DSP Algorithms and Architecture 15EC751

MODULE 1

Introduction to Digital Signal Processing

1.1 What is DSP?

DSP is a technique of performing the mathematical operations on the signals in digital domain.
As real time signals are analog in nature we need first convert the analog signal to digital, then we
have to process the signal in digital domain and again converting back to analog domain. Thus ADC is
required at the input side whereas a DAC is required at the output end. A typical DSP system is as
shown in figure 1.1.

Input
Signal

Fig 1.1: A Typical DSP System

1.2 Need for DSP

Analog signal Processing has the following drawbacks:

They are sensitive to environmental changes

Aging

Uncertain performance in production units

Variation in performance of units

Cost of the system will be high

Scalability

If Digital Signal Processing would have been used we can overcome the above shortcomings of ASP.

YVVVYVYYY

1.3 A Digital Signal Processing System

A computer or a processor is used for digital signal processing. Anti aliasing filter is a LPF
which passes signal with frequency less than or equal to half the sampling frequency in order to avoid
Aliasing effect. Similarly at the other end, reconstruction filter is used to reconstruct the samples from
the staircase output of the DAC (Figure 1.2).

Antialiasing | ADC DSP o DAC) Antialiasing |
Filter Filter

Fig 1.2 The Block Diagram of a DSP System

Dept. of ECE., ATME, Mysuru Page 1

DSP Algorithms and Architecture 15EC751

Signals that occur in a typical DSP are as shown in figure 1.3.

0.5 T T T T /
(a) 193
0 1 1] 1 I 1 1
0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0
0.5 T T T T T T T 5
i) 1].193 T
O(L] | L
0.1 0.15 0.2)
0.5 : : 0 ?5 0.13 0.?'»5 0'.4 0.'45 0.)5
\
© 193 @
(
0) 1 1 1 1
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5 T T T T T T T D
(d) 2 T
0) 1 ? L 1 |
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5 T T T T T T T
|
(€) 2 l
|
0 1 | 3 | 1 | 1
0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

Fig 1.3: (a) Continuous time signal

Dept. of ECE., ATME, Mysuru

(d) Quantized Signal

(b) Sampled Signal
(e) DAC Output

(c) Sampled Data Signal

Page 2

DSP Algorithms and Architecture

1.4 The Sampling Process

15EC751

ADC process involves sampling the signal and then quantizing the same to a digital value. In

order to avoid Aliasing effect, the signal has to be sampled at a rate at least equal to the Nyquist rate.
The condition for Nyquist Criterion is as given below, fs= 1/T [112 fm

Where, fs is the sampling frequency, fm is the maximum frequency component in the message

signal. If the sampling of the signal is carried out with a rate less than the Nyquist rate, the higher

frequency components of the signal cannot be reconstructed properly. The plots of the reconstructed

outputs for various conditions are as shown in figure 1.4.

undersampling plat

0.01

0.015

00

3

0.02%5
Nyguist plot
& s 'I + &

0.03

L i % 3 ' + & &L & i

045
| I
0 i '
| |
|
05+ 1
‘1 T L7 ‘I‘_I_T T T L ‘I‘_I_‘I‘ T T ¥ T l T L3 T ‘I‘_I_T T T L F
0 0005 0.0 0.015 002 0025 003 0035 0.04 0.045

4

Oversampling plot

amplitude

— original
—+ reconstructed

001

oo

00

T

timie

0|

T 0%

Fig 1.4 Verification of Sampling Theorem

Dept. of ECE., ATME, Mysuru

Page 3

DSP Algorithms and Architecture 15EC751

1.5 Discrete Time Sequences

Sampling Interval T, in the above equation replacing t by n'T we get, , (i1) = A cos(2fnT)

where n=0,1, 2,..etc

For simplicity denote x (nT) as x (n)
» X (n) = A cos 2nfnT) where n= 0,1, 2,..ectc. We have fs=1/T also 6=T
>

> alled as digital frequency.
0 = 2nfT = 2nf/fs radians

& =iN)
1

e
ape

Fig 1.5 A Cosine Waveform

A sequence that repeats itself after every period N is called a periodic sequence.

Consider a periodic sequence x (n) with period N x (n)=x (n+N) n=........ ,-1,0,1,2,........
Frequency response gives the frequency domain equivalent of a discrete time sequence. It is denoted
as X(e®*=Yx(n) e

Frequency response of a discrete sequence involves both magnitude response and phase response.
1.6 Discrete Fourier Transform and Fast Fourier Transform

1.6.1 DFT Pair:

DFT is used to transform a time domain sequence x (n) to a frequency domain sequence X
(K).The equations that relate the time domain sequence x (n) and the corresponding frequency domain
sequence X (K) are called DFT Pair and is given by,

Dept. of ECE., ATME, Mysuru Page 4

DSP Algorithms and Architecture 15EC751

DEFT(FFT):

X (k)= Ex(ﬂ}-e_J[F]M(k = 0L N-1)

IDET(FFT):

2k

(H = 0717---: N_l)

- L5 .
xin)=—> Alkne
v

1.6.2 The Relationship between DFT and Frequency Response:

We have,
410 _ _
X (e J%)=Xx(n) e-In°
Also
X (K)=Xx(n) e-)27nkN
= X (K)= X (e % at 6 = 27k/N

From the above expression it is clear that we can use DFT to find the Frequency response of a
discrete signal. Spacing between the elements of X(k) is given as [1f=fs/N=1/NT=1/T0.Where TO is
the signal record length.

It is clear from the expression of [If that, in order to minimize the spacing between the
samples N has to be a large value. Although DFT is an efficient technique of obtaining the frequency
response of a sequence, it requires more number of complex operations like additions and
multiplications.

Thus many improvements over DFT were proposed. One such technique is to use the
periodicity property of the twiddle factor e . THo$¥ algorithms were called as Fast Fourier Transform
Algorithms. The following table depicts the complexity involved in the computation using DFT
algorithms.

FFT algorithms are classified into two categories via
1. Decimation in Time FFT
2. Decimation in Frequency FFT

Dept. of ECE., ATME, Mysuru Page 5

15EC751

DSP Algorithms and Architecture

Table 1.1 Complexity in DFT algorithm

Operations

Number of Computations

2

Complex Multiplications N*
Complex Additions N (N-1)
Real Multiplications 4N
Real Additions 2N (2N-1)
Trigonometric Functions N?

In decimation in time FFT the sequence is divided in time domain successively till we reach
the sequences of length 2. Whereas in Decimation in Frequency FFT, the sequence X(K) is divided
successively. The complexity of computation will get reduced considerably in case of FFT algorithms.

1.7 Linear Time Invariant Systems

A system which satisfies superposition theorem is called as a linear system and a system that
has same input output relation at all times is called a Time Invariant System. Systems, which satisfy
both the properties, are called LTI systems.

Table 1.1 Complexity in DFT algorithm

Operations

Number of Computations

Complex Multiplications N*
Complex Additions N (N-1)
Real Multiplications 4N?
Real Additions 2N (2N-1)
Trigonometric Functions IN?

Dept. of ECE., ATME, Mysuru

Page 6

DSP Algorithms and Architecture 15EC751

[nput .| LTI System . Output
X (n) y(n)

Fig 1.6 An LTI System

LTI systems are characterized by its impulse response or unit sample response in time domain whereas
it is characterized by the system function in frequency domain.

1.7.1 Convolution
Convolution is the operation that relategl,ghg) iﬂ@yt output of an LTI system, to its unit sample

response. The output of the system y(n) for the input x (n) and the impulse response of the system
being h (n) is givenas 'y (n) =x(n) * h(n) =3 -k), x(n) is the input of the system, h(n) is the
impulse response of the system, y(n) is the output of the system.

1.7.2 Z Transformation
Z Transformations are used to find the frequency response of the system. The Z Transform for
a discrete sequence x (n) is given by, X(Z)=Yx(n) z"

1.7.3 The System Function
An LTI system is characterized by its System function or the transfer function. The system

function of a system is the ratio of the Z transformation of its output to that of its input. It is denoted as
H (Z) and is given by H (Z2) =Y (2)/ X (2).

The magnitude and phase of the transfer function H (Z) gives the frequency response of the
system. From the transfer function we can also get the poles and zeros of the system by solving its
numerator and denominator respectively.

1.8 Digital Filters
Filters are used to remove the unwanted components in the sequence. They are characterized

by the impulse response h (n). The general difference equation for an Nth order filter is given by

y (n) =" Yaky(n-k)+ > Obk x(n-k)
A typical digital filter structure is as shown in figure 1.7.

Dept. of ECE., ATME, Mysuru Page 7

DSP Algorithms and Architecture 15EC751

Fig 1.7 Structure of a Digital Filter

Values of the filter coefficients vary with respect to the type of the filter. Design of a digital filter
involves determining the filter coefficients. Based on the length of the impulse response, digital filters
are classified into two categories via Finite Impulse Response (FIR) Filters and Infinite Impulse
Response (1IR) Filters.

1.8.1 FIR Filters

FIR filters have impulse responses of finite lengths. In FIR filters the present output depends
only on the past and present values of the input sequence but not on the previous output sequences.
Thus they are non-recursive hence they are inherently stable. FIR filters possess linear phase response.
Hence they are very much applicable for the applications requiring linear phase response.
The difference equation of an FIR filter is represented as

y (n) = X bgx(n-k)
The frequency response of an FIR filter is given as
H (e ®)=Xby e-Jk®

H (Z)=Zby Z-k

The major drawback of FIR filters is, they require more number of filter coefficients to realize a
desired response as compared to IIR filters. Thus the computational time required will also be more.

1.8.2 1IR Filters

Unlike FIR filters, 1IR filters have infinite number of impulse response samples. They are
recursive filters as the output depends not only on the past and present inputs but also on the past
outputs. They generally do not have linear phase characteristics. Typical system function of such

Dept. of ECE., ATME, Mysuru Page 8

DSP Algorithms and Architecture 15EC751

filters is given by,
H (Z) = (bp+bjz- 1+bgz-2+ hLZ'L) /(l-a1z” 1—5122‘2— thZ‘N)

Stability of IIR filters depends on the number and the values of the filter coefficients. The major
advantage of IIR filters over FIR is that, they require lesser coefficients compared to FIR filters for the
same desired response, thus requiring less computation time.

1.8.3 FIR Filter Design
Frequency response of an FIR filter is given by the following expression,

H (e %) =2bi e-Jk®

Design procedure of an FIR filter involves the determination of the filter coefficients bk.
bk = (1/27) [H (e 1°) e-1K® g0

1.8.4 1IR Filter Design

IIR filters can be designed using two methods viz using windows and direct method. In this
approach, a digital filter can be designed based on its equivalent analog filter. An analog filter is
designed first for the equivalent analog specifications for the given digital specifications. Then using
appropriate frequency transformations, a digital filter can be obtained. The filter specifications consist
of passband and stopband ripples in dB and Passband and Stopband frequencies in rad/sec.

Dept. of ECE., ATME, Mysuru Page 9

DSP Algorithms and Architecture 15EC751

Magnitude
(dB)

Passband
Ripple
stopband \
Attenuation |—
- e
— s =

Transition Frequency
Width

Fig 1.11 Lowpass Filter Specifications

Direct IIR filter design methods are based on least squares fit to a desired frequency response. These
methods allow arbitrary frequency response specifications.

1.9 Decimation and Interpolation

Decimation and Interpolation are two techniques used to alter the sampling rate of a sequence.
Decimation involves decreasing the sampling rate without violating the sampling theorem whereas
interpolation increases the sampling rate of a sequence appropriately by considering its neighboring
samples.

1.9.1 Decimation
Decimation is a process of dropping the samples without violating sampling theorem. The

factor by which the signal is decimated is called as decimation factor and it is denoted by M. It is
given by,
y(m)=w(mM)=E b x(mM-k) where w(n)= X bj x(n-k)

X () Digital Low W (n) Down y (n)
—— | Pass Filter » Sampler ——

Fig 1.12 Decimation Process

Dept. of ECE., ATME, Mysuru Page 10

DSP Algorithms and Architecture

1.9.2 Interpolation

15EC751

Interpolation is a process of increasing the sampling rate by inserting new samples in between.
The input output relation for the interpolation, where the sampling rate is increased by a factor L, is

given as,
y(m)= X by w(m-k)

where w(n)= x(m/L), m=0,+L, +2L.......

0 Otherwise
Incert
e P L-15 HZUMD
Leros
Zompling L

Frequency £

Problems:

Low poss
filter

Fig 1.13 Interpolation Process

1. Obtain the transfer function of the IIR filter whose difference equation is given by y (n)=

0.9y (n-1)+0.1x (n)
y (n)=0.9y (n-1)+0.1x (n)

Taking Z transformation both sides

Y (2)=09Z-1Y (2)+0.1X(2)
Y (2)[1-0.9 Z-1]= 0.1 X (2)

The transfer function of the system is given by the expression,

H (2)= Y(2)/X(2)
=0.1/[1-092Z1

Realization of the IIR filter with the above difference equation is as shown in figure.

0.1

x(n) %

0.9 —»

—

)

Unit
y(n-1) Delay

2. Letx(n)=[0369 12] be interpolated with L=3. If the filter coefficients of the

y(n)

DSP Algorithms and Architecture 15EC751

filters are bk=[1/3 2/3 1 2/3 1/3], obtain the interpolated sequence

After inserting zeros,

w(m)=[00030060090012]

bk=[1/3 2/3 1 2/3 1/3]

We have,

y(m)= bk w(m-K) = b-2 w(m+2)+ b-1 w(m+1)+ b0 w(m)+ b1l w(m-1)+ b2 w(m-2)
Substituting the values of m, we get

y(0)= b-2 w(2)+ b-1 w(1)+ b0 w(0)+ bl w(-1)+ b2 w(-2)=0
y(1)=b-2 w(3)+ b-1 w(2)+ b0 w(1)+ bl w(0)+ b2 w(-1)=1
y(2)=b-2 w(4)+ b-1 w(3)+ b0 w(2)+ b1 w(1)+ b2 w(0)=2
Similarly we get the remaining samples as,
y(n)=[0123456789101112]

Recommended Questions

1 Explain with the help of mathematical equations how signed numbers can be
multiplied. The sequence x(n) = [3,2,-2,0,7].1t is interpolated using interpolation
sequence bk=[0.5,1,0.5] and the interpolation factor of 2. Find the interpolated
sequence y(m).

2. An analog signal is sampled at the rate of 8KHz. If 512 samples of this signal are used
to compute DFT X(k) determine the analog and digital frequency spacing between
adjacent X(kO elements. Also, determine analog and digital frequencies corresponding
to k=60.

3. With a neat diagram explain the scheme of the DSP system.

4. What is DSP? What are the important issues to be considered in designing and
implementing a DSP system? Explain in detail.

5 Why signal sampling is required? Explain the sampling process.

6. Define decimation and interpolation process. Explain them using block diagrams and
equations. With a neat diagram explain the scheme of a DSP system.

7. With an example explain the need for the low pass filter in decimation process.

8 For the FIR filter y(n)=(x(n)+x(n-1)+x(n-2))/3. Determine i) System Function ii)
Magnitude and phase function iii) Step response iv) Group Delay.

9. List the major architectural features used in DSP system to achieve high speed program

execution.

10. Explain how to simulate the impulse responses of FIR and IIR filters.

11. Explain the two method of sampling rate conversions used in DSP system, with suitable

DSP Algorithms and Architecture 15EC751

14.

16.

17.

19.

block diagrams and examples. Draw the corresponding spectrum.

Assuming X(K) as a complex sequence determine the number of complex real
multiplies for computing IDFT using direct and Radix-2 FT algorithms.

With a neat diagram explain the scheme of a DSP system. (June.12, 8m)

With an example explain the need for the low pass filter in decimation process.
(June.12, 4m)

For the FIR filter y(n)=(x(n)+x(n-1)+x(n-2))/3. Determine i) System Function ii)
Magnitude and phase function iii) Step response iv) Group Delay. (June.12, 8m)

List the major architectural features used in DSP system to achieve high speed program
execution. (Dec.11, 6m).

Explain how to simulate the impulse responses of FIR and IIR filters. (Dec.11, 6m).
Explain the two method of sampling rate conversions used in DSP system, with suitable
block diagrams and examples. Draw the corresponding spectrum. (Dec.11, 8m).
Explain with the help of mathematical equations how signed numbers can be
multiplied. (July.11, 8m).

With a neat diagram explain the scheme of the DSP system. (Dec.10-Jan.11, 8m)
(July.11, 8m).

DSP Algorithms and Architecture 15EC751

MODULE-2
Architectures for Programmable Digital Signal Processing
Devices

2.1 Basic Architectural Features
A programmable DSP device should provide instructions similar to a conventional
microprocessor. The instruction set of a typical DSP device should include the following,
a. Arithmetic operations such as ADD, SUBTRACT, MULTIPLY etc
b. Logical operations such as AND, OR, NOT, XOR etc
c. Multiply and Accumulate (MAC) operation
d. Signal scaling operation
In addition to the above provisions, the architecture should also include,
a. On chip registers to store immediate results
b. On chip memories to store signal samples (RAM)
c. On chip memories to store filter coefficients (ROM)

2.2 DSP Computational Building Blocks

Each computational block of the DSP should be optimized for functionality and speed and in
the meanwhile the design should be sufficiently general so that it can be easily integrated with other
blocks to implement overall DSP systems.

2.2.1 Multipliers

The advent of single chip multipliers paved the way for implementing DSP functions on a
VLSI chip. Parallel multipliers replaced the traditional shift and add multipliers now days. Parallel
multipliers take a single processor cycle to fetch and execute the instruction and to store the result.
They are also called as Array multipliers. The key features to be considered for a multiplier are:
a. Accuracy
b. Dynamic range
c. Speed

The number of bits used to represent the operands decides the accuracy and the dynamic range
of the multiplier. Whereas speed is decided by the architecture employed. If the multipliers are
implemented using hardware, the speed of execution will be very high but the circuit complexity will
also increases considerably. Thus there should be a tradeoff between the speed of execution and the
circuit complexity. Hence the choice of the architecture normally depends on the application.

2.2.2 Parallel Multipliers

Consider the multiplication of two unsigned numbers A and B. Let A be represented using m
bits as (Am-1 Am-2 Al A0) and B be represented using n bits as (Bn-1 Bn-2 B1 B0).
Then the product of these two numbers is given by,

DSP Algorithms and Architecture 15EC751

Ay A A A
B; B; B; By

A3Bg A>By A)Bg AgBy
A3B, AB, AlB) AeB)
A;3B; A:B; AB; AgB;
A3B3 Az2B3 A1B3 AgB3
P7 Po PSS P4 P3 P2 P1 PO

This operation can be implemented paralleling using Braun multiplier whose hardware structure is as
shown in the figure 2.1.

Az Ly
Fiz- Bo A Lo Ao Lo
o O
N
+j AR 4% Ao &,
A‘O gl

v oo | & } |
P-] P é Pe Pq ‘Pfg /PL P, P 5

Fig 2.1 Braun Multiplier for a 4X4 Multiplication

DSP Algorithms and Architecture 15EC751

2.2.3 Multipliers for Signed Numbers

In the Braun multiplier the sign of the numbers are not considered into account. In order to
implement a multiplier for signed numbers, additional hardware is required to modify the Braun
multiplier. The modified multiplier is called as Baugh-Wooley multiplier.

Consider two signed numbers A and B,

m-d i«
A=-A, 2™ + 2 AD1
=0

n-2)
B=-B,2™! + 2 B2

=0

Product P= P4y 1------ PPy

P=An 1B 2™ 2 2 AB2™ S AB, 2= £, Bt
i=0 j=0 =0 F0

2.2.4 Speed

Conventional Shift and Add technique of multiplication requires n cycles to perform the
multiplication of two n bit numbers. Whereas in parallel multipliers the time required will be the
longest path delay in the combinational circuit used. As DSP applications generally require very high
speed, it is desirable to have multipliers operating at the highest possible speed by having parallel
implementation.

2.2.5 Bus Widths

Consider the multiplication of two n bit numbers X and Y. The product Z can be at most 2n
bits long. In order to perform the whole operation in a single execution cycle, we require two buses of
width n bits each to fetch the operands X and Y and a bus of width 2n bits to store the result Z to the
memory. Although this performs the operation faster, it is not an efficient way of implementation as it
IS expensive. Many alternatives for the above method have been proposed. One such method is to use
the program bus itself to fetch one of the operands after fetching the instruction, thus requiring only
one bus to fetch the operands. And the result Z can be stored back to the memory using the same
operand bus. But the problem with this is the result Z is 2n bits long whereas the operand bus is just n
bits long. We have two alternatives to solve this problem, a. Use the n bits operand bus and save Z at
two successive memory locations. Although it stores the exact value of Z in the memory, it takes two
cycles to store the result.
b. Discard the lower n bits of the result Z and store only the higher order n bits into the memory. It is
not applicable for the applications where accurate result is required. Another alternative can be used
for the applications where speed is not a major concern. In which latches are used for inputs and
outputs thus requiring a single bus to fetch the operands and to store the result (Fig 2.2).

DSP Algorithms and Architecture 15EC751

Dot buu

f\’\,L,L‘LCL1)LL.Q,9\ 7

Fig 2.2: A Multiplier with Input and Output Latches
2.2.6 Shifters

Shifters are used to either scale down or scale up operands or the results. The following
scenarios give the necessity of a shifter
a. While performing the addition of N numbers each of n bits long, the sum can grow up to n+log2 N
bits long. If the accumulator is of n bits long, then an overflow error will occur. This can be overcome
by using a shifter to scale down the operand by an amount of log2N.
b. Similarly while calculating the product of two n bit numbers, the product can grow up to 2n bits
long. Generally the lower n bits get neglected and the sign bit is shifted to save the sign of the product.
c. Finally in case of addition of two floating-point numbers, one of the operands has to be shifted
appropriately to make the exponents of two numbers equal.

From the above cases it is clear that, a shifter is required in the architecture of a DSP.

2.2.7 Barrel Shifters

In conventional microprocessors, normal shift registers are used for shift operation. As it
requires one clock cycle for each shift, it is not desirable for DSP applications, which generally
involves more shifts. In other words, for DSP applications as speed is the crucial issue, several shifts
are to be accomplished in a single execution cycle. This can be accomplished using a barrel shifter,
which connects the input lines representing a word to a group of output lines with the required shifts
determined by its control inputs. For an input of length n, log2 n control lines are required. And an
dditional control line is required to indicate the direction of the shift.

The block diagram of a typical barrel shifter is as shown in figure 2.3.

S pn 5 ey

= , SHLIFTE R —————> Ownlpndt

L/ No. o L peAdhomn?
e\ Une A X

ConlDwel 4 pw Y

Fig 2.3 A Barrel Shifter

DSP Algorithms and Architecture 15EC751

Input bits

' . |
o - | _
- L_I—]
M] | r ' —
—i_ 3 p—[_j—I
o DY T .
o 1 '
* = |
:‘1\‘ L —I SE——
—i_} — | [¢+« } I
Output bits — 1L 4 £ 45 £ 2
|
L NP SHIFT (S i H P U sty i [
£ 2 A A vy O (Co) | A 2 Ag Ay Ao
Az Az A A i G5 Az Az A A
A Az Ay fy 9 £8a) A L Az A 3 Ay
Az Ar Ay Ay z L 35z) | A Az Az A

Fig 2.4 Implementation of a 4 bit Shift Right Barrel Shifter

Figure 2.4 depicts the implementation of a 4 bit shift right barrel shifter. Shift to right by 0, 1, 2 or 3
bit positions can be controlled by setting the control inputs appropriately.

2.3 Multiply and Accumulate Unit

Most of the DSP applications require the computation of the sum of the products of a series of
successive multiplications. In order to implement such functions a special unit called a multiply and
Accumulate (MAC) unit is required. A MAC consists of a multiplier and a special register called
Accumulator. MACs are used to implement the functions of the type A+BC. A typical MAC unit is as
shown in the figure 2.5.

DSP Algorithms and Architecture 15EC751

SE

i
i’ ' »t "

M;/l,k LT e 2

P oddauact o %L‘\-{Th

ﬁ ,\/%ﬁ
\ A-D D\//s Oz /

N 2.n

A c cunmaa o TaA

*2. M

Fig 2.5 A MAC Unit

Although addition and multiplication are two different operations, they can be performed in parallel.
By the time the multiplier is computing the product, accumulator can accumulate the product of the
previous multiplications. Thus if N products are to be accumulated, N-1 multiplications can overlap
with N-1 additions. During the very first multiplication, accumulator will be idle and during the last
accumulation, multiplier will be idle. Thus N+1 clock cycles are required to compute the sum of N
products.

2.3.1 Overflow and Underflow

While designing a MAC unit, attention has to be paid to the word sizes encountered at the
input of the multiplier and the sizes of the add/subtract unit and the accumulator, as there is a
possibility of overflow and underflows. Overflow/underflow can be avoided by using any of the
following methods viz
a. Using shifters at the input and the output of the MAC
b. Providing guard bits in the accumulator
c. Using saturation logic

Shifters
Shifters can be provided at the input of the MAC to normalize the data and at the output to de
normalize the same.

Guard bits

As the normalization process does not yield accurate result, it is not desirable for some
applications. In such cases we have another alternative by providing additional bits called guard bits in
the accumulator so that there will not be any overflow error. Here the add/subtract unit also has to be
modified appropriately to manage the additional bits of the accumulator.

DSP Algorithms and Architecture 15EC751

Saturation Logic

Overflow/ underflow will occur if the result goes beyond the most positive number or below
the least negative number the accumulator can handle. Thus the overflow/underflow error can be
resolved by loading the accumulator with the most positive number which it can handle at the time of
overflow and the least negative number that it can handle at the time of underflow. This method is
called as saturation logic. A schematic diagram of saturation logic is as shown in figure 2.7. In
saturation logic, as soon as an overflow or underflow condition is satisfied the accumulator will be
loaded with the most positive or least negative number overriding the result computed by the MAC
unit.

B =
leant me %ETEUF——% Liowrd A ¢ cremviunl o e
Uel

l\/\,uL[I.pLQ RON_

Mot p esdun?
veduug &

g (ML) |

ovent Lovo/

lg‘jj > uf\o_Q&{;(,Ovo

Co

Fig 2.7: Schematic Diagram of the Saturation Logic

2.4 Arithmetic and Logic Unit

A typical DSP device should be capable of handling arithmetic instructions like ADD, SUB,
INC, DEC etc and logical operations like AND, OR , NOT, XOR etc. The block diagram of a typical
ALU for a DSP is as shown in the figure 2.8.
It consists of status flag register, register file and multiplexers.

DSP Algorithms and Architecture 15EC751

Fig 2.8 Arithmetic Logic Unit of a DSP

Status Flags
ALU includes circuitry to generate status flags after arithmetic and logic operations. These flags
include sign, zero, carry and overflow.

Overflow Management
Depending on the status of overflow and sign flags, the saturation logic can be used to limit the
accumulator content.

Register File
Instead of moving data in and out of the memory during the operation, for better speed, a large set of
general purpose registers are provided to store the intermediate results.

2.5 Bus Architecture and Memory

Conventional microprocessors use Von Neumann architecture for memory management
wherein the same memory is used to store both the program and data (Fig 2.9). Although this
architecture is simple, it takes more number of processor cycles for the execution of a single
instruction as the same bus is used for both data and program.

DSP Algorithms and Architecture 15EC751

}/PJ D LA Dead a Mo o '.J

Fig 2.9 Von Neumann Architecture

In order to increase the speed of operation, separate memories were used to store program and
data and a separate set of data and address buses have been given to both memories, the architecture
called as Harvard Architecture. It is as shown in figure 2.10.

Addng N c
}>' .o L')"-. oy
Dk :
Vis ML ae Ly
NS
t:"ﬂ VLN N L“‘L
A p st -
PData

Dex (o

it

Fig 2.10 Harvard Architecture

AL a4 {

Although the usage of separate memories for data and the instruction speeds up the processing,
it will not completely solve the problem. As many of the DSP instructions require more than one
operand, use of a single data memory leads to the fetch the operands one after the other, thus
increasing the delay of processing. This problem can be overcome by using two separate data
memories for storing operands separately, thus in a single clock cycle both the operands can be fetched
together (Figure 2.11).

DSP Algorithms and Architecture 15EC751

i ARAAAL ”A{
e —— . p =
A« L
o Lo L
e .
r N_D
' :’_J- ' 1{
- - = —
- — .
. = = Dals
e * S
4 — ¥ L fHA T
K‘ 1/ é

o=

L = o -

Fig 2.11 Harvard Architecture with Dual Data Memory

Although the above architecture improves the speed of operation, it requires more hardware
and interconnections, thus increasing the cost and complexity of the system. Therefore there should be
a trade off between the cost and speed while selecting memory architecture for a DSP.

2.5.1 On-chip Memories

In order to have a faster execution of the DSP functions, it is desirable to have some memory
located on chip. As dedicated buses are used to access the memory, on chip memories are faster.
Speed and size are the two key parameters to be considered with respect to the on-chip memories.
Speed
On-chip memories should match the speeds of the ALU operations in order to maintain the single
cycle instruction execution of the DSP.
Size
In a given area of the DSP chip, it is desirable to implement as many DSP functions as possible. Thus
the area occupied by the on-chip memory should be minimum so that there will be a scope for
implementing more number of DSP functions on- chip.

