereas the brute-force algorithm requires eig

nquer 
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be sorted.  

 sensitive not only to 

uter architecture and 

nd B. Their product, 

nts.  The number of 

roach we can reduce 

trassen in 1969. The 

e product C of two 2 

the eight required by 

rmulas: 

n multiplications and 

eight multiplications 
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Multiplication of  n × n mat

of 2. (If n is not a power of 2,

can divide A, B, and their prod

It is not difficult to verify tha

product. For example, C00 ca

M5 + M7 where M1, M4, M5

replaced by the corresponding

computed recursively by th

multiplication. 

Analysis  

Here the basic operation is mu

Strassen’s algorithm in multip

following recurrence relation f

This implies M(n) = Θ(n
2.807

) 

 

8. Advantages and Disadv

Advantages 

� Parallelism: Divide an

Once the division pha

can therefore be solve

concurrency to keep t

processor machines.  

� Cache Performance:

performance. Once a 

reuses the cached data 
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atrices – Let A and B be two n × n matrices 

 2, matrices can be padded with rows and colu

roduct C into four n/2 × n/2 submatrices each a

 

hat one can treat these submatrices as number

can be computed either as A00 * B00 + A01 * B

5, and M7 are found by Strassen’s formulas,

ing submatrices. If the seven products of n/2 

the same method, we have Strassen’s algo

ultiplication. If M(n) is the number of multipl

tiplying two n × n matrices (where n is a power

n for it: 

 

 

 which is smaller than n
3
 required by the brute

isadvantages of Divide & Conquer  

 and conquer algorithms tend to have a lot of in

hase is complete, the sub-problems are usuall

lved in parallel. This approach typically gene

 the machine busy and can be adapted for e

e: divide and conquer algorithms also tend to

a sub-problem fits in the cache, the standard 

ta until the sub-problem has been completely so

nquer 
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 where n is a power 

lumns of zeros.) We 

h as follows: 

ers to get the correct 

B10 or as M1 + M4 – 

as, with the numbers 

/2 × n/2 matrices are 

lgorithm for matrix 

iplications made by 

er of 2), we get the 

 

ute-force algorithm. 

 inherent parallelism. 

ally independent and 

nerates more enough 

r execution in multi-

 to have good cache 

rd recursive solution 

 solved.  
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� It allows solving diffi

Hanoi. It reduces the

problems that are easil

� Another advantage to 

efficient algorithms, a

merge sort algorithms.

Disadvantages 

� One of the most com

recursion is slow, wh

conquer process.  

� Another concern with 

than a basic iterative 

someone wanted to ad

simple loop to add the

than it would be to 

recursively, and then a

� Another downfall is 

problems, the same su

like these, it can often

problem, which is com

 

 

9. Decrease and Conquer

Decrease-and-conquer is a g

relationship between a solutio

instance of the same problem

either top down (usually recur

There are three major variation

� decrease-by-a-constant

� decrease-by-a-constant

� variable-size-decrease 

In the decrease-by-a-constan

constant on each iteration of t

other constant size reductions 
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fficult and often impossible looking problems

he degree of difficulty since it divides the 

sily solvable, and usually runs faster than other 

to this paradigm is that it often plays a part

, and in fact it was the central role in finding 

s. 

ommon issues with this sort of algorithm is

hich in some cases outweighs any advantages

th it is the fact that sometimes it can become 

ve approach, especially in cases with a large n

 add a large amount of numbers together, if 

them together, it would turn out to be a much

o divide the numbers up into two groups, 

 add the sums of the two groups together.  

s that sometimes once the problem is broke

 sub problem can occur many times. It is solv

en be easier to identify and save the solution t

mmonly referred to as memorization.  

quer Approach  

 general algorithm design technique, based

tion to a given instance of a problem and a so

em. Once such a relationship is established, i

ursively) or bottom up. 

ions of decrease-and-conquer: 

ant, most often by one (e.g., insertion sort) 

ant-factor, most often by the factor of two (e.g.,

se (e.g., Euclid’s algorithm) 

tant variation, the size of an instance is red

f the algorithm. Typically, this constant is equ

ns do happen occasionally. 

nquer 
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s like the Tower of 

e problem into sub 

er algorithms would.  

art in finding other 

ng the quick sort and 

 is the fact that the 

es of this divide and 

e more complicated 

e n. In other words, if 

if they just create a 

ch simpler approach 

s, add these groups 

oken down into sub 

lved again.  In cases 

n to the repeated sub 

sed on exploiting a 

 solution to a smaller 

, it can be exploited 

g., binary search) 

educed by the same 

qual to one although 
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Figure: Decrease-(by one)-and

Example: a
n
 = a

n-1
 × a 

 

 

 

 

 

 

 

 

 

 

 

The decrease-by-a-constant-

same constant factor on each

factor is equal to two. 

Figure: Decrease-(by half)-and

 

 

 

 

 

 

 

Example:  

Finally, in the variable-size-

pattern varies from one iteratio

Example: Euclid’s algorithm 

formula.                             gcd

Though the value of the secon

left-hand side, it decreases nei
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nd-conquer technique 

-factor technique suggests reducing a proble

ch iteration of the algorithm. In most applicat

and-conquer technique. 

 

-decrease variety of decrease-and-conquer, 

tion of an algorithm to another. 

m for computing the greatest common divisor.

cd(m, n) = gcd(n, m mod n). 

ond argument is always smaller on the right-han

either by a constant nor by a constant factor. 

