
DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 1

MODULE 1

Introduction to Digital Signal Processing

1.1 What is DSP?

DSP is a technique of performing the mathematical operations on the signals in digital domain.

As real time signals are analog in nature we need first convert the analog signal to digital, then we

have to process the signal in digital domain and again converting back to analog domain. Thus ADC is

required at the input side whereas a DAC is required at the output end. A typical DSP system is as

shown in figure 1.1.

1.2 Need for DSP

Analog signal Processing has the following drawbacks:

 They are sensitive to environmental changes

 Aging

 Uncertain performance in production units

 Variation in performance of units

 Cost of the system will be high

 Scalability

If Digital Signal Processing would have been used we can overcome the above shortcomings of ASP.

1.3 A Digital Signal Processing System

A computer or a processor is used for digital signal processing. Anti aliasing filter is a LPF

which passes signal with frequency less than or equal to half the sampling frequency in order to avoid

Aliasing effect. Similarly at the other end, reconstruction filter is used to reconstruct the samples from

the staircase output of the DAC (Figure 1.2).

DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 2

DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 3

1.4 The Sampling Process

ADC process involves sampling the signal and then quantizing the same to a digital value. In

order to avoid Aliasing effect, the signal has to be sampled at a rate at least equal to the Nyquist rate.

Where, fs is the sampling frequency, fm is the maximum frequency component in the message

signal. If the sampling of the signal is carried out with a rate less than the Nyquist rate, the higher

frequency components of the signal cannot be reconstructed properly. The plots of the reconstructed

outputs for various conditions are as shown in figure 1.4.

DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 4

1.5 Discrete Time Sequences

Sampling Interval T, in the above equation replacing t by nT we get,

where n= 0,1, 2,..etc

For simplicity denote x (nT) as x (n)

 x (n) = A cos (2πfnT) where n= 0,1, 2,..etc. We have fs=1/T also θ=T

 alled as digital frequency.

θ = 2πfT = 2πf/fs radians

Fig 1.5 A Cosine Waveform

A sequence that repeats itself after every period N is called a periodic sequence.

Consider a periodic sequence x (n) with period N x (n)=x (n+N) n=……..,-1,0,1,2,……..

Frequency response gives the frequency domain equivalent of a discrete time sequence. It is denoted

as X(e
jθ

)=∑x(n) e
-jnθ

Frequency response of a discrete sequence involves both magnitude response and phase response.

1.6 Discrete Fourier Transform and Fast Fourier Transform

1.6.1 DFT Pair:

DFT is used to transform a time domain sequence x (n) to a frequency domain sequence X

(K).The equations that relate the time domain sequence x (n) and the corresponding frequency domain

sequence X (K) are called DFT Pair and is given by,

)2cos()(fnTAnTx

DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 5

1.6.2 The Relationship between DFT and Frequency Response:

We have,

410

/*-

From the above expression it is clear that we can use DFT to find the Frequency response of a

the signal record length.

It is clear from the expression of

samples N has to be a large value. Although DFT is an efficient technique of obtaining the frequency

response of a sequence, it requires more number of complex operations like additions and

multiplications.

Thus many improvements over DFT were proposed. One such technique is to use the

periodicity property of the twiddle factor e

. Those algorithms were called as Fast Fourier Transform

Algorithms. The following table depicts the complexity involved in the computation using DFT

algorithms.

FFT algorithms are classified into two categories via

1. Decimation in Time FFT

2. Decimation in Frequency FFT

DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 6

In decimation in time FFT the sequence is divided in time domain successively till we reach

the sequences of length 2. Whereas in Decimation in Frequency FFT, the sequence X(K) is divided

successively. The complexity of computation will get reduced considerably in case of FFT algorithms.

1.7 Linear Time Invariant Systems

A system which satisfies superposition theorem is called as a linear system and a system that

has same input output relation at all times is called a Time Invariant System. Systems, which satisfy

both the properties, are called LTI systems.

DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 7

k

LTI systems are characterized by its impulse response or unit sample response in time domain whereas

it is characterized by the system function in frequency domain.

1.7.1 Convolution

Convolution is the operation that related the input output of an LTI system, to its unit sample

response. The output of the system y(n) for the input x (n) and the impulse response of the system

being h (n) is given as y (n) = x(n) * h(n) = ∑ -k), x(n) is the input of the system, h(n) is the

impulse response of the system, y(n) is the output of the system.

1.7.2 Z Transformation

Z Transformations are used to find the frequency response of the system. The Z Transform for

a discrete sequence x (n) is given by, X(Z)= ∑x(n) z
-n

1.7.3 The System Function

An LTI system is characterized by its System function or the transfer function. The system

function of a system is the ratio of the Z transformation of its output to that of its input. It is denoted as

H (Z) and is given by H (Z) = Y (Z)/ X (Z).

The magnitude and phase of the transfer function H (Z) gives the frequency response of the

system. From the transfer function we can also get the poles and zeros of the system by solving its

numerator and denominator respectively.

1.8 Digital Filters

Filters are used to remove the unwanted components in the sequence. They are characterized

by the impulse response h (n). The general difference equation for an Nth order filter is given by

∑aky(n-k)+ ∑ x(n-k)

A typical digital filter structure is as shown in figure 1.7.

DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 8

Fig 1.7 Structure of a Digital Filter

Values of the filter coefficients vary with respect to the type of the filter. Design of a digital filter

involves determining the filter coefficients. Based on the length of the impulse response, digital filters

are classified into two categories via Finite Impulse Response (FIR) Filters and Infinite Impulse

Response (IIR) Filters.

1.8.1 FIR Filters

FIR filters have impulse responses of finite lengths. In FIR filters the present output depends

only on the past and present values of the input sequence but not on the previous output sequences.

Thus they are non-recursive hence they are inherently stable. FIR filters possess linear phase response.

Hence they are very much applicable for the applications requiring linear phase response.

The difference equation of an FIR filter is represented as

The frequency response of an FIR filter is given as

The major drawback of FIR filters is, they require more number of filter coefficients to realize a

desired response as compared to IIR filters. Thus the computational time required will also be more.

1.8.2 IIR Filters

Unlike FIR filters, IIR filters have infinite number of impulse response samples. They are

recursive filters as the output depends not only on the past and present inputs but also on the past

outputs. They generally do not have linear phase characteristics. Typical system function of such

DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 9

filters is given by,

Stability of IIR filters depends on the number and the values of the filter coefficients. The major

advantage of IIR filters over FIR is that, they require lesser coefficients compared to FIR filters for the

same desired response, thus requiring less computation time.

1.8.3 FIR Filter Design

Frequency response of an FIR filter is given by the following expression,

Design procedure of an FIR filter involves the determination of the filter coefficients bk.

1.8.4 IIR Filter Design

IIR filters can be designed using two methods viz using windows and direct method. In this

approach, a digital filter can be designed based on its equivalent analog filter. An analog filter is

designed first for the equivalent analog specifications for the given digital specifications. Then using

appropriate frequency transformations, a digital filter can be obtained. The filter specifications consist

of passband and stopband ripples in dB and Passband and Stopband frequencies in rad/sec.

DSP Algorithms and Architecture 15EC751

Dept. of ECE., ATME, Mysuru Page 10

Fig 1.11 Lowpass Filter Specifications

Direct IIR filter design methods are based on least squares fit to a desired frequency response. These

methods allow arbitrary frequency response specifications.

1.9 Decimation and Interpolation

Decimation and Interpolation are two techniques used to alter the sampling rate of a sequence.

Decimation involves decreasing the sampling rate without violating the sampling theorem whereas

interpolation increases the sampling rate of a sequence appropriately by considering its neighboring

samples.

1.9.1 Decimation

Decimation is a process of dropping the samples without violating sampling theorem. The

factor by which the signal is decimated is called as decimation factor and it is denoted by M. It is

given by,

Fig 1.12 Decimation Process

DSP Algorithms and Architecture 15EC751

1.9.2 Interpolation

Interpolation is a process of increasing the sampling rate by inserting new samples in between.

The input output relation for the interpolation, where the sampling rate is increased by a factor L, is

given as,

Fig 1.13 Interpolation Process

Problems:

1. Obtain the transfer function of the IIR filter whose difference equation is given by y (n)=

0.9y (n-1)+0.1x (n)

y (n)= 0.9y (n-1)+0.1x (n)
Taking Z transformation both sides

Y (Z) = 0.9 Z-1 Y (Z) + 0.1 X (Z)

Y (Z) [1- 0.9 Z-1] = 0.1 X (Z)

The transfer function of the system is given by the expression,

H (Z)= Y(Z)/X(Z)

= 0.1/ [1- 0.9 Z
-1

]
Realization of the IIR filter with the above difference equation is as shown in figure.

2. Let x(n)= [0 3 6 9 12] be interpolated with L=3. If the filter coefficients of the

DSP Algorithms and Architecture 15EC751

filters are bk=[1/3 2/3 1 2/3 1/3], obtain the interpolated sequence

After inserting zeros,

w (m) = [0 0 0 3 0 0 6 0 0 9 0 0 12]

bk=[1/3 2/3 1 2/3 1/3]

We have,

y(m)= -k) = b-2 w(m+2)+ b-1 w(m+1)+ b0 w(m)+ b1 w(m-1)+ b2 w(m-2)

Substituting the values of m, we get

y(0)= b-2 w(2)+ b-1 w(1)+ b0 w(0)+ b1 w(-1)+ b2 w(-2)= 0

y(1)= b-2 w(3)+ b-1 w(2)+ b0 w(1)+ b1 w(0)+ b2 w(-1)=1

y(2)= b-2 w(4)+ b-1 w(3)+ b0 w(2)+ b1 w(1)+ b2 w(0)=2

Similarly we get the remaining samples as,

y (n) = [0 1 2 3 4 5 6 7 8 9 10 11 12]

Recommended Questions

1. Explain with the help of mathematical equations how signed numbers can be

multiplied. The sequence x(n) = [3,2,-2,0,7].It is interpolated using interpolation

sequence bk=[0.5,1,0.5] and the interpolation factor of 2. Find the interpolated

sequence y(m).

2. An analog signal is sampled at the rate of 8KHz. If 512 samples of this signal are used

to compute DFT X(k) determine the analog and digital frequency spacing between

adjacent X(k0 elements. Also, determine analog and digital frequencies corresponding

to k=60.

3. With a neat diagram explain the scheme of the DSP system.

4. What is DSP? What are the important issues to be considered in designing and

implementing a DSP system? Explain in detail.

5. Why signal sampling is required? Explain the sampling process.

6. Define decimation and interpolation process. Explain them using block diagrams and

equations. With a neat diagram explain the scheme of a DSP system.

7. With an example explain the need for the low pass filter in decimation process.

8. For the FIR filter y(n)=(x(n)+x(n-1)+x(n-2))/3. Determine i) System Function ii)

Magnitude and phase function iii) Step response iv) Group Delay.

9. List the major architectural features used in DSP system to achieve high speed program

execution.

10. Explain how to simulate the impulse responses of FIR and IIR filters.

11. Explain the two method of sampling rate conversions used in DSP system, with suitable

DSP Algorithms and Architecture 15EC751

block diagrams and examples. Draw the corresponding spectrum.

12. Assuming X(K) as a complex sequence determine the number of complex real

multiplies for computing IDFT using direct and Radix-2 FT algorithms.

13. With a neat diagram explain the scheme of a DSP system. (June.12, 8m)

14. With an example explain the need for the low pass filter in decimation process.

(June.12, 4m)

15. For the FIR filter y(n)=(x(n)+x(n-1)+x(n-2))/3. Determine i) System Function ii)

Magnitude and phase function iii) Step response iv) Group Delay. (June.12, 8m)

16. List the major architectural features used in DSP system to achieve high speed program

execution. (Dec.11, 6m).

17. Explain how to simulate the impulse responses of FIR and IIR filters. (Dec.11, 6m).

18. Explain the two method of sampling rate conversions used in DSP system, with suitable

block diagrams and examples. Draw the corresponding spectrum. (Dec.11, 8m).

19. Explain with the help of mathematical equations how signed numbers can be

multiplied. (July.11, 8m).

20. With a neat diagram explain the scheme of the DSP system. (Dec.10-Jan.11, 8m)

(July.11, 8m).

DSP Algorithms and Architecture 15EC751

MODULE-2

Architectures for Programmable Digital Signal Processing

Devices

2.1 Basic Architectural Features

A programmable DSP device should provide instructions similar to a conventional

microprocessor. The instruction set of a typical DSP device should include the following,

a. Arithmetic operations such as ADD, SUBTRACT, MULTIPLY etc

b. Logical operations such as AND, OR, NOT, XOR etc

c. Multiply and Accumulate (MAC) operation

d. Signal scaling operation

In addition to the above provisions, the architecture should also include,

a. On chip registers to store immediate results

b. On chip memories to store signal samples (RAM)

c. On chip memories to store filter coefficients (ROM)

2.2 DSP Computational Building Blocks

Each computational block of the DSP should be optimized for functionality and speed and in

the meanwhile the design should be sufficiently general so that it can be easily integrated with other

blocks to implement overall DSP systems.

2.2.1 Multipliers

The advent of single chip multipliers paved the way for implementing DSP functions on a

VLSI chip. Parallel multipliers replaced the traditional shift and add multipliers now days. Parallel

multipliers take a single processor cycle to fetch and execute the instruction and to store the result.

They are also called as Array multipliers. The key features to be considered for a multiplier are:

a. Accuracy

b. Dynamic range

c. Speed

The number of bits used to represent the operands decides the accuracy and the dynamic range

of the multiplier. Whereas speed is decided by the architecture employed. If the multipliers are

implemented using hardware, the speed of execution will be very high but the circuit complexity will

also increases considerably. Thus there should be a tradeoff between the speed of execution and the

circuit complexity. Hence the choice of the architecture normally depends on the application.

2.2.2 Parallel Multipliers

Consider the multiplication of two unsigned numbers A and B. Let A be represented using m

bits as (Am-1 Am-2 …….. A1 A0) and B be represented using n bits as (Bn-1 Bn-2 …….. B1 B0).

Then the product of these two numbers is given by,

DSP Algorithms and Architecture 15EC751

This operation can be implemented paralleling using Braun multiplier whose hardware structure is as

shown in the figure 2.1.

Fig 2.1 Braun Multiplier for a 4X4 Multiplication

DSP Algorithms and Architecture 15EC751

2.2.3 Multipliers for Signed Numbers

In the Braun multiplier the sign of the numbers are not considered into account. In order to

implement a multiplier for signed numbers, additional hardware is required to modify the Braun

multiplier. The modified multiplier is called as Baugh-Wooley multiplier.

Consider two signed numbers A and B,

2.2.4 Speed

Conventional Shift and Add technique of multiplication requires n cycles to perform the

multiplication of two n bit numbers. Whereas in parallel multipliers the time required will be the

longest path delay in the combinational circuit used. As DSP applications generally require very high

speed, it is desirable to have multipliers operating at the highest possible speed by having parallel

implementation.

2.2.5 Bus Widths

Consider the multiplication of two n bit numbers X and Y. The product Z can be at most 2n

bits long. In order to perform the whole operation in a single execution cycle, we require two buses of

width n bits each to fetch the operands X and Y and a bus of width 2n bits to store the result Z to the

memory. Although this performs the operation faster, it is not an efficient way of implementation as it

is expensive. Many alternatives for the above method have been proposed. One such method is to use

the program bus itself to fetch one of the operands after fetching the instruction, thus requiring only

one bus to fetch the operands. And the result Z can be stored back to the memory using the same

operand bus. But the problem with this is the result Z is 2n bits long whereas the operand bus is just n

bits long. We have two alternatives to solve this problem, a. Use the n bits operand bus and save Z at

two successive memory locations. Although it stores the exact value of Z in the memory, it takes two

cycles to store the result.

b. Discard the lower n bits of the result Z and store only the higher order n bits into the memory. It is

not applicable for the applications where accurate result is required. Another alternative can be used

for the applications where speed is not a major concern. In which latches are used for inputs and

outputs thus requiring a single bus to fetch the operands and to store the result (Fig 2.2).