2.5.2 Organization of On-chip Memories

Ideally whole memory required for the implementation of any DSP algorithm has to reside on-
chip so that the whole processing can be completed in a single execution cycle. Although it looks as a
better solution, it consumes more space on chip, reducing the scope for implementing any functional
block on-chip, which in turn reduces the speed of execution. Hence some other alternatives have to be

DSP Algorithms and Architecture 15EC751

thought of. The following are some other ways in which the on-chip memory can be organized.

DSP Algorithms and Architecture 15EC751

a. As many DSP algorithms require instructions to be executed repeatedly, the instruction can be
stored in the external memory, once it is fetched can reside in the instruction cache.

b. The access times for memories on-chip should be sufficiently small so that it can be accessed more
than once in every execution cycle.

¢. On-chip memories can be configured dynamically so that they can serve different purpose at
different times.

2.6 Data Addressing Capabilities

Data accessing capability of a programmable DSP device is configured by means of its

addressing modes. The summary of the addressing modes used in DSP is as shown in the table below.
Table 2.1 DSP Addressing Modes

Addressing Operand Sample Format Operation
Mode
Immediate | Immediate Value ADD #imm #imm +A —»A
Register Register Contents ADD reg reg +A —» A
Direct Memory Address Register | ADD mem mem+A —» A
Indirect Memory contents with | ADD *addreg *addreg +A —» A
address in the register

2.6.1 Immediate Addressing Mode
In this addressing mode, data is included in the instruction itself.

2.6.2 Register Addressing Mode
In this mode, one of the registers will be holding the data and the register has to be specified in
the instruction.

2.6.3 Direct Addressing Mode
In this addressing mode, instruction holds the memory location of the operand.

2.6.4 Indirect Addressing Mode

In this addressing mode, the operand is accessed using a pointer. A pointer is generally a
register, which holds the address of the location where the operands resides. Indirect addressing mode
can be extended to inculcate automatic increment or decrement capabilities, which has lead to the
following addressing modes.

DSP Algorithms and Architecture

15EC751

Table 2.2 Indirect Addressing Modes

Addressing Mode

Sample Format

Operation

Post Increment

ADD *addreg+

A —» A+ *addreg
addreg — addreg+1

Post Decrement

ADD *addreg-

A —* A+ *addreg
addreg — addreg-1

Pre Increment

ADD +*addreg

addreg — addreg+1
A —» A + *addreg

Pre Decrement

ADD -*addreg

addreg —» addreg-1

A —» A+ *addreg

Post_Add_Offset ADD *addreg, offsetreg+ | A —® A + *addreg

addreg —» addreg+offsetreg

Post_Sub_Offset ADD *addreg, offsetreg- | A —» A + *addreg

addreg — addreg-offsetreg

Pre_Add_Offset ADD offsetreg+.*addreg | addreg — addreg+offsetreg

A —» A+ *addreg

Pre_Sub_Offset ADD offsetreg-,*addreg | addreg —» addreg-offsetreg

A —» A + *addreg

2.7 Special Addressing Modes

For the implementation of some real time applications in DSP, normal addressing modes will
not completely serve the purpose. Thus some special addressing modes are required for such
applications.

2.7.1 Circular Addressing Mode

While processing the data samples coming continuously in a sequential manner, circular
buffers are used. In a circular buffer the data samples are stored sequentially from the initial location
till the buffer gets filled up. Once the buffer gets filled up, the next data samples will get stored once
again from the initial location. This process can go forever as long as the data samples are processed in
a rate faster than the incoming data rate.
Circular Addressing mode requires three registers viz
a. Pointer register to hold the current location (PNTR)
b. Start Address Register to hold the starting address of the buffer (SAR)
c. End Address Register to hold the ending address of the buffer (EAR)

DSP Algorithms and Architecture 15EC751

There are four special cases in this addressing mode. They are

DSP Algorithms and Architecture 15EC751

a. SAR < EAR & updated PNTR > EAR
b. SAR < EAR & updated PNTR < SAR
c. SAR >EAR & updated PNTR > SAR
d. SAR > EAR & updated PNTR < EAR
The buffer length in the first two case will be (EAR-SAR+1) whereas for the next tow cases (SAR-
EAR+1)
The pointer updating algorithm for the circular addressing mode is as shown below.
: Pomter Updating Alcoritlin

Updated PNTR. «+— PNTR * ncrement

If SAR < EAR
And if Updated PNTR = EAR then
New PNTR. +—— Updated PNTR — Buffer size
Axd if Updated PNTR <= SAR then
New PNTR Updated PNTR. + Buffer sze

If SAR =~ EAR
Andd if Updated PNTR = SAR then
New PNTR. 44— Updated PNTR — Buffer size
Andd if Updated PNTR < EAR then
New PNTR. 4—— Updated PNTR + Buffer sze

Flse
New PNTR «4+—— Updated PNTR

DSP Algorithms and Architecture

15EC751

Four cases explained earlier are as shown in the figure 2.12.

Lot addALsg

< Al

ich | ™
PRews PeTE +——

E AL

Eqanad

updoted PRI — — — = -~

1{/

"’iad I addaomn

(ane V> SAR<E AL v
Updaled FROTR > €A L

l Ows (\id\\
Wpdaltd PrTk
A (]
\ e
éa ual
) ¢ r° . j :
SAR

e Su——

’Ll'id L

} SAL

Iy gh add)

Lipdal e AL

Cad

PR ProTE

£ AL

L 042 .’lddf‘\,

g e = 1

Ca Uy fAE Cene 4

wpdaled POTE C SAR

O\(Ld_

ll‘x!

Fig 2.12 Special Cases in Circular Addressing Mode

DSP Algorithms and Architecture 15EC751

2.7.2 Bit Reversed Addressing Mode

To implement FFT algorithms we need to access the data in a bit reversed manner. Hence a
special addressing mode called bit reversed addressing mode is used to calculate the index of the next
data to be fetched. It works as follows. Start with index 0. The present index can be calculated by
adding half the FFT length to the previous index in a bit reversed manner, carry being propagated from
MSB to LSB.
Current index= Previous index+ B (1/2(FFT Size))

2.8 Address Generation Unit

The main job of the Address Generation Unit is to generate the address of the operands
required to carry out the operation. They have to work fast in order to satisfy the timing constraints. As
the address generation unit has to perform some mathematical operations in order to calculate the
operand address, it is provided with a separate ALU.
Address generation typically involves one of the following operations.
a. Getting value from immediate operand, register or a memory location
b. Incrementing/ decrementing the current address
c. Adding/subtracting the offset from the current address
d. Adding/subtracting the offset from the current address and generating new address according to
circular addressing mode
e. Generating new address using bit reversed addressing mode

The block diagram of a typical address generation unit is as shown in figure 2.13.

S 7T |
’ < > S S T. \L‘—V— T S =)
) N [rodnto o ' [f‘ =l
| | 1 L]
e $‘
. i | < |
{ l S o ; e 3 l|
| i A

Fig 2.13 Address generation unit

DSP Algorithms and Architecture 15EC751

2.9 Programmability and program Execution

A programmable DSP device should provide the programming capability involving branching,
looping and subroutines. The implementation of repeat capability should be hardware based so that it
can be programmed with minimal or zero overhead. A dedicated register can be used as a counter. In a
normal subroutine call, return address has to be stored in a stack thus requiring memory access for
storing and retrieving the return address, which in turn reduces the speed of operation. Hence a LIFO
memory can be directly interfaced with the program counter.

2.9.1 Program Control

Like microprocessors, DSP also requires a control unit to provide necessary control and timing
signals for the proper execution of the instructions. In microprocessors, the controlling is micro coded
based where each instruction is divided into microinstructions stored in micro memory. As this
mechanism is slower, it is not applicable for DSP applications. Hence in DSP the controlling is
hardwired base where the Control unit is designed as a single, comprehensive, hardware unit.
Although it is more complex it is faster.

2.9.2 Program Sequencer
It is a part of the control unit used to generate instruction addresses in sequence needed to
access instructions. It calculates the address of the next instruction to be fetched. The next address can
be from one of the following sources.
a. Program Counter
b. Instruction register in case of branching, looping and subroutine calls
c. Interrupt Vector table
d. Stack which holds the return address
The block diagram of a program sequencer is as shown in figure 2.14.

o S T

] |

W

DSP Algorithms and Architecture 15EC751

Fig 2.14 Program Sequencer

DSP Algorithms and Architecture 15EC751

Program sequencer should have the following circuitry:

a. PC has to be updated after every fetch

b. Counter to hold count in case of looping

c. A logic block to check conditions for conditional jump instructions
d. Condition logic-status flag

Problems:

1). Investigate the basic features that should be provided in the DSP architecture to be used to
implement the following N™ order FIR filter.

Solution:-

y(n)= Y h(i) x(n-i) n=0,1,2...
In order to implement the above operation in a DSP, the architecture requires the
following features

i. A RAM to store the signal samples x (n)

ii. A ROM to store the filter coefficients h (n)

iii. An MAC unit to perform Multiply and Accumulate operation

iv. An accumulator to store the result immediately

v. A signal pointer to point the signal sample in the memory

vi. A coefficient pointer to point the filter coefficient in the memory
vii. A counter to keep track of the count

viii. A shifter to shift the input samples appropriately

2). Itis required to find the sum of 64, 16 bit numbers. How many bits should the
accumulator have so that the sum can be computed without the occurrence of
overflow error or loss of accuracy?

The sum of 64, 16 bit numbers can grow up to (16+ log2 64)=22 bits long. Hence
the accumulator should be 22 bits long in order to avoid overflow error from occurring.

1. Inthe previous problem, it is decided to have an accumulator with only 16 bits
but shift the numbers before the addition to prevent overflow, by how many bits
should each number be shifted?

As the length of the accumulator is fixed, the operands have to be shifted by an
amount of log2 64 = 6 bits prior to addition operation, in order to avoid the condition of
overflow.

2. If all the numbers in the previous problem are fixed point integers, what is the
actual sum of the numbers?

The actual sum can be obtained by shifting the result by 6 bits towards left side after the sum
being computed. Therefore
Actual Sum= Accumulator content X 2

3. If asum of 256 products is to be computed using a pipelined MAC unit, and if the MAC
execution time of the unit is 100nsec, what will be the total time required to complete the

DSP Algorithms and Architecture 15EC751

operation?

DSP Algorithms and Architecture 15EC751

As N=256 in this case, MAC unit requires N+1=257execution cycles. As the single MAC
execution time is 100nsec, the total time required will be, (257*100nsec)=25.7usec

4. Consider a MAC unit whose inputs are 16 bit numbers. If 256 products are to be

summed up in this MAC, how many guard bits should be provided for the
accumulator to prevent overflow condition from occurring?

As it is required to calculate the sum of 256, 16 bit numbers, the sum can be as
long as (16+ log2 256)=24 bits. Hence the accumulator should be capable of handling
these 22 bits. Thus the guard bits required will be (24-16)= 8 bits.
The block diagram of the modified MAC after considering the guard or extention bits is as shown in
the figure

>< ? i

/iﬁ re /t:(,

s ot 2.7 ~.

[MM Tz r e A l
j;/ 2 2

AP o

e/
:t a4 o
T

R —

i
S

GLumad e I8

[=F

S o2

5. What are the memory addresses of the operands in each of the following cases of indirect
addressing modes? In each case, what will be the content of the addreg after the memory
access? Assume that the initial contents of the addreg and the offsetreg are 0200h and 0010h,
respectively.

a. ADD *addreg

b.ADD +*addreg

c. ADD offsetreg+,*addreg
d. ADD *addreg,offsetreg-

Instruction Addressing Operand Address addreg Content
Mode after Access
ADD *addreg- Post Decrement 0200h 0200-01=01FFh
ADD +*addreg Pre Increment 02004+01=0201h 0201h
ADD offsetreg+, *addreg | Pre_Add_Offset | 020040010=0210h | 0210h

ADD *addreg,offsetreg-

Post_Sub_Offset

0200h

0200-0010=01FO0h

6. A DSP has a circular buffer with the start and the end addresses as 0200h and 020Fh
respectively. What would be the new values of the address pointer of the buffer if, in the course

DSP Algorithms and Architecture 15EC751

of address computation, it gets updated to

DSP Algorithms and Architecture 15EC751

a. 0212h
b. 01FCh
Buffer Length= (EAR-SAR+1) = 020F-0200+1=10h
a. New Address Pointer= Updated Pointer-buffer length = 0212-10=0202h
b. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch

7. Repeat the previous problem for SAR= 0210h and EAR=0201h
Buffer Length= (SAR-EAR+1)= 0210-0201+1=10h
c. New Address Pointer= Updated Pointer- buffer length = 0212-10=0202h
d. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch

9. Compute the indices for an 8-point FFT using Bit reversed Addressing Mode
Start with index 0. Therefore the first index would be (000)
Next index can be calculated by adding half the FFT length, in this case it is (100)
to the previous index. i.e. Present Index= (000)+B (100)= (100)
Similarly the next index can be calculated as
Present Index= (100)+B (100)= (010)
The process continues till all the indices are calculated. The following table summarizes
the calculation.

Index in Binary BCD value Bit reversed index BCD value
000 0 000 0
001 1 100 4
010 2 010 2
011 3 110 6
100 4 001 1
101 5 101 5
110 6 011 3
111 7 111 7

DSP Algorithms and Architecture 15EC751

Recommended Questions:

1. Explain implementation of 8- tap FIR filter, (i) pipelined using MAC units and (ii) parallel
using two MAC units. Draw block diagrams.

2. What is the role of a shifter in DSP? Explain the implementation of 4-bit shift right barrel
shifter, with a diagram.

3. Identify the addressing modes of the operands in each of the following instructions & their
operations
i)ADD B ii) ADD #1234h i) ADD 5678h iv) ADD +*addreg

4. Draw the schematic diagram of the saturation logic and explain the same.

5. Explain how the circular addressing mode and bit reversal addressing mode are implemented in

a DSP.

6. Explain the purpose of program sequencer.

7. Give the structure of a 4X4 Braun multiplier, Explain its concept. What modification is
required to carry out multiplication of signed numbers? Comment on the speed of the
multiplier.

8. Explain guard bits in a MAC unit of DSP. Consider a MAC unit whose inputs are 24-bit
numbers. How many guard bits should be provided if 512 products have to be added in the
accumulator to prevent overflow condition? What is the overall size of the accumulator
required?

9. With a neat block diagram explain ALU of DSP system.

10. Explain circular buffer addressing mode ii) Parallelism iii) Guard bits.

11. The 256 unsigned numbers, 16 bit each are to be summed up in a processor. How many guard
bits are needed to prevent overflow.

12. How will you implement an 8X8 multiplier using 4X4 multipliers as the building blocks.

13. Describe the basic features that should be provided in the DSP architecture to be used to
implement the Nth order FIR filter, where x(n) denotes the input sample, y(n) the output
sample and h(i) denotes i filter coefficient.(Dec.09-Jan.10, 8m)

14. Explain the issues to be considered in designing and implementing a DSP system, with the help
of a neat block diagram. (May/Junel0 , 6m)

15. Briefly explain the major features of programmable DSPs. (May/Junel0, 8m)

DSP Algorithms and Architecture 15EC751

16.

17.

18.

19.
20.

Explain the operation used in DSP to increase the sampling rate. The sequence x(n)=[0,2,4,6,8]

is interpolated using interpolation sequence bk =[1/2,1,1/2] and the interpolation factor is 2.find

the interpolated sequence y(m). (May/Junel0, 8m)

Explain with the help of mathematical equations how signed numbers can be multiplied.

(Dec.10-Jan.11, 8m)

The sequence x(n) = [3,2,-2,0,7].1t is interpolated using interpolation sequence bk=[0.5,1,0.5]

and the interpolation factor of 2. Find the interpolated sequence y(m).(Dec.10-Jan.11, 6m)
Why signal sampling is required? Explain the sampling process. (Dec.12, 5m)

Define decimation and interpolation process. Explain them using block diagrams and

equations. (Dec.12, 6m).

DSP Algorithms and Architecture 15EC751

MODULE-3

Programmable Digital Signal Processors

3.1 Introduction:

Leading manufacturers of integrated circuits such as Texas Instruments (T1), Analog devices &
Motorola manufacture the digital signal processor (DSP) chips. These manufacturers have developed a
range of DSP chips with varied complexity.

The TMS320 family consists of two types of single chips DSPs: 16-bit fixed point &32-bit floating-
point. These DSPs possess the operational flexibility of high-speed controllers and the numerical
capability of array processors

3.2 Commercial Digital Signal-Processing Devices:

There are several families of commercial DSP devices. Right from the early eighties, when
these devices began to appear in the market, they have been used in numerous applications, such as
communication, control, computers, Instrumentation, and consumer electronics. The architectural
features and the processing power of these devices have been constantly upgraded based on the
advances in technology and the application needs. However, their basic versions, most of them have
Harvard architecture, a single-cycle hardware multiplier, an address generation unit with dedicated
address registers, special addressing modes, on-chip peripherals interfaces. Of the various families of
programmable DSP devices that are commercially available, the three most popular ones are those
from Texas Instruments, Motorola, and Analog Devices. Texas Instruments was one of the first to
come out with a commercial programmable DSP with the introduction of its TMS32010 in 1982.

Summary of the Architectural Features of three fixed-Points DSPs

Architectural Feature TMS320C235 DSP 56000 ADSP2100
Data representation 16-bit fixed
format 1 6-bit fixed 24-bit fixed point point
Hardware multiplier 16 x 16 24x 24 16 x 16
ALU 32 bits 56 bits 40 bits
24-bit program
Internal buses 16-bit program bus ~ 24-bit program bus bus
2 X 24-bit data
16-bit data bus buses 16-bit data bus

24-bit global 16-bit result

External buses

On-chip Memory

Oft-chip memory

Cache memory

DSP Algorithms and Architecture

1 6-bit

program/data bus

544 words RAM

4K words ROM

64 K words
program
64k words data

100 nsec

databus
24-bit program/data
bus

512 words PROM
2 X 256 words data
RAM

2 X 256 words data
ROM

64K words program
2 X 64K words data

bus
24-bit program
bus
16-bit data bus

16K words
program

16K words data
16 words
program

Instruction cycle time 97.5 nsec. 125 nsecc.
Special addressing
modes Bit reversed Modulo Modulo

Data address

Bit reversed

Bit reversed

15EC751

generators 1 2 2
Synchronous serial

Interfacing features /O Synchronous and DMA
DMA Asynchronous serial

/0 DMA
3.3. The architecture of TMS320C54xx digital signal processors:

TMS320C54xx processors retain in the basic Harvard architecture of their predecessor,
TMS320C25, but have several additional features, which improve their performance over it. Figure 3.1
shows a functional block diagram of TMS320C54xx processors. They have one program and three
data memory spaces with separate buses, which provide simultaneous accesses to program instruction
and two data operands and enables writing of result at the same time. Part of the memory is
implemented on-chip and consists of combinations of ROM, dual-access RAM, and single-access
RAM. Transfers between the memory spaces are also possible.

The central processing unit (CPU) of TMS320C54xx processors consists of a 40- bit arithmetic
logic unit (ALU), two 40-bit accumulators, a barrel shifter, a 17x17 multiplier, a 40-bit adder, data
address generation logic (DAGEN) with its own arithmetic unit, and program address generation logic
(PAGEN). These major functional units are supported by a number of registers and logic in the
architecture. A powerful instruction set with a hardware-supported, single-instruction repeat and block
repeat operations, block memory move instructions, instructions that pack two or three simultaneous
reads, and arithmetic instructions with parallel store and load make these devices very efficient for
running high-speed DSP algorithms.

Several peripherals, such as a clock generator, a hardware timer, a wait state generator, parallel
I/0 ports, and serial 1/0 ports, are also provided on-chip. These peripherals make it convenient to
interface the signal processors to the outside world. In these following sections, we examine in detail

DSP Algorithms and Architecture 15EC751

the various architectural features of the TMS320C54xx family of processors.

DSP Algorithms and Architecture 15EC751

System control Program address generation Data address generation
interface logic (PAGEN) logic (DAGEN)
— P
<_ f PC. IPTR. RC. ARAUOQ, ARAUM
- BRC, RSA, REA ARO-ART
: : ARP, BK, DP, SP
v A A A & A A
PAB |
PB |
- v Memory
and
CAB I external
interface
cB |
L
DAB |
v v
Peripheral
DB I /‘_> interface
L J
EAB |
EB |
A
EXP encoder
A A
Xl D Al B
Yy v
N MUx
v
T register 4
A
T|D| A A]P|C|D T|AlB|C D S B[A|C|D
yYvYyYy YYvyYyY YyYYyYVvy v v YyYYywvy
N\Sign ctr/ "\ Sign ctr /' | A@0) | | B#0) | \Signctr/ \Signcir/ \Sign cir /'
v L J k J
Multiplier (17 x 17) . MUX |—IALU(40) Barrel shifter
AlB A AA A
Y Yy A

MUl B A B
- $ v
Frachonal' N\ MUX /S Legend: —
Accumulator A - _/

Y Y Accumulator B 5“
S | [7 CB data bus Y
Adder(40 DB data bus P MSW/ILSW
(40) EB data bus comp select
MAC unit

A J
| ZERO saT | ROUND

PB program bus
Barrel shifter
T reqgister

Figure 3.1.Functional architecture for TMS320C54xx processors.

TRN

CcCHwOU=mMmOOm>

DSP Algorithms and Architecture 15EC751

3.3.1 Bus Structure:

The performance of a processor gets enhanced with the provision of multiple buses to provide
simultaneous access to various parts of memory or peripherals. The 54xx architecture is built around
four pairs of 16-bit buses with each pair consisting of an address bus and a data bus. As shown in
Figure 3.1, these are The program bus pair (PAB, PB); which carries the instruction code from the
program memory. Three data bus pairs (CAB, CB; DAB, DB; and EAB, EB); which interconnected
the various units within the CPU. In Addition the pair CAB, CB and DAB, DB are used to read from
the data memory, while The pair EAB, EB; carries the data to be written to the memory. The ‘54xx
can generate up to two data-memory addresses per cycle using the two auxiliary register arithmetic
unit (ARAUO and ARAU1L) in the DAGEN block. This enables accessing two operands
simultaneously.

3.3.2 Central Processing Unit (CPU):

The ‘54xx CPU is common to all the ‘54xx devices. The ’54xx CPU contains a 40-bit
arithmetic logic unit (ALU); two 40-bit accumulators (A and B); a barrel shifter; a
17 x 17-bit multiplier; a 40-bit adder; a compare, select and store unit (CSSU); an exponent
encoder(EXP); a data address generation unit (DAGEN); and a program address generation unit
(PAGEN).

The ALU performs 2’s complement arithmetic operations and bit-level Boolean operations on
16, 32, and 40-bit words. It can also function as two separate 16-bit ALUs
and perform two 16-bit operations simultaneously. Figure 3.2 show the functional diagram of the ALU
of the TMS320C54xx family of devices.

Accumulators A and B store the output from the ALU or the multiplier/adder block and provide a
second input to the ALU. Each accumulators is divided into three parts: guards bits (bits 39-32), high-
order word (bits-31-16), and low-order word (bits 15- 0), which can be stored and retrieved
individually. Each accumulator is memory-mapped and partitioned. It can be configured as the
destination registers. The guard bits are used as a head margin for computations.

DSP Algorithms and Architecture 15EC751

AG(39-32) AH(31-16) AL(15-0)
BG(39-32) BH(31-16) BL(15-0)
[CB15-CB0 |
T | DB15-DB0 |
* >
Al B[T| C D S Shifter output (40
40 140 Y yvyy f 4)
MUX MUX
SXM—p{ Signctr | | Sgnctr 4—— SXM
h 4 v
Y__/_X oVM
21 [C&] o
F 3 A C
ACC
ALU OVA/IOVB
ZAIZB
MUX |
£40 TC
140 A A A A Legend:
Al M| Ul B A Accumulator A
40 B Accumulator B
C CBdatabus
D DB databus
MAC M MAC ot
output S Barrel shifter
T Tregister
U ALU

Figure 3.2.Functional diagram of the central processing unit of the TMS320C54xx
Processors.

Barrel shifter: provides the capability to scale the data during an operand read or write.

No overhead is required to implement the shift needed for the scaling operations. The’54xx barrel
shifter can produce a left shift of 0 to 31 bits or a right shift of 0 to 16 bits on the input data. The shift
count field of status registers ST1, or in the temporary

register T. Figure 3.3 shows the functional diagram of the barrel shifter of TMS320C54xx processors.
The barrel shifter and the exponent encoder normalize the values in an accumulator in a single cycle.
The LSBs of the output are filled withOs, and the MSBs can be either zero filled or sign extended,
depending on the state of the sign-extension mode bit in the status register ST1. An additional shift
capability enables the processor to perform numerical scaling, bit extraction, extended arithmetic, and
overflow prevention operations.

DSP Algorithms and Architecture 15EC751

| DB15-DBO |

40 [CB15-CBO |
16

, b
40 B#A D c+
N v/

(Sign control |+— SxM
Y
-4— T :-16 through 31 range
TC (testbit) —pf BATRISUTST L ASM(4-0):-16 through 15 range
' ' | ¢ Instruction register immediate: —16
through 15 or 0 through 15 range
ALU <
40
MSW/LSW
Qo —’_ Navree
Cssu Write select
Legend:
A Accumulator A
/16 B Accumulator B
C CBdatabus
D D8 databus
T Tregister
| EB15-EBO |

Figure 3.3.Functional diagram of the barrel shifter

Multiplier/adder unit: The kernel of the DSP device architecture is multiplier/adder unit. The
multiplier/adder unit of TMS320C54xx devices performs 17 x 17 2’s complement multiplication with
a 40-bit addition effectively in a single instruction cycle.

In addition to the multiplier and adder, the unit consists of control logic for integer and
fractional computations and a 16-bit temporary storage register, T. Figure 3.4 show the functional
diagram of the multiplier/adder unit of TMS320C54xx processors. The compare, select, and store unit
(CSSU) is a hardware unit specifically incorporated to accelerate the add/compare/select operation.
This operation is essential to implement the Viterbi algorithm used in many signal-processing
applications. The exponent encoder unit supports the EXP instructions, which stores in the T register
the number of leading redundant bits of the accumulator content. This information is useful while
shifting the accumulator content for the purpose of scaling.

DSP Algorithms and Architecture

15EC751

I e ! 4, From accumulator A
| DB15-DB0 |
I PB15—PBD I 491 From accumulator B
? 17
T D Al PLALDLC
Y r"YY Y
X MUX Y MUX
| Signctr | | Signcir | =
17 17 A Accumulator A
B Accumulator B
C CB databus
D DB data b
M M P PB progr;:bus
Multiplier (17 x 17) 0 T Tregister
A B
\ 4
FRCT MUX
XA YA
Adder (40) OVM
—p— OVA/OVB
Zero detect Round SAT
L p— 7A/ZB

40

Z

p— To accumulator A/B

rd

Figure 3.4. Functional diagram of the multiplier/adder unit of TMS320C54xx processors.

3.3.3 Internal Memory and Memory-Mapped Registers:
The amount and the types of memory of a processor have direct relevance to the efficiency and
performance obtainable in implementations with the processors. The ‘54xx memory is organized into
three individually selectable spaces: program, data, and I/O spaces. All ‘54xx devices contain both
RAM and ROM. RAM can be either dual-access type (DARAM) or single-access type (SARAM). The
on-chip RAM for these processors is organized in pages having 128 word locations on each page.

The ‘54xx processors have a number of CPU registers to support operand addressing and
computations. The CPU registers and peripherals registers are all located on page 0 of the data

DSP Algorithms and Architecture 15EC751

memory. Figure 3.5(a) and (b) shows the internal CPU registers and peripheral registers with their

addresses. The processors mode status (PMST) registers
that is used to configure the processor. It is a memory-mapped register located at address 1Dh on page

0 of the RAM. A part of on-chip ROM may contain a boot loader and look-up tables for function such
as sine, cosine, u- law, and A- law.

NAME DEC HEX DESCRIPTION

IMR 0 0 Interrupt mask register

IFR 1 1 Interrupt flag register

— 2-5 2-5 Reserved for testing

STO 6 6 Status register 0

ST1 7 7 Status register 1

AL 8 8 Accumulator A low word (15-0)
AH 9 9 Accumulator A high word (31-16)
AG 10 A Accumulator A guard bits (39-32)
BL 11 B Accumulator B low word (15-0)
BH 12 C Accumulator B high word'(31-16)
BG 13 D Accumulator B guard bits (39-32)
TREG 14 E Temporary register

TRN 15 F Transition register

ARO 16 10 Auxiliary register 0

AR1 17 11 Auxiliary register 1

AR2 18 12 Auxiliary register 2

AR3 19 13 Auxiliary register 3

AR4 20 14 Auxiliary register 4

AR5 21 15 Auxiliary register 5

ARG 22 16 Auxiliary register 6

AR/ 23 17 Auxiliary register 7

SP 24 18 Stack pointer register

BK 25 19 Circular buffer size register

BRC 26 1A Block repeat counter

RSA 27 1B Block repeat start address

REA 28 1< Block repeat end address

PMST 29 1D Processor mode status (PMST) register
XPC 30 1E Extended program page register
— 31 1F Reserved

Figure 3.5(a) Internal memory-mapped registers of TMS320C54xx processors.