Sub Problem 

of size n-1 

Solution to sub 

problem 

Solution to the original pro

Problem of size n

Sub Problem 

of size n/2 

Solution to sub 

problem 

Solution to the original p

Problem of    

nquer 
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blem instance by the 

cations, this constant 

r, the size-reduction 

or. It is based on the 

hand side than on the 

l problem 

ize n 

nal problem 

    size n 
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10. Topological Sort 

Background 

A directed graph, or digraph 

The adjacency matrix and ad

digraph. 

There are only two notabl

representing them: (1) the a

symmetric; (2) an edge in a di

digraph’s adjacency lists. 

Depth-first search and breadt

digraphs as well, but the stru

undirected graphs. Thus, even

(Figure b) exhibits all four typ

• tree edges (ab, bc, de),

• back edges (ba) from v

• forward edges (ac) fr

children, and  

• cross edges (dc), which

 

 

Note that a back edge in a DF

Whether or not it is the case,

directed cycle. A directed cycl

starts and ends with the same 

predecessor by an edge directe

a directed cycle in the digra

digraph has no back edges, the
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h for short, is a graph with directions specifie

 adjacency lists are the two principal means

ble differences between undirected and d

 adjacency matrix of a directed graph doe

 directed graph has just one (not two) correspo

dth-first search are principal traversal algorit

tructure of corresponding forests can be more

en for the simple example of Figure, the depth

ypes of edges possible in a DFS forest of a dire

,  

 vertices to their ancestors, 

from vertices to their descendants in the tre

ich are none of the aforementioned types. 

DFS forest of a directed graph can connect a v

se, the presence of a back edge indicates that

ycle in a digraph is a sequence of three or more

e vertex and in which every vertex is connecte

cted from the predecessor to the successor. For

raph in Figure given above. Conversely, if 

the digraph is a dag, an acronym for directed ac

nquer 
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fied for all its edges. 

ns of representing a 

directed graphs in 

oes not have to be 

ponding nodes in the 

rithms for traversing 

re complex than for 

pth-first search forest 

irected graph:  

tree other than their 

 

a vertex to its parent. 

at the digraph has a 

ore of its vertices that 

cted to its immediate 

or example, a, b, a is 

if a DFS forest of a 

 acyclic graph. 
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Motivation for topological so

Consider a set of five required

in some degree program. The

course prerequisites are met: 

requires C3, and C5 requires 

which order should the studen

The situation can be modeled 

courses and directed edges ind

In terms of this digraph, the qu

in such an order that for every

edge starts is listed before the

an ordering of this digraph’s v

Topological Sort 

For topological sorting to be p

has no directed cycles, the top

There are two efficient algori

produce an ordering of vertic

based on depth-first search; th

technique.  

 

Topological Sorting based on

Method 

1. Perform a DFS travers

2. Reversing this order y

course, no back edge 

been encountered, the

impossible. 

Illustration 

a) Digraph for which the 

b) DFS traversal stack wi

c) Solution to the problem

point from left to right

check visually the cor

problem. 
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 sorting 

red courses {C1, C2, C3, C4, C5} a part-time 

he courses can be taken in any order as lon

t: C1 and C2 have no prerequisites, C3 requir

 C3 and C4. The student can take only one c

ent take the courses? 

ed by a digraph in which vertices represent 

indicate prerequisite requirements. 

 question is whether we can list its vertices 

ery edge in the graph, the vertex where the 

he vertex where the edge ends. In other words,

s vertices? This problem is called topological so

e possible, a digraph in question must be a da

opological sorting problem for it has a solution.

orithms that both verify whether a digraph is 

tices that solves the topological sorting proble

 the second is based on a direct application of th

 on DFS 

ersal and note the order in which vertices becom

r yields a solution to the topological sorting pro

ge has been encountered during the traversal. 

he digraph is not a dag, and topological sortin

e topological sorting problem needs to be solve

with the subscript numbers indicating the poppi

lem. Here we have drawn the edges of the dig

ght as the problem’s statement requires. It is a 

orrectness of a solution to an instance of the 

nquer 
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e student has to take 

ong as the following 

uires C1 and C2, C4 

e course per term. In 

ds, can you find such 

l sorting. 

dag. i.e., if a digraph 

n.  

 a dag and, if it is, 

lem. The first one is 

f the decrease-by-one 

ome dead-ends 

roblem, provided, of 

l. If a back edge has 

ting of its vertices is 

lved. 

ping off order.  

digraph, and they all 

 a convenient way to 

 topological sorting 
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Topological Sorting using  d

Method: The algorithm is ba

conquer technique:  

1. Repeatedly, identify i

incoming edges, and d

several sources, break

cannot be solved.)  

2. The order in which the

problem. 

Illustration - Illustration of th

is given here. On each iteration

Note: The solution obtained

obtained by the DFS-based a

sorting problem may have sev

Applications of Topological S

• Instruction scheduling 

• Cell evaluation orderin

• Resolving symbol depe
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  decrease-and-conquer technique: 

based on a direct implementation of the decr

y in a remaining digraph a source, which is

d delete it along with all the edges outgoing fr

ak the tie arbitrarily. If there are none, stop be

the vertices are deleted yields a solution to the 

 the source-removal algorithm for the topologic

tion, a vertex with no incoming edges is deleted

ed by the source-removal algorithm is diffe

 algorithm. Both of them are correct, of cour

everal alternative solutions. 

l Sorting 

g in program compilation 

ring in spreadsheet formulas,  

ependencies in linkers. 

*** 

nquer 
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crease-(by one)-and-

 is a vertex with no 

 from it. (If there are 

 because the problem 

e topological sorting 

gical sorting problem 

ed from the digraph. 

 

ferent from the one 

urse; the topological 