DSP Algorithms and Architecture 15EC751

Fig 2.2: A Multiplier with Input and Output Latches

2.2.6 Shifters

Shifters are used to either scale down or scale up operands or the results. The following

scenarios give the necessity of a shifter

a. While performing the addition of N numbers each of n bits long, the sum can grow up to n+log2 N

bits long. If the accumulator is of n bits long, then an overflow error will occur. This can be overcome

by using a shifter to scale down the operand by an amount of log2N.

b. Similarly while calculating the product of two n bit numbers, the product can grow up to 2n bits

long. Generally the lower n bits get neglected and the sign bit is shifted to save the sign of the product.

c. Finally in case of addition of two floating-point numbers, one of the operands has to be shifted

appropriately to make the exponents of two numbers equal.

From the above cases it is clear that, a shifter is required in the architecture of a DSP.

2.2.7 Barrel Shifters

In conventional microprocessors, normal shift registers are used for shift operation. As it

requires one clock cycle for each shift, it is not desirable for DSP applications, which generally

involves more shifts. In other words, for DSP applications as speed is the crucial issue, several shifts

are to be accomplished in a single execution cycle. This can be accomplished using a barrel shifter,

which connects the input lines representing a word to a group of output lines with the required shifts

determined by its control inputs. For an input of length n, log2 n control lines are required. And an

dditional control line is required to indicate the direction of the shift.

The block diagram of a typical barrel shifter is as shown in figure 2.3.

Fig 2.3 A Barrel Shifter

DSP Algorithms and Architecture 15EC751

Fig 2.4 Implementation of a 4 bit Shift Right Barrel Shifter

Figure 2.4 depicts the implementation of a 4 bit shift right barrel shifter. Shift to right by 0, 1, 2 or 3

bit positions can be controlled by setting the control inputs appropriately.

2.3 Multiply and Accumulate Unit

Most of the DSP applications require the computation of the sum of the products of a series of

successive multiplications. In order to implement such functions a special unit called a multiply and

Accumulate (MAC) unit is required. A MAC consists of a multiplier and a special register called

Accumulator. MACs are used to implement the functions of the type A+BC. A typical MAC unit is as

shown in the figure 2.5.

DSP Algorithms and Architecture 15EC751

Fig 2.5 A MAC Unit

Although addition and multiplication are two different operations, they can be performed in parallel.

By the time the multiplier is computing the product, accumulator can accumulate the product of the

previous multiplications. Thus if N products are to be accumulated, N-1 multiplications can overlap

with N-1 additions. During the very first multiplication, accumulator will be idle and during the last

accumulation, multiplier will be idle. Thus N+1 clock cycles are required to compute the sum of N

products.

2.3.1 Overflow and Underflow

While designing a MAC unit, attention has to be paid to the word sizes encountered at the

input of the multiplier and the sizes of the add/subtract unit and the accumulator, as there is a

possibility of overflow and underflows. Overflow/underflow can be avoided by using any of the

following methods viz

a. Using shifters at the input and the output of the MAC

b. Providing guard bits in the accumulator

c. Using saturation logic

Shifters

Shifters can be provided at the input of the MAC to normalize the data and at the output to de

normalize the same.

Guard bits

As the normalization process does not yield accurate result, it is not desirable for some

applications. In such cases we have another alternative by providing additional bits called guard bits in

the accumulator so that there will not be any overflow error. Here the add/subtract unit also has to be

modified appropriately to manage the additional bits of the accumulator.

DSP Algorithms and Architecture 15EC751

Saturation Logic

Overflow/ underflow will occur if the result goes beyond the most positive number or below

the least negative number the accumulator can handle. Thus the overflow/underflow error can be

resolved by loading the accumulator with the most positive number which it can handle at the time of

overflow and the least negative number that it can handle at the time of underflow. This method is

called as saturation logic. A schematic diagram of saturation logic is as shown in figure 2.7. In

saturation logic, as soon as an overflow or underflow condition is satisfied the accumulator will be

loaded with the most positive or least negative number overriding the result computed by the MAC

unit.

Fig 2.7: Schematic Diagram of the Saturation Logic

2.4 Arithmetic and Logic Unit

A typical DSP device should be capable of handling arithmetic instructions like ADD, SUB,

INC, DEC etc and logical operations like AND, OR , NOT, XOR etc. The block diagram of a typical

ALU for a DSP is as shown in the figure 2.8.

It consists of status flag register, register file and multiplexers.

DSP Algorithms and Architecture 15EC751

Fig 2.8 Arithmetic Logic Unit of a DSP

Status Flags

ALU includes circuitry to generate status flags after arithmetic and logic operations. These flags

include sign, zero, carry and overflow.

Overflow Management

Depending on the status of overflow and sign flags, the saturation logic can be used to limit the

accumulator content.

Register File

Instead of moving data in and out of the memory during the operation, for better speed, a large set of

general purpose registers are provided to store the intermediate results.

2.5 Bus Architecture and Memory

Conventional microprocessors use Von Neumann architecture for memory management

wherein the same memory is used to store both the program and data (Fig 2.9). Although this

architecture is simple, it takes more number of processor cycles for the execution of a single

instruction as the same bus is used for both data and program.

DSP Algorithms and Architecture 15EC751

Fig 2.9 Von Neumann Architecture

In order to increase the speed of operation, separate memories were used to store program and

data and a separate set of data and address buses have been given to both memories, the architecture

called as Harvard Architecture. It is as shown in figure 2.10.

Fig 2.10 Harvard Architecture

Although the usage of separate memories for data and the instruction speeds up the processing,

it will not completely solve the problem. As many of the DSP instructions require more than one

operand, use of a single data memory leads to the fetch the operands one after the other, thus

increasing the delay of processing. This problem can be overcome by using two separate data

memories for storing operands separately, thus in a single clock cycle both the operands can be fetched

together (Figure 2.11).

DSP Algorithms and Architecture 15EC751

Fig 2.11 Harvard Architecture with Dual Data Memory

Although the above architecture improves the speed of operation, it requires more hardware

and interconnections, thus increasing the cost and complexity of the system. Therefore there should be

a trade off between the cost and speed while selecting memory architecture for a DSP.

2.5.1 On-chip Memories

In order to have a faster execution of the DSP functions, it is desirable to have some memory

located on chip. As dedicated buses are used to access the memory, on chip memories are faster.

Speed and size are the two key parameters to be considered with respect to the on-chip memories.

Speed

On-chip memories should match the speeds of the ALU operations in order to maintain the single

cycle instruction execution of the DSP.

Size

In a given area of the DSP chip, it is desirable to implement as many DSP functions as possible. Thus

the area occupied by the on-chip memory should be minimum so that there will be a scope for

implementing more number of DSP functions on- chip.

2.5.2 Organization of On-chip Memories

Ideally whole memory required for the implementation of any DSP algorithm has to reside on-

chip so that the whole processing can be completed in a single execution cycle. Although it looks as a

better solution, it consumes more space on chip, reducing the scope for implementing any functional

block on-chip, which in turn reduces the speed of execution. Hence some other alternatives have to be

DSP Algorithms and Architecture 15EC751

thought of. The following are some other ways in which the on-chip memory can be organized.

DSP Algorithms and Architecture 15EC751

a. As many DSP algorithms require instructions to be executed repeatedly, the instruction can be

stored in the external memory, once it is fetched can reside in the instruction cache.

b. The access times for memories on-chip should be sufficiently small so that it can be accessed more

than once in every execution cycle.

c. On-chip memories can be configured dynamically so that they can serve different purpose at

different times.

2.6 Data Addressing Capabilities

Data accessing capability of a programmable DSP device is configured by means of its

addressing modes. The summary of the addressing modes used in DSP is as shown in the table below.

2.6.1 Immediate Addressing Mode

In this addressing mode, data is included in the instruction itself.

2.6.2 Register Addressing Mode

In this mode, one of the registers will be holding the data and the register has to be specified in

the instruction.

2.6.3 Direct Addressing Mode

In this addressing mode, instruction holds the memory location of the operand.

2.6.4 Indirect Addressing Mode

In this addressing mode, the operand is accessed using a pointer. A pointer is generally a

register, which holds the address of the location where the operands resides. Indirect addressing mode

can be extended to inculcate automatic increment or decrement capabilities, which has lead to the

following addressing modes.

DSP Algorithms and Architecture 15EC751

2.7 Special Addressing Modes

For the implementation of some real time applications in DSP, normal addressing modes will

not completely serve the purpose. Thus some special addressing modes are required for such

applications.

2.7.1 Circular Addressing Mode

While processing the data samples coming continuously in a sequential manner, circular

buffers are used. In a circular buffer the data samples are stored sequentially from the initial location

till the buffer gets filled up. Once the buffer gets filled up, the next data samples will get stored once

again from the initial location. This process can go forever as long as the data samples are processed in

a rate faster than the incoming data rate.

Circular Addressing mode requires three registers viz

a. Pointer register to hold the current location (PNTR)

b. Start Address Register to hold the starting address of the buffer (SAR)

c. End Address Register to hold the ending address of the buffer (EAR)

DSP Algorithms and Architecture 15EC751

There are four special cases in this addressing mode. They are

DSP Algorithms and Architecture 15EC751

a. SAR < EAR & updated PNTR > EAR

b. SAR < EAR & updated PNTR < SAR

c. SAR >EAR & updated PNTR > SAR

d. SAR > EAR & updated PNTR < EAR

The buffer length in the first two case will be (EAR-SAR+1) whereas for the next tow cases (SAR-

EAR+1)

The pointer updating algorithm for the circular addressing mode is as shown below.

DSP Algorithms and Architecture 15EC751

Fig 2.12 Special Cases in Circular Addressing Mode

DSP Algorithms and Architecture 15EC751

2.7.2 Bit Reversed Addressing Mode

To implement FFT algorithms we need to access the data in a bit reversed manner. Hence a

special addressing mode called bit reversed addressing mode is used to calculate the index of the next

data to be fetched. It works as follows. Start with index 0. The present index can be calculated by

adding half the FFT length to the previous index in a bit reversed manner, carry being propagated from

MSB to LSB.

Current index= Previous index+ B (1/2(FFT Size))

2.8 Address Generation Unit

The main job of the Address Generation Unit is to generate the address of the operands

required to carry out the operation. They have to work fast in order to satisfy the timing constraints. As

the address generation unit has to perform some mathematical operations in order to calculate the

operand address, it is provided with a separate ALU.

Address generation typically involves one of the following operations.

a. Getting value from immediate operand, register or a memory location

b. Incrementing/ decrementing the current address

c. Adding/subtracting the offset from the current address

d. Adding/subtracting the offset from the current address and generating new address according to

circular addressing mode

e. Generating new address using bit reversed addressing mode

The block diagram of a typical address generation unit is as shown in figure 2.13.

Fig 2.13 Address generation unit

DSP Algorithms and Architecture 15EC751

2.9 Programmability and program Execution

A programmable DSP device should provide the programming capability involving branching,

looping and subroutines. The implementation of repeat capability should be hardware based so that it

can be programmed with minimal or zero overhead. A dedicated register can be used as a counter. In a

normal subroutine call, return address has to be stored in a stack thus requiring memory access for

storing and retrieving the return address, which in turn reduces the speed of operation. Hence a LIFO

memory can be directly interfaced with the program counter.

2.9.1 Program Control

Like microprocessors, DSP also requires a control unit to provide necessary control and timing

signals for the proper execution of the instructions. In microprocessors, the controlling is micro coded

based where each instruction is divided into microinstructions stored in micro memory. As this

mechanism is slower, it is not applicable for DSP applications. Hence in DSP the controlling is

hardwired base where the Control unit is designed as a single, comprehensive, hardware unit.

Although it is more complex it is faster.

2.9.2 Program Sequencer

It is a part of the control unit used to generate instruction addresses in sequence needed to

access instructions. It calculates the address of the next instruction to be fetched. The next address can

be from one of the following sources.

a. Program Counter

b. Instruction register in case of branching, looping and subroutine calls

c. Interrupt Vector table

d. Stack which holds the return address

The block diagram of a program sequencer is as shown in figure 2.14.

DSP Algorithms and Architecture 15EC751

Fig 2.14 Program Sequencer

DSP Algorithms and Architecture 15EC751

Program sequencer should have the following circuitry:

a. PC has to be updated after every fetch

b. Counter to hold count in case of looping

c. A logic block to check conditions for conditional jump instructions

d. Condition logic-status flag

Problems:

1). Investigate the basic features that should be provided in the DSP architecture to be used to

implement the following N
th

order FIR filter.

Solution:-

y(n)= ∑h(i) x(n-i) n=0,1,2…

In order to implement the above operation in a DSP, the architecture requires the

following features

i. A RAM to store the signal samples x (n)

ii. A ROM to store the filter coefficients h (n)

iii. An MAC unit to perform Multiply and Accumulate operation

iv. An accumulator to store the result immediately

v. A signal pointer to point the signal sample in the memory

vi. A coefficient pointer to point the filter coefficient in the memory

vii. A counter to keep track of the count

viii. A shifter to shift the input samples appropriately

2). It is required to find the sum of 64, 16 bit numbers. How many bits should the

accumulator have so that the sum can be computed without the occurrence of

overflow error or loss of accuracy?

The sum of 64, 16 bit numbers can grow up to (16+ log2 64)=22 bits long. Hence

the accumulator should be 22 bits long in order to avoid overflow error from occurring.

1. In the previous problem, it is decided to have an accumulator with only 16 bits

but shift the numbers before the addition to prevent overflow, by how many bits

should each number be shifted?

As the length of the accumulator is fixed, the operands have to be shifted by an

amount of log2 64 = 6 bits prior to addition operation, in order to avoid the condition of

overflow.

2. If all the numbers in the previous problem are fixed point integers, what is the

actual sum of the numbers?

The actual sum can be obtained by shifting the result by 6 bits towards left side after the sum

being computed. Therefore

Actual Sum= Accumulator content X 2
6

3. If a sum of 256 products is to be computed using a pipelined MAC unit, and if the MAC

execution time of the unit is 100nsec, what will be the total time required to complete the

DSP Algorithms and Architecture 15EC751

operation?

DSP Algorithms and Architecture 15EC751

As N=256 in this case, MAC unit requires N+1=257execution cycles. As the single MAC

execution time is 100nsec, the total time required will be, (257*100nsec)=25.7usec

4. Consider a MAC unit whose inputs are 16 bit numbers. If 256 products are to be

summed up in this MAC, how many guard bits should be provided for the

accumulator to prevent overflow condition from occurring?

As it is required to calculate the sum of 256, 16 bit numbers, the sum can be as

long as (16+ log2 256)=24 bits. Hence the accumulator should be capable of handling

these 22 bits. Thus the guard bits required will be (24-16)= 8 bits.

The block diagram of the modified MAC after considering the guard or extention bits is as shown in

the figure

5. What are the memory addresses of the operands in each of the following cases of indirect

addressing modes? In each case, what will be the content of the addreg after the memory

access? Assume that the initial contents of the addreg and the offsetreg are 0200h and 0010h,

respectively.

a. ADD *addreg

b.ADD +*addreg

c. ADD offsetreg+,*addreg

d. ADD *addreg,offsetreg-

6. A DSP has a circular buffer with the start and the end addresses as 0200h and 020Fh

respectively. What would be the new values of the address pointer of the buffer if, in the course

DSP Algorithms and Architecture 15EC751

of address computation, it gets updated to

DSP Algorithms and Architecture 15EC751

a. 0212h

b. 01FCh

Buffer Length= (EAR-SAR+1) = 020F-0200+1=10h

a. New Address Pointer= Updated Pointer-buffer length = 0212-10=0202h

b. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch

7. Repeat the previous problem for SAR= 0210h and EAR=0201h

Buffer Length= (SAR-EAR+1)= 0210-0201+1=10h

c. New Address Pointer= Updated Pointer- buffer length = 0212-10=0202h

d. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch

9. Compute the indices for an 8-point FFT using Bit reversed Addressing Mode

Start with index 0. Therefore the first index would be (000)

Next index can be calculated by adding half the FFT length, in this case it is (100)

to the previous index. i.e. Present Index= (000)+B (100)= (100)

Similarly the next index can be calculated as

Present Index= (100)+B (100)= (010)

The process continues till all the indices are calculated. The following table summarizes

the calculation.