DSP Algorithms and Architecture

15EC751

ADCRESS
NAME DEC HEX DESCRIPTION
DRR20 a2 20 McBSP 0 Data Receive Register 2
DRR10 i3 21 McB5P D Data Recelve Register 1
DXR2Z0 34 22 McBSP 0 Data Transmit Register 2
LAKIO 35 23 MoBSF O Pata Transmit Register 1
TiM 36 24 Timer Register
PRD 37 25 Timer Period Register
TCR 38 26 Timer Control Register
—_ 39 27 Reserved
SWWSH a0 28 Software YWatl-3tale Register
BSCR 41 29 Bank-Switching Control Register
— 42 28, Reserved
SWOR 43 2B software Watt-State Centrol Register
HPIC a4 2C HP1 Conticl Register (HMODE = 0 only)
— Q-5 2D-2F Ruserved
DRR22 48 30 McBSP 2 Data Receive Fegister 2
DRR12 49 £ McBSP 2 Data Receive Register 1
DXR22 S0 32 McBSP 2 Data Transmit Register 2
DXR12 51 33 McB5P 2 Data Transmit Register 1
5P5A2 52 34 MOESF 2 Subbank Addess Regisles
SPSD2 53 3as McBSP 2 Subbank Data Register
_ 5455 3I6-37 Reserved
SPSAD 56 3iB MCBSP 0 Subbank Addiess Register
SPSDO 57 39 McBS5P 0 Subbank Data Register
—_ 58-59 3A-3B Reserved
GPHOCR &0 ac General-Purpose MO Control Register
GPIOSR 81 oD General-Purpose MO Status Register
CSIDR 62 3E Device ID Register
— 63 IF Reserved
DRE21 64 40 MCBSF 1 Lata Kecelve Reglster 2
DRR11 65 41 M<cBSP 1 Data Receive Register 1
DXR21 66 42 MCcBSP 1 Data Transmi: Register 2
DXR11 67 43 McBSP 1 Data Transmit Reglster 1
— aB8-71 4447 Reserved
SP5A1 T2 48 McBSP 1 Subbank Address Hegisver
SPSDA 73 49 McBSP 1 Subbank Data Register
- 74-83 40-53 Reserved
DMPREC 84 =T | DMA Priority and Enable Control Register
DMSA 85 55 DMA Subbank Addres: Register

Figure 3.5(b).peripheral registers for the TMS320C54xx processors

Status registers (ST0,ST1):
STO: Contains the status of flags (OVA, OVB, C, TC) produced by arithmetic operations

& bit manipulations.

ST1: Contain the status of various conditions & modes. Bits of STO&ST1registers can be set or clear
with the SSBX & RSBX instructions.

PMST: Contains memory-setup status & control information.

DSP Algorithms and Architecture 15EC751

Status register() diagram:

Figure 3.6(a). STO diagram

ARP: Auxiliary register pointer.

TC: Test/control flag.

C: Carry bit.

OVA: Overflow flag for accumulator A.
OVB: Overflow flag for accumulator B.
DP: Data-memory page pointer.

Status register] diagram:

Figure 3.6(b). ST1 diagram

BRAF: Block repeat active flag
BRAF=0, the block repeat is deactivated.
BRAF=1, the block repeat is activated.

CPL.: Compiler mode
CPL=0, the relative direct addressing mode using data page pointer is selected.
CPL=1, the relative direct addressing mode using stack pointer is selected.

HM: Hold mode, indicates whether the processor continues internal execution or acknowledge for
external interface.

INTM: Interrupt mode, it globally masks or enables all interrupts.
INTM=0_all unmasked interrupts are enabled.

INTM=1_all masked interrupts are disabled.

0: Always read as 0

OVM: Overflow mode.
OVM=1_the destination accumulator is set either the most positive value or the most negative value.

OVM=0_the overflowed result is in destination accumulator.

SXM: Sign extension mode.

DSP Algorithms and Architecture 15EC751

SXM=0 _Sign extension is suppressed.

DSP Algorithms and Architecture 15EC751

SXM=1_Data is sign extended

C16: Dual 16 bit/double-Precision arithmetic mode.
C16=0_ALU operates in double-Precision arithmetic mode.
C16=1_ALU operates in dual 16-bit arithmetic mode.

FRCT: Fractional mode.
FRCT=1_the multiplier output is left-shifted by 1bit to compensate an extra sign bit.

CMPT: Compatibility mode.
CMPT=0_ ARP is not updated in the indirect addressing mode.
CMPT=1_ARP is updated in the indirect addressing mode.

ASM: Accumulator Shift Mode.
5 bit field, & specifies the Shift value within -16 to 15 range.

Processor Mode Status Register (PMST):

[PTR(15-7) [MP/MC(6) JOVLY(S) HAVIS@) [DROM(3)

CLKOFF(2) ‘SMUL(]J SST(0)

Figure 3.6(c).PMST register diagram

INTR: Interrupt vector pointer, point to the 128-word program page where the interrupt vectors
reside.

MP/MC: Microprocessor/Microcomputer mode,

MP/MC=0, the on chip ROM is enabled.

MP/MC=1, the on chip ROM is enabled.

OVLY: RAM OVERLAY, OVLY enables on chip dual access data RAM blocks to be mapped into
program space.

AVIS: It enables/disables the internal program address to be visible at the address pins.
DROM: Data ROM, DROM enables on-chip ROM to be mapped into data space.
CLKOFF: CLOCKOUT off.

SMUL.: Saturation on multiplication.

SST: Saturation on store.

DSP Algorithms and Architecture 15EC751

3.4 Data Addressing Modes of TMS320C54X Processors:

Data addressing modes provide various ways to access operands to execute instructions and place
results in the memory or the registers. The 54XX devices offer seven basic addressing modes

1. Immediate addressing.

2. Absolute addressing.

3. Accumulator addressing.

4. Direct addressing.

5. Indirect addressing.

6. Memory mapped addressing

7. Stack addressing.

3.4.1 Immediate addressing:

The instruction contains the specific value of the operand. The operand can be short (3,5,8 or 9
bit in length) or long (16 bits in length). The instruction syntax for short operands occupies one
memory location,

Example: LD #20, DP.
RPT #0FFFFh.

3.4.2 Absolute Addressing:

The instruction contains a specified address in the operand.
1. Dmad addressing. MVDK Smem,dmad, MVDM dmad,MMR
2. Pmad addressing. MVVDP Smem,pmad, MVVPD pmem,Smad
3. PA addressing. PORTR PA, Smem,
4.*(lk) addressing .

3.4.3 Accumulator Addressing:
Accumulator content is used as address to transfer data between Program and Data memory.
Ex: READA *AR2

3.4.4 Direct Addressing:

Base address + 7 bits of value contained in instruction = 16 bit address. A page of 128
locations can be accessed without change in DP or SP.Compiler mode bit (CPL) in ST1 register is
used.

If CPL =0 selects DP

CPL = 1 selects SP,

It should be remembered that when SP is used instead of DP, the effective address is
computed by adding the 7-bit offset to SP.

DSP Algorithms and Architecture 15EC751

g DP(9)
> SP(16) * ‘ 7 LSBs from IR(dma)
DAGEN DAB(16) (read)
cpL| CPL
O EA =DP :offset(IR) ‘EAB 16) (write
v 1 EA = SP+offset(IR) (or))

CAB(16)
(32-bit read)

N

Data bus DB(16)

~
Data bus EB(16)

Figure 3.7 Block diagram of the direct addressing mode for TMS320C54xx Processors.

3.4.5 Indirect Addressing:

"1Data space is accessed by address present in an auxiliary register.
TMS320C54xx have 8, 16 bit auxiliary register (ARO — AR 7). Two auxiliary register arithmetic units

(ARAUO & ARAUL)

Used to access memory location in fixed step size. ARO register is used for indexed and bit reverse
addressing modes.

"IFor single — operand addressing

MOD _ type of indirect addressing

ARF _ AR used for addressing

ARP depends on (CMPT) bit in ST1

CMPT =0, Standard mode, ARP set to zero

CMPT =1, Compatibility mode, Particularly AR selected by ARP

VTUlive.com
DSP Algorithm and Architecture 15EC751
AROBK Ik 1
ARP(3
AR ARATI
A AA
s ARO(16) mdex > +H-9% 0B
> ARI(6) >)
S ARNIG) > AR0 BK 1 DAB(16) (read)
> AR36) > AR
S| AR4(16) —
> ARS (16) 5 ARAUI
> ARs(16) >
> ARI(16) > AAA
= 4 I £
> _Ehil) > 5 %0 EAB (16) (write)
N or
Databus DB(16) CAB“?)
(32-bit read)
Data bus EB(16)

Figure 3.8 Block diagram of the indirect addressing mode for TMS320C54xx Processors.

51

VTUlive.com

DSP Algorithm and Architecture

15EC751

[Operand syntax Function

*ARX Addr = ARX;

“ARX - Addr=ARx: ARX =ARx-I
“ARX + Addr= ARx; ARx = ARx +1
“+ARX Addr = ARx+1; ARx =ARX +1
“ARX - 0B Addr=ARx: ARx=B(ARx - AR0)
“ARX -0 Addr = Arx ;. ARx =ARx - ARO
“ARX + 0 Addr=Arx ; ARX =ARX +AR0O
“ARx + 0B Addr = ARx : ARX = B(ARX + ARO)
“ARX - % Addr = ARx: ARX =circ(ARx-1)

“+AR — 0%

Addr = Arx; ARX = circ(ARX - ARO)

“ARX + %

Addr = ARX ;

ARX = circ (ARXx + 1)

Table 3.2 Indirect addressing options with a single data —memory operand.

> Used in convolution, correlation and FIR filters.

Circular Addressing;

» A circular buffer is a sliding window contains most recent data. Circular buffer of size R must
start on a N-bit boundary, where 2N >R .
» [The circular buffer size register (BK): specifies the size of circular buffer.

» Effective base address (EFB): By zeroing the N LSBs of a user selected AR (ARX).

» [1End of buffer address (EOB) : By repalcing the N LSBs of ARx with the N LSBs of BK.

If 0 _index + step < BK ; index = index +step;

else if index + step _ BK ; index = index + step - BK;

52

VTUlive.com

DSP Algorithm and Architecture
else if index + step < 0; index + step + BK

15EC751

53

VTUlive.com 54

DSP Algorithm and Architecture 15EC751
First 1 at location N-1
IS5 N NI 0
IS5 N Nl 0
ARx | H...H Lo csmsansanes L)
BK| 0....0 BE i BL
\V
IS | N Nl 0
5 N NI 0 b 4 b 4
EOBHY HiwoB | Bl BL
0.l Bisvosamaaes L
Index WV
(Cireular
addressing 15 J N Nl 0
algorithm
Iogic FFB(H...H Ui 0
Base(low address)
0.l | /R —— L
New Index Legend: FFB Effective base address
H High-order bits
L Low- order bits
51 N NI 0 L' New low-order bits
New WV V BL Low-order bit of circular buffer
oW . .
ARy | Hiil Wennmesnss L size register

Figure 3.9 Block diagram of the circular addressing mode for TMS320C54xx Processors.

VTUlive.com

DSP Algorithm and Architecture

15 N N1
Effective
b [HLH o 0
15 N N1
ARx | H...H X
15 N N1
H.. H LSBs BK

—>

Data
Top of curcutlar buffer

Flement 0

Flement 1

Flement 1 (n LSBs of ARx)

Last element

Last element + 1

15EC751

Figure 3.10 circular addressing mode implementation for TMS320C54xx Processors.

Bit-Reversed Addressing:

o Used for FFT algorithms.

@)
@)
@)
@)

Dual-Operand Addressing:

ARO specifies one half of the size of the FFT.
The value of ARO = 2N-1: N = integer FFT size = 2N
ARO + AR (selected register) = bit reverse addressing.
The carry bit propagating from left to right.

Dual data-memory operand addressing is used for instruction that simultaneously
perform two reads (32-bit read) or a single read (16-bit read) and a parallel store (16-bit
store) indicated by two vertical bars, Il. These instructions access operands using indirect addressing

mode.

If in an instruction with a parallel store the source operand the destination operand point to the
same location, the source is read before writing to the destination. Only 2 bits are available in the
instruction code for selecting each auxiliary register in this mode. Thus, just four of the auxiliary
registers, AR2-AR5, can be used, The ARAUSs together with these registers, provide capability to
access two operands in a single cycle. Figure 3.11 shows how an address is generated using dual data-

memory operand addressing.

55

VTUlive.com

DSP Algorithm and Architecture 15EC751
15-8 7-6 5-4 3-2 1-0
Opcode Xmod Xar Yimod Yar
|N ame Function
|Opc0de This field contains the operation code for the instruction
Xmod [Defined the type of indirect addressing mode used for accessing the Xmem
operand
XAR X mem AR selection field defines the AR that contains the address of Xmem
Y mod [Defies the type of inderect addressing mode used for accessing the Ymem
operand
Y ar Ymem AR selection field defines the AR that contains the address of Ymem

Table 3.3.Function of the different field in dual data memory operand addressing

AROBK Ik 1
VA A A4
ARP3) ARATO
AAANA
> ARO0(16) index > +-%0 B
> TRI(16) R JARO BK 1 — DAB(16) (read)
S AR > VAR
S| AR4(16) >
| ey S ARAUL
| — N L) -
>[__BE (16) > +- 9% 0 EAB (16) (write)
b or
CAB(16)
Data bus DB(16
(16) (32-bit read)
e

Data bus EB(16)

Figure 3.11 Block diagram of the Indirect addressing options with a dual data —memory
operand.

VTUlive.com

DSP Algorithm and Architecture 15EC751

3.4.6. Memory-Mapped Register Addressing:

» Used to modify the memory-mapped registers without affecting the current data page
» pointer (DP) or stack-pointer (SP)

o Overhead for writing to a register is minimal

o Works for direct and indirect addressing

o Scratch —pad RAM located on data PAGEO can be modified

» STM #x, DIRECT
0000h
0060h
007Fh
3.4.7 Stack Addressing:

» STM #tbl, ARL
« Used to automatically store the program counter during interrupts and subroutines.

9 7, 7 LSBs from instruction register (IR)
or current auxiliary register
16
« Can be used to store additional items of context or to pass data values.

16-bit memory-mapped register address
« Uses a 16-bit memory-mapped register, the stack pointer (SP).

Figure 3.12.16 bit memory mapped register address generation.

« PSHD X2
Stack and SP before operation Stack and SP after operation
e[] w1 e[] o[]
0010 0010 X2
0011 X1 0011 X1
0100 0100
0101 0101
0110 0110

Figure 3.13. Values of stack &SP before and after operation.

VTUlive.com 57

DSP Algorithm and Architecture 15EC751

3.5. Memory Space of TMS320C54xx Processors
» A total of 128k words extendable up to 8192k words.
» Total memory includes RAM, ROM, EPROM, EEPROM or Memory mapped peripherals.
» [1Data memory: To store data required to run programs & for external memory mapped

registers.
Size 64k words
On chip On chip Memory mapped
DARAM RAM registers

Program memory: To store program instructions &tables used in the execution
of programs.

Organized into 128 pages, each of 64k word size

/N

Page0: Page 1to0 127:
& Pal1 Of 128'(Space extended pages
* 4k words are on-chip ROM

+ Remaining space for
DARAM &SARAM

VTUlive.com 58

DSP Algorithm and Architecture 15EC751
Table 3.4.Function of different pin PMST register
PMST bit Logic On-chip memory configuration
MP/MC 0 ROM enabled
1 ROM not available
OVLY 0 RAM in data space
1 RAM in program space
DROM 0 ROM not in data space
I ROM in data space
Hex PnchProgum Hex P’C‘”’W‘"‘ Hex Data
0000] Reserved 0000 | Reserved 0000
(OVLY = 1) (OVLY = 1) Meary-Mapped
External External 005F | Registers
007F| (OVLY=0) | ogoF| (OVLY=0) 0060 Seratch-Pad
O080f ~ OnChip | 00801 On-Chip 007F| RAM
DARAMO-3 DARAMO-3 0080
(OVLY=1) (OVLY=1) On-Chip
— (g;‘/l&ﬂﬂo o External DARAMO-3
= = X 16-bi
Al) = ((;VLY I0) - (32K X 16-bit)
xtema
External %;Sg . w0 On-Chip
FFIF On-Chip ROM DARAM4-7
FEFF [(16K X 16-bit (DROM=1)
FF80 FFO0 or
b | e e
(Extemal) | ppgo | Intemups (DROM =0)
FFFF FrFF |__(On-Chip) FFFF
(Microprocessor Mode) (Microcomputer Mode)
Address ranges for on-chip DARAM in data memoryare: ~ DARAMO: 0080h-IFFFh: DARAMI: 2000h-3FFFh
DARAM?: 4000h-SFFFh; - DARAM3: 6000h-7FFFh
DARAM4: 8000h-9FFFh; DARAMS: AOOOh-BFFFh

DARAM6: CO00h-DFFFh; DARAM?: E000h-FFFFh

Figure 3.14 Memory map for the TMS320C5416 Processor.

VTUlive.com

DSP Algorithm and Architecture 15EC751

3.6. Program Control

» It contains program counter (PC), the program counter related H/W, hard stack, repeat
counters &status registers.
PC addresses memory in several ways namely:
Branch: The PC is loaded with the immediate value following the branch instruction
Subroutine call: The PC is loaded with the immediate value following the call instruction
Interrupt: The PC is loaded with the address of the appropriate interrupt vector.
Instructions such as BACC, CALA, etc ;The PC is loaded with the contents of the accumulator
low word
End of a block repeat loop: The PC is loaded with the contents of the block repeat program
address start register.
» Return: The PC is loaded from the top of the stack.

YV VYVVVY

Problems:

1. Assuming the current content of AR3 to be 200h, what will be its contents after
each of the following TMS320C54xx addressing modes is used? Assume that the
contents of ARO are 20h.
a. *AR3+0
b. *AR3-0
c. *AR3+
d. *AR3
e. *AR3
f. *+AR3 (40h)

g. *+AR3 (-40h)
Solution:

a. AR3 «— AR3 + ARO;

AR3 =200h + 20h = 220h

b. AR3«< AR3 - ARQ;

AR3 =200h - 20h = 1EOh

C. AR3 «— AR3 + 1;

AR3 =200h + 1 =201h

d. AR3 «— AR3 - 1;

AR3 =200h - 1 =1FFh

e. AR3 is not modified.

AR3 =200h

f. AR3 < AR3 + 40h;

AR3 =200 + 40h = 240h

g. AR3 « AR3 - 40h;

AR3 =200 - 40h = 1C0h

VTUlive.com

DSP Algorithm and Architecture 15EC751

2. Assuming the current contents of AR3 to be 200h, what will be its contents after
each of the following TMS320C54xx addressing modes is used? Assume that the contents of ARO are
20h
a. *AR3 + 0B
b. *AR3 - 0B
Solution:
a. AR3 < AR3 + ARO with reverse carry propagation;
AR3 = 200h + 20h (with reverse carry propagation) = 220h.
b. AR3 «— AR3 - ARO with reverse carry propagation;
AR3 = 200h - 20h (with reverse carry propagation) = 23Fh.

Recommended Questions:

1. Compare architectural features of TMS320C25 and DSP6000 fixed point digital signal
processors. (Dec.09-Jan.10, 6m)

2. Write an explanatory note on direct addressing mode of TMS320C54XX processors. Give
example. (Dec.09-Jan.10, 6m)

3. Describe the operation of the following instructions of TMS320C54XX processors.

i) MPY *AR2-,*AR4+0B (il) MAC *ar5+,#1234h,A (iii) STH A,1,*AR2 iv) SSBX

SXM (Dec.09-Jan.10, 8m)

4. With a block diagram explain the indirect addressing mode of TMS320C54XX processor using
dual data memory operand. (June.12, 6m)

5. What is the function of an address generation unit explain with the help of block diagram.
(Dec.12, 6m)

6. Why circular buffers are required in DSP processor? How they are implemented? (Dec.12, 2m)

7. Explain the direct addressing mode of the TMS320C54XX processor with the help of a block
diagram. (Dec.12, 2m)

8. Describe the multiplier/adder unit of TMS320c54xx processor with a neat block diagram.
(May/June2010, 6m)

9. Describe any four data addressing modes of TMS320c54xx processor(May/June2010, 8m)

10. Assume that the current content of AR3 is 400h, what will be its contents after each of the
following. Assume that the content of ARO is 40h. (May/June2010, 8m)

60

VTUlive.com

DSP Algorithm and Architecture 15EC751

11.
12.

13.
14.
15.
16.
17.
18.

19.
20.

Explain PMST register. (May/June2011, 8m)

With an example each, explain immediate, absolute, and direct addressing
mode.(May/June2011, 12m)

Explain the functioning of barrel shifter in TMS320C54XX processor. (June.12, 6m)

Explain sequential and other types of program control(June.11, 7m)

With an example each, explain immediate, absolute, and direct addressing mode.

Explain the functioning of barrel shifter in TMS320C54 XX processor.

Explain sequential and other types of program control

Assume that the current content of AR3 is 400h, what will be its contents after each of the
following. Assume that the content of ARO is 40h.

Explain PMST register.

Compare architectural features of TMS320C25 and DSP6000 fixed point digital signal

[processors.

61

VTUlive.com

DSP Algorithm and Architecture

Instruction and programming

4.1Assembly language instructions can be classified as:
Arithmetic operations

Load and store instructions.

Logical operations

Program-control operations

Operators Used in Instruction Set:

15EC751

Symbols Operators Evaluation
+ = o~ Unary plus, minus, 1s complement Right to left
% Multiplication, division, modulo Left to right
+ - Addition, subtraction Left to right
<< >> Left shift, right shift Left to right
<<< Logical left shift Left to right
< < Less than, LT or equal Left to right
> = Greater than, GT or equal Left to right
= Not equal to Left to right
& Bitwise AND Left to right
A Bitwise exclusive OR Left to right

Bitwise OR Left to right

Table 4.1. Operator used in instruction set

62

VTUlive.com

DSP Algorithm and Architecture

4.1.1 Arithmetic Instructions:

Add Instructions:

Syntax

ADD Smem, src

ADD Smem, TS, src

ADD Smem, 16, src [, dst |
ADD Smem [, SHIFT |, src [, dst |
ADD Xmem, SHFT, src

ADD Xmem, Ymem, dst

ADD #lk [, SHFT |, src [, dst |
ADD #k, 16, src [, dst |

ADD src [, SHIFT] [. dst |
ADD src, ASM [, dst]

ADDC Smem, src

ADDM #lk, Smem

ADD: Add to Accumulator

Syntax :

:ADD Smem

— OO0 AWK~

Operands :
Smem:

Xmem, Ymem:
src, dst:

15EC751

Expression

SIC SIC = SIC + Smem
src = src + Smem << TS
dst = src + Smem << 16
dst = src + Smem << SHIFT
src = src + Xmem << SHFT
dst = Xmem << 16 + Ymem << 16
dst = src + #lk << SHFT
dst=src + #lk << 16
dst = dst + src << SHIFT
dst = dst + src << ASM
src =src + Smem + C

Smem = Smem + #lk

: ADD Smem, src
: ADD Smem,
: ADD Smem,

TS, src
16, src [, dst]
[. SHIFT]. src [. dst |

: ADD Xmem, SHFT, src

: ADD Xmem, Ymem, dst

: ADD #1k [, SHFT], src [. dst]
: ADD #Ik. 16, src [, dst |

: ADD src [, SHIFT], [, dst |

0: ADD src. ASM |, dst |

Single data-memory operand
Dual data-memory operands
A (accumulator A)

B (accumulator B)

63

VTUlive.com

DSP Algorithm and Architecture

-32768 <1k <32 767
—16 < SHIFT < 15
0 < SHFT <15

Execution :

1: (Smem) + (sr¢) — src

2: (Smem) << (TS) + (src)— src
3: (Smem) << 16 + (src) — dst
4: (Smem) [<< SHIFT] + (src) — dst

SUB: Subtract From Accumulator

Syntax 1: SUB Smem, src
2: SUB Smem, TS, src
3: SUB Smem, 16, src|[, dst]
4: SUB Smem|[, SHIFT], src|, dst]
5- SUB Xmem, SHFT, src
B SUB Xmem, Ymem, dst
7: SUB #/k[, SHFT], src[, dst]
a: SUB #/k, 16, src [, dst]
8: SUB src[, SHIFT), [, dst]
10: SUB src, ASM [, dsi]
Operands src, dst: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operan:
-32768 = |k = 32 767
0= SHFT = 15
-16 = SHIFT = 15
Execution 1: (src) - (Smem) — src
2: (src)—(Smem)<< TS = src
3: (src)-(Smem) << 16 — dst
4. (src)- (Smem) << SHIFT - dst
5. (src)— (Xmem) << SHFT - src
6: (Xmem) << 16 - (Ymem) << 16 — dst
7. (src)- Ik << SHFT — dst
8: (src)—lk << 16 — dst
9: (dst)- (src) << SHIFT — dst
10: (dst) - (src) << ASM — dst
Status Bits Affected by SXM and OVM

Affects C and OVdst (or OVsrc, if dst = src)

15EC751

64

VTUlive.com

DSP Algorithm and Architecture

SUBB: Subtract From Accumulator with Borrow

Syntax
Operands

Execution

Status Bits

SUBB Smem, src

SIC: A (accumulator A)
B (accumulator B)
Smem: Single data-memaory operand

(src) — (Smem) — (logical inversion of C) — src

Affected by OVM and C
Affects C and OVsrc

SUBC: Subtract Conditionally

Syntax

Operands

Execution

Status Bits

SUBC Smem, src

Smem: Single data-memory operand
src: A (accumulator A)
B (accumulator B)

(sre) — ((Smem) << 15) — ALU output
If ALU output = O

Then

((ALU output) << 1)+ 1 — src
Else (src) == 1 — src

Affected by SXM
Affects C and OVsrc

SUBS: Subtract with accumulator with sign extension suppressed

Syntax

Operands

Execution

Status Bits

SUBS Smem, src

Smem:; Single data-memory operand
src: A (accumulator A)
B (accumulator B)

(src) = unsigned (Smem) — src

Affected by OVM
Affects C and OVsrc

15EC751

65

VTUlive.com

DSP Algorithm and Architecture

MPY: Multiply With/Without Rounding

MPY[R] Smem, dst
MPY Xmem, Ymem, dst
MPY Smem, #Ik, dst
MPY #lk, dst

Syntax

OIS

Operands Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operands
dst: A (accumulator A)
B (accumulator B)
-32768 < |k < 32767

Execution 12 (T) x (Smem) - dst
2. (Xmem) X (Ymem) - dst
(Xmem)-T
3. (Smem) x [k - dst
(Smem)->T
4 (T)x Ik dst

Status Bits Affected by FRCT and OVM
Affects OVdst

MPYA: Multiply by Accumulator A

Syntax 1: MPYA Smem
2: MPYA dst

Operands Smem: Single data-memory operand
dst: A (accumulator A)

B (accumulator B)

Execution 1. (Smem) x (A(32-16)) =B
(Smem)—T
2. (T) x (A(32-16)) — dst
Status Bits Affected by FRCT and OVM

Affects OVdst (OVB in syntax 1)

MPYU:Multiply Unsigned

15EC751

66

VTUlive.com

DSP Algorithm and Architecture 15EC751
Syntax MPYU Smem, dst
Operands Smem: Single data-memory operand

dst: A (accumulator A)

B (accumulator B)

Execution unsigned(T) % unsigned(Smem) — dst
Status Bits Affected by FRCT and OVM

Affects OVdst

SQUR: Square

Syntax 1: SQUR Smem, dst
2: SQUR A, dst

Operands Smem: Single data-memory operand
dst: A (accumulator A)

B (accumulator B)

Execution 1. (Smem)— T
{(Smem) x (Smem) —= dst
2: (A(32-18)) x (A(32-18)) — dst

Status Bits Affected by OVM and FRCT
Affects OVsre

SQURA: Square and Accumulate

Syntax SQURA Smem, src
Operands Smem: Single data-memory operand

src: A (accumulator A)

B (accumulator B)

Execution (Smem)—T

(Smem) X (Smem) + (src) — src
Status Bits Affected by OVM and FRCT

Affects OVsrc

SQURS: Square and Subtract

Syntax SQURS Smem, src
Operands Smem: Single data-memory operand
src: A (accumulator A)
B (accumulator B)
Execution {Smem)— T
{src) - (Smem) X (Smem) — src
Status Bits Affected by OVM and FRCT

Affects OVsrc

VTUlive.com

DSP Algorithm and Architecture

MACI[R]: Multiply Accumulate With/Without Rounding

Syntax

Operands

Execution

Status Bits

1 MACI[R] Smem, src

2: MAC[R] Xmem, Ymem, src |, dst]
3. MAC #lk, src|, dst]

4: MAC Smem, &lk, src|, ast]

Smem: Single data-memory operands
Xmem, Ymem: Dual data-memory operands
src, dst: A (accumulator A)

B (accumulator B)
-32768 < |k < 32767

: (Smem) x (T) + (src) = src
. (Xmem) X (Ymem) + (src) - dst

(Xmem)—T

. (T) x |k + (src) = dst
. (Smem) X |k + (src) — dst

(Smem) T

Affected by FRCT and QYM
Affects OVdst (or OVsre, if dst is not specified)

MACA[R]: Multiply by Accumulator A and Accumulate With/Without Rounding

Syntax

Operands

Execution

Status Bits

1: MACA[R] Smem[, B]
2: MACA[R] T, src, dst]

Smem: Single data-memory operand
sre, dst. A (accumulator A)

B (accumulator B)

