
 
In this chapter, the steady state response of harmonically excited single degree of freedom 

systems will be discussed. Simpler phasor diagram method will be used to obtain the steady state 

response.  Response due to rotating unbalance, whirling of shafts, vibration isolations will also 

be discussed. 

 

Steady state response due to Harmonic Oscillation: 

Consider a spring-mass-damper system as shown in figure 1. The equation of motion of this 

system subjected to a harmonic forcing sinF tω  can be given by  

sinmx kx cx F tω+ + =             (1) 

where, m, k and c is the mass, spring stiffness and damping coefficient of the system.  
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Figure 2: Force polygon           Figure 1 Harmonically excited system 
 

The steady state response of the system can be determined by solving equation (1) in may 

different ways. Here a simpler graphical method is used which will give physical understanding 

to this dynamic problem. From solution of differential equations it is known that the steady state 

solution (particular integral) will be in the form 

sin( )x X tω ϕ= −                                  (2) 

As each term of equation (1) represents a forcing term viz., first term represent the inertia force, 

second term the spring force, third term the damping force and term in the right hand side is the 

applied force, one may draw a close polygon as shown in figure 2 considering the equilibrium of 

the system under the action of these forces.  Considering equation (2),  

• spring force  = sin( )kX tω φ−   

• damping force  =  cos( )c X tω ω φ−  
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• inertia force =  2 sin( )m X tω ω φ− −   

From Figure 2               
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As the ratio  is the static deflection (Xo)f the spring, Xk/F =X/X/F k 0 is known as the 

magnification factor or amplitude ratio of the system. Figure 3 shows the magnification ~ 

frequency ratio and phase angle (φ  )~ frequency ratio plot. It is clear that for undamped system 

the magnification factor tends to infinity when the frequency of external excitation equals natural 

frequency of the system. But for underdamped systems the maximum amplitude of excitation has 

a definite value and it occurs at a frequency 1.
n

ω
ω

<  For frequency of external excitation very 

less than the natural frequency of the system, with increase in frequency ratio, the dynamic 

deflection (X) dominates the static deflection (X0), the magnification factor increases till it 

reaches a maximum value at resonant frequency after which the magnification factor decreases 

and for very high value of frequency ratio (say 2
n

ω
ω

> , the vibration is very much attenuated. 

One may observe that with increase in damping ratio, the resonant response amplitude decreases.  

 



 

 
Figure 3: Magnification factor ~ frequency ratio and  phase angle ~frequency ratio for different 
damping ratio.  
 
So for a underdamped system the total response of the system which is the combination of 

transient response and steady state response can be given by  
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It may be noted that as , the first part of equation (6) tends to zero and second part 

remains. From phase angle ~frequency ratio plot it is clear that, for very low value of frequency 

ratio, phase angle tends to zero and at resonant frequency it is 90

t →∞

0 and for very high value of 

frequency ratio it is 1800. 

 



Example 1: Find the resonant frequency ratio (value of frequency ratio for which the steady 
state response will be maximum) for a spring-mass-damper system.  
 
Solution: The  steady state solution for a single degree of freedom system can be given by 
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So the peak magnification factor =
ζ ζ

=
− 2

1
2 1

 which occur at a frequency ratio of 

ζ= − 21 2r . Hence for underdamped system, it occurs when the external excitation frequency 
is slightly less than the natural frequency. 
 
Example 2:  An air compressor of mass 100 kg mounted on an elastic foundation. It has been 

observed that, when a harmonic force of amplitude 100N is applied to the compressor, the 

 



maximum steady state displacement of 5 mm occurred at a frequency of 300 rpm. Determine the 

equivalent stiffness and damping constants of the foundation.                 

 
Sol: The air compressor can be represented as a spring mass damper system as shown in figure 

below. 
 

  
 X = Steady state displacement = 5 mm 
 F = Forcing amplitude = 100 N 

 maxω = frequency for max displacement = 2  300
60
xπ  = 10π  rad/s. 