DSP Algorithms and Architecture 15EC751

Recommended Questions:

1. Explain implementation of 8- tap FIR filter, (i) pipelined using MAC units and (ii) parallel

using two MAC units. Draw block diagrams.

2. What is the role of a shifter in DSP? Explain the implementation of 4-bit shift right barrel

shifter, with a diagram.

3. Identify the addressing modes of the operands in each of the following instructions & their

operations

i) ADD B ii) ADD #1234h iii) ADD 5678h iv) ADD +*addreg

4. Draw the schematic diagram of the saturation logic and explain the same.

5. Explain how the circular addressing mode and bit reversal addressing mode are implemented in

a DSP.

6. Explain the purpose of program sequencer.

7. Give the structure of a 4X4 Braun multiplier, Explain its concept. What modification is

required to carry out multiplication of signed numbers? Comment on the speed of the

multiplier.

8. Explain guard bits in a MAC unit of DSP. Consider a MAC unit whose inputs are 24-bit

numbers. How many guard bits should be provided if 512 products have to be added in the

accumulator to prevent overflow condition? What is the overall size of the accumulator

required?

9. With a neat block diagram explain ALU of DSP system.

10. Explain circular buffer addressing mode ii) Parallelism iii) Guard bits.

11. The 256 unsigned numbers, 16 bit each are to be summed up in a processor. How many guard

bits are needed to prevent overflow.

12. How will you implement an 8X8 multiplier using 4X4 multipliers as the building blocks.

13. Describe the basic features that should be provided in the DSP architecture to be used to

implement the Nth order FIR filter, where x(n) denotes the input sample, y(n) the output

sample and h(i) denotes i
th

filter coefficient.(Dec.09-Jan.10, 8m)

14. Explain the issues to be considered in designing and implementing a DSP system, with the help

of a neat block diagram. (May/June10 , 6m)

15. Briefly explain the major features of programmable DSPs. (May/June10, 8m)

DSP Algorithms and Architecture 15EC751

16. Explain the operation used in DSP to increase the sampling rate. The sequence x(n)=[0,2,4,6,8]

is interpolated using interpolation sequence bk =[1/2,1,1/2] and the interpolation factor is 2.find

the interpolated sequence y(m). (May/June10, 8m)

17. Explain with the help of mathematical equations how signed numbers can be multiplied.

(Dec.10-Jan.11, 8m)

18. The sequence x(n) = [3,2,-2,0,7].It is interpolated using interpolation sequence bk=[0.5,1,0.5]

and the interpolation factor of 2. Find the interpolated sequence y(m).(Dec.10-Jan.11, 6m)

19. Why signal sampling is required? Explain the sampling process. (Dec.12, 5m)

20. Define decimation and interpolation process. Explain them using block diagrams and

equations. (Dec.12, 6m).

DSP Algorithms and Architecture 15EC751

MODULE-3

Programmable Digital Signal Processors

3.1 Introduction:

Leading manufacturers of integrated circuits such as Texas Instruments (TI), Analog devices &

Motorola manufacture the digital signal processor (DSP) chips. These manufacturers have developed a

range of DSP chips with varied complexity.

The TMS320 family consists of two types of single chips DSPs: 16-bit fixed point &32-bit floating-

point. These DSPs possess the operational flexibility of high-speed controllers and the numerical

capability of array processors

3.2 Commercial Digital Signal-Processing Devices:

There are several families of commercial DSP devices. Right from the early eighties, when

these devices began to appear in the market, they have been used in numerous applications, such as

communication, control, computers, Instrumentation, and consumer electronics. The architectural

features and the processing power of these devices have been constantly upgraded based on the

advances in technology and the application needs. However, their basic versions, most of them have

Harvard architecture, a single-cycle hardware multiplier, an address generation unit with dedicated

address registers, special addressing modes, on-chip peripherals interfaces. Of the various families of

programmable DSP devices that are commercially available, the three most popular ones are those

from Texas Instruments, Motorola, and Analog Devices. Texas Instruments was one of the first to

come out with a commercial programmable DSP with the introduction of its TMS32010 in 1982.

Summary of the Architectural Features of three fixed-Points DSPs

DSP Algorithms and Architecture 15EC751

3.3. The architecture of TMS320C54xx digital signal processors:

TMS320C54xx processors retain in the basic Harvard architecture of their predecessor,

TMS320C25, but have several additional features, which improve their performance over it. Figure 3.1

shows a functional block diagram of TMS320C54xx processors. They have one program and three

data memory spaces with separate buses, which provide simultaneous accesses to program instruction

and two data operands and enables writing of result at the same time. Part of the memory is

implemented on-chip and consists of combinations of ROM, dual-access RAM, and single-access

RAM. Transfers between the memory spaces are also possible.

The central processing unit (CPU) of TMS320C54xx processors consists of a 40- bit arithmetic

logic unit (ALU), two 40-bit accumulators, a barrel shifter, a 17x17 multiplier, a 40-bit adder, data

address generation logic (DAGEN) with its own arithmetic unit, and program address generation logic

(PAGEN). These major functional units are supported by a number of registers and logic in the

architecture. A powerful instruction set with a hardware-supported, single-instruction repeat and block

repeat operations, block memory move instructions, instructions that pack two or three simultaneous

reads, and arithmetic instructions with parallel store and load make these devices very efficient for

running high-speed DSP algorithms.

Several peripherals, such as a clock generator, a hardware timer, a wait state generator, parallel

I/O ports, and serial I/O ports, are also provided on-chip. These peripherals make it convenient to

interface the signal processors to the outside world. In these following sections, we examine in detail

DSP Algorithms and Architecture 15EC751

the various architectural features of the TMS320C54xx family of processors.

DSP Algorithms and Architecture 15EC751

Figure 3.1.Functional architecture for TMS320C54xx processors.

DSP Algorithms and Architecture 15EC751

3.3.1 Bus Structure:

The performance of a processor gets enhanced with the provision of multiple buses to provide

simultaneous access to various parts of memory or peripherals. The 54xx architecture is built around

four pairs of 16-bit buses with each pair consisting of an address bus and a data bus. As shown in

Figure 3.1, these are The program bus pair (PAB, PB); which carries the instruction code from the

program memory. Three data bus pairs (CAB, CB; DAB, DB; and EAB, EB); which interconnected

the various units within the CPU. In Addition the pair CAB, CB and DAB, DB are used to read from

the data memory, while The pair EAB, EB; carries the data to be written to the memory. The ‘54xx

can generate up to two data-memory addresses per cycle using the two auxiliary register arithmetic

unit (ARAU0 and ARAU1) in the DAGEN block. This enables accessing two operands

simultaneously.

3.3.2 Central Processing Unit (CPU):

The ‘54xx CPU is common to all the ‘54xx devices. The ’54xx CPU contains a 40-bit

arithmetic logic unit (ALU); two 40-bit accumulators (A and B); a barrel shifter; a

17 x 17-bit multiplier; a 40-bit adder; a compare, select and store unit (CSSU); an exponent

encoder(EXP); a data address generation unit (DAGEN); and a program address generation unit

(PAGEN).

The ALU performs 2’s complement arithmetic operations and bit-level Boolean operations on

16, 32, and 40-bit words. It can also function as two separate 16-bit ALUs

and perform two 16-bit operations simultaneously. Figure 3.2 show the functional diagram of the ALU

of the TMS320C54xx family of devices.

Accumulators A and B store the output from the ALU or the multiplier/adder block and provide a

second input to the ALU. Each accumulators is divided into three parts: guards bits (bits 39-32), high-

order word (bits-31-16), and low-order word (bits 15- 0), which can be stored and retrieved

individually. Each accumulator is memory-mapped and partitioned. It can be configured as the

destination registers. The guard bits are used as a head margin for computations.

DSP Algorithms and Architecture 15EC751

Figure 3.2.Functional diagram of the central processing unit of the TMS320C54xx

processors.

Barrel shifter: provides the capability to scale the data during an operand read or write.

No overhead is required to implement the shift needed for the scaling operations. The’54xx barrel

shifter can produce a left shift of 0 to 31 bits or a right shift of 0 to 16 bits on the input data. The shift

count field of status registers ST1, or in the temporary

register T. Figure 3.3 shows the functional diagram of the barrel shifter of TMS320C54xx processors.

The barrel shifter and the exponent encoder normalize the values in an accumulator in a single cycle.

The LSBs of the output are filled with0s, and the MSBs can be either zero filled or sign extended,

depending on the state of the sign-extension mode bit in the status register ST1. An additional shift

capability enables the processor to perform numerical scaling, bit extraction, extended arithmetic, and

overflow prevention operations.

DSP Algorithms and Architecture 15EC751

Figure 3.3.Functional diagram of the barrel shifter

Multiplier/adder unit: The kernel of the DSP device architecture is multiplier/adder unit. The

multiplier/adder unit of TMS320C54xx devices performs 17 x 17 2’s complement multiplication with

a 40-bit addition effectively in a single instruction cycle.

In addition to the multiplier and adder, the unit consists of control logic for integer and

fractional computations and a 16-bit temporary storage register, T. Figure 3.4 show the functional

diagram of the multiplier/adder unit of TMS320C54xx processors. The compare, select, and store unit

(CSSU) is a hardware unit specifically incorporated to accelerate the add/compare/select operation.

This operation is essential to implement the Viterbi algorithm used in many signal-processing

applications. The exponent encoder unit supports the EXP instructions, which stores in the T register

the number of leading redundant bits of the accumulator content. This information is useful while

shifting the accumulator content for the purpose of scaling.

DSP Algorithms and Architecture 15EC751

Figure 3.4. Functional diagram of the multiplier/adder unit of TMS320C54xx processors.

3.3.3 Internal Memory and Memory-Mapped Registers:

The amount and the types of memory of a processor have direct relevance to the efficiency and

performance obtainable in implementations with the processors. The ‘54xx memory is organized into

three individually selectable spaces: program, data, and I/O spaces. All ‘54xx devices contain both

RAM and ROM. RAM can be either dual-access type (DARAM) or single-access type (SARAM). The

on-chip RAM for these processors is organized in pages having 128 word locations on each page.

The ‘54xx processors have a number of CPU registers to support operand addressing and

computations. The CPU registers and peripherals registers are all located on page 0 of the data

DSP Algorithms and Architecture 15EC751

memory. Figure 3.5(a) and (b) shows the internal CPU registers and peripheral registers with their

addresses. The processors mode status (PMST) registers

that is used to configure the processor. It is a memory-mapped register located at address 1Dh on page

0 of the RAM. A part of on-chip ROM may contain a boot loader and look-up tables for function such

as sine, cosine, μ- law, and A- law.

Figure 3.5(a) Internal memory-mapped registers of TMS320C54xx processors.

DSP Algorithms and Architecture 15EC751

Figure 3.5(b).peripheral registers for the TMS320C54xx processors

Status registers (ST0,ST1):

ST0: Contains the status of flags (OVA, OVB, C, TC) produced by arithmetic operations

& bit manipulations.

ST1: Contain the status of various conditions & modes. Bits of ST0&ST1registers can be set or clear

with the SSBX & RSBX instructions.

PMST: Contains memory-setup status & control information.

DSP Algorithms and Architecture 15EC751

Figure 3.6(a). ST0 diagram

ARP: Auxiliary register pointer.

TC: Test/control flag.

C: Carry bit.

OVA: Overflow flag for accumulator A.

OVB: Overflow flag for accumulator B.

DP: Data-memory page pointer.

Figure 3.6(b). ST1 diagram

BRAF: Block repeat active flag

BRAF=0, the block repeat is deactivated.

BRAF=1, the block repeat is activated.

CPL: Compiler mode

CPL=0, the relative direct addressing mode using data page pointer is selected.

CPL=1, the relative direct addressing mode using stack pointer is selected.

HM: Hold mode, indicates whether the processor continues internal execution or acknowledge for

external interface.

INTM: Interrupt mode, it globally masks or enables all interrupts.

INTM=0_all unmasked interrupts are enabled.

INTM=1_all masked interrupts are disabled.

0: Always read as 0

OVM: Overflow mode.

OVM=1_the destination accumulator is set either the most positive value or the most negative value.

OVM=0_the overflowed result is in destination accumulator.

SXM: Sign extension mode.

DSP Algorithms and Architecture 15EC751

SXM=0 _Sign extension is suppressed.

DSP Algorithms and Architecture 15EC751

SXM=1_Data is sign extended

C16: Dual 16 bit/double-Precision arithmetic mode.

C16=0_ALU operates in double-Precision arithmetic mode.

C16=1_ALU operates in dual 16-bit arithmetic mode.

FRCT: Fractional mode.

FRCT=1_the multiplier output is left-shifted by 1bit to compensate an extra sign bit.

CMPT: Compatibility mode.

CMPT=0_ ARP is not updated in the indirect addressing mode.

CMPT=1_ARP is updated in the indirect addressing mode.

ASM: Accumulator Shift Mode.

5 bit field, & specifies the Shift value within -16 to 15 range.

Processor Mode Status Register (PMST):

INTR: Interrupt vector pointer, point to the 128-word program page where the interrupt vectors

reside.

MP/MC: Microprocessor/Microcomputer mode,

MP/MC=0, the on chip ROM is enabled.

MP/MC=1, the on chip ROM is enabled.

OVLY: RAM OVERLAY, OVLY enables on chip dual access data RAM blocks to be mapped into

program space.

AVIS: It enables/disables the internal program address to be visible at the address pins.

DROM: Data ROM, DROM enables on-chip ROM to be mapped into data space.

CLKOFF: CLOCKOUT off.

SMUL: Saturation on multiplication.

SST: Saturation on store.

DSP Algorithms and Architecture 15EC751

3.4 Data Addressing Modes of TMS320C54X Processors:

Data addressing modes provide various ways to access operands to execute instructions and place

results in the memory or the registers. The 54XX devices offer seven basic addressing modes

1. Immediate addressing.

2. Absolute addressing.

3. Accumulator addressing.

4. Direct addressing.

5. Indirect addressing.

6. Memory mapped addressing

7. Stack addressing.

3.4.1 Immediate addressing:

The instruction contains the specific value of the operand. The operand can be short (3,5,8 or 9

bit in length) or long (16 bits in length). The instruction syntax for short operands occupies one

memory location,

Example: LD #20, DP.

RPT #0FFFFh.

3.4.2 Absolute Addressing:

The instruction contains a specified address in the operand.

1. Dmad addressing. MVDK Smem,dmad, MVDM dmad,MMR

2. Pmad addressing. MVDP Smem,pmad, MVPD pmem,Smad

3. PA addressing. PORTR PA, Smem,

4.*(lk) addressing .

3.4.3 Accumulator Addressing:

Accumulator content is used as address to transfer data between Program and Data memory.

Ex: READA *AR2

3.4.4 Direct Addressing:

Base address + 7 bits of value contained in instruction = 16 bit address. A page of 128

locations can be accessed without change in DP or SP.Compiler mode bit (CPL) in ST1 register is

used.

If CPL =0 selects DP

CPL = 1 selects SP,

It should be remembered that when SP is used instead of DP, the effective address is

computed by adding the 7-bit offset to SP.

DSP Algorithms and Architecture 15EC751

Figure 3.7 Block diagram of the direct addressing mode for TMS320C54xx Processors.

3.4.5 Indirect Addressing:

TMS320C54xx have 8, 16 bit auxiliary register (AR0 – AR 7). Two auxiliary register arithmetic units

(ARAU0 & ARAU1)

Used to access memory location in fixed step size. AR0 register is used for indexed and bit reverse

addressing modes.

– operand addressing

MOD _ type of indirect addressing

ARF _ AR used for addressing

ARP depends on (CMPT) bit in ST1

CMPT = 0, Standard mode, ARP set to zero

CMPT = 1, Compatibility mode, Particularly AR selected by ARP

VTUlive.com 51

DSP Algorithm and Architecture 15EC751

VTUlive.com 52

DSP Algorithm and Architecture 15EC751

Table 3.2 Indirect addressing options with a single data –memory operand.

Circular Addressing;

 Used in convolution, correlation and FIR filters.

 A circular buffer is a sliding window contains most recent data. Circular buffer of size R must

start on a N-bit boundary, where 2N > R .

 Effective base address (EFB): By zeroing the N LSBs of a user selected AR (ARx).