1 (Smem) X (A(32-16)) + (B) =B
(Smem) T
2. (T) x (A(32-16)) + (src) - dst

Affected by FRCT and OVM
Affects OVdst (or OVsrc, if dst is not specified) and OVB in syntax 1

15EC751

68

VTUlive.com 69

DSP Algorithm and Architecture 15EC751

MA CD: Multiply by Program Memory and Accumulate With Delay

Syntax MACD Smem, pmad, src
Operands Smem: Single data-memory operand
src: A (accumulator A)

B (accumulator B)
0 < pmad < 65535

MACP: Multiply by Program Memory and Accumulate

Syntax MACP Smem, pmad, src
Operands Smem: Single data-memory operand
src: A (accumulator A)

B (accumulator B)
0 = pmad = 65535

Execution (pmad) — PAR

If (RC) = 0

Then
(Smem) x (Pmem addressed by PAR) + (src) == src
(Smem)—T
(PAR) + 1 — PAR

Else
(Smem) x (Pmem addressed by PAR) + (src) — src
(Smem) = T

Status Bits Affected by FRCT and OVM
Affects OVsre

MA CSU: Multiply Signed by Unsigned and Accumulate

Syntax MACSU Xmem, Ymem, src
Operands Xmem, Ymem: Dual data-memory operands
SrC; A (accumulator A)
B (accumulator B)
Execution unsigned(Xmem) X signed(Ymem) + (src) — src
(Xmem)—T
Status Bits Affected by FRCT and OVM

Affects OVsrc

VTUlive.com

DSP Algorithm and Architecture 15EC751

MA CSU: Multiply Signed by Unsigned and Accumulate

Syntax MACSU Xmem, Ymem, src

Operands Xmem, Ymem: Dual data-memory operands
Src; A (accumulator A)

B (accumulator B)

Execution unsigned(Xmem) % signed(Ymem) + (src) — src
(Kmem)—=T

Status Bits Affected by FRCT and OVM
Affects OVsrc

MAS[R] :Multiply and Subtract With/Without Rounding

Syntax 1. MAS[R] Smem, src
2. MAS[R] Xmem, Ymem, src|, dst]
Operands Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operands
src, dst; A (accumulator A)

B (accumulator B)

MASA[R] :Multiply by Accumulator A and Subtract With/Without Rounding

Syntax 1: MASA Smem], B]
2. MASA[R] T, src|, dst]

Operands Smem: Single data-memory operand
sre, dst: A (accumulator A)
B (accumulator B)|

Execution 1: (B) - (Smem) x (A(32-16)) =B
(Smem) =T
2: (src) = (T) % [A(32-16)) — dst

Status Bits Affected by FRCT and QVM
Affects OVdst (or OVsrc, if dst is not specified) and OVB in syntax 1

70

VTUlive.com

DSP Algorithm and Architecture 15EC751

MAX :Accumulator Maximum

Syntax MAX o=t

Operands dst: A {accumulator A)
B (accumulator B)

Execution If (A = B)
Then
{(A) —= dst
0—C
Else
{(B) —= dst
1 —=

Status Bits Affects C

MIN : Accumulator Minimum

Syntax MIN dst

Operands dst: A (accumulator A)
B (accumulator B)

Execution If (A = B)
Then
(A) —= dst
0—C
Else
(B) —= dst
1—C

Status Bits Affects C

ABDST: Absolute Distance

Syntax ABDST Xmem, Ymem
Operands Xmem, Ymem: Dual data-memory operands
Execution (B) + | (A(32-16))| - B

(Xmem) = (Ymem)) << 16 = A

Status Bits Affected by OVM, FRCT, and SXM
Affects C, OVA, and OVB

ABS: Absolute Value of Accumulator

VTUlive.com

DSP Algorithm and Architecture 15EC751
ABE L
Before Instruction After Instruction
A A

OVM VM

CMPL :Complement Accumulator

Syntax CMPL src|, dst])

Operands src, dst: A (accumulator A)
B (accumulator B)

Execution (src) — dst

Status Bits None

CMPM :Compare Memory With Long Immediate

Syntax CMPM Smem, #lk

Operands Smem: Single data-memory operan
32768 = |k = 32767

Execution If (Smem) = Ik
Then
1-=TC
Else
0—=TC

Status Bits Affects TC

CMPS :Compare, Select and Store Maximum

Syntax CMPS src, Smem
Operands src: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand
Execution If ((src(31—-16)) = (src(15-0)))
Then

(src(31-16)) — Smem
(TRN) << 1 — TRN
0 — TRN(0)
0—=1C
Else
(src(15-0)) — Smem
(TRN) << 1 —= TRN
1 — TRN(O)
1—=TC

Status Bits Affects TC

VTUlive.com

DSP Algorithm and Architecture 15EC751

EXP: Accumulator Exponent

Syntax EXP src

Operands Src: A (accumulator A)
B (accumulator B)

Execution If(src) = 0
Then

0—-T
Else

(Number of leading bits of src) — 8 - T

Status Bits None

SAT :Saturate Accumulator
Operands src. A (accumulator A)

B (accumulator B)

Execution Saturate (src) = src

Status Bits Affects QVsre

NORM: Normalization

Syntax NORM src|, dst]

Operands src, dst - A (accumulator A)
B (accumulator B)

Execution (src) << TS — dst

Status Bits Affected by SXM and OVM
Affects OVdst (or OVsrc, when dst = src)

VTUlive.com 74

DSP Algorithm and Architecture 15EC751

4.1.2 Logical Operations:

AND: AND With Accumulator

syntax 1 AND Smem, src

2. AND #lk[, SHFT], src|, dst]
3: AND #Ik, 16, src [, dst]
4.

AND src[, SHIFT], |, dst]

Operands Smem: Single data-memory operand
SIC; A (accumulator A)
B {accurnulator B)
-16 = SHIFT = 15
0 = SHFT = 15
0 =lk =65535

Execution 1: (Smem) AND (src) — src
2: lk << SHFT AND (src)— dst
J: Ik << 16 AND (src)— dst
4: (dst) AND (src) << SHIFT — dst

Status Bits None

ANDM:AND Memory With Long Immediate

Syntax ANDM #lk, Smem

Operands Smem: Single data-memory operand
0<lk<65535

Execution lk AND (Smem) = Smem

Status Bits None

VTUlive.com

DSP Algorithm and Architecture 15EC751

OR: OR with Accumulator

Symtax 1: OR Smerm. src
2= OR &%k [. SHFT). sec . dst)
3: OR #Fk_16. sic . ost]
4 OR src[. SHFT) [osr]

Operands src, dst - A (acocumulator A)
B {accumuliator B)
Srvem - Sangle data-memory operand

0O =< SHFT = 15
—16 = SHIFT = 15
0O =< Kk = 865535

Execution 1: (Smem) OR (srcf 15—-0)) — src
src{38—16) unchanged
2: Kk << SHFT OR {(src) — dst
3: Kk << 16 OR (src) — dst
4: (src or [dst]) OR (src) << SHIFT — dst
Status Bits None

ORM: OR Memory With Constant

Syntax ORM #lk, Smem

Operands Smem: Single data-memory operand
0< Ik < 85535

Execution lk OR (Smem) - Smem

Status Bits None

XOR: Exclusive OR With Accumulator

Syntax 1: XOR Smem, src
2: XOR #lk[, SHFT], src|, dst]
3: XOR #Ik, 16, src|, dst]
4. XOR src[, SHIFT][, dst]
Operands src, dst: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand
0=<SHFT =15

-16 = SHIFT = 15
0=Ilk=65535

75

VTUlive.com

DSP Algorithm and Architecture

Execution 1: [Smem) XOR (src) -» st
2. |k << SHFT XOR (src) -» dst
3. k<< 16 XOR (src) - dst
4; (src) << SHIFT XOR (dst) -» dst

Status Bits None

XORM: Exclusive OR Memory with Constant

Syntax XORM #lk, Smem

Operands Smem: Single data-memory operand
0=lk =65535

Execution Ik XOR (Smem) — Smem

Status Bits None

ROL: Rotate Accumulator Left
Syntax ROL src

Operands src: A (accumulator A)
B (accumulator B)

Execution (C) — src(0)
(src(30-0)) — sre(31-1)
(src(31)) = C
0 — sre(39-32)

Status Bits Affected by C
Affects C

ROLTC: Rotate Accumulator Left Using TC

Syntax ROLTC src

Operands src: A (accumulator A)
B (accumulator B)

Execution (TC) — sre(0)
(sre(30-0)) — sre(31-=1)
(sre(31)) —C
0 — src(38-32)

Status Bits Affects C
Affected by TC

15EC751

76

VTUlive.com

DSP Algorithm and Architecture 15EC751

ROR: Rotate Accumulator Right

Syntax ROR src
Operands sSrc: A (accumulator A)
B (accumulator B)
Execution (C) —= sre(31)
(sre(31-1)) — sre(30-0)
(src(0)) — C

0 — src(39-32)

Status Bits Affects C
Affected by C

SFTA: Shift Accumulator Arithmetically

Syntax SFTA src, SHIFT], dst]
Operands src,dst A (accumulator A)
B (accumulator B)

-16 < SHIFT < 15

Execution [fSHIFT <0
Then
(sre((=SHIFT)-1))=C
(src(39-0)) << SHIFT = dst
If SXM =1
Then
(src(39)) - dst(39~(39 + (SHIFT + 1)) [or src(39-(39 + (SHIFT + 1))),

if dst is not specified]
Else

0 - dst(39~(39 + (SHIFT + 1)) [or src(38-(39 + (SHIFT + 1)),
if dst is not specified]
Else
(src(39 - SHIFT)) - C
(src) << SHIFT - dst
0 - dst((SHIFT - 1)-0) [or src((SHIFT - 1)-0), if dst is not specified]

Status Bits Affected by SXM and OVM
Affects C and OVdst (or OVsrc, if dst = src)

SFTC: Shift Accumulator Conditionally

VTUlive.com

DSP Algorithm and Architecture 15EC751
Syntax SFTC src
Operands src: A jaccumulator A)

B (accumulator B)

Execution If (sre) = 0O
Then
1 —TC
Else

If (sre(31)) XOR (src(30)} =0
Then (two significant sign bkits)
O—=T0C
(sre) == 1 — src
Else (only one sign bit)
1 —=TC

Status Bits Affects TC

SFTL: Shift Accumulator Logically

Syntax SFTL src, SHIFT, ast)
Operands src, dst A (accumulator A)
B (accumulator B)
-16 = SHIFT = 15
Execution lf SHIFT <D
Then

sic((-SHIFT)-1)—=C
sre(31-0) << SHIFT - dst
0 — dst(39-(31 + (SHIFT + 1)})
li SHIFT=0
Then
0-=C
Else
sre(31 - (SHIFT-1)) = C
sre((31 = SHIFT)-0) << SHIFT - dst
0 - dst{(SHIFT - 1)-0} [or sre{(SHIFT - 1)-0), if dst is not specified]
0 — dst(38-32) [or src(38-32), if dst is not specified]

Status Bits Affects C
BIT :Test Bit
Syntax BIT Xmem, BITC
Operands Xmem: Dual data-memory operand
0=BITC=15
Execution (Xmem(15-BITC)) = TC

Status Bits Affects TC

VTUlive.com

DSP Algorithm and Architecture 15EC751

BITF: Test Bit Field Specified by Immediate Value

Syntax BITF Smem, #lk
Operands Smem: Single data-memory operand
0 =Ik = 65535
Execution If ((Smem) AND Ik) = 0
Then
n—-TC
Else
1—-TC
Status Bits Affects TC

BITT :Test Bit Specified by T

Example BITT *AR7+0

Before Instruction After Instruction

T T

L e

AR ARD

ART ART

Data Memory
0100h 0100n

VTUlive.com

DSP Algorithm and Architecture

4.1.3.Load and Store operations:

LLD: Load Accumulator with Shift

Syntax

Operands

Execution

Status Bits

Smem, dst

Smem, TS, dst
Smem. 16, dst
Smem|[, SHIFT], dst
Xmem, SHFT, dst
#K. dst

#Ik[, SHFT], dst
#IK. 16, dst

src, ASM [, dst]

src [, SHIFT], dst

6666666666

0:

For additional load instructions, see Load T/DP/ASM/ARP on page 4-70.

Smem: Single data-memory operand
Xmem: Dual data-memory operand
src, dst A (accumulator A)
B (accumulator B)
0=K= 255
32768 = Ik < 32767
—16 = SHIFT = 15
0 = SHFT= 15

12 (Smem) - dst

2. (Smem) << TS - dst

3. (Smem)<< 16 — dst

4. (Smem) << SHIFT -» dst
5.
6
7
8
9

(Xmem) << SHFT - dst

o K= dst

. |k << SHFT -» dst

. Ik << 16 - dst

o (src) << ASM - dst

10: (src) << SHIFT —» st

Affected by SXM in all accumulator loads
Affected by OVM in loads with SHIFT or ASM shift
Affects OVdst (or OVsrc, when dst = src) in loads with SHIFT or ASM shift

15EC751

80

VTUlive.com

DSP Algorithm and Architecture

LD :Load T/DP/ASM/ARP

Syntax LD
LD
LD
LD
LD

LD

R sk

Operands Smem: Single
0= K9 = 511
-16=2k5 <15
0=ki=7

Execution

k9 — DP
(kS — ASM
k3 — ARP

o kW=

Status Bits None

Smem, T
Smem, DP
#k9, DP
#k5, ASM
#Kk3, ARP
Smem, ASM

data-memory operand

{(Smem) — T
I {(Smem{8-0)) — DP

- (Smem(4—0)) — ASM

L.DM: Load Memory-Mapped Register
Syntax LDM MMR, dst
Operands MMR: Memory-mapped register
dst: A (accumulator)
B (accumulator)
Execution (MMR) — dsl(15-0)

00 0000h - dst(39-1

Status Bits None

6)

15EC751

81

VTUlive.com 82

DSP Algorithm and Architecture 15EC751

LDIMAC|R] :Load Accumulator With Parallel Multiply Accumulate With/Without

Rounding
Syntax LD Xmem, dst
|| MAC[R] Ymem][, dst_]
Operands dst: A (accumulator A)
B (accumulator B)
dst_: It ast= A, then dst_= B, if dst=B, then dst_=A
Xmem, Ymem: Dual data-memory operands
Execution (Xmem) << 16 - dst (31-16)
If (Rounding)
Round (((Ymem) x (T)) + (dst_)) - dst_
Else
((Ymem) x (T)) +(dst_) — dst_
Status Bits Affected by SXM, FRCT, and OVM
Affects OVdst_

LDIIMAS[R]: Load Accumulator With Parallel Multiply Subtract With/Without

Rounding
Syntax LD Xmem, dst
|| MAS[R] Ymem |, dst_]
Operands Xmem, Ymem: Dual data-memory operands
dst: A (accumulator A)
B (accumulator B)
dst_: If dst= A, then dst_ = B; if dst= B, then dst_=A
Execution (Xmem) << 16 — dst (31-16)
If (Rounding)
Round ((dst_) = ((T) X (Ymem))) — dst_
Else
(dst_)= ((T) X (Ymem)) — dst_
Status Bits Affected by SXM, FRCT, and OVM

Affects OVdst_

VTUlive.com

DSP Algorithm and Architecture

LLDR: Load Memory Value in Accumulator High With Rounding

Syntax LDR Smem, dst
Operands Smem: Single data-memory operand
dst: A {accumulator A)
B (accumulator B)
Execution (Smem) <= 18 + 1 << 15 — dst(31-16)
Status Bits Affacted by SXM

LDU :Load Unsigned Memory Value

Syntax LDU Smem, dst

Operands Smem: Single data-memory operand
dst: A (accumulator A)
B (accumulator B)

Execution (Smem) -» dst(15-0)
00 0000h - dst(39-16)

LMS: Least Mean Square

Syntax LMS Xmem, Ymem
Operands Xmem, Ymem: Dual data-memory operands
Execution (A) 4 [Xmem) << 16 + 219 A

(B) + (Xmem) x (Ymem) - B

Status Bits Affected by SXM FRCT and GYM
Affects C, OVA, and OYB

15EC751

83

VTUlive.com

DSP Algorithm and Architecture

LTD :Load T and Insert Delay

Syntax
Operands

Execution

Status Bits

ST : Store T, TRN, or Immediate Value Into Memory

Syntax

Operands

Execution

Status Bits

LTD Smem
Smem: Single data-memory operand

(Smem) - T
(Smem) - Smem + 1

None

1 8T T Smem
2. ST TRN, Smem
30 ST #k Smem

Smem: Single data-memory operand
-32768 < Ik < 2767

1: (T)— Smem
2: (TRN) —= Smem
3: |k —= Smem

None

15EC751

84

VTUlive.com

DSP Algorithm and Architecture

STH : Store Accumulator High Into Memory

Syntax

Operands

Execution

Status Bits

1: STH s=rc, Smem
2: STH src, ASM, Smem
3 STH sre, SHFET, Xmem
< STH srcl[, SHIFT], Smem
src: A (accumulator &)
B (accumulator B)
Smem: Single data-memory operand
>Xmem: Dual data-memory operand

0 = SHFT = 1&
—186 = SHIFT = 15

10 (src) << (=16) = Smem

2. (sre) << (ASM - 16) — Smem
3: (sre) << (SHFT = 16) - Xmem
4. (src) << (SHIFT = 18) - Srmem
Affected by SXM

STL: Store Accumulator Low Into Memory

Syntax

Operands

Execution

Status Bits

1: STL src, Smeam
2: STL src, ASM, Smem
3: STL src, SHFT, Xmem
4: STL src [, SHIFT]. Smem
sSrc: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand
Xrmem: Dual data-memory operand

0 = SHFT = 15
—186 = SHIFT = 15
(src) —» Smem
(src) << ASM — Smem
(src) << SHFT = Xmem
(src) << SHIFT - Smem

Affected by SXM

15EC751

85

VTUlive.com

DSP Algorithm and Architecture

STIADD : Store Accumulator With Parallel Add

Syntax ST src, Ymem
|ADD Xmem, dst
Operands stc, dst: A (accumulator A

B (accumulator B|
Xmem, Ymem: Dual data-memory operands
dst If dst= A, then dst_=B; if dsf=B, then dst_=A

Execution (src) << (ASM — 18} — Ymem
(dst_) + (Xmem) << 16 — dst

Status Bits Affected by OVM, SXM, and ASM
Affects C and OVdst

STILD: Store Accumulator with Parallel Load

Syntax 1: ST src, Ymem
|| LD Xmem, dst

2: ST src, Ymem

| LD Xmem, T

Operands src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands

Execution 1. (src) << (ASM — 16) — Ymem
(Xmem) << 16 — dst
2. (src) << (ASM — 16) — Ymem
(Xmem) — T

Status Bits Affected by OVM and ASM
Affects C

15EC751

86

VTUlive.com
DSP Algorithm and Architecture 15EC751

STIMACI[R]: Store Accumulator With Parallel Multiply Accumulate With/Without

Rounding
Syntax ST src, Ymem
|| MACIR] Xmem, dst
Operands src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands
Execution (src << (ASM — 16)) = Ymem
If (Rounding)
Then
Round ((Xmem) X (T) + (dst)) — dst
Else
(Xmem) x (T) + (dst) — dst
Status Bits Affected by OVM, SXM, ASM, and FRCT

Affects C and OVdst

STIMASIR]: Store Accumulator With Parallel Multiply Subtract With/Without

Rounding
Syntax 8T src, Ymem
|| MAS[R] Xmem, dst
Operands src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands
Execution (src <= (ASM — 16)) —= Ymem
If (Rounding)
Then
Round ((dst) - (Xmem) x (T))—> dst
Else
(dst) — (Xmem) x (T) — dst
Status Bits Affected by OVM, SXM, ASM, and FRCT

Affects C and OVdst

87

VTUlive.com

DSP Algorithm and Architecture

STIMPY: Store Accumulator With Parallel Multiply

Syntax 8T src, Ymem
[| MPY Xmem, dst

Operands src, dst: A (accumulator A)
E (accumulator B)

Xmem, Ymem: Dual data-memary operands
Execution (src << (ASM — 18)) = Ymem
(T) % (Xmem) — dst

Status Bits Affected by OVM, SXM, ASM, and FRCT
Affects C and OVdst

STIISUB: Store Accumulator With Parallel Subtract

Syntax ST src, Ymem
|| SUB Xmem, dst

Operands sre, dst: A (accumulator A)
B (accumulator B)

Amem, Ymem: Dual data-memory operands

dst_: If dst= A, then dst_=B; if dsf=B, then dst_=A.
Execution (src << (ASM — 16)) = Ymem

(Kmem) << 16 - (dst_) — dst
Status Bits Affected by OVM, SXM, and ASM

Affects C and OVdst

STRCD: Store T Conditionally

15EC751

88

VTUlive.com

DSP Algorithm and Architecture

89

15EC751

Syntax
Operands

Execution

Status Bits

STRCD Xmem, cond

Xmem: Dual data-memory operand

The following table lists the conditions (cond operand) for this instruction.

Condition Condition

Cond Description Code Cond Description Code
AEQ (A)=0 0101 BEQ (B)=0 1101
ANEQ (A)=10 0100 BNEQ (B) =0 1100
AGT A)=10 0110 BGT B)>0 110
AGEQ A=10 0010 BGEQ (B)=10 1010
ALT (A) =0 0011 BLT (B) =0 1011
ALEQ A)=10 01 BLEQ B)=0 1111
If (cond)

(T) — Xmem
Else

(Xmem) — Xmem

None

4.1.4. Miscellaneous Load-Type and Store-Type Instructions

MVDD: Move Data From Data Memory to Data Memory With X, Y addressing

Syntax

Operands

Execution

Status Bits

MVDD Xmem, Ymem

Xmem, Ymem: Dual data-memory operands

(Xmem) — Ymem

None

MVDK: Move Data From Data Memory to Data Memory With Destination Addressing

Syntax

Operands

Execution

Status Bits

MVDK Smem, dmad

Smem: Single data-memory operand

0 = dmad = 65535

(dmad) — EAR
If(RC) =0
Then

(Smem) — Dmem addressed by EAR

(EAR) + 1 — EAR
Else

(Smem) — Dmem addressed by EAR

None

VTUlive.com 90

DSP Algorithm and Architecture 15EC751

MVDM: Move Data From Data Memory to Memory-Mapped Register

Syntax MVDM dmad, MMR

Operands MMR: Memory-mapped register
0 < dmad < 65535

Execution dmad — DAR
f(RC)= 0
Then

(Omem addressed by DAR) — MMR
(DAR) + 1 - DAR

Else
(Omem addressed by DAR) = MMR

Status Bits None

MVDP: Move Data from Data Memory to Program Memory

Syntax MVDP Smem, pmad

Operands Smem: Single data-memory operand
0 = pmad = 65 535

Execution pmad — PAR
If (RC) = O
Then

{Smem) — Pmem addressed by PAR
{(PAR) + 1 — PAR

Else
{(Smem) — Pmem addressed by PAR

Status Bits MNone

MV KD: Move Data From Data Memory to Data Memory With Source Addressing

VTUlive.com

DSP Algorithm and Architecture 15EC751
Syntax MVKD dmad, Smem
Operands Smem: Single data-memory operand
0 < dmad < 65535
Execution dmad - DAR
If(RC) # 0
Then
(Dmem addressed by DAR) - Smem
(DAR)+1- DAR
Else
(Dmem addressed by DAR) - Smem
Status Bits None
Example 1 MVKD 300h, 0

Befora Instruction

P | 004]
Data Memory

0200n | ABCD)

0300h | 1234

After Instruction

oP [004

0200h
030Ch

MVMD: Move Data From Memory-Mapped Register to Data Memory

Syntax

Operands

Execution

Status Bits

MVMD MMR, dmad

MMR: Memory-mapped register
0 = dmad = 65535

dmad — EAR

If(RC) = 0

Then
{(MMR) — Dmem addressed by EAR
(EAR)+ 1 — EAR

Else
(MMR) — Dmem addressed by EAR

None

VTUlive.com

DSP Algorithm and Architecture 15EC751

MVMM: Move Data From Memory-Mapped Register to Memory-Mapped Register

Syntax MVMM MMRx. MMRYy
Operands MMRXx: ARO-AR7, SP
MMRYy: ARO-AR7, SP
Execution (MMRx) — MMRYy
Status Bits None
Example NV 82, A1
Before Instruction Atter Instruction

ARt AR 0200
S 1200 P

MVPD: Move Data From Program Memory to Data Memory

Syntax MVPD pmad, Smem

Operands Smem: Single data-memory operand
0 = pmad = 65535

Execution pmad — PAR
If (RC) = O
Then

{(Pmem addressed by PAR) — Smem
(PAR)+ 1 — PAR

Else
{(Pmem addressed by PAR) — Smem

Status Bits None

PORTR: Read Data from Port
PORTW: Write Data to Port

Syntax PORTW Smem, PA

Operands Smem: Single data-memory operand
0 =PA=65535

Execution (Smem) — PA

Status Bits None

VTUlive.com 93

DSP Algorithm and Architecture 15EC751

READA: Read Program Memory addressed by Accumulator A and Store in Data

Memory
Syntax READA Smem
Operands Smem: Single data-memory operand
Execution A — PAR
If ((RC)=0)
(Pmem (addressed by PAR)) — Smem
(PAR)+ 1 — PAR
(RC)-1—=RC
Else
(Pmem (addressed by PAR)) — Smem
Status Bits None

WRITA: Write Data to Program Memory Addressed by Accumulator A

Syntax WRITA Smem
Operands Smem: Single data-memory operand
Execution A — PAR

If(RC)= 0

Then

(Smem) — (Pmem addressed by PAR)
(PAR) + 1 — PAR
(RC)-1—=RC
Else
(Smem) — (Pmem addressed by PAR)

Status Bits None

Branch Instructions

B[D]: Branch Unconditionally

Syntax B[D] pmad
Operands 0 = pmad < 65 535
Execution pmad — PC

Status Bits None

BACCID]: Branch to Location Specified by Accumulator

VTUlive.com

DSP Algorithm and Architecture 15EC751
Syntax BACCID] src
Operands src: A (accumulator A)

B (accumulator B)

Execution (src(15-0)) — PC

Status Bits None

BANZ[D]: Branch on Auxiliary Register Not Zero

Syntax BANZ[D] pmad, Sind
Operands Sind: Single indirect addressing operand
0 < pmad < 65535
Execution If (ARx) = 0)
Then
pmad — PC
Else
(PC)+2—-PC
Status Bits None

BC [D]: Branch Conditionally

Syntax BC[D] pmad, cond|[, cond [, cond]]
Execution If (cond(s))
Then
pmad — PC
Else
(PC)+2—=PC
Status Bits Affects OVA or OVB if OV or NOV is chosen

FB [D]: Far Branch Unconditionally

Syntax FB[D] extomad
Operands 0 < extpmad < 7F FFFF
Execution (pmad(15-0)) — PC

(pmad(22-16)) - XPC

Status Bits Nohe

FBACC [D]: Far Branch to Location Specified by Accumulator

VTUlive.com

DSP Algorithm and Architecture

Syntax
Operands

Execution

Status Bits

CALA [D]: Call Subroutine at Location Specified by Accumulator

Syntax

Operands

Execution

Status Bits

FBACC[D] src

src: A (accumulator A)
B (accumulator B)

(sre(15-0)) — PC
(sre(22-16)) — XPC

None

CALA[D] src

Src: A (accumulator A)
B (accumulator B)

Nondelayed
(SP)—=1—=5SP
(PC)+1—=TOCS
(src(15-0)) —= PC

Delayed
(SP)—-1—=SP
(PC)+3 —=TOS
(src(15-0)) = PC

None

CALL[D]: Call Unconditionally

Syntax
Operands

Execution

Status Bits

CALL[D] pmad
0 = pmad = 65535

Nondelayed
(SP) — 1—= 5P
(PC) + 2—-TOS
pmad — PC

Delayed
(SP)—1—=5P
(PC)+4 - TOS
pmad — PC

None

CC [D]: Call Conditionally

15EC751

95

VTUlive.com

DSP Algorithm and Architecture

Syntax CC[D] pmad, cond [, cond|, cond]|

Operands 0 < pmad < 65535

The following table lists the conditions {cond operand) for this instruction.