 We have to determine Keq  and  Ceq. 
 

The system can be modeled as a single dof system as shown in the above figure and the steady 
state solution can be given by 
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X will be maximum if the denominator is minimum. 
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Or, r = 0 or,  2 21 2r ζ= −   or,  21 2r ζ= −    
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 = 633.396 N.S/m     Ans. 
Rotating Unbalance  
 
One may find many rotating systems in industrial applications. The unbalanced force in such a 

system can be represented by an eccentric mass m with eccentricity e, which is rotating with 

angular velocity ω as shown in Figure 4. 
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Figure 4. Vibrating system with rotating unbalance. Figure 5. Freebody diagram of the system 
 
Let x be the displacement of the nonrotating mass (M-m) from the static equilibrium position, 

then the displacement of the rotating mass m is x + e sinω t. 

 From the freebody diagram of the system shown in figure 5, the equation of motion is   
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So the complete solution becomes 
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Figure 8 Phase angle ~ frequency ratio plot for system with rotating unbalance 

 



 

It may be noted from figure 8 that, for a system with very very low damping, it is very unsafe to 

run the machine near the natural frequency ratio greater than 2, the system vibration reduces to 

 and phase angle tends to 180/X me M= 0. 

 
Whirling of shaft: 
 
Whirling is defined as the rotation of the plane made by the bent shaft and the line of the centre 

of the bearing. It occurs due to a number of factors, some of which may include (i) eccentricity, 

(ii) unbalanced mass, (iii) gyroscopic forces, (iv) fluid friction in bearing, viscous damping.          

 

B 
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A 

                               Figure 9:  Whirling of shaft 

Consider a shaft AB on which a disc is mounted at s. G is the mass center of the disc, which is at 

a distance e from s. As mass center of the disc is not on the shaft center, when the shaft rotates, it 

will be subjected to a centrifugal force. This force will try to bend the shaft. Now the shafts 

neutral axis, which is represented by line ASB, is different from the line joining the bearing 

centers AOB.  The rotation of the plane containing the line joining bearing centers and the bend 

shaft (in this case it is AOBsA) is called the whirling of the shaft. 

 

Considering unit vectors i, j, k as shown in the above figure 9(b), the acceleration of point G can 

be given by 

/G S Ga a a= + S  
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which is acting along radial direction k, which will give rise to restoring torque, assuming a 

viscous damping for a to be acting at S. The EOM in radial direction 
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Considering the synchronous whirl case, i.e.,  θ ω=  

So, ( t )θ ω φ= −                                                                                                                       (21) 

φ  is a phase angle between e and r. 
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Now  equation  (22) reduces to  
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The eccentricity line e=SG leads the displacement line r = OS by phase angle φ  which depends 

on the amount of damping and the rotation speed ratio / nω ω . When the rotational speed equals 

to the natural frequency or critical speed, the amplitude is restrained by damping only. From 

equation (29 at very high speed  and the center of mass G tends to approach 

the fixed point O and the shaft center S rotates about it in a circle of radius e.  

0, 180nω ω φ>> →

 

 

 

 

 



Support Motion: 

 

Many machine components or instruments are subjected to forces from the support. For example while 

moving in a vehicle, the ground undulation will cause vibration, which will be transmitted, to the 

passenger. Such a system can be modeled by a spring-mass damper system as shown in figure 10. Here 

the support motion is considered in the form of  siny Y tω= , which is transmitted to mass m, by spring 

(stiffness ) and damper (damping coefficient ).  Let  be the vibration of mass about its equilibrium 

position.  
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Figure 10: A system subjected to support motion Figure 11: Freebody diagram 

Now to derive the equation of motion, from the freebody diagram of the mass as shown figure 11 
.. . .

( ) (m x k x y c x y= − − − − )                                                          (30) 

let z=x-y                                                                                     (31) 
.. . ..