If 0 _ index + step < BK ; index = index +step;

else if index + step _ BK ; index = index + step - BK;

VTUlive.com 53

DSP Algorithm and Architecture 15EC751

else if index + step < 0; index + step + BK

VTUlive.com 54

DSP Algorithm and Architecture 15EC751

VTUlive.com 55

DSP Algorithm and Architecture 15EC751

Bit-Reversed Addressing:

o Used for FFT algorithms.

o AR0 specifies one half of the size of the FFT.

o The value of AR0 = 2N-1: N = integer FFT size = 2N

o AR0 + AR (selected register) = bit reverse addressing.

o The carry bit propagating from left to right.

Dual-Operand Addressing:

Dual data-memory operand addressing is used for instruction that simultaneously

perform two reads (32-bit read) or a single read (16-bit read) and a parallel store (16-bit

store) indicated by two vertical bars, II. These instructions access operands using indirect addressing

mode.

If in an instruction with a parallel store the source operand the destination operand point to the

same location, the source is read before writing to the destination. Only 2 bits are available in the

instruction code for selecting each auxiliary register in this mode. Thus, just four of the auxiliary

registers, AR2-AR5, can be used, The ARAUs together with these registers, provide capability to

access two operands in a single cycle. Figure 3.11 shows how an address is generated using dual data-

memory operand addressing.

VTUlive.com 56

DSP Algorithm and Architecture 15EC751

VTUlive.com 56

DSP Algorithm and Architecture 15EC751

3.4.6. Memory-Mapped Register Addressing:

 Used to modify the memory-mapped registers without affecting the current data page

 pointer (DP) or stack-pointer (SP)

o Overhead for writing to a register is minimal

o Works for direct and indirect addressing

o Scratch –pad RAM located on data PAGE0 can be modified

 STM #x, DIRECT

 STM #tbl, AR1

3.4.7 Stack Addressing:

• Used to automatically store the program counter during interrupts and subroutines.

• Can be used to store additional items of context or to pass data values.

• Uses a 16-bit memory-mapped register, the stack pointer (SP).

• PSHD X2

VTUlive.com 57

DSP Algorithm and Architecture 15EC751

3.5. Memory Space of TMS320C54xx Processors

 A total of 128k words extendable up to 8192k words.

 Total memory includes RAM, ROM, EPROM, EEPROM or Memory mapped peripherals.

 mapped

registers.

VTUlive.com 58

DSP Algorithm and Architecture 15EC751

Figure 3.14 Memory map for the TMS320C5416 Processor.

VTUlive.com 59

DSP Algorithm and Architecture 15EC751

3.6. Program Control

 It contains program counter (PC), the program counter related H/W, hard stack, repeat

counters &status registers.

 PC addresses memory in several ways namely:

 Branch: The PC is loaded with the immediate value following the branch instruction

 Subroutine call: The PC is loaded with the immediate value following the call instruction

 Interrupt: The PC is loaded with the address of the appropriate interrupt vector.

 Instructions such as BACC, CALA, etc ;The PC is loaded with the contents of the accumulator

low word

 End of a block repeat loop: The PC is loaded with the contents of the block repeat program

address start register.

 Return: The PC is loaded from the top of the stack.

Problems:

1. Assuming the current content of AR3 to be 200h, what will be its contents after

each of the following TMS320C54xx addressing modes is used? Assume that the

contents of AR0 are 20h.

a. *AR3+0

b. *AR3-0

c. *AR3+

d. *AR3

e. *AR3

f. *+AR3 (40h)

g. *+AR3 (-40h)

Solution:

a. AR3 ← AR3 + AR0;

AR3 = 200h + 20h = 220h

b. AR3← AR3 - AR0;

AR3 = 200h - 20h = 1E0h

c. AR3 ← AR3 + 1;

AR3 = 200h + 1 = 201h

d. AR3 ← AR3 - 1;

AR3 = 200h - 1 = 1FFh

e. AR3 is not modified.

AR3 = 200h

f. AR3 ← AR3 + 40h;

AR3 = 200 + 40h = 240h

g. AR3 ← AR3 - 40h;

AR3 = 200 - 40h = 1C0h

VTUlive.com 60

DSP Algorithm and Architecture 15EC751

2. Assuming the current contents of AR3 to be 200h, what will be its contents after

each of the following TMS320C54xx addressing modes is used? Assume that the contents of AR0 are

20h

a. *AR3 + 0B

b. *AR3 – 0B

Solution:

a. AR3 ← AR3 + AR0 with reverse carry propagation;

AR3 = 200h + 20h (with reverse carry propagation) = 220h.

b. AR3 ← AR3 - AR0 with reverse carry propagation;

AR3 = 200h - 20h (with reverse carry propagation) = 23Fh.

Recommended Questions:

1. Compare architectural features of TMS320C25 and DSP6000 fixed point digital signal

processors. (Dec.09-Jan.10, 6m)

2. Write an explanatory note on direct addressing mode of TMS320C54XX processors. Give

example. (Dec.09-Jan.10, 6m)

3. Describe the operation of the following instructions of TMS320C54XX processors.

i) MPY *AR2-,*AR4+0B (ii) MAC *ar5+,#1234h,A (iii) STH A,1,*AR2 iv) SSBX

SXM (Dec.09-Jan.10, 8m)

4. With a block diagram explain the indirect addressing mode of TMS320C54XX processor using

dual data memory operand. (June.12, 6m)

5. What is the function of an address generation unit explain with the help of block diagram.

(Dec.12, 6m)

6. Why circular buffers are required in DSP processor? How they are implemented? (Dec.12, 2m)

7. Explain the direct addressing mode of the TMS320C54XX processor with the help of a block

diagram. (Dec.12, 2m)

8. Describe the multiplier/adder unit of TMS320c54xx processor with a neat block diagram.

(May/June2010, 6m)

9. Describe any four data addressing modes of TMS320c54xx processor(May/June2010, 8m)

10. Assume that the current content of AR3 is 400h, what will be its contents after each of the

following. Assume that the content of AR0 is 40h. (May/June2010, 8m)

VTUlive.com 61

DSP Algorithm and Architecture 15EC751

11. Explain PMST register. (May/June2011, 8m)

12. With an example each, explain immediate, absolute, and direct addressing

mode.(May/June2011, 12m)

13. Explain the functioning of barrel shifter in TMS320C54XX processor. (June.12, 6m)

14. Explain sequential and other types of program control(June.11, 7m)

15. With an example each, explain immediate, absolute, and direct addressing mode.

16. Explain the functioning of barrel shifter in TMS320C54XX processor.

17. Explain sequential and other types of program control

18. Assume that the current content of AR3 is 400h, what will be its contents after each of the

following. Assume that the content of AR0 is 40h.

19. Explain PMST register.

20. Compare architectural features of TMS320C25 and DSP6000 fixed point digital signal

processors.

VTUlive.com 62

DSP Algorithm and Architecture 15EC751

Instruction and programming

4.1 Assembly language instructions can be classified as:

 Arithmetic operations

 Load and store instructions.

 Logical operations

 Program-control operations

VTUlive.com 63

DSP Algorithm and Architecture 15EC751

4.1.1 Arithmetic Instructions:

VTUlive.com 64

DSP Algorithm and Architecture 15EC751

VTUlive.com 65

DSP Algorithm and Architecture 15EC751

VTUlive.com 66

DSP Algorithm and Architecture 15EC751

VTUlive.com 67

DSP Algorithm and Architecture 15EC751

VTUlive.com 68

DSP Algorithm and Architecture 15EC751

VTUlive.com 69

DSP Algorithm and Architecture 15EC751

VTUlive.com 70

DSP Algorithm and Architecture 15EC751

VTUlive.com 71

DSP Algorithm and Architecture 15EC751

VTUlive.com 72

DSP Algorithm and Architecture 15EC751

VTUlive.com 73

DSP Algorithm and Architecture 15EC751

VTUlive.com 74

DSP Algorithm and Architecture 15EC751

VTUlive.com 75

DSP Algorithm and Architecture 15EC751

VTUlive.com 76

DSP Algorithm and Architecture 15EC751

VTUlive.com 77

DSP Algorithm and Architecture 15EC751

VTUlive.com 78

DSP Algorithm and Architecture 15EC751

VTUlive.com 79

DSP Algorithm and Architecture 15EC751

VTUlive.com 80

DSP Algorithm and Architecture 15EC751

VTUlive.com 81

DSP Algorithm and Architecture 15EC751

VTUlive.com 82

DSP Algorithm and Architecture 15EC751

VTUlive.com 83

DSP Algorithm and Architecture 15EC751

VTUlive.com 84

DSP Algorithm and Architecture 15EC751

VTUlive.com 85

DSP Algorithm and Architecture 15EC751

VTUlive.com 86

DSP Algorithm and Architecture 15EC751

VTUlive.com 87

DSP Algorithm and Architecture 15EC751

VTUlive.com 88

DSP Algorithm and Architecture 15EC751

VTUlive.com 89

DSP Algorithm and Architecture 15EC751

VTUlive.com 90

DSP Algorithm and Architecture 15EC751

VTUlive.com 91

DSP Algorithm and Architecture 15EC751

VTUlive.com 92

DSP Algorithm and Architecture 15EC751

MVPD: Move Data From Program Memory to Data Memory

PORTR: Read Data from Port

PORTW: Write Data to Port

VTUlive.com 93

DSP Algorithm and Architecture 15EC751

READA: Read Program Memory addressed by Accumulator A and Store in Data

Memory

WRITA: Write Data to Program Memory Addressed by Accumulator A

Branch Instructions

B[D]: Branch Unconditionally

BACC[D]: Branch to Location Specified by Accumulator

VTUlive.com 94

DSP Algorithm and Architecture 15EC751

BANZ[D]: Branch on Auxiliary Register Not Zero

BC [D]: Branch Conditionally

FB [D]: Far Branch Unconditionally

FBACC [D]: Far Branch to Location Specified by Accumulator

VTUlive.com 95

DSP Algorithm and Architecture 15EC751

CALA [D]: Call Subroutine at Location Specified by Accumulator

CALL[D]: Call Unconditionally

CC [D]: Call Conditionally

VTUlive.com 96

DSP Algorithm and Architecture 15EC751

VTUlive.com 97

DSP Algorithm and Architecture 15EC751

FCALA [D]: Far Call Subroutine at Location Specified by Accumulator

VTUlive.com 98

DSP Algorithm and Architecture 15EC751

4.1.5. Interrupt Instructions:

INTR: Software Interrupt

TRAP: Software Interrupt

VTUlive.com 99

DSP Algorithm and Architecture 15EC751

4.1.6. Return Instructions

FRET [D]: Far Return

FRETE [D]: Enable Interrupts and Far Return From Interrupt

RC [D]: Return Conditionally

VTUlive.com 100

DSP Algorithm and Architecture 15EC751

VTUlive.com 101

DSP Algorithm and Architecture 15EC751

RET [D]: Return

RETF [D]: Enable Interrupts and Fast Return From Interrupt

4.1.7. Repeat Instructions

RPT: Repeat Next Instruction

RPTB [D]: Block Repeat

VTUlive.com 102

DSP Algorithm and Architecture 15EC751

RPTZ: Repeat Next Instruction and Clear Accumulator

4.1.8. Stack-Manipulating Instructions

FRAME: Stack Pointer Immediate Offset

POPD: Pop Top of Stack to Data Memory

VTUlive.com 103

DSP Algorithm and Architecture 15EC751

POPM: Pop Top of Stack to Memory-Mapped Register

PSHD: Push Data-Memory Value onto Stack

PSHM: Push Memory-Mapped Register onto Stack

4.1.9. Miscellaneous Program-Control Instructions

SSBX: Set Status Register Bit

RSBX: Reset Status Register Bit

VTUlive.com 104

DSP Algorithm and Architecture 15EC751

NOP: No Operation

RESET: Software Reset

VTUlive.com 105

DSP Algorithm and Architecture 15EC751

4.3. On chip peripherals:

VTUlive.com 106

DSP Algorithm and Architecture 15EC751

It facilitates interfacing with external devices. The peripherals are:

 General purpose I/O pins

 A software programmable wait state generator.

 Hardware timer

 Host port interface (HPI)

 Clock generator

 Serial port

4.3.1 It has two general purpose I/O pins:

 BIO-input pin used to monitor the status of external devices.

 XF- output pin, software controlled used to signal external devices

4.3.2. Software programmable wait state generator:

 Extends external bus cycles up to seven machine cycles.

4.3.3. Hardware Timer

of 3 memory mapped registers:

 The timer register (TIM)

 Timer period register (PRD)

 Timer controls register (TCR)

• Pre scaler block (PSC).

• TDDR (Time Divide Down ratio)

• TIN &TOUT

The timer register (TIM) is a 16-bit memory-mapped register that decrements at every pulse from the

prescaler block (PSC).

The timer period register (PRD) is a 16-bit memory-mapped register whose contents are loaded onto

the TIM whenever the TIM decrements to zero or the device is reset (SRESET).

The timer can also be independently reset using the TRB signal. The timer control register

(TCR) is a 16-bit memory-mapped register that contains status and control bits. Table shows the

functions of the various bits in the TCR.

The prescaler block is also an on-chip counter. Whenever the prescaler bits count down to 0, a

clock pulse is given to the TIM register that decrements the TIM register by 1. The TDDR bits contain

the divide-down ratio, which is loaded onto the prescaler block after each time the prescaler bits count

down to 0.

That is to say that the 4-bit value of TDDR determines the divide-by ratio of the timer clock

with respect to the system clock. In other words, the TIM decrements either at the rate of the system

clock or at a rate slower than that as decided by the value of the TDDR bits. TOUT and TINT are the

output signal generated as the TIM register decrements to 0. TOUT can trigger the start of the

conversion signal in an ADC interfaced to the DSP.

VTUlive.com 107

DSP Algorithm and Architecture 15EC751

The sampling frequency of the ADC determines how frequently it receives the TOUT signal.

TINT is used to generate interrupts, which are required to service a peripheral such as a DRAM

controller periodically. The timer can also be stopped, restarted, reset, or disabled by specific status

bits.

VTUlive.com 108

DSP Algorithm and Architecture 15EC751

4.3.4. Host port interface (HPI):

• Allows to interface to an 8bit or 16bit host devices or a host processor

• Signals in HPI are:

• Host interrupt (HINT)

• HRDY

• HCNTL0 &HCNTL1

• HBIL

• HR/w

VTUlive.com 109

DSP Algorithm and Architecture 15EC751

Important signals in the HPI are as follows:

• The 16-bit data bus and the 18-bit address bus.

• The host interrupt, Hint, for the DSP to signal the host when it attention is required.

• HRDY, a DSP output indicating that the DSP is ready for transfer.

• HCNTL0 and HCNTL1, control signal that indicate the type of transfer to carry out. The

transfer types are data, address, etc.
• HBIL. If this is low it indicates that the current byte is the first byte; if it is high, it

indicates that it is second byte.

• HR/W indicates if the host is carrying out a read operation or a write operation

4.3.5. Clock Generator:

The clock generator on TMS320C54xx devices has two options-an external clock

and the internal clock. In the case of the external clock option, a clock source is directly connected to

the device. The internal clock source option, on the other hand, uses an internal clock generator and a

phase locked loop (PLL) circuit. The PLL, in turn, can be hardware configured or software

programmed. Not all devices of the TMS320C54xx family have all these clock options; they vary

from device to device.

4.3.6. Serial I/O Ports:

Three types of serial ports are available:

• Synchronous ports.

• Buffered ports.

VTUlive.com 110

DSP Algorithm and Architecture 15EC751

• Time-division multiplexed ports.

VTUlive.com 111

DSP Algorithm and Architecture 15EC751

The synchronous serial ports are high-speed, full-duplex ports and that provide direct

communications with serial devices, such as codec, and analog-to-digital (A/D) converters. A buffered

serial port (BSP) is synchronous serial port that is provided with

an auto buffering unit and is clocked at the full clock rate. The head of servicing interrupts. A time-

division multiplexed (TDM) serial port is a synchronous serial port that is provided to allow time-

division multiplexing of the data. The functioning of each of these on-chip peripherals is controlled by

memory-mapped registers assigned to the respective peripheral.