Condition Condition
Cond Description Code Cond Description Code
BIO BiOkw 00000011 [NBIO BiDhigh 00000010
C C=1 00001100 JNC C=0 0000 1000
T TC=1 00110000 JNTC TC=0 0010 0000
AEQ (A)=0 01000101 JBEQ (B)=0 0100 1101
ANEQ (A)=0 01000100 fBNEQ (B)=0 01001100
AGT (A)>0 0100010 JBGT (B)>0 01001110
AGEQ {A)20 01000010 §BGEQ (B)20 01001010
AT (A)<0 (0000011 fBLT (B)<0 01001011
AEQ (Aj<0 01000111 [BLEQ (8)<0 01001111
AOV Aovefiow 01110000 (BOV ~ Boverlow 01111000
ANOV Anooverlow 01100000 (BNOV B nooverflow 01101000

UNC

Unconditional 0000 0000

15EC751

96

VTUlive.com

DSP Algorithm and Architecture

97

15EC751

Execution

Status Bits

Nondelayed

If (cond(s))

Then
(SP) — 1 — SP
(PC) + 2 — TOS
pmad — PC

Else
(PC)+ 2 — PC

Delayed
If (cond(s))
Then
(SP) — 1 — SP
(PC)+4 — TOS
pmad — PC
Else
(PC)+ 2 — PC

Affects OWVA or OVB (if OV or NOV is chosen)

FCALA [D]: Far Call Subroutine at Location Specified by Accumulator

Syntax

Operands

Execution

Status Bits

FCALA[D] src

src: A (accumulator A)
B (accumulator B)

Nondelayed
(SP)—-1—SP
(PC)+1 —=TOS
(SP)—1—-SP
(XPC) — TOS
(src(15-0)) —= PC
(src(22-16)) — XPC

Delayed
(SP)—1—=SP
(PC)+3 —= TOS
(SP)—1—SP
(XPC) — TOS
(src(15-0)) — PC
(src(22—-16)) — XPC

None

VTUlive.com 98

DSP Algorithm and Architecture 15EC751

FCALL[D]: Far Call Unconditionally

Syntax FCALL[D] sxiprmad
Operands 0 = extpmad = 7F FFFF
Execution NMondelayed

(SP) — 1 — SP

(PC) + 2 —TOS
(SP)—1 — SP

(XPC) — TOS
(pmad(15—=0)) — PC
(pmad(22—18)) — XPC

Delayed
(SP)—1—=SP
(PC) +4 — TOS
(SP)—1— 3P
(XPC) — TOS
(pmad(15-0}) — PC
(pmad(22-16)} — XPC

Status Bits Mons

4.1.5. Interrupt Instructions:

INTR: Software Interrupt

Syntax INTR K
Operands 0=K=31
Execution (SP) - 1—=5P

(PC)+ 1—=TOS
interrupt vector specified by K — PC
1 — INTM

Status Bits Affects INTM and IFR

TRAP: Software Interrupt

VTUlive.com

DSP Algorithm and Architecture

Syntax TRAP K
Operands 0=K=3
Execution (SP)— 1—-=SP

(PC) + 1 =TOS
Interrupt vector specified by K — PC

Status Bits None

4.1.6. Return Instructions

FRET [D]: Far Return

Syntax FRETI[D]

Operands None

Execution (TOS) — XPC
(SP)+ 1 —=SP
(TOS) —= PC

(SP) + 1 —SP

Status Bits Nonhe

FRETE [D]: Enable Interrupts and Far Return From Interrupt

Syntax FRETE[D]
Operands None
Execution (TOS) — XPC
(SP) + 1 — SP
(TOS) — PC
(SP) + 1 — SP
O — INTM
Status Bits Affects INTM

RC [D]: Return Conditionally

15EC751

99

VTUlive.com

DSP Algorithm and Architecture

Syntax
Operands

Opcode

Execution

Status Bits

RC[D] cond[, cond|, cond]]

The following table lists the conditions (cond operand) for this instruction.

Condition Condition

Cond Description Code Cond Description Code

BIO BiOlw 00000011 [[NBIO BiOhigh 00000010
C C=1 0000 1100 [{NC C=0 0000 1000
1C TC=1 00110000 |{NTC TC=0 00100000
AEQ (A)=0 01000101 [|BEQ (B)=0 0100 1101
ANEQ (A)=0 01000100 |f{BNEQ (B) =0 0100 1100
AGT (A) >0 01000110 f|BGT (B)>0 0100 1110
AGEQ (A)20 01000010 |{BGEQ (B)=0 0100 1010
ALT (A) <0 01000011 |{BLT (B)<0 0100 1011
ALEQ (A)s0 01000111 |[BLEQ (B)=0 0100 1111
AQV Aoverflow 01110000 | BOV Boverflow 01171 1000
ANOV Anooverflow 01100000 [BNOV B nooverflow 0110 1000
UNC Unconditional 0000 0000

15 14 13 12 11 10 8 8 7 & 43 10
| 1 B EEE-YITE: g & C &

If (cond(s))

Then

(TOS) - PC

(SP)+1—SP

Else

(PC)+1-PC

None

15EC751

100

VTUlive.com 101

DSP Algorithm and Architecture 15EC751

RET [D]: Return

Syntax RET[D]
Operands None
Execution (TOS) —= PC

(SP)+ 1—=SP
Status Bits None

RETF [D]: Enable Interrupts and Fast Return From Interrupt

Syntax RETF[D]
Operands None
Execution (RTN) —= PC
(SP)+ 1—=SP
0 — INTM
Status Bits Affects INTM

4.1.7. Repeat Instructions

RPT: Repeat Next Instruction

Syntax 1: RPT Smem
2: RPT #K
3: RPT #k
Operands Smem: Single data-memory operand
0=Ks= 255
0 < Ik < 65535
Execution 1. (Smem) — RC
2. K—=RC
3: lk—=RC
Status Bits None

RPTB [D]: Block Repeat

VTUlive.com 102

DSP Algorithm and Architecture 15EC751
Syntax RPTB[D] pmad

Operands 0 = pmad < 65 535

Execution 1 — BRAF

If (delayed) then
(PC)+4 — RSA
Else
(PC)+2 — RSA
pmad — REA

Status Bits Affects BRAF

RPTZ: Repeat Next Instruction and Clear Accumulator

Syntax RPTZ dst, #lk

Operands dst: A (accumulator A)
B (accumulator B)
0 =Ilk =< 65535

Execution 0 — dst
Ik = RC
Status Bits None

4.1.8. Stack-Manipulating Instructions

FRAME: Stack Pointer Immediate Offset

Operands -128 < K < 127
Execution (SP) + K—SP
Status Bits None
Example FRAME 10h
Before Instruction After Instruction
sP sP

POPD: Pop Top of Stack to Data Memory

Syntax POPD Smem
Operands Smem: Single data-memory operand
Execution (TOS) — Smem

(SP) + 1 — SP

Status Bits MNone

VTUlive.com 103

DSP Algorithm and Architecture 15EC751

POPM: Pop Top of Stack to Memory-Mapped Register

Syntax POPM MMR
Operands MMR: Memory-mapped register
Execution (TOS) — MMR

(SP) + 1 —SP

Status Bits None

PSHD: Push Data-Memory Value onto Stack

Syntax PSHD Smem
Operands Smem: Single data-memeory operand
Execution (SP) —1—= 5P
(Smem) — TOS
Status Bits None

PSHM: Push Memory-Mapped Register onto Stack

Syntax PSHM MMR
Operands MMR: Memory-mapped register
Execution (SP) — 1 —=SP
(MMR) — TOS
Status Bits None

4.1.9. Miscellaneous Program-Control Instructions

SSBX: Set Status Register Bit

Syntax SSBX N, SBIT
Operands 0 = SBIT = 15

N=0or1
Execution 1 — STN(SBIT)
Status Bits None

RSBX: Reset Status Register Bit

VTUlive.com 104

DSP Algorithm and Architecture 15EC751
Syntax RSBX N, SBIT
Operands 0<SBIT<15
N=20or1
Execution 0 — STN(SBIT)
Status Bits None
Example 1 RSBX SXM ; SXM means: n=1 and SBIT=8
Before Instruction After Instruction
STt STt

NOP: No Operation

Syntax NOP
Operands None
Execution None
Status Bits None

RESET: Software Reset

Syntax RESET

Operands None

Execution These fields of PMST, ST0, and ST1 are loaded with the values shown:
(IPTR)<<7 = PC 0 - OVA 0—- OVB
1-C 1-TC 0— ARP
0— DP 1 - SXM 0 - ASM
0 — BRAF 0 - HM 1-XF
0—C16 0 - FRCT 0 - CMPT
0—- CPL 1= INTM 0—IFR
0— OVM

Status Bits The status bits affected are listed in the execution section.

VTUlive.com 105

DSP Algorithm and Architecture 15EC751
4.3. On chip peripherals:

VTUlive.com 106

DSP Algorithm and Architecture 15EC751

It facilitates interfacing with external devices. The peripherals are:
e General purpose 1/0 pins
e A software programmable wait state generator.
e Hardware timer
e Host port interface (HPI)
e Clock generator
e Serial port

4.3.1 It has two general purpose 1/O pins:

» BIO-input pin used to monitor the status of external devices.
» XF- output pin, software controlled used to signal external devices

4.3.2. Software programmable wait state generator:
» Extends external bus cycles up to seven machine cycles.

4.3.3. Hardware Timer
» [1An on chip down counter
» [1Used to generate signal to initiate any interrupt or any other process

[1Consists of 3 memory mapped registers:
» The timer register (TI1M)
» Timer period register (PRD)
» Timer controls register (TCR)
* Pre scaler block (PSC).
* TDDR (Time Divide Down ratio)
* TIN &TOUT

The timer register (TIM) is a 16-bit memory-mapped register that decrements at every pulse from the
prescaler block (PSC).

The timer period register (PRD) is a 16-bit memory-mapped register whose contents are loaded onto
the TIM whenever the TIM decrements to zero or the device is reset (SRESET).

The timer can also be independently reset using the TRB signal. The timer control register
(TCR) is a 16-bit memory-mapped register that contains status and control bits. Table shows the
functions of the various bits in the TCR.

The prescaler block is also an on-chip counter. Whenever the prescaler bits count down to 0, a
clock pulse is given to the TIM register that decrements the TIM register by 1. The TDDR bits contain
the divide-down ratio, which is loaded onto the prescaler block after each time the prescaler bits count
down to 0.

That is to say that the 4-bit value of TDDR determines the divide-by ratio of the timer clock
with respect to the system clock. In other words, the TIM decrements either at the rate of the system
clock or at a rate slower than that as decided by the value of the TDDR bits. TOUT and TINT are the
output signal generated as the TIM register decrements to 0. TOUT can trigger the start of the
conversion signal in an ADC interfaced to the DSP.

VTUlive.com

DSP Algorithm and Architecture 15EC751

The sampling frequency of the ADC determines how frequently it receives the TOUT signal.

TINT is used to generate interrupts, which are required to service a peripheral such as a DRAM
controller periodically. The timer can also be stopped, restarted, reset, or disabled by specific status

bits.
Bit Name Function
15-12 Reserved Reserved; always read as 0.
11 Soft Used in conjunction with the free bit to determine the state of the timer
Soft=0),the timer stops immediately.
Soft=1,the timer stops when the counter decrements to (.
10 Free Use in conjunction with the soft bit
Free=0,the soft bit selects the timer mode
free=1.the timer runs free
Bit Name Function
0-6 PSC Timer prescaler counter, specifies the count for the on-chip timer
5 TRB Timer reload. Reset the on-chip timer.
u TSS Timer stop status, stop or starts the on-chip timer.
3-0 TDDR Timer divide-down ration

Table 4.6. Pin details of software wail state generator

107

VTUlive.com

DSP Algorithm and Architecture 15EC751
SRESET
—__ € — ¢ RE
PRD TDDR
L T CPU clock
TIM 1 PSC 4— —
Borrow Borrow T35
t t o TINT
™ - | LUT

4.3.4. Host port interface (HPI):

Figure 4.2.Logical block diagram of timer circuit.

Allows to interface to an 8bit or 16bit host devices or a host processor

Signals in HPI are:
Host interrupt (HINT)

HRDY

HCNTLO &HCNTL1

HBIL
HR/w

108

VTUlive.com

DSP Algorithm and Architecture 15EC751
| HPITG "
HOST L PPD[15-01=: : =
: _ DS
DRTRLIST <JHNT [HPIDLISD] RR, a9 L
DMA Lo -
Aclclr ess[17:0] > > » *E%»
\éc o HCNTLO
—o| HCNTLI
—a{HBIL
HAS
R/W ol HR/W
== S Odxx
Dotestrokes » HDS1, HDS2, HCS CPU
RLADY [, HRDY

4.3. A generic diagram of the host port interface (HPI)

Important signals in the HPI are as follows:

» The 16-bit data bus and the 18-bit address bus.

* The host interrupt, Hint, for the DSP to signal the host when it attention is required.

+ HRDY, a DSP output indicating that the DSP is ready for transfer.

« HCNTLO and HCNTLZ, control signal that indicate the type of transfer to carry out. The
transfer types are data, address, etc.

« HBIL. If this is low it indicates that the current byte is the first byte; if it is high, it
indicates that it is second byte.

« HR/W indicates if the host is carrying out a read operation or a write operation

4.3.5. Clock Generator:

The clock generator on TMS320C54xx devices has two options-an external clock
and the internal clock. In the case of the external clock option, a clock source is directly connected to
the device. The internal clock source option, on the other hand, uses an internal clock generator and a
phase locked loop (PLL) circuit. The PLL, in turn, can be hardware configured or software
programmed. Not all devices of the TMS320C54xx family have all these clock options; they vary
from device to device.

4.3.6. Serial 1/0O Ports:
Three types of serial ports are available:
» Synchronous ports.
* Buffered ports.

109

VTUlive.com 110

DSP Algorithm and Architecture 15EC751
* Time-division multiplexed ports.

VTUlive.com 111

DSP Algorithm and Architecture 15EC751

The synchronous serial ports are high-speed, full-duplex ports and that provide direct
communications with serial devices, such as codec, and analog-to-digital (A/D) converters. A buffered
serial port (BSP) is synchronous serial port that is provided with
an auto buffering unit and is clocked at the full clock rate. The head of servicing interrupts. A time-
division multiplexed (TDM) serial port is a synchronous serial port that is provided to allow time-
division multiplexing of the data. The functioning of each of these on-chip peripherals is controlled by
memory-mapped registers assigned to the respective peripheral.

4.4. Interrupts of TMS320C54xx Processors:

Many times, when CPU is in the midst of executing a program, a peripheral device may require
a service from the CPU. In such a situation, the main program may be interrupted by a signal
generated by the peripheral devices. This results in the processor suspending the main program in
order to execute another program, called interrupt service routine, to service the peripheral device. On
completion of the interrupt service routine, the processor returns to the main program to continue from
where it left.
Interrupt may be generated either by an internal or an external device. It may also be generated by
software. Not all interrupts are serviced when they occur. Only those interrupts that are called
nonmaskable are serviced whenever they occur. Other interrupts, which are called maskable interrupts,
are serviced only if they are enabled. There is also a priority to determine which interrupt gets serviced
first if more than one interrupts occur simultaneously.

Almost all the devices of TMS320C54xx family have 32 interrupts. However, the
types and the number under each type vary from device to device. Some of these interrupts are
reserved for use by the CPU.

4.5. Pipeline operation of TMS320C54xx Processors:

The CPU of ‘54xx devices have a six-level-deep instruction pipeline. The six stages of the
pipeline are independent of each other. This allows overlapping execution of instructions. During any
given cycle, up to six different instructions can be active, each at a different stage of processing. The
six levels of the pipeline structure are program prefetch, program fetch, decode, access, read and
execute.

1 During program prefetch, the program address bus, PAB, is loaded with the address of the next
instruction to be fetched.

2 In the fetch phase, an instruction word is fetched from the program bus, PB, and loaded into the
instruction register, IR. These two phases from the instruction fetch sequence.

3 During the decode stage, the contents of the instruction register, IR are decoded to determine the
type of memory access operation and the control signals required for the data-address generation unit
and the CPU.

4 The access phase outputs the read operand’s on the data address bus, DAB. If a second operand is
required, the other data address bus, CAB, also loaded with an appropriate address. Auxiliary

VTUlive.com 112

DSP Algorithm and Architecture 15EC751
registers in indirect addressing mode and the stack pointer (SP) are also updated.

VTUlive.com 113

DSP Algorithm and Architecture 15EC751

5 In the read phase the data operand(s), if any, are read from the data buses, DB and CB. This phase
completes the two-phase read process and starts the two phase write processes. The data address of the
write operand, if any, is loaded into the data write address bus, EAB.

6 The execute phase writes the data using the data write bus, EB, and completes the operand write
sequence. The instruction is executed in this phase.

Loads IR withthe | nads DB with the datal read operand

_ contents of PB;. Loads CB with the dataZ read opesrand
Loads PAS win decodes the K5 | gads EAB with the data1 read
the PC's contents contents

address, if required

| ! |
Prefetch |Fetch |Decode |Access |Read |Execute

I | |

Loads FE with

the fetched Loads DAB with the datal read Executes the
Instructi on woaord address, iTreguired instruction & loads
Loads DAB with the data? read EB with wirite data

address, ifrequired
Updates auxiliary registers &stack
pointer

Figure 4.4. Pipeline operation of TMS320C54xx Processors
Pipe Flow

P, |F, |D, | A, | R, X,
P, |F, |D, | A, | R, |X,
.| DA | R X
Pi | Fs | Dg | Ay

b
P

Figure 4.5.Pipe flow diagram

VTUlive.com

DSP Algorithm and Architecture 15EC751

Recommended Questions:

1.
2.

10.

11.
12.

13.
14.

15.

Describe Host Port Interface and explain its signals.

writes an assembly language program of TMS320C54XX processors to compute the sum of
three product terms given by the equation y(n)=h(0)x(n)+h(1)x(n-1)+h(2)x(n-2) with usual
notations. Find y (n) for signed 16 bit data samples and 16 bit constants.

Describe the pipelining operation of TMS320C54XX processors.

Explain the operation of serial 1/O ports and hardware timer of TMS320C54XX on chip
peripherals.

Expalin the differents types ofinterrupts in TMS320C54xx Processors.

Describe the operation of the following instructions of TMS 320c54xx processor, with example
Describe the operation of hardware timer with neat diagram.

By means of a figure explain the pipeline operation of the following sequence of instruction if
the initial values of AR1,AR3,A are 104,101,2 and the values stored in the memory locations
101,102,103,104 are 4,6,8,12. Also provide the values of registers AR3, AR1, T & A.

Describe the operation of the following instructions of TMS320C54XX processors.

Describe the operation of the following instructions of TMS320C54XX processors. (July 12,

8m)
Explain the following assembler directives of TMS320C54XX processors (i) .mmregs (i)
.global (iii) .include ‘xx’ (iv) .data (v) .end (vi) .bss (Dec 09/Jan 10 6marks)

Describe Host Port Interface and explain its signals. (Dec 09/Jan 10 6marks)

writes an assembly language program of TMS320C54XX processors to compute the sum of
three product terms given by the equation y(n)=h(0)x(n)+h(1)x(n-1)+h(2)x(n-2) with usual
notations. Find y (n) for signed 16 bit data samples and 16 bit constants. (May/June 2011,

6m)

Describe the pipelining operation of TMS320C54XX processors.(Dec.11, 8m)

Explain the operation of serial 1/O ports and hardware timer of TMS320C54XX on chip
peripherals. (Dec.11, 8m)

Expalin the differents types ofinterrupts in TMS320C54xx Processors.(May/June 2009, 6m)

114

VTUlive.com 115

DSP Algorithm and Architecture 15EC751

MODULE-4

Implementation of Basic DSP Algorithms

5.1 Introduction:
In this unit, we deal with implementations of DSP algorithms & write programs to implement

the core algorithms only. However, these programs can be combined with input/output routines to
create applications that work with a specific hardware.

» Q-notation
» FIR filters
» |IR filters
» Interpolation filters
» Decimation filters

5.2 The Q-notation:

DSP algorithm implementations deal with signals and coefficients. To use a fixed point DSP
device efficiently, one must consider representing filter coefficients and signal samples using fixed-
point2’s complement representation. Ex: N=16, Range: -2N-1 to +2N-1 -1(-32768 to
32767).Typically, filter coefficients are fractional numbers.

To represent such numbers, the Q-notation has been developed. The Q-notation specifies the number
of fractional bits.
Ex: Q7

000001010 .1000000

- J ™

Fractional bit

Whole part +sign of

the number Decimal point

A commonly used notation for DSP implementations is Q15. In the Q15 representation, the least
significant 15 bits represent the fractional part of a number. In a processor where 16 bits are used to
represent numbers, the Q15 notation uses the MSB to represent the sign of the number and the rest of
the bits represent the value of the number.

In general, the value of a 16-bit Q15 number N represented as:

-1 -15
N=- b|5+ |Jl_12 & +b[}2

Range:-1 to 1- 27

Multiplication of numbers represented using the Q-notation is important for DSP implementations.
Figure 5.1(a) shows typical cases encountered in such implementations.

VTUlive.com

DSP Algorithm and Architecture

N1 r _
Signed Bimmary
Multiphier N3
N2 '
N1(16 bit) N2(16 bit) N3(16 bit)
Q0 Q0 Q0
Q0 Q15 Q15
Q15 Q15 Q30

Figure 5.1Multiplication of numbers represented using (J-notation

Program to multiply two Q15 numbers
i,e NIxN2=N1*N2
Where

N1 &N2 are 16-bit numbers in Q15 notation
NI1xN2 is the 16-bit result in Q15 notation

Jmmregs . memory mappe(l registers

.data : sequential locations
N1: .word 4000h : N1=0.5 (Q15 numbers)
N2: .word 2000h : N2=0.25 (Q15 numbers)
NIxN2 .space 10h : space for NIxN2
text
ref _c_int00
.Sect ““.vectors ™’
RESET: b _c_int00 : reset vector
nop
nop
> int00
STM #NI,AR2 :AR2 points to N1
LD =AR2+.T :T reg=NI1
MPY #=AR24+, A :A= N1 #*N2 in Q30 notation
ADD #1.14. A :round the result
STH A.1, *AR2 :save N1 #*N2 as Q15 number
NOP
NOP
.end

5.3 FIR Filters:
A finite impulse response (FIR) filter of order N can be described by the difference equation.

y[n] =

m=MN-1

> h{m)x(n-m)
Im =0

VTUlive.com 117

DSP Algorithm and Architecture 15EC751
The expanded form is y(n)=h(N-1)x(n-(N-1))+h(N-2)x(n-(N-2))+ ...h(1)x(n-1)+h(0)x(n)
ﬂ,—o—b-i Odq;—o—b(Delay ;—0—) “’—O-D(Delay ‘
Y Y v X 3
Wh Yt @ by (X by
v v v v
—> > _lﬁmﬁ\y%—b._y% ¥n

Figure 5.2 A FIR filter implementation block diagram

The implementation requires signal delay for each sample to compute the next output,

y(n+1), is given as y(n+1)=h(N-1)x(n-(N-2))+h(N-2)x(n-(N-3))+ ...h(1)x(n)+h(0)x(n+1) Figure 5.3
shows the memory organization for the implementation of the filter. The filter Coefficients and the
signal samples are stored in two circular buffers each of a size equal to the filter. AR2 is used to point
to the samples and AR3 to the coefficients. In order to start with the last product, the pointer register
AR2 must be initialized to access the signal sample x(2-(N-1)), and the pointer register AR3 to access
the filter coefficient h(N-1). As each product is computed and added to the previous result, the pointers
advance circularly. At the end of the computation, the signal sample pointer is at the oldest sample,
which is replaced with the newest sample to proceed with the next output computation.

x{n+1)
AR2 x(n-(N-1)) AR3 h(n-1)
4 hin-2)
‘ x{n-N-2)) ’ ;
' .) '
' ; : :
: : : .
: x{n) . h{0)

/
\

MAC

NP

Figure 5.3 Organization of signal samples and filter coefficients in circular buffers for a
FIR filter implementation.

VTUlive.com

DSP Algorithm and Architecture

Program to implement an FIR filter:

It implements the following equation;
y(n)=h(N-1)x(n-(N-1))+h(N-2)x(n-(N-2))+ ...h(1)x(n-1)+h(0)x(n)
Where N = Number of filter coefficients = 16.

h(N-1), h(N-2),...h(0) etc are filter coefficients (q15numbers) .
The coefficients are available in file: coeff_fir.dat.
X(n-(N-1)),x(n-(N-2),...x(n) are signal samples(integers).

The input x(n) is received from the data file: data_in.dat.

The computed output y(n) is placed in a data buffer.

.mmregs
.def _c¢_int00
.sect "samples"

InSamples .nclude "data_in.dat" : Allocate space for x(n)s
OutSamples .bss y, 200,1 : Allocate space for y(n)s
SampleCnt .set 200 : Number of samples to
filter
.bss CoefBuf, 16, 1 : Memory for coeff circular
buffer
.bss SampleBuf, 16, 1 : Memory for sample circular buffer
sect "FirCoeff" : Filter coeff (seq locations)

FirCoeff .Anclude "coff_fir.dat**
Nml set 15 tN-1

.text

_c_int00:
STM #OutSamples, AR6 : clear o/p sample buffer
RPT #SampleCnt
ST #0, *AR6+
STM #InSamples, ARS : ARS points to InSamples buffer

STM #OutSamples, AR6 : AR6 points to OutSample buffer

STM #SampleCnt, AR4 : AR4 = Number of samples to

filter
CALL fir_init : Init for filter calculations
SSBX SXM : Select sign extension mode
loop:
LD *ARS+A : A = next input sample (integer)
CALL fir_filter ; Call Filter Routine
STH A,1.*AR6+ : Store filtered sample (integer)
BANZ loop.*AR4- : Repeat till all samples filtered
nop
nop

nop

15EC751

118

VTUlive.com 119

DSP Algorithm and Architecture 15EC751

FIR Filter Initialization Routine

; This routine sets AR2 as the pointer for the sample circular buffer
; AR3 as the pointer for coefficient circular buffer.

: BK = Number of filter taps - 1.

: ARO = 1 = circular buffer pointer increment

fir_init:
ST #CoefBuf AR3 : AR3 is the CB Coeff Pointer
ST #SampleBuf, AR2 : AR2 is the CB sample pointer
STM #Nml1,BK : BK = number of filter taps
RPT #Nml
MVPD #FirCoeff, *AR3+ % : Place coeff in circular buffer
RPT #Nml - 1 : Clear circular sample buffer
ST #0h,*AR2+ %
STM #1.,ARO : ARO = 1 = CB pointer increment
RET
nop
nop
nop

FIR Filter Routine

; Enter with A=the current sample x(n)-an integer, AR2 pointing to the location for the current sample
x(n),andAR3pointingtotheql5coefficienth(N-1). Exit with A =y(n) as q15 number.

fir filter:

STL A, *AR240% : Place x(n)in the sample buffer
RPTZ A, #Nml yA=0

MAC #*AR3+0% ,*AR2+0% A : A = filtered sum (q15)
RET

nop

nop

nop

.end

5.4 1IR Filters:

An infinite impulse response (IIR) filter is represented by a transfer function, which is a ratio of two
polynomials in z. To implement such a filter, the difference equation representing the transfer function
can be derived and implemented using multiply and add operations. To show such an implementation,
we consider a second order transfer function given by

VTUlive.com 120

DSP Algorithm and Architecture 15EC751

byt bz +b,z7?

; —1 -2
l—a,z " —a,z

W bn
z(7) $ (e > ’rF-T:.ﬁt

a-
=1
<7

w (r — 2]

V.

Figure5.4 Block diagram of second order IIR filter

z(n) + ;ywin— 1)+ axw(n—2)
bwn)+bhwin—1)+bhwn-2)

z
=
g
I

=
=

-
Il

Program for IIR filter:
The transfer function is

H(z) = [bO + b1.z**(-1)+ b2.z*(-2)J/[1- a1.z**(-1)- a2.z**(-2)]

Which is equivalent to the equations:

w(n) = x(n) + al.w(n-1) + a2.w(n-2)

y(n) = b0.w(n) + bl.w(n-1) + b2.w(n-2)

Where w(n), w(n-1), and w(n-2) are the intermediate variables used in computations (integers).al, a2,
b0, bl, and b2 are the filter coefficients (15 numbers). x(n) is the input sample (integer). Input
samples are placed in the buffer, In Samples, from a data file, data_in.dat y(n) is the computed output
(integer). The output samples are placed in a buffer, Out Samples.