2 sinm z kz c z m y m y tω ω+ + = − =                                                  (32) 
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As equation (33) is similar to equation (1), solution of equation (33) can be written as  
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If the absolute motion x of the mass is required, we can solve for x = z + y. Using the 

exponential form of harmonic motion 
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Substituting equation (38) in  (30)  one obtains 
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The steady state amplitude and Phase from this equation are 
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Figure 12: Amplitude ratio ~ frequency ratio plot for system with support motion       
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 Figure 13: Phase angle ~ frequency ratio plot for system with support motion 
 

From figure 12, it is clear that  when the frequency of support motion nearly equal to the natural 

frequency of the system, resonance occurs in the system. This resonant amplitude decreases with 

increase in damping ratio for 2
n

ω
ω

< . At 2
n

ω
ω

= , irrespective of damping factor, the mass 

vibrate with an amplitude equal to that of the support and for 2
n

ω
ω

> , amplitude ratio becomes 

less than 1, indicating that the mass will vibrate with an amplitude less than the support motion. 

 



But with increase in damping, in this case, the amplitude of vibration of the mass will increase. 

So in order to reduce the vibration of the mass, one should operate the system at a frequency 

very much greater than 2 times the natural frequency of the system. This is the principle of 

vibration isolation. 

 

Vibration Isolation: 

 

In many industrial applications, one may find the vibrating machine transmit forces to ground 

which in turn vibrate the neighbouring machines. So in that contest it is necessary to calculate 

how much force is transmitted to ground from the machine or from the ground to the machine.  

 
                                             Figure 13 : A vibrating system 

Figure 13 shows a system subjected to a force 0 sinF F tω=  and vibrating with 

sin( )x X tω φ= − . This force will be transmitted to the ground only by the spring and damper.  

Force transmitted to the ground 
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It is known from equation (3) that for a disturbing force  F = 0 sinF tω , the amplitude of resulting 

oscillation  
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Substituting equation (48) in (47) and defining   the transmissibility TR as the ratio of the force 

transmitted Force to the disturbing force one obtains 
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Comparing  equation (49) with equation (46) for support motion, it can be noted that 
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To reduce the amplitude X of the isolated mass m without changing TR, m is often mounted on a 

large mass M. The stiffness K must then be increased to keep ratio K/(m+M) constant. The 

amplitude X is, however reduced, because K appears in the denominator of the expression 

0

2 2 2

/
2[1 ( ) ] ( )ω ζω

ω ω

=
− +

n n

F KX              (53) 

 

 

 

 

 



 

0

tF
F

 

          Figure 14: Transmissibility ~frequency ratio plot  

 

Figure 14 shows the variation transmissibility with frequency ratio and it can be noted that 

vibration will be isolated when the system operates at a frequency ratio higher than 2 .  

Equivalent Viscous Damping: 

In the previous sections, it is assumed that the energy dissipation takes place due to viscous type of 

damping where the damping force is proportional to velocity. But there are systems where the damping 

takes place in many other ways.  For example, one may take surface to surface contact in vibrating 

systems and take Coulomb friction into account. Also in many cases energy is dissipated in joints also, 

which is a form of structural damping.  In these cases one may still use the derived equations by 

considering an equivalent viscous damping. This can be achieved by equating the energy dissipated in the 

original and the equivalent system.  

The primary influence of damping on the oscillatory systems is that of limiting the amplitude at 

resonance. Damping has little influence on the response in the frequency regions away from resonance. In 

case of viscous damping, the amplitude at resonance is  
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For other type of damping, no such simple expression exists. It is possible to however, to approximate the 

resonant amplitude by substituting an equivalent damping Ceq in the foregoing equation. 

The equivalent damping Ceq is found by equating the energy dissipated by the viscous damping to that of 

the nonviscous damping with assumed harmonic motion. 

 



dWXCeq =2ωπ               (55) 

Where must be evaluated from the particular type of damping. dW

Structural Damping: 

 When materials are cyclically stressed, energy is dissipated internally within the material itself. 