4.4. Interrupts of TMS320C54xx Processors:

Many times, when CPU is in the midst of executing a program, a peripheral device may require

a service from the CPU. In such a situation, the main program may be interrupted by a signal

generated by the peripheral devices. This results in the processor suspending the main program in

order to execute another program, called interrupt service routine, to service the peripheral device. On

completion of the interrupt service routine, the processor returns to the main program to continue from

where it left.

Interrupt may be generated either by an internal or an external device. It may also be generated by

software. Not all interrupts are serviced when they occur. Only those interrupts that are called

nonmaskable are serviced whenever they occur. Other interrupts, which are called maskable interrupts,

are serviced only if they are enabled. There is also a priority to determine which interrupt gets serviced

first if more than one interrupts occur simultaneously.

Almost all the devices of TMS320C54xx family have 32 interrupts. However, the

types and the number under each type vary from device to device. Some of these interrupts are

reserved for use by the CPU.

4.5. Pipeline operation of TMS320C54xx Processors:

The CPU of ‘54xx devices have a six-level-deep instruction pipeline. The six stages of the

pipeline are independent of each other. This allows overlapping execution of instructions. During any

given cycle, up to six different instructions can be active, each at a different stage of processing. The

six levels of the pipeline structure are program prefetch, program fetch, decode, access, read and

execute.

1 During program prefetch, the program address bus, PAB, is loaded with the address of the next

instruction to be fetched.

2 In the fetch phase, an instruction word is fetched from the program bus, PB, and loaded into the

instruction register, IR. These two phases from the instruction fetch sequence.

3 During the decode stage, the contents of the instruction register, IR are decoded to determine the

type of memory access operation and the control signals required for the data-address generation unit

and the CPU.

4 The access phase outputs the read operand’s on the data address bus, DAB. If a second operand is

required, the other data address bus, CAB, also loaded with an appropriate address. Auxiliary

VTUlive.com 112

DSP Algorithm and Architecture 15EC751

registers in indirect addressing mode and the stack pointer (SP) are also updated.

VTUlive.com 113

DSP Algorithm and Architecture 15EC751

5 In the read phase the data operand(s), if any, are read from the data buses, DB and CB. This phase

completes the two-phase read process and starts the two phase write processes. The data address of the

write operand, if any, is loaded into the data write address bus, EAB.

6 The execute phase writes the data using the data write bus, EB, and completes the operand write

sequence. The instruction is executed in this phase.

VTUlive.com 114

DSP Algorithm and Architecture 15EC751

Recommended Questions:

1. Describe Host Port Interface and explain its signals.

2. writes an assembly language program of TMS320C54XX processors to compute the sum of

three product terms given by the equation y(n)=h(0)x(n)+h(1)x(n-1)+h(2)x(n-2) with usual

notations. Find y (n) for signed 16 bit data samples and 16 bit constants.

3. Describe the pipelining operation of TMS320C54XX processors.

4. Explain the operation of serial I/O ports and hardware timer of TMS320C54XX on chip

peripherals.

5. Expalin the differents types ofinterrupts in TMS320C54xx Processors.

6. Describe the operation of the following instructions of TMS 320c54xx processor, with example

Describe the operation of hardware timer with neat diagram.

7. By means of a figure explain the pipeline operation of the following sequence of instruction if

the initial values of AR1,AR3,A are 104,101,2 and the values stored in the memory locations

101,102,103,104 are 4,6,8,12. Also provide the values of registers AR3, AR1,T & A.

8. Describe the operation of the following instructions of TMS320C54XX processors.

9. Describe the operation of the following instructions of TMS320C54XX processors. (July 12,

8m)

10. Explain the following assembler directives of TMS320C54XX processors (i) .mmregs (ii)

.global (iii) .include ‘xx’ (iv) .data (v) .end (vi) .bss (Dec 09/Jan 10 6marks)

11. Describe Host Port Interface and explain its signals. (Dec 09/Jan 10 6marks)

12. writes an assembly language program of TMS320C54XX processors to compute the sum of

three product terms given by the equation y(n)=h(0)x(n)+h(1)x(n-1)+h(2)x(n-2) with usual

notations. Find y (n) for signed 16 bit data samples and 16 bit constants. (May/June 2011,

6m)

13. Describe the pipelining operation of TMS320C54XX processors.(Dec.11, 8m)

14. Explain the operation of serial I/O ports and hardware timer of TMS320C54XX on chip

peripherals. (Dec.11, 8m)

15. Expalin the differents types ofinterrupts in TMS320C54xx Processors.(May/June 2009, 6m)

VTUlive.com 115

DSP Algorithm and Architecture 15EC751

MODULE-4

Implementation of Basic DSP Algorithms

5.1 Introduction:

In this unit, we deal with implementations of DSP algorithms & write programs to implement

the core algorithms only. However, these programs can be combined with input/output routines to

create applications that work with a specific hardware.

 Q-notation

 FIR filters

 IIR filters

 Interpolation filters

 Decimation filters

5.2 The Q-notation:

DSP algorithm implementations deal with signals and coefficients. To use a fixed point DSP

device efficiently, one must consider representing filter coefficients and signal samples using fixed-

point2’s complement representation. Ex: N=16, Range: -2N-1 to +2N-1 -1(-32768 to

32767).Typically, filter coefficients are fractional numbers.

To represent such numbers, the Q-notation has been developed. The Q-notation specifies the number

of fractional bits.

A commonly used notation for DSP implementations is Q15. In the Q15 representation, the least

significant 15 bits represent the fractional part of a number. In a processor where 16 bits are used to

represent numbers, the Q15 notation uses the MSB to represent the sign of the number and the rest of

the bits represent the value of the number.

In general, the value of a 16-bit Q15 number N represented as:

Multiplication of numbers represented using the Q-notation is important for DSP implementations.

Figure 5.1(a) shows typical cases encountered in such implementations.

VTUlive.com 116

DSP Algorithm and Architecture 15EC751

5.3 FIR Filters:

A finite impulse response (FIR) filter of order N can be described by the difference equation.

VTUlive.com 117

DSP Algorithm and Architecture 15EC751

The expanded form is y(n)=h(N-1)x(n-(N-1))+h(N-2)x(n-(N-2))+ ...h(1)x(n-1)+h(0)x(n)

Figure 5.2 A FIR filter implementation block diagram

The implementation requires signal delay for each sample to compute the next output,

y(n+1), is given as y(n+1)=h(N-1)x(n-(N-2))+h(N-2)x(n-(N-3))+ ...h(1)x(n)+h(0)x(n+1) Figure 5.3

shows the memory organization for the implementation of the filter. The filter Coefficients and the

signal samples are stored in two circular buffers each of a size equal to the filter. AR2 is used to point

to the samples and AR3 to the coefficients. In order to start with the last product, the pointer register

AR2 must be initialized to access the signal sample x(2-(N-1)), and the pointer register AR3 to access

the filter coefficient h(N-1). As each product is computed and added to the previous result, the pointers

advance circularly. At the end of the computation, the signal sample pointer is at the oldest sample,

which is replaced with the newest sample to proceed with the next output computation.

VTUlive.com 118

DSP Algorithm and Architecture 15EC751

Program to implement an FIR filter:

It implements the following equation;

y(n)=h(N-1)x(n-(N-1))+h(N-2)x(n-(N-2))+ ...h(1)x(n-1)+h(0)x(n)

Where N = Number of filter coefficients = 16.

h(N-1), h(N-2),...h(0) etc are filter coefficients (q15numbers) .

The coefficients are available in file: coeff_fir.dat.

x(n-(N-1)),x(n-(N-2),...x(n) are signal samples(integers).

The input x(n) is received from the data file: data_in.dat.

The computed output y(n) is placed in a data buffer.

VTUlive.com 119

DSP Algorithm and Architecture 15EC751

FIR Filter Routine

; Enter with A=the current sample x(n)-an integer, AR2 pointing to the location for the current sample

x(n),andAR3pointingtotheq15coefficienth(N-1). Exit with A = y(n) as q15 number.

5.4 IIR Filters:

An infinite impulse response (IIR) filter is represented by a transfer function, which is a ratio of two

polynomials in z. To implement such a filter, the difference equation representing the transfer function

can be derived and implemented using multiply and add operations. To show such an implementation,

we consider a second order transfer function given by

VTUlive.com 120

DSP Algorithm and Architecture 15EC751

Figure5.4 Block diagram of second order IIR filter

Program for IIR filter:

The transfer function is

Which is equivalent to the equations:

w(n) = x(n) + a1.w(n-1) + a2.w(n-2)

y(n) = b0.w(n) + b1.w(n-1) + b2.w(n-2)

Where w(n), w(n-1), and w(n-2) are the intermediate variables used in computations (integers).a1, a2,

b0, b1, and b2 are the filter coefficients (q15 numbers). x(n) is the input sample (integer). Input

samples are placed in the buffer, In Samples, from a data file, data_in.dat y(n) is the computed output

(integer). The output samples are placed in a buffer, Out Samples.

VTUlive.com 118

DSP Algorithm and Architecture 10EC751

VTUlive.com 119

DSP Algorithm and Architecture 15EC751

5.5 Interpolation Filters:

An interpolation filter is used to increase the sampling rate. The interpolation process involves

inserting samples between the incoming samples to create additional samples to increase the sampling

rate for the output. One way to implement an interpolation filter is to first insert zeros between

samples of the original sample sequence. The zero-inserted sequence is then passed through an

appropriate lowpass digital FIR filter to generate the interpolated sequence. The interpolation process

is depicted in Figure 5.5

VTUlive.com 120

DSP Algorithm and Architecture 15EC751

Figure 5.5 :The interpolation process

The kind of interpolation carried out in the examples is called linear interpolation because the

convolving sequence h(n) is derived based on linear interpolation of samples. Further, in this case, the

h(n) selected is just a second-order filter and therefore uses just two adjacent samples to interpolate a

sample. A higher-order filter can be used to base interpolation on more input samples. To implement

an ideal interpolation. Figure 5.6 shows how an interpolating filter using a 15-tap FIR filter and an

interpolation factor of 5 can be implemented. In this example, each incoming samples is followed by

four zeros to increase the number of samples by a factor of 5.

The interpolated samples are computed using a program similar to the one used for a FIR filter

implementation. One drawback of using the implementation strategy depicted in Figure 5.7 is that

there are many multiplies in which one of the multiplying elements is zero. Such multiplies need not

be included in computation if the computation is rearranged to take advantage of this fact. One such

scheme, based on generating what are called poly-phase sub-filters, is available for reducing the

computation. For a case where the number of filter coefficients N is a multiple of the interpolating

factor L, the scheme implements the interpolation filter using the equation.

Figure 5.7 shows a scheme that uses poly-phase sub-filters to implement the interpolating filter

using the 15-tap FIR filter and an interpolation factor of 5. In this implementation, the 15 filter taps are

arranged as shown and divided into five 3-tap sub filters. The input samples x(n), x(n-1) and x(n-2) are

used five times to generate the five output samples. This implementation requires 15 multiplies as

opposed to 75 in the direct implementation of Figure 5.7.

VTUlive.com 121

DSP Algorithm and Architecture 15EC751

Figure 5.6 interpolating filter using a 15-tap FIR filter and an interpolation factor of 5

Figure5.7: A scheme that uses poly-phase sub-filters to implement the interpolating filter

Using the 15-tap FIR filter and an interpolation factor of 5

VTUlive.com 122

DSP Algorithm and Architecture 15EC751

5.6 Decimation Filters:

A decimation filter is used to decrease the sampling rate. The decrease in sampling rate can be

achieved by simply dropping samples. For instance, if every other

sample of a sampled sequence is dropped, the sampling the rate of the resulting sequence will be half

that of the original sequence. The problem with dropping samples is that the new sequence may violate

the sampling theorem, which requires that the sampling frequency must be greater than two times the

highest frequency contents of the signal.

To circumvent the problem of violating the sampling theorem, the signal to be decimated is first

filtered using a low pass filter. The cutoff frequency of the filter is chosen so that it is less than half the

final sampling frequency. The filtered signal can be

decimated by dropping samples. In fact, the samples that are to be dropped need not be computed at

all. Thus, the implementation of a decimator is just a FIR filter implementation in which some of the

outputs are not calculated.

Figure 5.8 shows a block diagram of a decimation filter. Digital decimation can be

implemented as depicted in Figure 5.9 for an example of a decimation filter with decimation factor of

3. It uses a low pass FIR filter with 5 taps. The computation is similar to that of a FIR filter. However,

after computing each output sample, the signal array is delayed by three sample intervals by bringing

the next three samples into the circular buffer to replace the three oldest samples.

Figure 5.8: The decimation process

VTUlive.com 123

DSP Algorithm and Architecture 15EC751

Figure 5.9: Implementation of decimation filter

Implementation of decimation filter

It implements the following equation:

y(m) = h(4)x(3n-4) + h(3)x(3n-3) + h(2)x(3n-2) + h(1)x(3n-1) + h(0)x(3n) followed by the equation

y(m+1) = h(4)x(3n-1) + h(3)x(3n) + h(2)x(3n+1) + h(1)x(3n+2) + h(0)x(3n+3)

and so on for a decimation factor of 3 and a filter length of 5.

VTUlive.com 124

DSP Algorithm and Architecture 15EC751

Decimation Filter Initialization Routine

This routine sets AR2 as the pointer for the sample circular buffer, and AR3 as the

pointer for coefficient circular buffer.

BK = Number of filter taps. ; AR0 = 1 = circular buffer pointer increment.

FIR Filter Routine

Enter with A = x(n), AR2 pointing to the circular sample buffer, and AR3 to the circular

coeff buffer. AR0 = 1.

Exit with A = y (n) as q15 number.

VTUlive.com 125

DSP Algorithm and Architecture 15EC751

Problems:

1. What values are represented by the 16-bit fixed point number N=4000h in

Q15 & Q7 notations?

Solution:

Q15 notation: 0.100 0000 0000 0000 (N=0.5)

Q7 notation: 0100 0000 0.000 0000 (N=+128)

Recommended Questions:

1. Describe the importance of Q-notation in DSP algorithm implementation with examples. What

are the values represented by 16- bit fixed point number N=4000h in Q15, Q10, Q7 notations?

Explain how the FIR filter algorithms can be implemented using TMS320c54xx processor.

2. Explain with the help of a block diagram and mathematical equations the implementation of a

second order IIR filter. No program code is required.

3. Write the assembly language program for TMS320C54XX processor to implement an FIR

filter.

4. What is the drawback of using linear interpolation for implementing of an FIR filter in

TMS320C54XX processor? Show the memory organization for the filter implementation.

5. Briefly explain IIR filters

6. Determine the value of each of the following 16- bit numbers represented using the given Q-

notations:

7. (i) 4400h as a Q10 number (ii) 4400h as a Q7 number (iii) 0.3125 as a Q15 number (iv) -

0.3125 as a Q15 number.

8. Write an assembly language program for TMS320C54XX processors to multiply two Q15

numbers to produce Q15 number result.

9. What is an interpolation filter? Explain the implementation of digital interpolation using FIR

filter and poly phase sub filter.

10. Determine the value of each of the following 16- bit numbers represented using the given Q-

VTUlive.com 126

DSP Algorithm and Architecture 15EC751

notations:

VTUlive.com 127

DSP Algorithm and Architecture 15EC751

11. (i) 4400h as a Q10 number (ii) 4400h as a Q7 number (iii) 0.3125 as a Q15 number (iv) -

0.3125 as a Q15 number. (MAY-JUNE 10, 6m)

12. Write an assembly language program for TMS320C54XX processors to multiply two Q15

numbers to produce Q15 number result. (Dec 12 , 6 marks)(July 11, 6m) (June/July2012,

4m)

13. What is an interpolation filter? Explain the implementation of digital interpolation using FIR

filter and poly phase sub filter. (Dec 12 8 marks)

14. Describe the importance of Q-notation in DSP algorithm implementation with examples. What

are the values represented by 16- bit fixed point number N=4000h in Q15, Q10, Q7 notations?

(MAY-JUNE 10, 6m)

15. Explain how the FIR filter algorithms can be implemented using TMS320c54xx processor.

(DEC 2012, 6m) (MAY-JUNE 10,

10marks)

16. Explain with the help of a block diagram and mathematical equations the implementation of a

second order IIR filter. No program code is required.(June/July2011, 10m)

17. Write the assembly language program for TMS320C54XX processor to implement an FIR

filter. (June/July2012, 12m)

18. What is the drawback of using linear interpolation for implementing of an FIR filter in

TMS320C54XX processor? Show the memory organization for the filter implementation.