VTUlive.com 118

DSP Algorithm and Architecture 10EC751
.mmregs

.def c¢_int00
.sect ""'samples"’

InSamples .include '""data_in.dat"’ : Allocate space for x(n)s
OutSamples .bss y,200,1 : Allocate buffer for y(n)s
SampleCnt .set 200 : Number of samples to filter

: Intermediate variables (sequential locations)

wn word 0 :initial w(n)
wnml .word 0 :initial w(n-1) =0
wnm2 .word 0 :initial w(n-2)=0

.sect ""coeff"’
: Filter coefficients (sequential locations)

b0 word 3431 : b0 =0.104
bl word -3356 :bl =-0.102
b2 word 3431 : b2 =0.104
al .word -32767 al=-1
a2 word 20072 :a2=0.612

text
_c¢_int00:

STM #OutSamples, AR6 : Clear output sample buffer

RPT #SampleCnt

ST #0, *AR6+

STM #InSamples, ARS : ARS points to InSamples buffer
STM #OutSamples, AR6 : AR6 points to OutSample buffer

STM #SampleCnt, AR4 : AR4 = Number of samples to filter

loop:
LD *ARS+,15.A : A = next input sample (q15)
CALL iir_filter : Call Filter Routine
STH A.1.*AR6+ : Store filtered sample (integer)
BANZ loop,*AR4- : Repeat till all samples filtered
nop
nop
nop

VTUlive.com

DSP Algorithm and Architecture

[IR Filter Subroutine

; Enter with A = x(n) as q15 number
: Exit with A =y(n) as q15 number
: Uses AR2 and AR3

iir_filter:

1)

SSBX SXM : Select sign extension mode
:w(n)=x(n)+ al.w(n-1)+ a2.w(n-2)

STM #a2,AR2 : AR2 points to a2
STM #wnm2, AR3 : AR3 points to w(n-2)
MAC #*AR2-,#*AR3- A : A =x(n)+ a2.w(n-2)

: AR2 points to al & AR3 to w(n-
MAC #*AR2-,#*AR3- A 1A =x(n)+ al.w(n-1)+ a2.w(n-2)

: AR2 points to b2 & AR3 to w(n)
STH A,1,*AR3 : Save w(n)

:¥(n)=b0.w(n)+ bl.w(n-1)+ b2.w(n-2)

MAC
RET
Nop
Nop
Nop
.end

LD #0,A ;A =0
STM #wnm2,AR3 : AR3 points to w(n-2)
MAC #*AR2-,*AR3-A 1A =b2.w(n-2)

: AR2 points to bl & AR3 to w(n-1)
DELAY *AR3 : w(n-1) -> w(n-2)
MAC #*AR2-,*AR3- A : A =blL.w(n-1)+ b2.w(n-2)

: AR2 points to b0 & AR3 to w(n)
DELAY *AR3 ;w(n) -> w(n-1)

*AR2.*AR3IA : A = b0.wi(n)+ bL.w(n-1)+ b2.w(n-2)
: Return

5.5 Interpolation Filters:

An interpolation filter is used to increase the sampling rate. The interpolation process involves
inserting samples between the incoming samples to create additional samples to increase the sampling
rate for the output. One way to implement an interpolation filter is to first insert zeros between
samples of the original sample sequence. The zero-inserted sequence is then passed through an
appropriate lowpass digital FIR filter to generate the interpolated sequence. The interpolation process

is depicted in Figure 5.5

15EC751

119

VTUlive.com 120

DSP Algorithm and Architecture 15EC751
Incert L oy o== yimd
() cL-13 xZCm) S el S,
LEPros
Sompling Lf. L fa

Frequency +

Figure 5.5 :The interpolation process

Example:
Xn)=[0246810] .input sequence
Xzn)=[0020406080100] ;zero inserted sequence
hin)=[0.510.5] ;impulse sequence
Yn)=[0012345678901050] ;interpolated sequence y(n)

The kind of interpolation carried out in the examples is called linear interpolation because the
convolving sequence h(n) is derived based on linear interpolation of samples. Further, in this case, the
h(n) selected is just a second-order filter and therefore uses just two adjacent samples to interpolate a
sample. A higher-order filter can be used to base interpolation on more input samples. To implement
an ideal interpolation. Figure 5.6 shows how an interpolating filter using a 15-tap FIR filter and an
interpolation factor of 5 can be implemented. In this example, each incoming samples is followed by
four zeros to increase the number of samples by a factor of 5.

The interpolated samples are computed using a program similar to the one used for a FIR filter
implementation. One drawback of using the implementation strategy depicted in Figure 5.7 is that
there are many multiplies in which one of the multiplying elements is zero. Such multiplies need not
be included in computation if the computation is rearranged to take advantage of this fact. One such
scheme, based on generating what are called poly-phase sub-filters, is available for reducing the
computation. For a case where the number of filter coefficients N is a multiple of the interpolating
factor L, the scheme implements the interpolation filter using the equation.

Figure 5.7 shows a scheme that uses poly-phase sub-filters to implement the interpolating filter
using the 15-tap FIR filter and an interpolation factor of 5. In this implementation, the 15 filter taps are
arranged as shown and divided into five 3-tap sub filters. The input samples x(n), x(n-1) and x(n-2) are
used five times to generate the five output samples. This implementation requires 15 multiplies as
opposed to 75 in the direct implementation of Figure 5.7.

VTUlive.com 121

DSP Algorithm and Architecture 15EC751

R T
(=]
]
=
;
'“' FEErTY = mm L7 "' [= -
(] — mmE— 1 Lo
L) _— =T B =
o = m=Lm—137 Pc33
| = mm=gpm—adn (L]
e =1 Y —_ e DT e — Ty Gl —
' = ==ZLTm—53 [
o = m=<m—73 L]
o _ e dm— 8 Ll =2-1
o _ S — 3T mE=
S rT— = = o e 1= - el o=
[m] = m==dm—117% L B
[=] = mZCm—1Z? PClES
(=] - =T m—1T3 —cdE s
el =} = m=ZCrm—1a47 e e — el

/

b

W

Figure 5.6 interpolating filter using a 15-tap FIR filter and an interpolation factor of 5

Cc4ad

(2= F]
el T

yim+43

32D
l N nes> N

eCr=+]2

Deloy

it o |)

nea2s yim+23

>Cr—13
=Crn—2)

FESd yim+13

(alS=k yim3

Figure5.7: A scheme that uses poly-phase sub-filters to implement the interpolating filter
Using the 15-tap FIR filter and an interpolation factor of 5

VTUlive.com 122

DSP Algorithm and Architecture 15EC751

N{L-1

y(m+ i) = Z h(KL + i)x(n—K)
X=0

Where i=0,1,2,.... (L-1) and m =nL.

5.6 Decimation Filters:
A decimation filter is used to decrease the sampling rate. The decrease in sampling rate can be

achieved by simply dropping samples. For instance, if every other

sample of a sampled sequence is dropped, the sampling the rate of the resulting sequence will be half
that of the original sequence. The problem with dropping samples is that the new sequence may violate
the sampling theorem, which requires that the sampling frequency must be greater than two times the
highest frequency contents of the signal.

To circumvent the problem of violating the sampling theorem, the signal to be decimated is first
filtered using a low pass filter. The cutoff frequency of the filter is chosen so that it is less than half the
final sampling frequency. The filtered signal can be

decimated by dropping samples. In fact, the samples that are to be dropped need not be computed at
all. Thus, the implementation of a decimator is just a FIR filter implementation in which some of the
outputs are not calculated.

Figure 5.8 shows a block diagram of a decimation filter. Digital decimation can be
implemented as depicted in Figure 5.9 for an example of a decimation filter with decimation factor of
3. It uses a low pass FIR filter with 5 taps. The computation is similar to that of a FIR filter. However,
after computing each output sample, the signal array is delayed by three sample intervals by bringing
the next three samples into the circular buffer to replace the three oldest samples.

Low poss Down (m
AL Digitol yin) = Sanpler =LA
Filter
Sompling £ /L
Frequency £

Figure 5.8: The decimation process

v(m)=yv(nlL)= Z I(K)x(nL—K):
K=0
Wheren=0,1.2,.....
L=decimation factor
N=filter size

VTUlive.com 123

DSP Algorithm and Architecture 15EC751

> P33 D
xC3BM+22

>xC(3Mm+1>

AR > C3m—4>d AR3 m<a
|’ =C3BmM—3> f e3>
| >xC3BM—> | =)
| >xC3M—1> | ne1>
L =< 3m> L COD

‘ MaC

yCm2

Figure 5.9: Implementation of decimation filter

Implementation of decimation filter

It implements the following equation:

y(m) = h(4)x(3n-4) + h(3)x(3n-3) + h(2)x(3n-2) + h(1)x(3n-1) + h(0)x(3n) followed by the equation
y(m+1) = h(4)x(3n-1) + h(3)x(3n) + h(2)x(3n+1) + h(1)x(3n+2) + h(0)x(3n+3)

and so on for a decimation factor of 3 and a filter length of 5.

.mmregs
.def c_int00

.sect "samples"

InSamples .nclude "data_in.dat" : Allocate space for x(n)s

OutSamples .bss v.80,1 : Allocate space for y(n)s

SampleCnt set 240 : Number of samples to decimate
.sect "FirCoeff" : Filter coeff (sequential)

FirCoeff .include "coeff_dec.dat*

Nml .set 4 : Number of filter taps - 1

.bss CoefBuf, 5,1 : Memory for coeff circular buffer

VTUlive.com 124

DSP Algorithm and Architecture 15EC751

.bss SampleBuf, 5, 1 : Memory for sample circular buffer

text
_c_int00:
STM #OutSamples, AR6 : Clear output sample buffer
RPT #SampleCnt
ST #0, *AR6+
STM #InSamples, ARS : ARS points to InSamples buffer
STM #0OutSamples, AR6 : ARG6 points to OutSample buffer
STM #SampleCnt, AR4 : AR4 = Number of samples to filter
CALL dec_init : Init for filter calculations
loop:
CALL dec_filter : Call Filter Routine
STH A.1,*AR6+ : Store filtered sample (integer)
BANZ loop.*AR4- : Repeat till all samples filtered
nop
nop
nop

Decimation Filter Initialization Routine

This routine sets AR2 as the pointer for the sample circular buffer, and AR3 as the
pointer for coefficient circular buffer.
BK = Number of filter taps. ; ARO = 1 = circular buffer pointer increment.

dec_init :
ST #CoefBuf, AR3 : AR3 is the CB Coeff Pointer
ST #SampleBuf AR2 : AR2 is the CB sample pointer
STM #Nm1,BK : BK = number of filter taps
RPT #Nml
MVPD #FirCoeff, *AR3+% : Place coeff in circular buffer
RPT #Nml ; Clear circular sample buffer
ST #0h,*AR2+%
STM #1,ARO0: : ARO = 1 = CB pointer increment
RET : Return
nop
nop
nop

FIR Filter Routine

Enter with A = x(n), AR2 pointing to the circular sample buffer, and AR3 to the circular
coeff buffer. ARO = 1.

Exit with A =y (n) as q15 number.

VTUlive.com

DSP Algorithm and Architecture 15EC751

dec_filter :

LD *ARS+A : Place next 3 input samples
STL A, *AR2+0% : into the signal buffer
LD *ARS+,A
STL A, *AR2+0%
LD *ARS+.A
STL A, *AR2+0%
RPTZ A, #Nml tA=0
MAC #*AR3+0% . *AR2+0% .A : A = filtered signal
RET : Return
nop
nop
nop
.end

Problems:

1,
Q15 &

What values are represented by the 16-bit fixed point number N=4000h in
Q7 notations?

Solution:
Q15 notation: 0.100 0000 0000 0000 (N=0.5)

Q7 notation: 0100 0000 0.000 0000 (N=+128)

Recommended Questions:

1

10.

Describe the importance of Q-notation in DSP algorithm implementation with examples. What
are the values represented by 16- bit fixed point number N=4000h in Q15, Q10, Q7 notations?
Explain how the FIR filter algorithms can be implemented using TMS320c54xx processor.

Explain with the help of a block diagram and mathematical equations the implementation of a
second order IIR filter. No program code is required.
Write the assembly language program for TMS320C54XX processor to implement an FIR

filter.

What is the drawback of using linear interpolation for implementing of an FIR filter in
TMS320C54X X processor? Show the memory organization for the filter implementation.
Briefly explain IIR filters

Determine the value of each of the following 16- bit numbers represented using the given Q-
notations:

(i) 4400h as a Q10 number (ii) 4400h as a Q7 number (iii) 0.3125 as a Q15 number (iv) -
0.3125 as a Q15 number.

Write an assembly language program for TMS320C54XX processors to multiply two Q15
numbers to produce Q15 number result.

What is an interpolation filter? Explain the implementation of digital interpolation using FIR
filter and poly phase sub filter.

Determine the value of each of the following 16- bit numbers represented using the given Q-

125

VTUlive.com 126

DSP Algorithm and Architecture 15EC751
notations:

VTUlive.com
DSP Algorithm and Architecture 15EC751
11. (i) 4400h as a Q10 number (ii) 4400h as a Q7 number (iii) 0.3125 as a Q15 number (iv) -

12.

13.

14.

16.

17.

18.

19,

0.3125 as a Q15 number. (MAY-JUNE 10, 6m)

Write an assembly language program for TMS320C54XX processors to multiply two Q15
numbers to produce Q15 number result. (Dec 12 , 6 marks)(July 11, 6m) (June/July2012,

4m)
What is an interpolation filter? Explain the implementation of digital interpolation using FIR
filter and poly phase sub filter. (Dec 12 8 marks)

Describe the importance of Q-notation in DSP algorithm implementation with examples. What
are the values represented by 16- bit fixed point number N=4000h in Q15, Q10, Q7 notations?
(MAY-JUNE 10, 6m)

Explain how the FIR filter algorithms can be implemented using TMS320c54xx processor.

(DEC 2012, 6m) (MAY-JUNE 10,
10marks)
Explain with the help of a block diagram and mathematical equations the implementation of a
second order IIR filter. No program code is required.(June/July2011, 10m)
Write the assembly language program for TMS320C54XX processor to implement an FIR
filter. (June/July2012, 12m)
What is the drawback of using linear interpolation for implementing of an FIR filter in
TMS320C54XX processor? Show the memory organization for the filter implementation.
(DEC 2012, 6m)
Briefly explain IIR filters. (DEC 2011, 4m)

127

VTUlive.com 128

DSP Algorithm and Architecture 15EC751

Implementation of FFT algorithms

6.1 Introduction: The N point Discrete Fourier Transform (DFT) of x(n) is a discrete
signal of length N is given by eq(6.1)

N-1

X(_k):Z.\'(n)W;{” : k=0..N-1 (6.1)

n=0

W." =e "N is the twiddle factor

The Inverse DFT (IDFT) is given by eq(2)

1 N-1

S X (W™ n=0..N~1 (6.2)

k=0

x(n)=

By referring to eq (6.1) and eq (6.2), the difference between DFT & IDFT are seen to be

the sign of the argument for the exponent and multiplication factor, 1/N. The computational
complexity in computing DFT / | DFT is thus same (except for the additional multiplication factor in
IDFT). The computational complexity in computing each X(k) and all the x(k) is shown in table 6.1.

Table 6.1: computational complexity in DFT/ IDFT
Computation of each term,N complex numberfN-1 complex number
X (k) or x(n) multiplications additions
Computation of all theN2 complex number]N(N-1) complex
terms X (k) or x(n) multiplications number additions
Complexity is of the order of N°

In a typical Signal Processing System, shown in fig 6.1 signal is processed using DSP in the DFT
domain. After processing, IDFT is taken to get the signal in its original domain. Though certain
amount of time is required for forward and inverse transform, it is because of the advantages of
transformed domain manipulation, the signal processing is carried out in DFT domain. The
transformed domain manipulations are sometimes simpler. They are also more useful and powerful
than time domain manipulation. For example, convolution in time domain requires one of the signals
to be folded, shifted and multiplied by another signal, cumulatively. Instead, when the signals to be
convolved are transformed to DFT domain, the two DFT are multiplied and inverse transform is taken.
Thus, it simplifies the process of convolution.

VTUlive.com 129

DSP Algorithm and Architecture 15EC751
x(n) y(n)
_ | DFT | _,| DSP | ,| IDFT |

Fig 6.1: DSP System

6.2 An FFT Algorithm for DFT Computation: As DFT / IDFT are part of signal processing system,
there is a need for fast computation of DFT / IDFT. There are algorithms available for fast
computation of DFT/ IDFT. There are referred to as Fast Fourier Transform (FFT) algorithms. There
are two FFT algorithms: Decimation-In-Time

FFT (DITFFT) and Decimation-In-Frequency FFT (DIFFFT). The computational complexity of both
the algorithms are of the order of log2(N). From the hardware / software implementation viewpoint the
algorithms have similar structure throughout the

computation. In-place computation is possible reducing the requirement of large memory locations.
The features of FFT are tabulated in the table 6.2.

Table 6.2: Features of FFT

Features DITFFT DIFFFT
Sequence which is[Time domain sequence DFT sequence
decimated by factor 2
[nput sequence Bit reversed order Proper order
Output sequence Proper order Bit reversed order

Consider an example of computation of 2 point DFT. The signal flow graph of 2 point DITFFT
Computation is shown in fig 6.2. The input / output relations is as in eq (6.3) which are arrived at from

eq(6.1).
X (0) = x(O)W, + x(hW, = x(0)+ x(1) 63)
X (1) = x(O)W, +x(YW, = x(0)— x(1)
x(0) N > X(0)
X(1)

x(1) > > >

-1
Fig 6.2: Signal Flow graph for N=2

VTUlive.com 130

DSP Algorithm and Architecture 15EC751

Similarly, the Butterfly structure in general for DITFFT algorithm is shown in fig. 6.3. The signal flow
graph for N=8 point DITFFT is shown in fig. 4. The relation between input and output of any Butterfly
structure is shown in eq (6.4) and eq(6.5).

AH +j A| AIF! +i A,I

Br +j By W 'y

- P

B'H +i B’|

Fig 6. 3: Butterfly structure for N point DITFFT Computation

x(0) =>< \ / X(0)
TSN
X(6 > > > > X(3
(6) . W, 3 (3)
X(3) .‘:>< 11-' X(B)
x(7) > . . / \ > > X(7
: W 3 (7)
Stage 1 Stage 2
Fig 6.4. Signal flow graph of 8 point DITFFT Computation
A, +jJA = A, + jJA, + (B, +jB, (W, + W) (6.4)
B, +jB, = A, +jA —(B, +jB,)W, +jW/) (6.5)

Separating the real and imaginary parts, the four equations to be realized in implementation of
DITFFT Butterfly structure are as in eq(6.6).

VTUlive.com 131

DSP Algorithm and Architecture 15EC751

(A, = A, + BW, —BW/
A = A, + BW. + BW,
<:B;e = A,—-BW, + BW/
LB; = A: _B.fwf:‘. _BR w:r,

’ (6.6)

Observe that with N=2"M, the number of stages in signal flow graph=M, number of multiplications =
(N/2)log2(N) and number of additions = (N/2)log2(N). Number of Butterfly Structures per stage =
N/2. They are identical and hence in-place computation is possible. Also reusability of hardware
designed for implementing Butterfly structure is

possible. However in case FFT is to be computed for a input sequence of length other than 2*M the
sequence is extended to N=2"M by appending additional zeros. The process will not alter the
information content of the signal. It improves frequency resolution. To make the point clear, consider
a sequence whose spectrum is shown in fig. 6.5.

4 Magnitude X(@)

» frequency

Fig 6.5: Spectrum of x(n)

The spectrum is sampled to get DFT with only N=10. The same is shown in fig 6.

The variations in the spectrum are not traced or caught by the DFT with N=10. For example, dip in the
spectrum near sample no. 2, between sample no.7 & 8 are not represented in DFT. By increasing
N=16, the DFT plot is shown in fig. 6.7. As depicted in fig 6.7, the approximation to the spectrum
with N=16 is better than with N=10. Thus, increasing N to a suitable value as required by an algorithm
improves frequency resolution.

VTUlive.com 132

DSP Algorithm and Architecture 15EC751

4 Magnitude X()

1
I
1
|
1
|
1
|

. -
T e 4 5 6 7 10 frequency

Fig 6.6: DFT with N=10

o
w

4 Magnitude X(@) approximation N=10
g I I
i i i i i
[i I i i
i i i I 1
[i I i i
[] I i i
: [i I i i
. 3 : 1 i 1 >

Fig 6.7: N=16 point DFT of x(n)

Problem P6.1: What minimum size FFT must be used to compute a DFT of 40 points? What
must be done to samples before the chosen FFT is applied? What is the frequency resolution
achieved?

Solution:
Minimum size FFT for a 40 point sequence is 64 point FFT. Sequence is extended to 64 by appending
additional 24 zeros. The process improves frequency resolution from

VTUlive.com 133

DSP Algorithm and Architecture 15EC751

Ow=2r/40 to dw=2x/64 (P6.1)

AH +j A| > > A!H +j A
W'y
Br+j B > » » BRr4+jB

6.3 Overflow and Scaling: In any processing system, number of bits per data in signal

processing is fixed and it is limited by the DSP processor used. Limited number of bits leads to
overflow and it results in erroneous answer. InQ15 notation, the range of numbers that can be
represented is -1 to 1. If the value of a number exceeds these limits, there will be underflow /
overflow. Data is scaled down to avoid overflow.

However, it is an additional multiplication operation. Scaling operation is simplified by
selecting scaling factor of 2*-n. And scaling can be achieved by right shifting data by n bits. Scaling
factor is defined as the reciprocal of maximum possible number in the operation. Multiply all the
numbers at the beginning of the operation by scaling factor so that the maximum number to be
processed is not more than 1. In the case of DITFFT computation, consider for example,

A=A +BW; + BW/
=A, + B cosf + B, sin# (6.7)
where € = 2akn/ N

To find the maximum possible value for LHS term, Differentiate and equate to zero

1A :
. _ _B,sin@+B,cos8=0
dé
= B, sin# = B, cos# (6.8)
= tan =B, /B,
; B, s s B,
. sinf=———— Similarly, cosf/=———
\B; +B; \ By + By

Substituting them in eq(6.7),

A, =A, +B; +B;

A =1+2=2414

7. max

Thus scaling factor is 1/2.414=0.414. A scaling factor of 0.4 is taken so that it can be implemented by

VTUlive.com 134

DSP Algorithm and Architecture 15EC751
shifting the data by 2 positions to the right. The symbolic representation

VTUlive.com 135

DSP Algorithm and Architecture 15EC751

of Butterfly Structure is shown in fig. 6.8. The complete signal flow graph with scaling factor is shown
in fig. 6.9.

AH +j A| A’H +j A’|

1/4 i
Br +j B Win B'm+j B}

—

Fig 6.8: Symbolic representation of Butterfly structure with scaling factor

x(0) > X(0)

/ === | 1/4

]
4
1

x(4)

X(1)

P
L

/

x(2) [9 | .
4 1 1 > X(2)
x(6) W2 I o N ake b S X(3)

[
=
|
|
T

-
-
F-h

— X(4)

x(1) / L

—

o
=

x(5) — X(5)

x(3) — X(6)

k

/

I~

x(7)

=
=

— X(7)

Fig 6.9: Signal flow graph with Scaling

6.4 Bit-Reversed Index Generation: As noted in table 6.2, DITFFT algorithm requires input in bit
reversed order. The input sequence can be arranged in bit reverse order by reverse carry add operation.
Add half of DFT size (=N/2) to the present bit reversed ndex to get next bit reverse index. And employ
reverse carry propagation while adding bits from left to right. The original index and bit reverse index
for N=8 is listed in table 6.3

VTUlive.com

DSP Algorithm and Architecture

Table 6.3: Original & bit reverse indices
Original Index Bit Reversed Index

000 000

001 100

010 010

011 110

100 001

101 101

110 011

111 111

Consider an example of computing bit reverse index. The present bit reversed index be

110. The next bit reversed index is

There are addressing modes in DSP supporting bit reverse indexing, which do the computation of

reverse index.

6.5 Implementation of FFT on TMS320C54xx: The main program flow for the implementation of
DITFFT is shown in fig. 6.10. The subroutines used are _clear to clear all the memory locations
reserved for the results. _bitrev stores the data sequence x (n) in bit reverse order. _butterfly computes
the four equations of computing real and imaginary parts of butterfly structure. _spectrum computes
the spectrum of x (n). The Butterfly subroutine is invoked 12 times and the other subroutines are

invoked only once.

15EC751

136

VTUlive.com

DSP Algorithm and Architecture

|| Start l'

ki 4

Invoke clear

|

Invoke bitrev

!

Set appropriate operands for butterfly

v

Invoke _ butterfly

!

Invoke _spectrum

Fig. 6.10: Main Program Flow

The program is as follows

.mmregs
.def _c_int00

.data

: Reserve 8 locations for x(n)

X (n) Q15 notation

decimal value

10EC751

135

VTUlive.com

DSP Algorithm and Architecture 10EC751
xn0 word O ; Oh 0.0
xnl .word 16384 - A000h 0.5
xn2 word 23170 ;: SA8Z2h 0.707
xn3 .word - 24576 - EOOOh -0.25
xn< word 12345 ; 3039h 0.3767
xn5 word 30000 : 7530h 0.9155
xn6 word 10940 ; 2ABCh 0.334
xn7 word 12345 : 3039h 0.3767
: Reserve 16 locations for X(k)

XOR word O ;real part of X (0) =0

XO0Im .word O ;imaginary part of X(0) =0

XNIR word O

X1Im .word O

MN2R word 0

X2Im .word O

X3R .word O

X3Im .word O

XAR. .word O

X4Im .word O

X5R . word O

X5Im .word O

X6eR .word O

Xoelm .word O

XTR .word O

X7Im .word O

; 8 locations for WOS to W38, twiddle factors

WOBR aword 32767 ;cos(0)=1

WS Im sword O -sin(0)=0

WI1BR aword 23170 ;cos{pifd)= 0.707
W 18Im sword -23170 -sin(pifd)= -0.707
W2ER awvord O ;cos(pif2)=0
W2EIm aword -32767 -sin(pif2)= -1
W3ER aword -23170 :cos(3pifdy= -0.707
W3SIm ~word -23170 -sin(3pifd)= -0.707
: 8 locations for Spectrum

SO sword O :Frequency content at O

S1 word O :Frequency content at fs/8
S2 sword O :Frequency content at 2fs/8
S3 word O :Frequency content at 3fs/8
S4 sword O :Frequency content at 4fs/
S5 word O :Frequency content at 5fs/8
Se word O :Frequency content at 6fs/8
S7 word O :Frequency content at 7fs/8
stemporary locations

TEMPI1 word 0

TEMP2 word 0

:MAIN PROGRAM

. text
_c_int00:

SSBX SXM ; set sign extension mode bit of ST1
CALL _clear
CALL _bitrev

136

VTUlive.com 137

DSP Algorithm and Architecture 15EC751

Clear subroutine is shown in fig. 6.11. Sixteen locations meant for final results are cleared. AR2 is
used as pointer to the locations. Bit reverse subroutine is shown in fig. 6.12. Here, AR1 is used as
pointer to x(n). AR2 is used as pointer to X (k) locations. ARO is loaded with 8 and used in bit reverse
addressing. Instead of N/2 =4, it is loaded with N=8 because each X(k) requires two locations, one for
real part and the other for imaginary part. Thus, x(n) is stored in alternate locations, which are meant
for real part of X(k). AR3 is used to keep track of number of transfers.

._Clear: DO AR?2 points to FFT data memory
STM #XO0R, AR2 7
RPT #1353 #~<counccais, |
ST #0,*AR2+ _ i
RET e v
nop . _ "7~ | X(k)=0. AR2=AR2+1
no 2
P . T
R RC=RC-1
N .. *
DN < @ no
R . l yes
“>| Return

Fig. 6.11: Clear subroutine

VTUlive.com 138

DSP Algorithm and Architecture 15EC751
_bltrev:STM #x0 AR1 AR1 points to xn0
STM #XO’R AR __-| AR2 points to X0R
’ = Index=8, count=7
STM #8, ARO
STM #7, AR3
loop: Co :
p py x(n) to location of
LD *AR1+,A --="1 X(k) in a bit reversed
STL A, *AR2+0B =Sk
BANZ loop, ¥
*AR3- e Ny | AR3-AR3-1 |
RET L
nop Yoy, L.
b ves
"1 Return

Fig. 6.12: Bit Reverse Subroutine

Butterfly subroutine is invoked 12 times. Part of the subroutine is shown in fig. 6.13. Real part and
imaginary of A and B input data of butterfly structure is divided by 4 which

is the scaling factor. Real part of A data which is divided by 2 is stored in temp location. It is used
further in computation of eq (3) and eq (4) of butterfly. Division is carried out by shifting the data to
the right by two places. AR5 points to real part of A input data, AR2 points to real part of B input data
and AR3 points to real part of twiddle factor while

invoking the butterfly subroutine. After all the four equations are computed, the pointers

are in the same position as they were when the subroutine is invoked. Thus, the results

are stored such that in-place computation is achieved. Fig. 6.14 through 6.17 show the

butterfly subroutine for the computation of 4 equations.

VTUlive.com 139

DSP Algorithm and Architecture 10EC751

MVMM ARI1,ARS
STM#TEMP1.,AR4

¥ Replace AR with AR/4

LD #*ARS,-2, A | .---" ,

STL A, *AR5+ PR Store AR/2 in TEMP1
STLA, .*AR44 __----""~ l

LD *ARS. -2. A },r Replace Alm with Alm/4
STL A, *AR5- l
STLA,1,*AR4--- oo > Store Alm/2 in TEMP2
LD *AR2, -2, A +

STL A, *AR2+ TR Replace BR with BR/4
LD *AR2, -2, A L J

STL A, *AR2- } ----------- »| Replace BIm with Bl/4

Fig. 6.13: Butterfly Subroutine

AR5 AR2 AR3

¥
(1}AR=AH+BHXWH— E|J(W|

=¥ A=BR xWR

LD #0,A
MPY *AR2+, *AR3+,A -~ I
MAS *AR2-, *AR3, A ______._ > ~ ~
ADD *ARS, 15, A A=BR x WR - Bl x WI
ADD #1,14,A _=~___ '
STH A, 1,*AR5+ ~~._ ~~--, | Make AR 32 bits and
A= AR + BRx WR-BIx WI
T

-

* Round & store

Fig. 6.14: Real part of A output of Butterfly

VTUlive.com
DSP Algorithm and Architecture 15EC751

AR5 AR2 AR3
\ ¥

(20 A=A +BxWr+BaxW;, v A=BR x WI
LD #0, A "-—"'J v
MPY *AR2+ *AR3-, A~ . A=BIXWR+BRxW|
MAC *AR2-*AR3, A _..---""" T
ADD*ARS5,15,A --.___ Make Al 32 bits and
ADD #1,14, A ~=~a A= Al + BI x WR + BRx WI
STHA, 1, *AR5 ~~~__

"‘".,_
=
~

T Round & Store

Fig. 6.15: Imaginary part of A output of Butterfly

1(3) Br= Ar— (BrR x Wgr - Bix W))| Load A with AR scaled by 2

LD *AR4+A =

From this, subtract new AR

SUB *AR5+A<-----------1

STL A,"AR2+ *---_____ ¥
“~~---] Store lower 16 bits as BR

Fig. 6.16: Real part of B output of Butterfly

;{4} BI= AI— (BI x WR +BF{ x W|}

LD *AR4 -, A
SUB *ARS5-, A
STL A, *AR2-

RET
nop
nop

Fig. 6.17: Imaginary part of B output of Butterfly

Figure 6.18 depicts the part of the main program that invokes butterfly subroutine by supplying
appropriate inputs, A and B to the subroutine. The associated butterfly structure is also shown for
quick reference. Figures 6.19 and 6.20 depict the main program for the computation of 2nd and 3rd
stage of butterfly.