Experiments by several investigators indicate that for most structural metals such as steel and aluminum, 

the energy dissipated per cycle is independent of the frequency over a wide frequency range and 

proportional to the square of the amplitude of vibration. Internal damping fitting this classification is 

called solid damping or structural damping. With the energy dissipation per cycle proportional to the 

square of the vibration amplitude, the loss coefficient is a constant and the shape of the hysteresis curve 

remains unchanged with amplitude and independent of the strain rate.  Energy dissipated by structural 

damping can be written as  

             (56) 2
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Where α is a constant with units of force displacement. 

By the concept of equivalent viscous damping  

2
d eW X c Xα π ω= = 2
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Coulomb Damping: 

 Coulomb damping is mechanical damping that absorbs energy by sliding friction, as opposed to 

viscous damping, which absorbs energy in fluid, or viscous, friction. Sliding friction is a constant value 

regardless of displacement or velocity. Damping of large complex structures with non-welded joints, such 

as airplane wings, exhibit coulomb damping. 

Work done per cycle by the Coulomb force   dF

XFW dd 4=                                                                                                                                    (58) 

For calculating equivalent viscous damping 

       XFXCeq d42 =ωπ                    (59) 

 From the above equation equivalent viscous damping is found 

4 d
eq

Fc
Xπω

=            (60) 

 
Summary 
 
Some important features of steady state response for harmonically excited systems are as follows- 

 



• The steady state response is always of the form ( ) sin( )x t X tω φ= − .  Where it is having same 
frequency as of forcing. X is amplitude of the response, which is strongly dependent on the 
frequency of excitation, and on the properties of the spring—mass system.  

• There is a phase lag φ  between the forcing and the system response, which depends on the 
frequency of excitation and the properties of the spring-mass system. 

• The steady state response of a forced, damped, spring mass system is independent of initial 
conditions 

In this chapter response due to rotating unbalance, support motion, whirling of shaft and equivalent 
damping are also discussed.  

 
Exercise Problems 

1. An underdamped shock absorber is to be designed for a motor cycle of mass 200Kg. When the 

shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting 

displacement-time curve is to be as indicated in fig(b). Find the necessary stiffness and damping 

constants of the shock absorber if the damped period of vibration is to be 2 s and amplitude x1 is 

to be reduced to one-fourth in one half cycle (i.e x1.5=x1/4). Also find the minimum initial 

velocity that leads to a maximum displacement of 250 mm. 

2. Develop equation of motion for a spring mass system with Coulomb damping.  

3. An electronic instrument of mass m= 8kg is placed on four elastic support pad of special rubber. 

The force displacement curve of each pad is given by F = (5x+1000x2)*103. Determine the spring 

constant between the instrument and ground in the vertical direction.  

4. A machine of 100kg  mass is supported on springs of total stiffness 700 KN/m and has an 

unbalanced rotating element, which results in a disturbing force of 350N at a speed of 3000 

rev/min. Assuming a damping factor of 20.0=ξ , determine (a) its amplitude of motion due to 

the unbalance, (b) the transmissibility, and (c) the transmitted force. 

5. Find the steady state response of the spring mass damper system to a force 

. ttF 4cos104sin5 +=

6. If the steady state response of a linear system to a force of tF 2sin5= is , what 

will be the response if a force of 

)25.02sin(4 +t

tF 2sin10=  will act on it.. 

Computer Assignment  

1. Develop a general-purpose program, to find the free vibration response of a viscously damped 

system. Use the program to find response of a system with m= 450 Kg, K= 26519.2, c= 1000.0, 

x0 =0.539657, v0(initial velocity)=1.0. 

2. Find the free vibration response of a critically damped and over damped system with the above 

mentioned values of m and k. 

3. Plot magnification factor vs. frequency ratio  and |X/Y| or |Ft/F0| for different values of 
n

ω
ω

 

 