(DEC 2012, 6m)

19. Briefly explain IIR filters. (DEC 2011, 4m)

VTUlive.com 128

DSP Algorithm and Architecture 15EC751

Implementation of FFT algorithms

6.1 Introduction: The N point Discrete Fourier Transform (DFT) of x(n) is a discrete

signal of length N is given by eq(6.1)

By referring to eq (6.1) and eq (6.2), the difference between DFT & IDFT are seen to be

the sign of the argument for the exponent and multiplication factor, 1/N. The computational

complexity in computing DFT / I DFT is thus same (except for the additional multiplication factor in

IDFT). The computational complexity in computing each X(k) and all the x(k) is shown in table 6.1.

In a typical Signal Processing System, shown in fig 6.1 signal is processed using DSP in the DFT

domain. After processing, IDFT is taken to get the signal in its original domain. Though certain

amount of time is required for forward and inverse transform, it is because of the advantages of

transformed domain manipulation, the signal processing is carried out in DFT domain. The

transformed domain manipulations are sometimes simpler. They are also more useful and powerful

than time domain manipulation. For example, convolution in time domain requires one of the signals

to be folded, shifted and multiplied by another signal, cumulatively. Instead, when the signals to be

convolved are transformed to DFT domain, the two DFT are multiplied and inverse transform is taken.

Thus, it simplifies the process of convolution.

VTUlive.com 129

DSP Algorithm and Architecture 15EC751

6.2 An FFT Algorithm for DFT Computation: As DFT / IDFT are part of signal processing system,

there is a need for fast computation of DFT / IDFT. There are algorithms available for fast

computation of DFT/ IDFT. There are referred to as Fast Fourier Transform (FFT) algorithms. There

are two FFT algorithms: Decimation-In-Time

FFT (DITFFT) and Decimation-In-Frequency FFT (DIFFFT). The computational complexity of both

the algorithms are of the order of log2(N). From the hardware / software implementation viewpoint the

algorithms have similar structure throughout the

computation. In-place computation is possible reducing the requirement of large memory locations.

The features of FFT are tabulated in the table 6.2.

Consider an example of computation of 2 point DFT. The signal flow graph of 2 point DITFFT

Computation is shown in fig 6.2. The input / output relations is as in eq (6.3) which are arrived at from

eq(6.1).

VTUlive.com 130

DSP Algorithm and Architecture 15EC751

Similarly, the Butterfly structure in general for DITFFT algorithm is shown in fig. 6.3. The signal flow

graph for N=8 point DITFFT is shown in fig. 4. The relation between input and output of any Butterfly

structure is shown in eq (6.4) and eq(6.5).

Separating the real and imaginary parts, the four equations to be realized in implementation of

DITFFT Butterfly structure are as in eq(6.6).

VTUlive.com 131

DSP Algorithm and Architecture 15EC751

Observe that with N=2^M, the number of stages in signal flow graph=M, number of multiplications =

(N/2)log2(N) and number of additions = (N/2)log2(N). Number of Butterfly Structures per stage =

N/2. They are identical and hence in-place computation is possible. Also reusability of hardware

designed for implementing Butterfly structure is

possible. However in case FFT is to be computed for a input sequence of length other than 2^M the

sequence is extended to N=2^M by appending additional zeros. The process will not alter the

information content of the signal. It improves frequency resolution. To make the point clear, consider

a sequence whose spectrum is shown in fig. 6.5.

The spectrum is sampled to get DFT with only N=10. The same is shown in fig 6.

The variations in the spectrum are not traced or caught by the DFT with N=10. For example, dip in the

spectrum near sample no. 2, between sample no.7 & 8 are not represented in DFT. By increasing

N=16, the DFT plot is shown in fig. 6.7. As depicted in fig 6.7, the approximation to the spectrum

with N=16 is better than with N=10. Thus, increasing N to a suitable value as required by an algorithm

improves frequency resolution.

VTUlive.com 132

DSP Algorithm and Architecture 15EC751

Problem P6.1: What minimum size FFT must be used to compute a DFT of 40 points? What

must be done to samples before the chosen FFT is applied? What is the frequency resolution

achieved?

Solution:

Minimum size FFT for a 40 point sequence is 64 point FFT. Sequence is extended to 64 by appending

additional 24 zeros. The process improves frequency resolution from

VTUlive.com 133

DSP Algorithm and Architecture 15EC751

6.3 Overflow and Scaling: In any processing system, number of bits per data in signal

processing is fixed and it is limited by the DSP processor used. Limited number of bits leads to

overflow and it results in erroneous answer. InQ15 notation, the range of numbers that can be

represented is -1 to 1. If the value of a number exceeds these limits, there will be underflow /

overflow. Data is scaled down to avoid overflow.

However, it is an additional multiplication operation. Scaling operation is simplified by

selecting scaling factor of 2^-n. And scaling can be achieved by right shifting data by n bits. Scaling

factor is defined as the reciprocal of maximum possible number in the operation. Multiply all the

numbers at the beginning of the operation by scaling factor so that the maximum number to be

processed is not more than 1. In the case of DITFFT computation, consider for example,

To find the maximum possible value for LHS term, Differentiate and equate to zero

Thus scaling factor is 1/2.414=0.414. A scaling factor of 0.4 is taken so that it can be implemented by

VTUlive.com 134

DSP Algorithm and Architecture 15EC751

shifting the data by 2 positions to the right. The symbolic representation

VTUlive.com 135

DSP Algorithm and Architecture 15EC751

of Butterfly Structure is shown in fig. 6.8. The complete signal flow graph with scaling factor is shown

in fig. 6.9.

6.4 Bit-Reversed Index Generation: As noted in table 6.2, DITFFT algorithm requires input in bit

reversed order. The input sequence can be arranged in bit reverse order by reverse carry add operation.

Add half of DFT size (=N/2) to the present bit reversed ndex to get next bit reverse index. And employ

reverse carry propagation while adding bits from left to right. The original index and bit reverse index

for N=8 is listed in table 6.3

VTUlive.com 136

DSP Algorithm and Architecture 15EC751

Consider an example of computing bit reverse index. The present bit reversed index be

110. The next bit reversed index is

There are addressing modes in DSP supporting bit reverse indexing, which do the computation of

reverse index.

6.5 Implementation of FFT on TMS32OC54xx: The main program flow for the implementation of

DITFFT is shown in fig. 6.10. The subroutines used are _clear to clear all the memory locations

reserved for the results. _bitrev stores the data sequence x (n) in bit reverse order. _butterfly computes

the four equations of computing real and imaginary parts of butterfly structure. _spectrum computes

the spectrum of x (n). The Butterfly subroutine is invoked 12 times and the other subroutines are

invoked only once.

VTUlive.com 135

DSP Algorithm and Architecture 10EC751

VTUlive.com 136

DSP Algorithm and Architecture 10EC751

VTUlive.com 137

DSP Algorithm and Architecture 15EC751

Clear subroutine is shown in fig. 6.11. Sixteen locations meant for final results are cleared. AR2 is

used as pointer to the locations. Bit reverse subroutine is shown in fig. 6.12. Here, AR1 is used as

pointer to x(n). AR2 is used as pointer to X(k) locations. AR0 is loaded with 8 and used in bit reverse

addressing. Instead of N/2 =4, it is loaded with N=8 because each X(k) requires two locations, one for

real part and the other for imaginary part. Thus, x(n) is stored in alternate locations, which are meant

for real part of X(k). AR3 is used to keep track of number of transfers.

VTUlive.com 138

DSP Algorithm and Architecture 15EC751

Butterfly subroutine is invoked 12 times. Part of the subroutine is shown in fig. 6.13. Real part and

imaginary of A and B input data of butterfly structure is divided by 4 which

is the scaling factor. Real part of A data which is divided by 2 is stored in temp location. It is used

further in computation of eq (3) and eq (4) of butterfly. Division is carried out by shifting the data to

the right by two places. AR5 points to real part of A input data, AR2 points to real part of B input data

and AR3 points to real part of twiddle factor while

invoking the butterfly subroutine. After all the four equations are computed, the pointers

are in the same position as they were when the subroutine is invoked. Thus, the results

are stored such that in-place computation is achieved. Fig. 6.14 through 6.17 show the

butterfly subroutine for the computation of 4 equations.

VTUlive.com 139

DSP Algorithm and Architecture 10EC751

VTUlive.com 140

DSP Algorithm and Architecture 15EC751
5

Figure 6.18 depicts the part of the main program that invokes butterfly subroutine by supplying

appropriate inputs, A and B to the subroutine. The associated butterfly structure is also shown for

quick reference. Figures 6.19 and 6.20 depict the main program for the computation of 2nd and 3rd

stage of butterfly.

VTUlive.com 141

DSP Algorithm and Architecture 15EC751
5

Fig. 6.18: First stage of Signal Flow graph of DITFFT

VTUlive.com 142

DSP Algorithm and Architecture 10EC751

[Type text] Page 142

DSP Algorithm and Architecture 15EC751

[Type text] Page 143

After the computation of X(k), spectrum is computed using the eq(6.8). The pointer AR1

is made to point to X(k). AR2 is made to point to location meant for spectrum. AR3 is loaded with

keeps track of number of computation to be performed. The initialization of

the pointer registers before invoking the spectrum subroutine is shown in fig. 6.21. The

DSP Algorithm and Architecture 15EC751

[Type text] Page 144

subroutine is shown in fig. 6.22. In the subroutine, square of real and imaginary parts are computed

and they are added. The result is converted to Q15 notation and stored.

DSP Algorithm and Architecture 15EC751

[Type text] Page 145

Problems:

1. Derive equations to implement a Butterfly encountered in a DIFFFT implementation.

Solution:

DSP Algorithm and Architecture 15EC751

[Type text] Page 146

Butterfly structure for DIFFFT:

The input / output relations are

DSP Algorithm and Architecture 15EC751

[Type text] Page 147

Separating the real and imaginary parts,

2. How many add/subtract and multiply operations are needed to implement a general butterfly of

DITFFT?

Solution:

Referring to 4 equations required in implementing DITFFT Butterfly structure, Add//subttrractt

operations 06 and Multiply operations 04

3. Derive the optimum scaling factor for the DIFFFT Butterfly structure.

Solution: The four equations of Butterfly structure are

Differentiating 4th relation and setting it to zero, (any equation may be considered)

DSP Algorithm and Architecture 15EC751

[Type text] Page 148

Thus scaling factor is 0.707. To achieve multiplication by right shift, it is chosen as 0.5.

DSP Algorithm and Architecture 15EC751

[Type text] Page 149

Recommended Questions:

1. Derive the equation to implement a butterfly structure In DITFFT algorithm.

2. How many add/subtract and multiply operations are needed to compute the butterfly structure?

Write the subroutine for bit reversed address generation. Explain the same.

3. Why zero padding is done before computing the DFT?

4. What do you mean by bit-reversed index generation and how it is implemented in

TMS320C54XX DSp assembly language?

5. Write a subroutine program to find the spectrum of the transformed data using TMS320C54XX

DSP.

6. Explain a general DITFFT butterfly in place computation structure.

7. Determine the number of stages and number of butterflies in each stage and the total number of

butterflies needed for the entire computation of 512 point FFT.

8. Explain how the bit reversed index generation can be done in 8 pt FFT. Also write a

TMS320C54xx program for 8 pt DIT-FFT bit reversed index generation.

9. Determine the following for a 128-point FFT computation: (i) number of stages (ii) number of

butterflies in each stage (iii) number of butterflies needed for the entire computation (iv)

number of butterflies that need no twiddle factors (v) number of butterflies that require real

twiddle factors (vi) number of butterflies that require complex twiddle factors.

10. Explain, how scaling prevents overflow conditions in the butterfly computation.

11. Explain, how scaling prevents overflow conditions in the butterfly computation.(June/July

2012, 6m)

12. With the help of the implementation structure, explain the FFT algorithm for DIT-FFT

computation on TMS320C54XX processors. Use ¼ as a scale factor for all butterflies.

.(June/July 2012, Dec 2011, 8m)

13. Derive the equation to implement a butterfly structure In DITFFT algorithm. (DEC 2011, 8m)

14. How many add/subtract and multiply operations are needed to compute the butterfly structure?

(DEC 2011, 6m)

15. Write the subroutine for bit reversed address generation. Explain the same.

16. Why zero padding is done before computing the DFT?(DEC 2012, 2m)

DSP Algorithm and Architecture 15EC751

[Type text] Page 150

17. What do you mean by bit-reversed index generation and how it is implemented in

TMS320C54XX DSp assembly language? (DEC 2012, 8m)

DSP Algorithm and Architecture 15EC751

18. Write a subroutine program to find the spectrum of the transformed data using TMS320C54XX

DSP. (DEC 2012, 6m)

19. With the help of the implementation structure, explain the FFT algorithm for DIT-FFT

computation on TMS320C54XX processors. Use ¼ as a scale factor for all butterflies

20. Determine the following for a 128-point FFT computation: (i) number of stages (ii) number of

butterflies in each stage (iii) number of butterflies needed for the entire computation (iv)

number of butterflies that need no twiddle factors (v) number of butterflies that require real

twiddle factors (vi) number of butterflies that require complex twiddle factors. (MAY-JUNE

11)

DSP Algorithm and Architecture 15EC751

MODULE 5

Interfacing Memory & Parallel I/O Peripherals

to DSP Devices

7.1 Introduction: A typical DSP system has DSP with external memory, input devices and output

devices. Since the manufacturers of memory and I/O devices are not same as that of manufacturers of

DSP and also since there are variety of memory and I/O devices available, the signals generated by

DSP may not suit memory and I/O devices to be connected to DSP. Thus, there is a need for

interfacing devices the purpose of it being to use DSP signals to generate the appropriate signals for

setting up communication with the memory. DSP with interface is shown in fig. 7.1.

7.2 Memory Space Organization: Memory Space in TMS320C54xx has 192K words of 16 bits each.

Memory is divided into Program Memory, Data Memory and I/O Space, each are of 64K words. The

actual memory and type of memory depends on particular DSP device of the family. If the memory

available on a DSP is not sufficient for an application, it can be interfaced to an external memory as

depicted in fig. 7.2. The On- Chip Memory are faster than External Memory. There are no interfacing

requirements. Because they are on-chip, power consumption is less and size is small. It exhibits better

performance by DSP because of better data flow within pipeline. The purpose of such memory is to

hold Program / Code / Instructions, to hold constant data such as filter coefficients / filter order, also to

hold trigonometric tables / kernels of transforms employed in an algorithm. Not only constants are

stored in such memory, they are also used to hold variable data and intermediate results so that the

processor need not refer to external memory for the purpose.

DSP Algorithm and Architecture 15EC751

External memory is off-chip. They are slower memory. External Interfacing is required to

establish the communication between the memory and the DSP. They can be with large memory

space. The purpose is being to store variable data and as scratch pad memory. Program memory can be

ROM, Dual Access RAM (DARAM), Single Access RAM (SARAM), or a combination of all these.

The program memory can be extended externally to 8192K words. That is, 128 pages of 64K words

each. The arrangement of memory and DSP in the case of Single Access RAM (SARAM) and Dual

Access RAM (DARAM) is shown in fig. 7.3. One set of address bus and data bus is available in the

case of SARAM and two sets of address bus and data bus is available in the case of DARAM. The

DSP can thus access two memory locations simultaneously.

There are 3 bits available in memory mapped register, PMST for the purpose of on-chip

memory mapping. They are microprocessor / microcomputer mode. If this bit is 0, the on-chip ROM is

enabled and addressable and if this bit is 1 the on-chip ROM not available. The bit can be manipulated

by software / set to the value on this pin at system

DSP Algorithm and Architecture 15EC751

reset. Second bit is OVLY. It implies RAM Overlay. It enables on-chip DARAM data memory blocks

to be mapped into program space. If this bit is 0, on-chip RAM is addressable in data space but not in

Program Space and if it is 1, on-chip RAM is mapped into Program & Data Space. The third bit is

DROM. It enables on-chip DARAM 4-7 to be mapped into data space. If this bit is 0, on-chip

DARAM 4-7 is not mapped into data space and if this bit is 1, on-chip DARAM 4-7 is mapped into

Data Space. On-chip data memory is partitioned into several regions as shown in table 7.1. Data

memory can be onchip / off-chip.