140

VTUlive.com 141

DSP Algorithm and Architecture 15EC751
STM#X0RAR1 xno] 0 — XOR
STM #X1R,AR2 _

STM #WO08R,AR3 2 @
CALL _butterfly x4 _,) 5 |, X1R
X2R
STM #X2R,AR1 XnZ | 0 —
STM #X3R,AR2 :
STM #WO08R,AR3 2
CALL butterfly xne _| ° |, X3R
X4R
STM #X4RAR1 XNl —] -
STM #X5R,AR2 " @
STM #WO08R,AR3
CALL _butterfly XnS —) — XSR
STM #X6R,AR1 xn3 -l 1 — X6R
STM #X7R,AR2 /
STM #W08R,AR3 4 @
CALL _butterfly Xn7 —» — X7R

Fig. 6.18: First stage of Signal Flow graph of DITFFT

VTUlive.com
DSP Algorithm and Architecture 10EC751
x(0) T Fx0—J gr-—--15_X0 STM#XORARI
A 4 |) STM #X2R.AR2
X(4) ¢ p— — X1 STM #WO0SR,AR3
: CALL _butterfly
x(2) j 1/ . b X2
x(6) 4 R W2 X3
x(1) 1/ —X4 STM#X1R.AR1
o 4 b STM #X3R,AR2
XS X5 STM #W28R.AR3
CALL _butterfly
x(3) 1/ —X6
x(7) 4 —X7
x(0) —X0
/ STM #X4R.AR1
x(4) Z S :
% 4 —X1 STM #X6R AR?2
STM #WO8R.AR3
X(2) ! X2 CALL _butterfly
/
X(6) 4 03
STM #X5R.AR1
x(1) | —X4 — M‘L sl = X4 STM #X7R.AR2
- / - : STM #W28R,AR3
X(9) 4 [t ~X5 CALL _butterfly
x(3) | | x6—1 | X6
/ a
x(7) 4 gy — W+ X

Fig. 6.19: Second stage of Signal Flow graph of DITFFT

142

[Type text]

Page 142

DSP Algorithm and Architecture 15EC751

] m L XO0—] 1/4 ,_.K({ll
Re=—=- L STM #X0R.AR1
| X1 —— STM #X4R,AR2
| [CALL _butterfly
— X2 I
|
|
wl —X3 1
: STM #X1R.ARI
I " X(4) STM #X5R,AR2
—a_____ — X4— : STM #W 18R,AR3
| vs w! | X(5) CALL _butterfly
w2 X7
—_ X0 STM #X2R.ARI
14— - - - STM #X6R,AR2
1 X1 STM #W28R,AR3
i CALL _butterfly
— X2mmmmd _
' N » X(2)
E— W’ _v'____l__: } > X(3)
1
o STM #X3R,ARI
- X N, STM #X7R,AR2
| | x5 P STM #W38R,AR3
I o " CALL _butterfly
—1 L x—e——— | W > X(6)
2 A W Txo
— w2)

Fig. 6.20: Third stage of Signal Flow graph of DITFFT

After the computation of X(k), spectrum is computed using the eq(6.8). The pointer AR1

is made to point to X(k). AR2 is made to point to location meant for spectrum. AR3 is loaded with
keeps track of number of computation to be performed. The initialization of

the pointer registers before invoking the spectrum subroutine is shown in fig. 6.21. The

[Type text] Page 143

DSP Algorithm and Architecture 15EC751

subroutine is shown in fig. 6.22. In the subroutine, square of real and imaginary parts are computed
and they are added. The result is converted to Q15 notation and stored.

[Type text] Page 144

DSP Algorithm and Architecture 15EC751

S(ky=(X*(k)IN
= (X (k)X "(k))/ N Make AR DioYoiht to McR)

Make AR2 to point to

STM #X0R.AR1 }
/ spectrum location
STM #S50,AR2

!

Set a counter to 7

“K ;
Invoke spectrum

subroutine

STM #07,AR3 =
CALL _spectrum

Fig. 6.21: Initialization for Spectrum Computation

_Sspectrum: _ — ==="1 Clear both accumulators
LD #0, A -7
LD #0, B y

SQUR *AR1+.A - Square re
SQUR *AR1+,B |+ & im parts. Add them

ADD B.A]

-
-l-"-—-—

" ———— Convert product
EB]_EERIE ;j;Rf to 16 bit Q15 notation

STH A, *AR2+ [®~=_ I

BANZ ==~ <] Divide by 8 & store
_spectrum,*AR3-

RET

nop

nop

Fig. 6.22: Subroutine for Spectrum Computation

Problems:
1. Derive equations to implement a Butterfly encountered in a DIFFFT implementation.
Solution:

[Type text] Page 145

DSP Algorithm and Architecture 15EC751

Butterfly structure for DIFFFT:
The input / output relations are

[Type text] Page 146

DSP Algorithm and Architecture 15EC751

’

Ay +jA = Ay + A + By + B,
By +jBy= (Ay +jA =By +jB) Wy +jW))

Separating the real and imaginary parts,
A=A + By & Aj= A + B,
B,= (A, —B,)W; — (A, — B)W/
B = (A, —B)W, + (A, — B, W,

2. How many add/subtract and multiply operations are needed to implement a general butterfly of
DITFFT?

Solution:

Referring to 4 equations required in implementing DITFFT Butterfly structure, Add//sub'tirac't
operat'os 06 and Mu'tip'y operations 04

3. Derive the optimum scaling factor for the DIFFFT Butterfly structure.
Solution: The four equations of Butterfly structure are

Differentiating 4th relation and setting it to zero, (any equation may be considered)

dB;
E)Ei = (A, —Bp)cos&— (A, —B,)sind=0
— (A, —Bg)cos@ = (A, —B,)siné
A, — B
s tan@ =—FH K P6.5.2
A, = A, + B, A — B
A= A, + B,
B, = (A, —B, W, — (A, — B W/
B, = (A, — B, W, + (A, —B) W, P6.5.1

> A —B
sinf = — (”’ r) ’
V(Ag = By) +(A, - B,)”
& cosf= (4~&)

\'!(AR — By)? +(A, - B)?

" B;.nla\;: \"II'(AR_BR)+ (AI _BI)

—

h
(OS]

=+/2 P6.

[Type text] Page 147

DSP Algorithm and Architecture 15EC751
Thus scaling factor is 0.707. To achieve multiplication by right shift, it is chosen as 0.5.

[Type text] Page 148

DSP Algorithm and Architecture 15EC751

Recommended Questions:

1.
2.

10.
11.

12.

13.

14.

15.
16.

Derive the equation to implement a butterfly structure In DITFFT algorithm.

How many add/subtract and multiply operations are needed to compute the butterfly structure?

Write the subroutine for bit reversed address generation. Explain the same.

Why zero padding is done before computing the DFT?

What do you mean by bit-reversed index generation and how it is implemented in
TMS320C54XX DSp assembly language?

Write a subroutine program to find the spectrum of the transformed data using TMS320C54XX

DSP.

Explain a general DITFFT butterfly in place computation structure.

Determine the number of stages and number of butterflies in each stage and the total number of

butterflies needed for the entire computation of 512 point FFT.

Explain how the bit reversed index generation can be done in 8 pt FFT. Also write a

TMS320C54xx program for 8 pt DIT-FFT bit reversed index generation.

Determine the following for a 128-point FFT computation: (i) number of stages (ii) number of

butterflies in each stage (iii) number of butterflies needed for the entire computation (iv)

number of butterflies that need no twiddle factors (v) number of butterflies that require real

twiddle factors (vi) number of butterflies that require complex twiddle factors.

Explain, how scaling prevents overflow conditions in the butterfly computation.

Explain, how scaling prevents overflow conditions in the butterfly computation.(June/July

2012, 6m)

With the help of the implementation structure, explain the FFT algorithm for DIT-FFT

computation ~ on TMS320C54XX processors. Use % as a scale factor for all butterflies.

.(June/July 2012, Dec 2011, 8m)

Derive the equation to implement a butterfly structure In DITFFT algorithm. (DEC 2011, 8m)

How many add/subtract and multiply operations are needed to compute the butterfly structure?

(DEC 2011, 6m)

Write the subroutine for bit reversed address generation. Explain the same.

Why zero padding is done before computing the DFT?(DEC 2012, 2m)

[Type text]

Page 149

DSP Algorithm and Architecture 15EC751
17. What do you mean by bit-reversed index generation and how it is implemented in

TMS320C54XX DSp assembly language? (DEC 2012, 8m)

[Type text] Page 150

DSP Algorithm and Architecture 15EC751

18. Write a subroutine program to find the spectrum of the transformed data using TMS320C54XX
DSP. (DEC 2012, 6m)

19. With the help of the implementation structure, explain the FFT algorithm for DIT-FFT
computation on TMS320C54XX processors. Use % as a scale factor for all butterflies

20. Determine the following for a 128-point FFT computation: (i) number of stages (ii) number of
butterflies in each stage (iii) number of butterflies needed for the entire computation (iv)
number of butterflies that need no twiddle factors (v) number of butterflies that require real
twiddle factors (vi) number of butterflies that require complex twiddle factors. (MAY-JUNE
11)

DSP Algorithm and Architecture 15EC751

MODULE 5

Interfacing Memory & Parallel I/O Peripherals
to DSP Devices

71 Introduction: A typical DSP system has DSP with external memory, input devices and output
devices. Since the manufacturers of memory and 1/0 devices are not same as that of manufacturers of
DSP and also since there are variety of memory and /O devices available, the signals generated by
DSP may not suit memory and /O devices to be connected to DSP. Thus, there is a need for
interfacing devices the purpose of it being to use DSP signals to generate the appropriate signals for
setting up communication with the memory. DSP with interface is shown in fig. 7.1.

Memory
Program & Data

4 -
interta'
vt
\

[R S —

Input Devices \mterface DSP Processor| mterfécel Output Devices

_____ \I'__—"

Fig. 7.1: DSP system with interfacing

72 Memory Space Organization: Memory Space in TMS320C54xx has 192K words of 16 bits each.
Memory is divided into Program Memory, Data Memory and I/O Space, each are of 64K words. The
actual memory and type of memory depends on particular DSP device of the family. If the memory
available on a DSP is not sufficient for an application, it can be interfaced to an external memory as
depicted in fig. 7.2. The On- Chip Memory are faster than External Memory. There are no interfacing
requirements. Because they are on-chip, power consumption is less and size is small. It exhibits better
performance by DSP because of better data flow within pipeline. The purpose of such memory is to
hold Program / Code / Instructions, to hold constant data such as filter coefficients / filter order, also to
hold trigonometric tables / kernels of transforms employed in an algorithm. Not only constants are
stored in such memory, they are also used to hold variable data and intermediate results so that the
processor need not refer to external memory for the purpose.

DSP Algorithm and Architecture 15EC751

Memory
Program & Data
: . ALU
d s MAC
F A
. Barrel Shifter
Program Data :
Memory ‘ Memory ‘
Internal memory

A "i_r
DU

External Memory

Fig. 7.2: Internal memory and interfacing of external memory

External memory is off-chip. They are slower memory. External Interfacing is required to

establish the communication between the memory and the DSP. They can be with large memory
space. The purpose is being to store variable data and as scratch pad memory. Program memory can be
ROM, Dual Access RAM (DARAM), Single Access RAM (SARAM), or a combination of all these.
The program memory can be extended externally to 8192K words. That is, 128 pages of 64K words
each. The arrangement of memory and DSP in the case of Single Access RAM (SARAM) and Dual
Access RAM (DARAM) is shown in fig. 7.3. One set of address bus and data bus is available in the
case of SARAM and two sets of address bus and data bus is available in the case of DARAM. The
DSP can thus access two memory locations simultaneously.

WAddress
DSP Memory DSP

Memory

D-ata
SARAM DARAM
Fig. 7.3: SARAM & DARAM

There are 3 bits available in memory mapped register, PMST for the purpose of on-chip

memory mapping. They are microprocessor / microcomputer mode. If this bit is 0, the on-chip ROM is
enabled and addressable and if this bit is 1 the on-chip ROM not available. The bit can be manipulated
by software / set to the value on this pin at system

DSP Algorithm and Architecture 15EC751

reset. Second bit is OVLY. It implies RAM Overlay. It enables on-chip DARAM data memory blocks
to be mapped into program space. If this bit is 0, on-chip RAM is addressable in data space but not in
Program Space and if it is 1, on-chip RAM is mapped into Program & Data Space. The third bit is
DROM. It enables on-chip DARAM 4-7 to be mapped into data space. If this bit is 0, on-chip
DARAM 4-7 is not mapped into data space and if this bit is 1, on-chip DARAM 4-7 is mapped into
Data Space. On-chip data memory is partitioned into several regions as shown in table 7.1. Data
memory can be onchip / off-chip.

Table 7.1: Data memory 64 K
0000-005F | Memory Mapped
06 locations | Registers

0060-007F | Scratch pad RAM
32 locations
0080-7FFF | On-chip

DARAM 0-3
32Kx 16bit
8000-FFFF | On-chip
32K DARAM 4-7
locations for Data

The on-chip memory of TMS320C54xx can be both program & data memory. It enhances speed of
program execution by using parallelism. That is, multiple data access capability is provided for
concurrent memory operations. The number of operations in single memory access is 3 reads & one
write. The external memory to DSP can be interfaced with 16 -23 bit Address Bus, 16 bit Data Bus.
Interfacing Signals are generated by the DSP to refer to external memory. The signals required by the
memory are typically chip Select, Output Enable and Write Enable. For example, TMS320C5416 has
16K ROM, 64K DARAM and 64K SARAM.

Extended external Program Memory is interfaced with 23 address lines i.e., 8192K locations. The
external memory thus interfaced is divided into 128 pages, with 64K words per page.

73 : External Bus Interfacing Signals: In DSP there are 16 external bus interfacing signals. The
signal is characterized as single bit i.e., single line or multiple bits i.e., Multiple lines / bus. It can be
synchronous / asynchronous with clock. The signal can be

active low / active high. It can be output / input Signal. The signal carrying line / lines Can be
unidirectional / bidirectional Signal. The characteristics of the signal depend on

the purpose it serves. The signals available in TMS320C54xx are listed in table 7.2 (a) & table 7.2 (b).

DSP Algorithm and Architecture 15EC751

Table 7.2 (a) External Bus Interfacing Signals
1 AO-A19 20 bit Address Bus
2 DO-D15 16 bit Data Bus
3 DS Data Space Select
4 Program Space Select
TS e
5 'S I/O Space Select
6 R/W Read/Write Signal
7 Memory Strobe
MSTRB
8 /O Strobe
IOTRB

In external bus interfacing signals, address bus and data bus are multi-lines bus. Address bus is
unidirectional and carries address of the location refereed. Data bus is bidirectional and carries data to
or from DSP. When data lines are not in use, they are tri-stated. Data Space Select, Program Space
Select, 1/0 Space Select are meant for data space, program space or /O space selection. These
interfacing signals are all active low. They are active during the entire operation of data memory /
program memory / 1/0O space reference. Read/Write Signal determines if the DSP is reading the
external device or writing.

Read/Write Signal is low when DSP is writing and high when DSP is reading. Strobe Interfacing
Signals, Memory Strobe and 1/O Strobe both are active low. They remain low

during the entire read & write operations of memory and I/O operations respectively. External Bus
Interfacing Signals from 1-8 are all are unidirectional except Data Bus which is bidirectional. Address
Lines are outgoing signals and all other control signals are also outgoing signals.

DSP Algorithm and Architecture 15EC751

Table 7.2 (b) External Bus Interfacing Signals

9 READY Data Ready Signal

10 HOLD Hold Request

11 HLDA Hold ACkIlG‘WlEdgE

12 MSC Micro State Complete
13 Iﬁ Interrupt Request

14 Lﬁ Interrupt Acknowledge
15 XF External Flag Output
16 Branch Control Input

BIO

Data Ready signal is used when a slow device is to be interfaced. Hold Request and Hold
Acknowledge are used in conjunction with DMA controller. There are two Interrupt related signals:
Interrupt Request and Interrupt Acknowledge. Both are active low. Interrupt Request typically for data
exchange. For example, between ADC / another Processor. TMS320C5416 has 14 hardware interrupts
for the purpose of User interrupt, Mc-BSP, DMA and timer. The External Flag is active high,
asynchronous and outgoing control signal. It initiates an action or informs about the completion of a
transaction to the peripheral device. Branch Control Input is a active low, asynchronous, incoming
control signal. A low on this signal makes the DSP to respond or attend to the peripheral device. It
informs about the completion of a transaction to the DSP.

74 The Memory Interface: The memory is organized as several locations of certain number of bits.
The number of locations decides the address bus width and memory capacity. The number of bits per
locations decides the data bus width and hence word length. Each location has unique address. The
demand of an application may be such that memory capacity required is more than that available in a
memory IC. That means there are insufficient words in memory IC. Or the word length required may
be more than that is available in a memory IC. Thus, there may be insufficient word length. In both the
cases, more number of memory ICs are required.

Typical signals in a memory device are address bus to carry address of referred memory location. Data
bus carries data to or from referred memory location. Chip Select Signal selects one or more memory
ICs among many memory ICs in the system. Write Enable enables writing of data available on data
bus to a memory location. Output Enable signal enables the availability of data from a memory

DSP Algorithm and Architecture 15EC751
location onto the data bus. The address bus is unidirectional, carries address into the memory IC. Data

DSP Algorithm and Architecture 15EC751

bus is bidirectional. Chip Select, Write Enable and Output Enable control signals are active high or
low and they carry signals into the memory ICs. The task of the memory interface is to use DSP

signals and generate the appropriate signals for setting up communication with the memory. The
logical spacing of interface is shown in fig. 7.4.

TMS320C5416
Memory
23 x+1
AD-A22 ’
T 7% AO-Ax
DO-D15 ¢
J_. DO-D15
R/W Memory .
Interface ® WE
PS. ﬁ_/._..z —_—
» OE
1hlIrl'.'li."
— MSTRB——— » TS
—|MP/MC

Fig. 7.4 Memory Interface for TMS320C5416

The timing sequence of memory access is shown in fig. 7.5. There are two read operations, both
referring to program memory. Read Signal is high and Program Memory Select is low. There is one
Write operation referring to external data memory. Data Memory Select is low and Write Signal low.
Read and write are to memory device and hence memory strobe is low. Internal program memory
reads take one clock cycle and External data memory access require two clock cycles.

DSP Algorithm and Architecture 15EC751

Address :X X

-

=)

W
%
o)
o
%
e

R/W

PS
DS

MSTRB —\

Fig. 7.5 Timing Sequence for External Memory Access

Effects of ‘No decode’ interface are

« Fast memory Access

« ENTIRE Address space is used by the Device that is connected

« Memory responds to 0000-1FFFh and also to all combinations of address bits A13-
A19 (In the example quoted)

« Program space select & data space select lines are not used

* SRAM is thus indistinguishable as a program or data Memory

TMS320C54 SRAM
13
AQ-A22 ¢
AD-A12

16
DO-D15 ﬁ DO-D15

L 4
7
A

MSTRB

OF
Vee _*

MPMC R ;W

y
z
en

Fig. P7.4: Memory interface without decode circuit

DSP Algorithm and Architecture 15EC751

Problem P7.5: Design an interface to connect a 64K x 16 flash memory to a
TMS320C54xx device. The Processor address bus to be used is AO-A15. The flash

memory has the signals as shown in fig. P7.5.

Solution: Address lines from A0O-A15 are used to address 64K locations. All the data
lines, DO-D15 are used to carry data word. Data Space Select line is connected to chip
enable of memory so that whenever DSP refers to data memory, this flash memory is
enabled. When DSP refers to memory and it is a write operation, both memory strobe and
read/write signals will be low. They are combined in using OR gate and used as write

enable for memory. Memory read is performed by combining memory strobe and XF

signals.
N Ag-Ass
e : —
0-Ais W VP
Do-Dis —
‘:: > DD'DH W
Vee
— —_— VP
DS »| CE
DSP 28F400B
MSTREFJ@* wE
R/W
VD{' —_—
—] MP/MC
| —cE

Fig. P7.5: Interfacing flash memory

75 Parallel 1/0 Interface: 1/0 devices are interfaced to DSP using unconditional 1/0 mode,
programmed 1/O mode or interrupt I/O mode. Unconditional 1/O does not require any handshaking
signals. DSP assumes the readiness of the 1/0 and transfers the data with its own speed. Programmed
1/0 requires handshaking signals. DSP waits for the readiness of the 1/O readiness signal which is one
of the handshaking signals. After the

completion of transaction DSP conveys the same to the 1/O through another handshaking signal.
Interrupt 1/O also requires handshaking signals. DSP is interrupted by the 1/O indicating the readiness

DSP Algorithm and Architecture 15EC751

of the 1/0. DSP acknowledges the interrupt, attends to the interrupt. Thus, DSP need not wait for the
I/0 to respond. It can engage itself in execution as long as there is no interrupt.

76 : Programmed I /O interface: The timing diagram in the case of programmed 1/O is shown in fig.
7.6. 1/0O strobe and 1/0O space select are issued by the DSP. Two clock cycles each are required for 1/0
read and 1/O write operations.

: KD, f).

CLKOUT

Fig. 7.6: Read-Write-Read Sequence of Operations

An example of interfacing ADC to DSP in programmed I/O mode is shown in fig. 7.7. ADC has a start
of conversion (SOC) signal which initiates the conversion. In programmed 1/0O mode, external flag
signal is issued by DSP to start the conversion. ADC issues end of conversion (EOC) after completion
of conversion. DSP receives Branch input control by ADC when ADC completes the conversion. The
DSP issues address of the ADC, 1/O strobe and read / write signal as high to read the data. An address
decoder does the translation of this information into active low read signal to ADC. The data is
supplied on data bus by ADC and DSP reads the same. After reading,

DSP issues start of conversion once again after the elapse of sample interval. Note that

there are no address lines for ADC. The decoded address selects the ADC. During conversion, DSP
waits checking branch input control signal status for zero. The flow chart of the activities in
programmed 1/O is shown in fig. 7.8.

DSP Algorithm and Architecture 15EC751

Ac-Ais —\| Address
v decoder —
1S —> » RD
R/W |—>
DSP ADC
Dg-Dys < Dy-Ds Analog In
—
Vcc XI.‘ > S()(
=T MP/MC
BIO |« EOC

Fig. 7.7: ADC in Programmed I/O mode

(st) Conversion over 1
: A

XF=1 wait, XF=0 Read sample from ADC

| | (start ADC) il

Store. Process

no ‘

@ save Processed sample

- l Yes Wait for sampling interval

Fig. 7.8: Programmed I/O mode

77 Interrupt 1/O: This mode of interfacing 1/O devices also requires handshaking signals. DSP is
interrupted by the I/0O whenever it is ready. DSP Acknowledges the interrupt, after testing certain
conditions, attends to the interrupt. DSP need not wait for the I/O to respond. It can engage itself in
execution. There are a variety of interrupts. One of the classifications is maskable and nonmaskable. If
maskable, DSP can ignore when that interrupt is masked. Another classification is vectored and non-
vectored. If vectored, Interrupt Service subroutine (ISR) is in specific location. In Software Interrupt,
instruction is written in the program.

DSP Algorithm and Architecture 15EC751

In Hardware interrupt, a hardware pin, on the DSP IC will receive an interrupt by the external
device. Hardware interrupt is also referred to as external interrupt and software interrupt is referred to
as internal interrupt. Internal interrupt may also be due to execution of certain instruction can causing
interrupt. In TMS320C54xx there are total of 30 interrupts. Reset, Non-maskable, Timer Interrupt,
HPI, one each, 14 Software Interrupts, 4 External user Interrupts, 6 Mc-BSP related Interrupts and 2
DMA related Interrupts. Host Port Interface (HPI) is a 8 bit parallel port. It is possible to interface to a
Host Processor using HPI. Information exchange is through on-chip memory of DSP
which is also accessible Host processor.

Registers used in managing interrupts are Interrupt flag Register (IFR) and Interrupt Mask
Register (IMR). IFR maintains pending external & internal interrupts. One in any bit position implies
pending interrupt. Once an interrupt is received, the orresponding bit is set. IMR is used to mask or
unmask an interrupt. One implies that the corresponding interrupt is unmasked. Both these registers
are Memory Mapped Registers. One flag, Global enable bit (INTM), in ST1 register is used to enable
or disable all interrupts globally. If INTM is zero, all unmasked interrupts are enabled. If it is one, all
maskable interrupts are disabled.

When an interrupt is received by the DSP, it checks if the interrupt is maskable. If the interrupt
is non-maskable, DSP issues the interrupt acknowledgement and thus serves the interrupt. If the
interrupt is hardware interrupt, global enable bit is set so that no other interrupts are entertained by the
DSP. If the interrupt is maskable, status of the INTM is checked. If INTM is 1, DSP does not respond
to the interrupt and it continues with program execution. If the INTM is 0, bit in IMR register
corresponding to the interrupt is checked. If that bit is 0, implying that the interrupt is masked, DSP
does not respond to the interrupt and continues with its program execution. If the interrupt is
unmasked, then DSP issues interrupt acknowledgement. Before branching to the interrupt service
routine, DSP saves the PC onto the stack. The same will be reloaded after attending the interrupt so as
to return to the program that has been interrupted. The response of DSP to an Interrupt is shown in
flow chart in fig. 7.9.

DSP Algorithm and Architecture 15EC751

[Interrupt request received w

H/W or S’IW
interrupt?

INTM =1

PC saved on stack

:

ISR executed

}

v R Return instruction
'" Y restores PC
r
Interrupt ‘—"L
HCkﬂﬂ‘k‘r'lEdgEd h."[a]n prngraln
continues

Fig. 7.9: Response of DSP to interrupt

78 : Direct Memory Access (DMA) operation: In any application, there is data transfer

between DSP and memory and also DSP and I/O device, as shown in fig. 7.10. However, there may be
need for transfer of large amount of data between two memory regions or between memory and 1/O.
DSP can be involved in such transfer, as shown in fig. 7.11. Since amount of data is large, it will
engage DSP in data transfer task for a long time. DSP thus will not get utilized for the purpose it is
meant for, i.e., data manipulation. The intervention of DSP has to be avoided for two reasons: to
utilize DSP for useful signal processing task and to increase the speed of transfer by direct data
transfer between memory or memory and I/O. The direct data transfer is referred to as direct memory
access (DMA). The arrangement expected is shown in fig. 7.12. DMA controller helps in data transfer
instead of DSP.

DSP Algorithm and Architecture

15EC751

DSP

Inli:rTC{:

Memory

/o

Fig. 7.10: Interface between DSP and external devices

Memory

Memory

Memory

<—

/o

Fig. 7.11: Data transfer with intervention by DSP

Memory

Memory

Vo

Memory

Fig. 7.12: data transfer without intervention by DSP

In DMA, data transfer can be between memory and peripherals which are either internal

or external devices. DMA controller manages DMA operation. Thus DSP is relieved of the task of
data transfer. Because of direct transfer, speed of transfer is high. In TMS320C54xx, there are up to 6
independent programmable DMA channels. Each channel is between certain source & destination.

One channel at a time can be used for

DSP Algorithm and Architecture 15EC751

data transfer and not all six simultaneously. These channels can be prioritized. The speed of transfer
measured in terms of number of clock cycles for one DMA transfer depends on several factors such as
source and destination location, external interface conditions, number of active DMA channels, wait
states and bank switching time. The time for data transfer between two internal memory is 4 cycles for
each word.

Requirements of maintaining a channel are source & Destination address for a channel,
separately for each channel. Data transfer is in the form of block, with each block having frames of 16
/ 32 bits. Block size, frame size, data are programmable. Along with these, mode of transfer and
assignment of priorities to different channels are also to be maintained for the purpose of data transfer.

There are five, channel context registers for each DMA channel. They are Source

Address Register (DMSRC), Destination Address Register (DMDST), Element Count Register
(DMCTR), Sync select & Frame Count register (DMSFC), Transfer Mode Control Register
(DMMCR). There are four reload registers. The context register DMSRC & DMDST are source &
destination address holders. DMCTR is for holding number of data elements in a frame. DMSFC is to
convey sync event to use to trigger DMA transfer, word size for transfer and for holding frame count.
DMMCR Controls transfer mode by specifying source and destination spaces as program memory,
data memory or 1/0 space. Source address reload & Destination address reload are useful in

reloading source address and destination address. Similarly, count reload and frame count reload are
used in reloading count and frame count. Additional registers for DMA that are common to all
channels are Source Program page address, DMSRCP, Destination Program page address, DMDSTP,
Element index address register, Frame index address register.