The on-chip memory of TMS320C54xx can be both program & data memory. It enhances speed of

program execution by using parallelism. That is, multiple data access capability is provided for

concurrent memory operations. The number of operations in single memory access is 3 reads & one

write. The external memory to DSP can be interfaced with 16 -23 bit Address Bus, 16 bit Data Bus.

Interfacing Signals are generated by the DSP to refer to external memory. The signals required by the

memory are typically chip Select, Output Enable and Write Enable. For example, TMS320C5416 has

16K ROM, 64K DARAM and 64K SARAM.

Extended external Program Memory is interfaced with 23 address lines i.e., 8192K locations. The

external memory thus interfaced is divided into 128 pages, with 64K words per page.

7.3 : External Bus Interfacing Signals: In DSP there are 16 external bus interfacing signals. The

signal is characterized as single bit i.e., single line or multiple bits i.e., Multiple lines / bus. It can be

synchronous / asynchronous with clock. The signal can be

active low / active high. It can be output / input Signal. The signal carrying line / lines Can be

unidirectional / bidirectional Signal. The characteristics of the signal depend on

the purpose it serves. The signals available in TMS320C54xx are listed in table 7.2 (a) & table 7.2 (b).

DSP Algorithm and Architecture 15EC751

In external bus interfacing signals, address bus and data bus are multi-lines bus. Address bus is

unidirectional and carries address of the location refereed. Data bus is bidirectional and carries data to

or from DSP. When data lines are not in use, they are tri-stated. Data Space Select, Program Space

Select, I/O Space Select are meant for data space, program space or I/O space selection. These

interfacing signals are all active low. They are active during the entire operation of data memory /

program memory / I/O space reference. Read/Write Signal determines if the DSP is reading the

external device or writing.

Read/Write Signal is low when DSP is writing and high when DSP is reading. Strobe Interfacing

Signals, Memory Strobe and I/O Strobe both are active low. They remain low

during the entire read & write operations of memory and I/O operations respectively. External Bus

Interfacing Signals from 1-8 are all are unidirectional except Data Bus which is bidirectional. Address

Lines are outgoing signals and all other control signals are also outgoing signals.

DSP Algorithm and Architecture 15EC751

Data Ready signal is used when a slow device is to be interfaced. Hold Request and Hold

Acknowledge are used in conjunction with DMA controller. There are two Interrupt related signals:

Interrupt Request and Interrupt Acknowledge. Both are active low. Interrupt Request typically for data

exchange. For example, between ADC / another Processor. TMS320C5416 has 14 hardware interrupts

for the purpose of User interrupt, Mc-BSP, DMA and timer. The External Flag is active high,

asynchronous and outgoing control signal. It initiates an action or informs about the completion of a

transaction to the peripheral device. Branch Control Input is a active low, asynchronous, incoming

control signal. A low on this signal makes the DSP to respond or attend to the peripheral device. It

informs about the completion of a transaction to the DSP.

7.4 The Memory Interface: The memory is organized as several locations of certain number of bits.

The number of locations decides the address bus width and memory capacity. The number of bits per

locations decides the data bus width and hence word length. Each location has unique address. The

demand of an application may be such that memory capacity required is more than that available in a

memory IC. That means there are insufficient words in memory IC. Or the word length required may

be more than that is available in a memory IC. Thus, there may be insufficient word length. In both the

cases, more number of memory ICs are required.

Typical signals in a memory device are address bus to carry address of referred memory location. Data

bus carries data to or from referred memory location. Chip Select Signal selects one or more memory

ICs among many memory ICs in the system. Write Enable enables writing of data available on data

bus to a memory location. Output Enable signal enables the availability of data from a memory

DSP Algorithm and Architecture 15EC751

location onto the data bus. The address bus is unidirectional, carries address into the memory IC. Data

DSP Algorithm and Architecture 15EC751

bus is bidirectional. Chip Select, Write Enable and Output Enable control signals are active high or

low and they carry signals into the memory ICs. The task of the memory interface is to use DSP

signals and generate the appropriate signals for setting up communication with the memory. The

logical spacing of interface is shown in fig. 7.4.

The timing sequence of memory access is shown in fig. 7.5. There are two read operations, both

referring to program memory. Read Signal is high and Program Memory Select is low. There is one

Write operation referring to external data memory. Data Memory Select is low and Write Signal low.

Read and write are to memory device and hence memory strobe is low. Internal program memory

reads take one clock cycle and External data memory access require two clock cycles.

DSP Algorithm and Architecture 15EC751

Effects of ‘No decode’ interface are

• Fast memory Access

• ENTIRE Address space is used by the Device that is connected

• Memory responds to 0000-1FFFh and also to all combinations of address bits A13-

A19 (In the example quoted)

• Program space select & data space select lines are not used

• SRAM is thus indistinguishable as a program or data Memory

DSP Algorithm and Architecture 15EC751

7.5 Parallel I/O Interface: I/O devices are interfaced to DSP using unconditional I/O mode,

programmed I/O mode or interrupt I/O mode. Unconditional I/O does not require any handshaking

signals. DSP assumes the readiness of the I/O and transfers the data with its own speed. Programmed

I/O requires handshaking signals. DSP waits for the readiness of the I/O readiness signal which is one

of the handshaking signals. After the

completion of transaction DSP conveys the same to the I/O through another handshaking signal.

Interrupt I/O also requires handshaking signals. DSP is interrupted by the I/O indicating the readiness

DSP Algorithm and Architecture 15EC751

of the I/O. DSP acknowledges the interrupt, attends to the interrupt. Thus, DSP need not wait for the

I/O to respond. It can engage itself in execution as long as there is no interrupt.

7.6 : Programmed I /O interface: The timing diagram in the case of programmed I/O is shown in fig.

7.6. I/O strobe and I/O space select are issued by the DSP. Two clock cycles each are required for I/O

read and I/O write operations.

An example of interfacing ADC to DSP in programmed I/O mode is shown in fig. 7.7. ADC has a start

of conversion (SOC) signal which initiates the conversion. In programmed I/O mode, external flag

signal is issued by DSP to start the conversion. ADC issues end of conversion (EOC) after completion

of conversion. DSP receives Branch input control by ADC when ADC completes the conversion. The

DSP issues address of the ADC, I/O strobe and read / write signal as high to read the data. An address

decoder does the translation of this information into active low read signal to ADC. The data is

supplied on data bus by ADC and DSP reads the same. After reading,

DSP issues start of conversion once again after the elapse of sample interval. Note that

there are no address lines for ADC. The decoded address selects the ADC. During conversion, DSP

waits checking branch input control signal status for zero. The flow chart of the activities in

programmed I/O is shown in fig. 7.8.

DSP Algorithm and Architecture 15EC751

7.7 Interrupt I/O: This mode of interfacing I/O devices also requires handshaking signals. DSP is

interrupted by the I/O whenever it is ready. DSP Acknowledges the interrupt, after testing certain

conditions, attends to the interrupt. DSP need not wait for the I/O to respond. It can engage itself in

execution. There are a variety of interrupts. One of the classifications is maskable and nonmaskable. If

maskable, DSP can ignore when that interrupt is masked. Another classification is vectored and non-

vectored. If vectored, Interrupt Service subroutine (ISR) is in specific location. In Software Interrupt,

instruction is written in the program.

DSP Algorithm and Architecture 15EC751

In Hardware interrupt, a hardware pin, on the DSP IC will receive an interrupt by the external

device. Hardware interrupt is also referred to as external interrupt and software interrupt is referred to

as internal interrupt. Internal interrupt may also be due to execution of certain instruction can causing

interrupt. In TMS320C54xx there are total of 30 interrupts. Reset, Non-maskable, Timer Interrupt,

HPI, one each, 14 Software Interrupts, 4 External user Interrupts, 6 Mc-BSP related Interrupts and 2

DMA related Interrupts. Host Port Interface (HPI) is a 8 bit parallel port. It is possible to interface to a

Host Processor using HPI. Information exchange is through on-chip memory of DSP

which is also accessible Host processor.

Registers used in managing interrupts are Interrupt flag Register (IFR) and Interrupt Mask

Register (IMR). IFR maintains pending external & internal interrupts. One in any bit position implies

pending interrupt. Once an interrupt is received, the orresponding bit is set. IMR is used to mask or

unmask an interrupt. One implies that the corresponding interrupt is unmasked. Both these registers

are Memory Mapped Registers. One flag, Global enable bit (INTM), in ST1 register is used to enable

or disable all interrupts globally. If INTM is zero, all unmasked interrupts are enabled. If it is one, all

maskable interrupts are disabled.

When an interrupt is received by the DSP, it checks if the interrupt is maskable. If the interrupt

is non-maskable, DSP issues the interrupt acknowledgement and thus serves the interrupt. If the

interrupt is hardware interrupt, global enable bit is set so that no other interrupts are entertained by the

DSP. If the interrupt is maskable, status of the INTM is checked. If INTM is 1, DSP does not respond

to the interrupt and it continues with program execution. If the INTM is 0, bit in IMR register

corresponding to the interrupt is checked. If that bit is 0, implying that the interrupt is masked, DSP

does not respond to the interrupt and continues with its program execution. If the interrupt is

unmasked, then DSP issues interrupt acknowledgement. Before branching to the interrupt service

routine, DSP saves the PC onto the stack. The same will be reloaded after attending the interrupt so as

to return to the program that has been interrupted. The response of DSP to an Interrupt is shown in

flow chart in fig. 7.9.

DSP Algorithm and Architecture 15EC751

7.8 : Direct Memory Access (DMA) operation: In any application, there is data transfer

between DSP and memory and also DSP and I/O device, as shown in fig. 7.10. However, there may be

need for transfer of large amount of data between two memory regions or between memory and I/O.

DSP can be involved in such transfer, as shown in fig. 7.11. Since amount of data is large, it will

engage DSP in data transfer task for a long time. DSP thus will not get utilized for the purpose it is

meant for, i.e., data manipulation. The intervention of DSP has to be avoided for two reasons: to

utilize DSP for useful signal processing task and to increase the speed of transfer by direct data

transfer between memory or memory and I/O. The direct data transfer is referred to as direct memory

access (DMA). The arrangement expected is shown in fig. 7.12. DMA controller helps in data transfer

instead of DSP.

DSP Algorithm and Architecture 15EC751

In DMA, data transfer can be between memory and peripherals which are either internal

or external devices. DMA controller manages DMA operation. Thus DSP is relieved of the task of

data transfer. Because of direct transfer, speed of transfer is high. In TMS320C54xx, there are up to 6

independent programmable DMA channels. Each channel is between certain source & destination.

One channel at a time can be used for

DSP Algorithm and Architecture 15EC751

data transfer and not all six simultaneously. These channels can be prioritized. The speed of transfer

measured in terms of number of clock cycles for one DMA transfer depends on several factors such as

source and destination location, external interface conditions, number of active DMA channels, wait

states and bank switching time. The time for data transfer between two internal memory is 4 cycles for

each word.

Requirements of maintaining a channel are source & Destination address for a channel,

separately for each channel. Data transfer is in the form of block, with each block having frames of 16

/ 32 bits. Block size, frame size, data are programmable. Along with these, mode of transfer and

assignment of priorities to different channels are also to be maintained for the purpose of data transfer.

There are five, channel context registers for each DMA channel. They are Source

Address Register (DMSRC), Destination Address Register (DMDST), Element Count Register

(DMCTR), Sync select & Frame Count register (DMSFC), Transfer Mode Control Register

(DMMCR). There are four reload registers. The context register DMSRC & DMDST are source &

destination address holders. DMCTR is for holding number of data elements in a frame. DMSFC is to

convey sync event to use to trigger DMA transfer, word size for transfer and for holding frame count.

DMMCR Controls transfer mode by specifying source and destination spaces as program memory,

data memory or I/O space. Source address reload & Destination address reload are useful in

reloading source address and destination address. Similarly, count reload and frame count reload are

used in reloading count and frame count. Additional registers for DMA that are common to all

channels are Source Program page address, DMSRCP, Destination Program page address, DMDSTP,

Element index address register, Frame index address register.

Number of memory mapped registers for DMA are 6x(5+4) and some common registers

for all channels, amounting to total of 62 registers required. However, only 3 (+1 for priority related)

are available. They are DMA Priority & Enable Control Register (DMPREC), DMA sub bank Address

Register (DMSA), DMA sub bank Data Register with auto increment (DMSDI) and DMA sub bank

Data Register (DMSDN). To access each of the DMA Registers Register sub addressing Technique is

employed. The schematic of the arrangement is shown in fig. 7.13. A set of DMA registers of all

channels (62) are made available in set of memory locations called sub bank. This voids the need for

62 memory mapped registers. Contents of either DMSDI or DMSDN indicate the code (1’s & 0’s) to

be written for a DMA register and contents of DMSA refers to the unique sub address of DMA

register to be accessed. Mux routes either DMSDI or DMSDN to the sub bank. The memory location

to be written

DSP Algorithm and Architecture 15EC751

DMSDI is used when an automatic increment of the sub address is required after each access. Thus it

can be used to configure the entire set of registers. DMSDN is used when single DMA register access

is required. The following examples bring out clearly the method of accessing the DMA registers and

transfer of data in DMA mode.

Recommended Questions:

1. Explain an interface between an A/D converter and the TMS320C54XX processor in the

programmed I/O mode.

2. Describe DMA with respect to TMS320C54XX processors.

3. Drew the timing diagram for memory interface for read-read-write sequence of operation.

Explain the purpose of each signal involved.

4. Explain the memory interface block diagram for the TMS 320 C54xx processor.

5. Draw the I/O interface timing diagram for read – write read sequence of operation.

6. What are interrupts? How interrupts are handled by C54xx DSP Processors.

DSP Algorithm and Architecture 15EC751

7. Explain the memory interface block diagram for the TMS 320 C54xx processor.

8. Draw the I/O interface timing diagram for read – write read sequence of operation.

9. What are interrupts? How interrupts are handled by C54xx DSP Processors.

10. Design a data memory system with address range 000800h – 000fffh for a c5416 processor

using 2kx8 SRAM memory chips.

11. Design a data memory system with address range 000800h – 000fffh for a c5416 processor

using 2kx8 SRAM memory chips. (MAY-JUNE 10, 6m)

12. Explain an interface between an A/D converter and the TMS320C54XX processor in the

programmed I/O mode. . (JUNE 12, 10m)

13. Describe DMA with respect to TMS320C54XX processors. (June/July 11, 10m)

14. Drew the timing diagram for memory interface for read-read-write sequence of operation.

Explain the purpose of each signal involved.(June/July 11, 10m)

15. Explain the memory interface block diagram for the TMS 320 C54xx processor.(Dec 2010)

16. Draw the I/O interface timing diagram for read – write read sequence of operation (Dec 2010)

17. What are interrupts? How interrupts are handled by C54xx DSP Processors. (Dec 2010,12)

18. What are interrupts? What are the classes of interrupts available in the TMS320C54xx

processor. (JUNE/July 11, 8m)

DSP Algorithm and Architecture 15EC751

Interfacing and Applications of DSP Processor

8.1 Introduction: In the case of parallel peripheral interface, the data word will be transferred with all

the bits together. In addition to parallel peripheral interface, there is a

need for interfacing serial peripherals. DSP has provision of interfacing serial devices too.

8.2 Synchronous Serial Interface: There are certain I/O devices which handle transfer

of one bit at a time. Such devices are referred to as serial I/O devices or peripherals. Communication

with serial peripherals can be synchronous, with processor clock as reference or it can be

asynchronous. Synchronous serial interface (SSI) makes communication a fast serial communication

and asynchronous mode of communication is slow serial communication. However, in comparison

with parallel peripheral interface,

the SSI is slow. The time taken depends on the number of bits in the data word.