Number of memory mapped registers for DMA are 6x(5+4) and some common registers

for all channels, amounting to total of 62 registers required. However, only 3 (+1 for priority related)
are available. They are DMA Priority & Enable Control Register (DMPREC), DMA sub bank Address
Register (DMSA), DMA sub bank Data Register with auto increment (DMSDI) and DMA sub bank
Data Register (DMSDN). To access each of the DMA Registers Register sub addressing Technique is
employed. The schematic of the arrangement is shown in fig. 7.13. A set of DMA registers of all
channels (62) are made available in set of memory locations called sub bank. This voids the need for
62 memory mapped registers. Contents of either DMSDI or DMSDN indicate the code (1’s & 0’s) to
be written for a DMA register and contents of DMSA refers to the unique sub address of DMA
register to be accessed. Mux routes either DMSDI or DMSDN to the sub bank. The memory location
to be written

DSP Algorithm and Architecture 15EC751

Subbank DMSDI)
Access mux
registers DMSDN
*_
A Vi
DMSA
Subbank
Address register

Fig. 7.13: Register Subaddress Technique

DMSDI is used when an automatic increment of the sub address is required after each access. Thus it
can be used to configure the entire set of registers. DMSDN is used when single DMA register access
is required. The following examples bring out clearly the method of accessing the DMA registers and
transfer of data in DMA mode.

Recommended Questions:

1. Explain an interface between an A/D converter and the TMS320C54XX processor in the
programmed I/O mode.

2. Describe DMA with respect to TMS320C54XX processors.

3. Drew the timing diagram for memory interface for read-read-write sequence of operation.
Explain the purpose of each signal involved.

4. Explain the memory interface block diagram for the TMS 320 C54xx processor.

5. Draw the 1/O interface timing diagram for read — write read sequence of operation.

6. What are interrupts? How interrupts are handled by C54xx DSP Processors.

DSP Algorithm and Architecture 15EC751

7.
8.
9.

10.

11.

12.

13.
14.

15.
16.
17.
18.

Explain the memory interface block diagram for the TMS 320 C54xx processor.

Draw the 1/O interface timing diagram for read — write read sequence of operation.

What are interrupts? How interrupts are handled by C54xx DSP Processors.

Design a data memory system with address range 000800h — 000fffh for a c5416 processor
using 2kx8 SRAM memory chips.

Design a data memory system with address range 000800h — 000fffh for a ¢5416 processor
using 2kx8 SRAM memory chips. (MAY-JUNE 10, 6m)

Explain an interface between an A/D converter and the TMS320C54XX processor in the
programmed I/O mode. . (JUNE 12, 10m)

Describe DMA with respect to TMS320C54X X processors. (June/July 11, 10m)

Drew the timing diagram for memory interface for read-read-write sequence of operation.
Explain the purpose of each signal involved.(June/July 11, 10m)

Explain the memory interface block diagram for the TMS 320 C54xx processor.(Dec 2010)
Draw the 1/O interface timing diagram for read — write read sequence of operation (Dec2010)
What are interrupts? How interrupts are handled by C54xx DSP Processors. (Dec 2010,12)
What are interrupts? What are the classes of interrupts available in the TMS320C54xx
processor. (JUNE/July 11, 8m)

DSP Algorithm and Architecture 15EC751

Interfacing and Applications of DSP Processor

8.1 Introduction: In the case of parallel peripheral interface, the data word will be transferred with all
the bits together. In addition to parallel peripheral interface, there is a
need for interfacing serial peripherals. DSP has provision of interfacing serial devices too.

8.2 Synchronous Serial Interface: There are certain I/O devices which handle transfer

of one bit at a time. Such devices are referred to as serial I/O devices or peripherals. Communication
with serial peripherals can be synchronous, with processor clock as reference or it can be
asynchronous. Synchronous serial interface (SSI) makes communication a fast serial communication
and asynchronous mode of communication is slow serial communication. However, in comparison
with parallel peripheral interface,

the SSI is slow. The time taken depends on the number of bits in the data word.

8.3 CODEC Interface Circuit: CODEC, a coder-decoder is an example for synchronous serial 1/0. It
has analog input-output, ADC and DAC. The signals in SSI generated by the DSP are DX: Data
Transmit to CODEC, DR: Data Receive from CODEC, CLKX: Transmit data with this clock
reference, CLKR: Receive data with this clock reference, FSX: Frame sync signal for transmit, FSR:
Frame sync signal for receive, First bit, during transmission or reception, is in sync with these signals,
RRDY: indicator for receiving all bits of data and XRDY:: indicator for transmitting all bits of data.
Similarly, on the CODEC side, signals are FS*: Frame sync signal, DIN: Data Receive from DSP,
DOUT: Data Transmit to DSP and SCLK: Tx / Rx data with this clock reference. The block diagram
depicting the interface between TMS320C54xx and CODEC is shown in fig. 8.1. As only one signal
each is available on CODEC for clock and frame synchronization, the related DSP side signals are
connected together to clock and frame sync signals on CODEC. Fig. 8.2 and fig. 8.3 show the timings
for receive and transmit in SSI, respectively.

DSP Algorithm and Architecture 15EC751

T DX » DIN
M

g DR » DOUT
3

2 ESX ES*

0

C FSR CODEC
5

4 CLKX SCLK
X

x CLKR

Fig. 8.1: SSI between DSP & CODEC

iR bl
TN

Fig. 8.2: Receive Timing for SSI

As shown, the receiving or transmit activity is initiated at the rising edge of clock, CLKR

| CLKX. Reception / Transfer starts after FSR / FSX remains high for one clock cycle. RRDY /
XRDY is initially high, goes LOW to HIGH after the completion of data transfer. Each transfer of bit
requires one clock cycle. Thus, time required to transfer / receive data word depends on the number of
bits in the data word. An example of data word of 8 bits is shown in the fig. 8.2 and fig. 8.3.

DSP Algorithm and Architecture 15EC751
1 | 1 | 1 | I | | I | 1 | 1 | 1
CLKX
1
1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 | : 1 ! 1 | : | | : | 1 : | ! | 1 :
FSX 1 1 1 [I I T N L L -
1 1 1 I 1 1 1 1 1 1 1 I '] |1
| | | | | | |
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 | : 1 | ! 1 | ! | | ! | 1 : | 1 ! | 1 !
DX 11 g\l g 11 Jco\Wed
1 | ! 1 1 0 : 1 : : ! 1 1
L b b b gy
I I I | | | I | | | I | I I I | | I | | | I L | I I
e Y R T T WL T Y L BT N T I
1 1 I 1 1 I 1 1 I 1 1 I 1 1 1 1 1 1 1 1 1
| I | I | I | I | | I 1 1 I 1 1 I
R TR TR - T TSR T T T TR T TR B R
Fig 8.3: Transmit Timing for SSI
betih —» Analog [?ﬁlc:gusll'ﬁg}a De[gilgll'[:tlilon Serial Digital
Front-end ‘ ﬁllér —» Interface [Out
Rchin ™ -
& Digital
in
LPF & Multilevel Digital Mode
Lch out x] PR
<+ Output Delta-sigma interpolation fg | Control
buffer modulator [*] filter
Rch out <
Serial System
mode clock
control

Fig. 8.4: Block diagram for CODEC PCM3002

Fig. 8.4 shows the block diagram of PCM3002 CODEC. Analog front end samples signal at 64X over
sampling rate. It eliminates need for sample-and-hold circuit and simplifies need for anti aliasing filter.
ADC is based on Delta-sigma modulator to convert analog signal to digital form. Decimation filter
reduces the sampling rate and thus processing does not need high speed devices. DAC is Delta-sigma
modulator, converts digital signal to analog signal. Interpolation increases the sampling rate back to
original value. LPF smoothens the analog reconstructed signal by removing high frequency
components. The Serial Interface monitors serial data transfer. It accepts built-in ADC output and
converts to serial data and transmits the same on DOUT. It also accepts serial data on DIN & gives the

DSP Algorithm and Architecture 15EC751

same to DAC. The serial interface works in synchronization with BCLKIN & LRCIN. The Mode
Control initializes the serial data transfer. It sets all the desired modes, the number of bits and the
mode Control Signals, MD, MC and ML. MD carries Mode Word. MC is the mode Clock Signal. MD
to be loaded is sent with reference to this clock. ML is the mode Load Signal. It defines start and end
of latching bits into CODEC device.

Figure 8.5 shows interfacing of PCM3002 to DSP in DSK. DSP is connected to PCM3002 through
McBSP2. The same port can be connected to HPI. Mux selects one among these two based on CPLD
signal. CPLD in Interface also provides system clock for DSP and for CODEC, Mode control signals
for CODEC. CPLD generates BCLKIN and LRCIN signals required for serial interface.

TMS320VC5416 HPI

] PCM3002
McBSP2 [Mux ["] DIN
- “—| DOUT
) | LRCIN
DSPbus |
4 P
I BCLKIN
CPLD SYS_CLK
12.288MHz | .
OSCR ff »| Control
ML. MC. Interface

MD
Fig. 8.5: PCM3003 Interface to DSP in DSK

PCM3002 CODEC handles data size of 16 / 20 bits. It has 64x over-sampling, delta-sigma ADC &
DAC. It has two channels, called left and right. The CODEC is programmable for digital de-emphasis,
digital attenuation, soft mute, digital loop back, power-down mode. System clock, SYSCLK of
CODEC can he 256fs, 384fs or 512fs. Internal clock is always 256fs for converters, digital filters.
DIN, DOUT are the single line data lines to carry the data into the CODEC and from CODEC.
Another signal BCLKIN is data bit clock, the default value of which is CODEC SYSCLK / 4. LRCIN
is frame sync signal for Left and Right Channels. The frequency of this signal is same as the sampling

DSP Algorithm and Architecture 15EC751

frequency. The default divide factor can be 2, 4, 6 and 8. Thus, sampling rate is minimum of 6 KHz
and maximum of 48 KHz.

Problem P8.1: A PCM3002 is programmed for the 12 KHz sampling rate. Determine the divisor N
that should be written to the CPLD of the DSK and the various clock frequencies for the set up.

Solution: CPLD input Clock=12.288MHz (known)
Sampling rate fs=CODEC_SYSCLK / 256 =12KHz (given)
CPLD output clock, CODEC_SYSCLK =12.288 x 106 / N
Thus, CODEC_SYSCLK =256 x 12 KHz
& N=12.288 x 106/(256 x 12 x 103)

=4

Problem P8.3: Frame Sync is generated by dividing the 8.192MHz clock by 256 for the
serial communication. Determine the sampling rate and the time a 16 bit sample takes when
transmitted on the data line.

Solution: LRCIN, Frame Sync = 8.192x106/256 =32 KHz
Sampling rate fs= frequency of LRCIN=32 KHz
BCLKIN, Bit clock rate=CODEC_SYSCLK / 4=8.192x106/4=2.048MHz

_ N
BCLKIN .
poutr |1l2l3]]] 2 1]
vy slel L L. 516
’ﬂ
MSB LSB MSB LSB

I
I
1
1
I
I
[
il
1

Time for 16 bits

Fig. P8.3: Time for Data Transmission

LRCIN, Frame Sync = 8.192x1076/256 =32 KHz

Sampling rate fs= frequency of LRCIN=32 KHz

BCLKIN, Bit clock rate=CODEC_SYSCLK / 4=8.192x10"6/4=2.048MHz

Bit clock period= 1/2.048x10"6 =0.488x10"-6s

Time for transmitting 16 bits =0.488x10"-6x16 =7.8125x10"-6s (refer fig. P8.3)

DSP Algorithm and Architecture 15EC751

The CODEC PCM3002 supports four data formats as listed in table 8.1. The four data formats depend
on the number of bits in the data word, if the data is right justified or left justified with respect to
LRCIN and if it is 12S (Integrated Inter-chip Sound) format.

Table 8.1: Data formats of CODEC

Format DAC

ADC

Format Of16 bit, MSB first, right justified|16 bit, MSB first, left justified|

Format 1{20 bit, MSB first, right justified[20 bit, MSB first, left justified|

Format 2| 20 bit, MSB first, left justified [20 bit, MSB first, left justified]

Format 3 20 bit, MSB first, 125 20 bit, MSB first, 125

Figure 8.6 and fig. 8.7 depicts the data transaction for CODEC PCM3002. As shown in fig. 8.6, DIN (/
DOUT) carries the data. BCLKIN is the reference for transfer. When LRCIN is high, left channel
inputs (/ outputs) the data and when LRCIN is low, right channel inputs (/ outputs) the data. The data
bits at the end (/ beginning) of the LRCIN thus Right (/ left) justified.

LRCIN Lch | Reh _
BCLKIN [TTTT T TTITIT N
DIN 11273 4]15]16] 213 1415 | 16
________ R - .
MSB LSB

(DAC, 16 bit, MSB first, right justified)

Fig. 8.6: Data Formats for PCM3002

Another data format handled by PCM3002 is 12S (Integrated Inter-chip Sound). It is used for
transferring PCM between CD transport & DAC in CD player. LRCIN is low for left channel and high
for right channel in this mode of transfer. During the first BCKIN, there is no transmission by ADC.
During 2nd BCKIN onwards, there is transmission with MSB first and LSB last. Left channel data is
handled first followed by right channel data.

DSP Algorithm and Architecture 15EC751

LRCIN| ! Lch i —
BCLKIN l l
pout [1]2[3] "3 1 .
SRS N S G olol L I°L q; -
7 \
MSB LSB MSB LSB

Fig. 8.7: ADC 20 bit, MSB first, IS format

8.4 DSP Based Bio-telemetry Receiver: Biotelemetry involves transfer of physiological

information from one remote place to another for the purpose of obtaining experts opinion. The
receiver uses radio Frequency links. The schematic diagram of biotelemetry receiver is shown in fig.
8.8. The biological signals may be single dimensional signals such as ECG and EEG or two
dimensional signals such as an image, i.e., X-ray. Signal can even be multi dimensional signal i.e., 3D
picture. The signals at source are encoded, modulated and transmitted. The signals at destination are
decoded, demodulated and analyzed.

\l/— Demodulator || Analog Signal | | DSP | Digital
Processing g | interface

v
Multiple

channel DAC

E‘IEZG Ht{

Fig. 8.8: Bio-telemetry Receiver

An example of processing ECG signal is considered. The scheme involves modulation of ECG signal
by employing Pulse Position Modulation (PPM). At the receiving end, it is

demodulated. This is followed by determination of Heart beat Rate (HR). PPM Signal either encodes
single or multiple signals. The principle of modulation being that the position of pulse decides the
sample value.

DSP Algorithm and Architecture 15EC751

The PPM signal with two ECG signals encoded is shown in fig. 8.9. The transmission requires a sync
signal which has 2 pulses of equal interval to mark beginning of a cycle.

The sync pulses are followed by certain time gap based on the amplitude of the sample of 1st signal to
be transmitted. At the end of this time interval there is another pulse. This is again followed by time
gap based on the amplitude of the sample of the 2nd signal to be transmitted. After encoding all the
samples, there is a compensation time gap followed by sync pulses to mark the beginning of next set
of samples. Third signal may be encoded in either of the intervals of 1st or 2nd signal. With two
signals encoded and the pulse width as tp, the total time duration is 5tp.

Lp

I r
Sync 14 . ol t b — {3 ——pi SYNC

-

pulses * o .o 'pulses

each pullse /in‘terva'l

tl: pu'lse iiniterva'l correspondiing ‘to samp'le va'lue of 1s't siignal
t2:: pu'lse 'in‘terva'l correspondiing ito samp!'le va'lue of 2nd siigna'l
t3:: compensa‘tiion ‘tiime /in'tervall

Fig. 8.9: A PPM signal with two ECG signals

Since the time gap between the pulses represent the sample value, at the receiving end the time gap has
to be measured and the value so obtained has to be translated to sample value. The scheme for
decoding is shown in fig. 8.10. DSP Internal Timer employed. The pulses in PPM generate interrupt
signals for DSP. The interrupt start / terminate the timer.

The count in the timer is equivalent to the sample value that has been encoded. Thus, ADC is avoided
while decoding the PPM signal.

DSP Algorithm and Architecture 15EC751

lp
RS SR ey T
 leok R - pulses
DSP pulses , _
Interrupts | DSP 6 !
DSP lin}er T '"“7 T
j Vall)

V(L)

[
|

>
Fig. 8.10: Decoding PPM signal with two ECG signals

A DSP based PPM signal decoding is shown in fig. 8.11. PPM signal interface generates the interrupt
for DSP. DSP entertains the interrupt and starts a timer. When it receives another interrupt, it stops the
timer and the count is treated as the digital equivalent of the sample value. The process repeats. Dual
DAC converts two signals encoded into analog signals. And heart rate is determined referring to the
ECG obtained by decoding

PPM PPM signal TMS320C5402 Dual DAC &
—» : -+ >
input Interface Interrupt Request its interface
ECG HR

Fig. 8.11: DSP based biotelemetry Receiver Implementation

Heart Rate (HR) is a measure of time interval between QRS complexes in ECG signal. QRS complex
in ECG is an important segment representing the heart beat. There is periodicity in its appearance
indicating the heart rate. The algorithm is based on 1st and 2nd order absolute derivatives of the ECG
signal. Since absolute value of derivative is taken, the filter will be a nonlinear filtering.

DSP Algorithm and Architecture 15EC751

x(n)—x(n— l)|

Let the 1*' order derivative be yl(n)=

And let the 2" order derivative be ¥2(n) = [x(n—2)—2x(n—1)+x(n)

The 1* order derivative is obtained as the difference between the two adjacent samples,
the present sample and the previous sample. In a similar way, 2™ order derivative is
obtained by finding the derivative of 1** order derivative. The yl(n) and y2(n) are

summed. & y3(n)= yl(n)+ y2(n)
High frequency components are removed from y3(n) by passing the same through a LPF

o get yd(n)= a(y3(n)— y4(n—1))+ yd(n—1)

Mean of half of peak amplitudes is determined, which is threshold for detection of QRS complex.
QRS interval is then the time interval between two such peaks. Time Interval between two peaks is
determined using internal timer of DSP. Heart Rate, heart beat perminute is computed using the
relation HR=Sampling rate x 60 / QRS interval. The signals at various stages are shown in fig. 8.12.

ok - . . v . T
ECG signal UOL‘L/\ ‘ /’\ ; ‘\ A\ 4 \ r{ N\
0' < A -- =t 2
o 200 GO0 SO0 200
; .S . :
PPM signal) 4 = =
Q : "
O 200 400 SO0 2S00
Dooos
Decoded 5O X ! X =S
ECG signal o
S0
ol . - i 3 i
& 200 400 GO0 KOO
i = Tnu:sfomn:d @
y4(n) o
=
o ' A
(4] 200 400 SO0 S00
:
B‘, i L4 n A — T
a0 - e
HR=72 55
20
O — 1 2 x
(3] 10 20 30

Fig. 8.12: Signals in determination of HR

Dept. of ECE, ATME College of Engg., Mysuru Page 178

DSP Algorithm and Architecture 15EC751

8.5 A Speech Processing System: The purpose of speech processing is for analysis, transmission or
reception as in the case of radio / TV / phone, denoising, compression and so on. There are various
applications of speech processing which include identification and verification of speaker, speech
synthesis, voice to text conversion and

vice versa and so on. A speech processing system has a vocoder, a voice coding / decoding circuit.
Schematic of speech production is shown in fig. 8.13. The vocal tract has vocal cord at one end and
mouth at the other end. The shape of the vocal tract depends on position of lips, jaws, tongue and the
velum. It decides the sound that is produced. There is another tract, nasal tract. Movement of velum
connects or disconnects nasal tract. The overall voice that sounds depends on both, the vocal tract and
nasal tract.

Two types of speech are voiced sound and unvoiced sound. Vocal tract is excited with quasi periodic
pulses of air pressure caused by vibration of vocal cords resulting in voiced sound. Unvoiced sound is
produced by forcing air through the constriction, formed somewhere in the vocal tract and creating
turbulence that produces source of noise to excite the vocal tract.

MUSCLE FORCE NASAL TRACT NOSTRII

— |
> .3
__,"'.- ‘.'~-
N T
LUNGS TRACHEA VOCALI VOCALTRACT MOUTH
BRONCH] CORDS
Figure 11.7 A schematic diagram of the human vocal apparatus

Fig. 8.13: Speech Production Mechanism

By the understanding of speech production mechanism, a speech production model representing the
same is shown in fig. 8.14. Pulse train generator generates periodic pulse train. Thus it represents the
voiced speech signal. Noise generator represents unvoiced speech. Vocal tract system is supplied
either with periodic pulse train or noise. The final output is the synthesized speech signal.

Sequence of peaks occurs periodically in voiced speech and it is the fundamental frequency of speech.
The fundamental frequency of speech differs from person to person and hence sound of speech differs

Dept. of ECE, ATME College of Engg., Mysuru Page 179

DSP Algorithm and Architecture 15EC751

from person to person. Speech is a non stationary signal. However, it can be considered to be
relatively stationary in the intervals of 20ms. Fundamental frequency of speech can be determined by

Dept. of ECE, ATME College of Engg., Mysuru Page 180

DSP Algorithm and Architecture 15EC751

autocorrelation method. In other words, it is a method of determination of pitch period. Periodicity in
autocorrelation is because of the fundamental frequency of speech. A three level clipping scheme is
discussed here to measure the fundamental frequency of speech. The block diagram for the same is
shown in fig. 8.15.

o ——— ————— -

voiced

1
1
. Generator [
b SO=HG
HO
L 5

G() ' Vocal Tract

g
7
r~
g
2

1 3
i1 Noise j—_3’ 3
1 unvoiced

Fig. 8.14: Speech Production Model

s(t) s(n)

LPF.900Hz Sample, 10KHz
—s o
300 samples
in a segment J
Select 30ms segment,
with 10ms interval
Abs peak level in IPK1 —
] 1*' 100 samples Set clipping
Level Ck=
Min(IPK1,IPK2
|, Abs peak level in] g
last 100 samples IPK?2
Center Clipper, y(n) |- Autocorrelation | Find Position
& peak
=R Compute Energy
of section l
y
> Compare peak with
Compute Silence threshold for silence
> level threshold >
l Voiced
Unvoice Period

Fig. 8.15: Block Diagram of Clipping Autocorrelation Pitch Detector

The speech signal s(t) is filtered to retain frequencies up to 900Hz and sampled using ADC to get s(n).
The sampled signal is processed by dividing it into set of samples of 30ms duration with 20ms overlap
of the windows. The same is shown in fig. 8.16.

Dept. of ECE, ATME College of Engg., Mysuru Page 181

DSP Algorithm and Architecture 15EC751

4 LPE
s(t s(m)
R I‘ |
/
1 1
1 1
1, 1
~ 30ms g
i
|"I ’ I‘ -l"l .n'r
F i
AL L
1 -'Ir Fi Fl -f‘r [h—
I I—F—L—I’-——-L— |
Iy ! R
h 30ms i
«— >

Fig. 8.16: LPF, ADC and windowing

A threshold is set for three level clipping by computing minimum of average of absolute values of 1st
100 samples and last 100 samples. The scheme is shown in fig. 8.17.

Segment of 300 samples

P . 100 samples
100 samples

¥

IPK 1=average of abs samples IPK2=average of abs samples
Threshold for Clipping Ck=Min(IPK1,IPK2) x 70%
Fig. 8.17: Setting threshold for Clipping

The transfer characteristics of three level clipping circuit is shown in fig. 8.18. If the sample value is
greater than +CL, the output y(n) of the clipper is set to 1. If the sample value is more negative than -

Dept. of ECE, ATME College of Engg., Mysuru Page 182

DSP Algorithm and Architecture 15EC751

CL, the output y(n) of the clipper is set to -1. If the sample value is between —CL and +CL, the output
y(n) of the clipper is set to 0.

4
y(n),
Output

-Ck

Input samples

-

Ck

Fig. 8.18: Center Clipper

The autocorrelation of y(n) is computed which will be 0,1 or -1 as defined by eq (1). The largest peak
in autocorrelation is found and the peak value is compared to a fixed threshold. If the peak value is
below threshold, the segment of s(n) is classified as unvoiced segment. If the peak value is above
threshold, the segment of s(n) is classified

as voiced segment. The functioning of autocorrelation is shown in fig. 8.19.

0 if y(n+m)=0 or y(n+m+k)=0
yin+m)y(n+m+k)=<+1if y(n+m)=y(n+m+k) (1)

—1if y(n+m)#y(n+m+k)

As shown in fig. 8.19, A is a sample sequence y(n). B is a window of samples of length N and it is
compared with the N samples of y(n). There is maximum match. As the window is moved further, say
to a position C the match reduces. When window is moved further say to a position D, again there is
maximum match. Thus, sequence y(n) is periodic. The period of repetition can be measured by
locating the peaks and finding the time gap between them.

Dept. of ECE, ATME College of Engg., Mysuru Page 183

DSP Algorithm and Architecture 15EC751

samples

oL I I
il 1 T

A N

y— —

]
'
' i
! 1
! 1
! 1
! 1
! 1
! 1
! 1
L 1
! 1
i
1
N
1
(-
1
N L
¥ L 1
[
1
1
N i
i
i

1
1
[
Py
[l Ih..
I gl
|
A N
1 »

© L L

-

Fig. 8.19: Autocorrelation functioning

8.5 An Image Processing System: In comparison with the ECG or speech signal considered so far,
image has entirely different requirements. It is a two dimensional signal. It can be a color or gray
image. A color image requires 3 matrices to be maintained for three primary colors-red, green and
blue. A gray image requires only one

matrix, maintaining the gray information of each pixel (picture cell). Image is a signal with large
amount of data. Of the many processing, enhancement, restoration, etc., image compression is one
important processing because of the large amount of data in image.

To reduce the storage requirement and also to reduce the time and band width required to transmit the
image, it has to be compressed. Data compression of the order of factor 50 is sometimes preferred.
JPEG, a standard for image compression employs lossy compression technique. It is based on discrete
cosine transform (DCT). Transform domain compression separates the image signal into low

Dept. of ECE, ATME College of Engg., Mysuru Page 184

DSP Algorithm and Architecture 15EC751
frequency components and high frequency components. Low frequency components are retained

Dept. of ECE, ATME College of Engg., Mysuru Page 185

DSP Algorithm and Architecture 15EC751

because they represent major variations. High frequency components are ignored because they
represent minute variations and our eye is not sensitive to minute variations.

Image is divided into blocks of 8 x 8. DCT is applied to each block. Low frequency coefficients are of
higher value and hence they are retained. The amount of high frequency components to be retained is
decided by the desirable quality of reconstructed image. Forward DCT is given by eq (2).

_ 1 LI
f‘.'.d = Ecl- I:-‘.'.l' E z fl‘._‘.' CDS{

=0 y=(6

2x+Dur 2v+1lwr
Cx+luz, [(Ey+ve

) (2)

Since the coefficients values may vary with a large range, they are quantized. As already noted low
frequency coefficients are significant and high frequency coefficients are insignificant, they are
allotted varying number of bits. Significant coefficients are quantized precisely, with more bits and
insignificant coefficients are quantized coarsely,

with fewer bits. To achieve this, a quantization table as shown in fig. 8.20 is employed. The contents
of Quantization Table indicate the step size for quantization. An entry as smaller value implies smaller
step size, leading to more bits for the coefficients and vice

versa.

-

16 11 10 16 24 40 51 51
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
(94 "V 22 29 5% 87 .80 . 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Fig. 8.20: Matrix used for quantization & dequantization

The quantized coefficients are coded using Huffman coding. It is a variable length coding Huffman
Encoding. Shorter codes are allotted for frequently occurring long sequence of 1’s & 0’s. Decoding
requires Huffman table and dequantization table. Inverse DCT is taken employing eq(3). The data
blocks so obtained are combined to form complete image. The schematic of encoding and decoding is
shown in fig. 8.21.

Dept. of ECE, ATME College of Engg., Mysuru Page 186

DSP Algorithm and Architecture 15EC751

. 1 L J _ 2x+ Dur 2v+ 1w
f.r__x-=EZZ&¢1L_TCGS((MT) cos((EX TV oq(3)
=0 v=0
Quantization | | Huffman Compressed
D(::I" > | encode > data
8x8 block T T
1o bloe (Quantization Huffman ENCODER
table table
Compressed Huffman dequantize
data — decode > L IDCT
r i l
Huffman Dequantize 8x8 block
DECODER table table

Fig. 8.21: JPEG Encoder & Decoder

Recommended Questions:

1. With the help of a block diagram, explain the image compression and reconstruction using
JPEG encoder and decoder.

2. Write a pseudo algorithm heart rate(HR), using the digital signal processor.

3. Explain briefly the building blocks of a PCM3002 CODEC device. What do you understand by
a DSP based biotelemetry receiver?

4. With the help of block diagram explain JPEG algorithm.

5. Explain with the neat diagram the operation of pitch detector.

6. Explain with a neat diagram, the synchronous serial interface between the C54xx and a
CODEC device. Explain the operation of pulse position modulation (PPM) to encode two

biomedical signals.

Dept. of ECE, ATME College of Engg., Mysuru Page 187

DSP Algorithm and Architecture 15EC751
7. Explain with a neat block diagram the operation, the operation of the pitch detector.

Dept. of ECE, ATME College of Engg., Mysuru Page 188

DSP Algorithm and Architecture 15EC751

8 Explain PCM3002 CODEC, with the help of neat block diagram.

9. Explain DSP based biotelemetry receiver system, with the help of a block schematic diagram.

10. Explain the memory interface block diagram for the TMS 320 C54xx processor.(Dec 2010)

11. Draw the I/O interface timing diagram for read — write read sequence of operation (Dec2010)

12. What are interrupts? How interrupts are handled by C54xx DSP Processors. (Dec 2010,12)

13. What are interrupts? What are the classes of interrupts available in the TMS320C54xx
processor. (JUNE/July 11, 8m)

Dept. of ECE, ATME College of Engg., Mysuru Page 189