8.3 CODEC Interface Circuit: CODEC, a coder-decoder is an example for synchronous serial I/O. It

has analog input-output, ADC and DAC. The signals in SSI generated by the DSP are DX: Data

Transmit to CODEC, DR: Data Receive from CODEC, CLKX: Transmit data with this clock

reference, CLKR: Receive data with this clock reference, FSX: Frame sync signal for transmit, FSR:

Frame sync signal for receive, First bit, during transmission or reception, is in sync with these signals,

RRDY: indicator for receiving all bits of data and XRDY: indicator for transmitting all bits of data.

Similarly, on the CODEC side, signals are FS*: Frame sync signal, DIN: Data Receive from DSP,

DOUT: Data Transmit to DSP and SCLK: Tx / Rx data with this clock reference. The block diagram

depicting the interface between TMS320C54xx and CODEC is shown in fig. 8.1. As only one signal

each is available on CODEC for clock and frame synchronization, the related DSP side signals are

connected together to clock and frame sync signals on CODEC. Fig. 8.2 and fig. 8.3 show the timings

for receive and transmit in SSI, respectively.

DSP Algorithm and Architecture 15EC751

As shown, the receiving or transmit activity is initiated at the rising edge of clock, CLKR

/ CLKX. Reception / Transfer starts after FSR / FSX remains high for one clock cycle. RRDY /

XRDY is initially high, goes LOW to HIGH after the completion of data transfer. Each transfer of bit

requires one clock cycle. Thus, time required to transfer / receive data word depends on the number of

bits in the data word. An example of data word of 8 bits is shown in the fig. 8.2 and fig. 8.3.

DSP Algorithm and Architecture 15EC751

Fig. 8.4 shows the block diagram of PCM3002 CODEC. Analog front end samples signal at 64X over

sampling rate. It eliminates need for sample-and-hold circuit and simplifies need for anti aliasing filter.

ADC is based on Delta-sigma modulator to convert analog signal to digital form. Decimation filter

reduces the sampling rate and thus processing does not need high speed devices. DAC is Delta-sigma

modulator, converts digital signal to analog signal. Interpolation increases the sampling rate back to

original value. LPF smoothens the analog reconstructed signal by removing high frequency

components. The Serial Interface monitors serial data transfer. It accepts built-in ADC output and

converts to serial data and transmits the same on DOUT. It also accepts serial data on DIN & gives the

DSP Algorithm and Architecture 15EC751

same to DAC. The serial interface works in synchronization with BCLKIN & LRCIN. The Mode

Control initializes the serial data transfer. It sets all the desired modes, the number of bits and the

mode Control Signals, MD, MC and ML. MD carries Mode Word. MC is the mode Clock Signal. MD

to be loaded is sent with reference to this clock. ML is the mode Load Signal. It defines start and end

of latching bits into CODEC device.

Figure 8.5 shows interfacing of PCM3002 to DSP in DSK. DSP is connected to PCM3002 through

McBSP2. The same port can be connected to HPI. Mux selects one among these two based on CPLD

signal. CPLD in Interface also provides system clock for DSP and for CODEC, Mode control signals

for CODEC. CPLD generates BCLKIN and LRCIN signals required for serial interface.

PCM3002 CODEC handles data size of 16 / 20 bits. It has 64x over-sampling, delta-sigma ADC &

DAC. It has two channels, called left and right. The CODEC is programmable for digital de-emphasis,

digital attenuation, soft mute, digital loop back, power-down mode. System clock, SYSCLK of

CODEC can be 256fs, 384fs or 512fs. Internal clock is always 256fs for converters, digital filters.

DIN, DOUT are the single line data lines to carry the data into the CODEC and from CODEC.

Another signal BCLKIN is data bit clock, the default value of which is CODEC SYSCLK / 4. LRCIN

is frame sync signal for Left and Right Channels. The frequency of this signal is same as the sampling

DSP Algorithm and Architecture 15EC751

frequency. The default divide factor can be 2, 4, 6 and 8. Thus, sampling rate is minimum of 6 KHz

and maximum of 48 KHz.

Problem P8.1: A PCM3002 is programmed for the 12 KHz sampling rate. Determine the divisor N

that should be written to the CPLD of the DSK and the various clock frequencies for the set up.

Solution: CPLD input Clock=12.288MHz (known)

Sampling rate fs=CODEC_SYSCLK / 256 =12KHz (given)

CPLD output clock, CODEC_SYSCLK =12.288 x 106 / N

Thus, CODEC_SYSCLK =256 x 12 KHz

& N=12.288 x 106/(256 x 12 x 103)

= 4

Problem P8.3: Frame Sync is generated by dividing the 8.192MHz clock by 256 for the

serial communication. Determine the sampling rate and the time a 16 bit sample takes when

transmitted on the data line.

Solution: LRCIN, Frame Sync = 8.192x106/256 =32 KHz

Sampling rate fs= frequency of LRCIN=32 KHz

BCLKIN, Bit clock rate=CODEC_SYSCLK / 4=8.192x106/4=2.048MHz

LRCIN, Frame Sync = 8.192x10^6/256 =32 KHz

Sampling rate fs= frequency of LRCIN=32 KHz

BCLKIN, Bit clock rate=CODEC_SYSCLK / 4=8.192x10^6/4=2.048MHz

Bit clock period= 1/2.048x10^6 =0.488x10^-6s

Time for transmitting 16 bits =0.488x10^-6x16 =7.8125x10^-6s (refer fig. P8.3)

DSP Algorithm and Architecture 15EC751

The CODEC PCM3002 supports four data formats as listed in table 8.1. The four data formats depend

on the number of bits in the data word, if the data is right justified or left justified with respect to

LRCIN and if it is I2S (Integrated Inter-chip Sound) format.

Figure 8.6 and fig. 8.7 depicts the data transaction for CODEC PCM3002. As shown in fig. 8.6, DIN (/

DOUT) carries the data. BCLKIN is the reference for transfer. When LRCIN is high, left channel

inputs (/ outputs) the data and when LRCIN is low, right channel inputs (/ outputs) the data. The data

bits at the end (/ beginning) of the LRCIN thus Right (/ left) justified.

Another data format handled by PCM3002 is I2S (Integrated Inter-chip Sound). It is used for

transferring PCM between CD transport & DAC in CD player. LRCIN is low for left channel and high

for right channel in this mode of transfer. During the first BCKIN, there is no transmission by ADC.

During 2nd BCKIN onwards, there is transmission with MSB first and LSB last. Left channel data is

handled first followed by right channel data.

DSP Algorithm and Architecture 15EC751

8.4 DSP Based Bio-telemetry Receiver: Biotelemetry involves transfer of physiological

information from one remote place to another for the purpose of obtaining experts opinion. The

receiver uses radio Frequency links. The schematic diagram of biotelemetry receiver is shown in fig.

8.8. The biological signals may be single dimensional signals such as ECG and EEG or two

dimensional signals such as an image, i.e., X-ray. Signal can even be multi dimensional signal i.e., 3D

picture. The signals at source are encoded, modulated and transmitted. The signals at destination are

decoded, demodulated and analyzed.

An example of processing ECG signal is considered. The scheme involves modulation of ECG signal

by employing Pulse Position Modulation (PPM). At the receiving end, it is

demodulated. This is followed by determination of Heart beat Rate (HR). PPM Signal either encodes

single or multiple signals. The principle of modulation being that the position of pulse decides the

sample value.

DSP Algorithm and Architecture 15EC751

The PPM signal with two ECG signals encoded is shown in fig. 8.9. The transmission requires a sync

signal which has 2 pulses of equal interval to mark beginning of a cycle.

The sync pulses are followed by certain time gap based on the amplitude of the sample of 1st signal to

be transmitted. At the end of this time interval there is another pulse. This is again followed by time

gap based on the amplitude of the sample of the 2nd signal to be transmitted. After encoding all the

samples, there is a compensation time gap followed by sync pulses to mark the beginning of next set

of samples. Third signal may be encoded in either of the intervals of 1st or 2nd signal. With two

signals encoded and the pulse width as tp, the total time duration is 5tp.

each pullse iinttervall

tt1:: pullse iinttervall correspondiing tto samplle vallue of 1stt siignall

tt2:: pullse iinttervall correspondiing tto samplle vallue of 2nd siignall

tt3:: compensattiion ttiime iinttervall

Fig. 8.9: A PPM signal with two ECG signals

Since the time gap between the pulses represent the sample value, at the receiving end the time gap has

to be measured and the value so obtained has to be translated to sample value. The scheme for

decoding is shown in fig. 8.10. DSP Internal Timer employed. The pulses in PPM generate interrupt

signals for DSP. The interrupt start / terminate the timer.

The count in the timer is equivalent to the sample value that has been encoded. Thus, ADC is avoided

while decoding the PPM signal.

DSP Algorithm and Architecture 15EC751

A DSP based PPM signal decoding is shown in fig. 8.11. PPM signal interface generates the interrupt

for DSP. DSP entertains the interrupt and starts a timer. When it receives another interrupt, it stops the

timer and the count is treated as the digital equivalent of the sample value. The process repeats. Dual

DAC converts two signals encoded into analog signals. And heart rate is determined referring to the

ECG obtained by decoding

Heart Rate (HR) is a measure of time interval between QRS complexes in ECG signal. QRS complex

in ECG is an important segment representing the heart beat. There is periodicity in its appearance

indicating the heart rate. The algorithm is based on 1st and 2nd order absolute derivatives of the ECG

signal. Since absolute value of derivative is taken, the filter will be a nonlinear filtering.

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 178

Mean of half of peak amplitudes is determined, which is threshold for detection of QRS complex.

QRS interval is then the time interval between two such peaks. Time Interval between two peaks is

determined using internal timer of DSP. Heart Rate, heart beat perminute is computed using the

relation HR=Sampling rate x 60 / QRS interval. The signals at various stages are shown in fig. 8.12.

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 179

8.5 A Speech Processing System: The purpose of speech processing is for analysis, transmission or

reception as in the case of radio / TV / phone, denoising, compression and so on. There are various

applications of speech processing which include identification and verification of speaker, speech

synthesis, voice to text conversion and

vice versa and so on. A speech processing system has a vocoder, a voice coding / decoding circuit.

Schematic of speech production is shown in fig. 8.13. The vocal tract has vocal cord at one end and

mouth at the other end. The shape of the vocal tract depends on position of lips, jaws, tongue and the

velum. It decides the sound that is produced. There is another tract, nasal tract. Movement of velum

connects or disconnects nasal tract. The overall voice that sounds depends on both, the vocal tract and

nasal tract.

Two types of speech are voiced sound and unvoiced sound. Vocal tract is excited with quasi periodic

pulses of air pressure caused by vibration of vocal cords resulting in voiced sound. Unvoiced sound is

produced by forcing air through the constriction, formed somewhere in the vocal tract and creating

turbulence that produces source of noise to excite the vocal tract.

By the understanding of speech production mechanism, a speech production model representing the

same is shown in fig. 8.14. Pulse train generator generates periodic pulse train. Thus it represents the

voiced speech signal. Noise generator represents unvoiced speech. Vocal tract system is supplied

either with periodic pulse train or noise. The final output is the synthesized speech signal.

Sequence of peaks occurs periodically in voiced speech and it is the fundamental frequency of speech.

The fundamental frequency of speech differs from person to person and hence sound of speech differs

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 180

from person to person. Speech is a non stationary signal. However, it can be considered to be

relatively stationary in the intervals of 20ms. Fundamental frequency of speech can be determined by

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 181

autocorrelation method. In other words, it is a method of determination of pitch period. Periodicity in

autocorrelation is because of the fundamental frequency of speech. A three level clipping scheme is

discussed here to measure the fundamental frequency of speech. The block diagram for the same is

shown in fig. 8.15.

The speech signal s(t) is filtered to retain frequencies up to 900Hz and sampled using ADC to get s(n).

The sampled signal is processed by dividing it into set of samples of 30ms duration with 20ms overlap

of the windows. The same is shown in fig. 8.16.

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 182

A threshold is set for three level clipping by computing minimum of average of absolute values of 1st

100 samples and last 100 samples. The scheme is shown in fig. 8.17.

The transfer characteristics of three level clipping circuit is shown in fig. 8.18. If the sample value is

greater than +CL, the output y(n) of the clipper is set to 1. If the sample value is more negative than -

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 183

CL, the output y(n) of the clipper is set to -1. If the sample value is between –CL and +CL, the output

y(n) of the clipper is set to 0.

The autocorrelation of y(n) is computed which will be 0,1 or -1 as defined by eq (1). The largest peak

in autocorrelation is found and the peak value is compared to a fixed threshold. If the peak value is

below threshold, the segment of s(n) is classified as unvoiced segment. If the peak value is above

threshold, the segment of s(n) is classified

as voiced segment. The functioning of autocorrelation is shown in fig. 8.19.

As shown in fig. 8.19, A is a sample sequence y(n). B is a window of samples of length N and it is

compared with the N samples of y(n). There is maximum match. As the window is moved further, say

to a position C the match reduces. When window is moved further say to a position D, again there is

maximum match. Thus, sequence y(n) is periodic. The period of repetition can be measured by

locating the peaks and finding the time gap between them.

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 184

8.5 An Image Processing System: In comparison with the ECG or speech signal considered so far,

image has entirely different requirements. It is a two dimensional signal. It can be a color or gray

image. A color image requires 3 matrices to be maintained for three primary colors-red, green and

blue. A gray image requires only one

matrix, maintaining the gray information of each pixel (picture cell). Image is a signal with large

amount of data. Of the many processing, enhancement, restoration, etc., image compression is one

important processing because of the large amount of data in image.

To reduce the storage requirement and also to reduce the time and band width required to transmit the

image, it has to be compressed. Data compression of the order of factor 50 is sometimes preferred.

JPEG, a standard for image compression employs lossy compression technique. It is based on discrete

cosine transform (DCT). Transform domain compression separates the image signal into low

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 185

frequency components and high frequency components. Low frequency components are retained

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 186

because they represent major variations. High frequency components are ignored because they

represent minute variations and our eye is not sensitive to minute variations.

Image is divided into blocks of 8 x 8. DCT is applied to each block. Low frequency coefficients are of

higher value and hence they are retained. The amount of high frequency components to be retained is

decided by the desirable quality of reconstructed image. Forward DCT is given by eq (2).

Since the coefficients values may vary with a large range, they are quantized. As already noted low

frequency coefficients are significant and high frequency coefficients are insignificant, they are

allotted varying number of bits. Significant coefficients are quantized precisely, with more bits and

insignificant coefficients are quantized coarsely,

with fewer bits. To achieve this, a quantization table as shown in fig. 8.20 is employed. The contents

of Quantization Table indicate the step size for quantization. An entry as smaller value implies smaller

step size, leading to more bits for the coefficients and vice

versa.

The quantized coefficients are coded using Huffman coding. It is a variable length coding Huffman

Encoding. Shorter codes are allotted for frequently occurring long sequence of 1’s & 0’s. Decoding

requires Huffman table and dequantization table. Inverse DCT is taken employing eq(3). The data

blocks so obtained are combined to form complete image. The schematic of encoding and decoding is

shown in fig. 8.21.

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 187

Recommended Questions:

1. With the help of a block diagram, explain the image compression and reconstruction using

JPEG encoder and decoder.

2. Write a pseudo algorithm heart rate(HR), using the digital signal processor.

3. Explain briefly the building blocks of a PCM3002 CODEC device. What do you understand by

a DSP based biotelemetry receiver?

4. With the help of block diagram explain JPEG algorithm.

5. Explain with the neat diagram the operation of pitch detector.

6. Explain with a neat diagram, the synchronous serial interface between the C54xx and a

CODEC device. Explain the operation of pulse position modulation (PPM) to encode two

biomedical signals.

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 188

7. Explain with a neat block diagram the operation, the operation of the pitch detector.

DSP Algorithm and Architecture 15EC751

Dept. of ECE, ATME College of Engg., Mysuru Page 189

8. Explain PCM3002 CODEC, with the help of neat block diagram.

9. Explain DSP based biotelemetry receiver system, with the help of a block schematic diagram.

10. Explain the memory interface block diagram for the TMS 320 C54xx processor.(Dec 2010)

11. Draw the I/O interface timing diagram for read – write read sequence of operation (Dec 2010)

12. What are interrupts? How interrupts are handled by C54xx DSP Processors. (Dec 2010,12)

13. What are interrupts? What are the classes of interrupts available in the TMS320C54xx

processor. (JUNE/July 11, 8m)

