
Cloud computing 
 

Dept of CSE Page 1 
 

MODULE 1 

INTRODUCTION 

Computing is being transformed into a model consisting of services that are commoditized and 

delivered in a manner similar to utilities such as water, electricity, gas, and telephony. In such a 

model, users access services based on their requirements, regardless of where the services are 

hosted. Cloud computing is the most recent emerging paradigm promising to turn the vision of 

“computing utilities” into a reality. 

Cloud computing is a technological advancement it is based on the concept of dynamic 

provisioning, which is applied not only to services but also to compute capability, storage, 

networking, and information technology (IT) infrastructure in general. Resources are made 

available through the Internet and offered on a pay-per-use basis from cloud computing 

vendors.  

Cloud computing at a glance  

In 1969, Leonard Kleinrock, one of the chief scientists of the original Advanced Research 

Projects Agency Network (ARPANET), which seeded the Internet, said: 

As of now, computer networks are still in their infancy, but as they grow up and become 

sophisticated, we will probably see the spread of ‘computer utilities’ which, like present 

electric and telephone utilities, will service individual homes and offices across the  country. 

Cloud computing allows renting infrastructure, runtime environments, and services on a pay- 

per-use basis. End users leveraging cloud computing services can access their documents and 

data anytime, anywhere, and from any device connected to the Internet. One of the most diffuse 

views of cloud computing can be summarized as follows: 

I don’t care where my servers are, who manages them, where my documents are stored, or 

where my applications are hosted. I just want them always available and access them from any 

device connected through Internet. And I am willing to pay for this service for as a long as I need 

it. 



Cloud computing 
 

Dept of CSE Page 2 
 

Web 2.0 technologies play a central role in making cloud computing an attractive opportunity for 

building computing systems. Service orientation allows cloud computing to deliver its 

capabilities with familiar abstractions, while virtualization confers on cloud computing the 

necessary degree of customization, control, and flexibility for building production and enterprise 

systems. 

The vision of cloud computing 

Cloud computing allows anyone with a credit card to provision virtual hardware, runtime 

environments, and services. These are used for as long as needed, with no up-front commitments 

required. The entire stack of a computing system is transformed into a collection of utilities, 

which can be provisioned and composed together to deploy systems in hours rather than days 

and with virtually no maintenance costs.  

 

Figure 1.1 Cloud computing vision 

Previously, the lack of effective standardization efforts made it difficult to move hosted services 

from one vendor to another. The long-term vision of cloud computing is that IT services are 

traded as utilities in an open market, without technological and legal barriers. In this cloud 



Cloud computing 
 

Dept of CSE Page 3 
 

marketplace, cloud service providers and consumers, trading cloud services as utilities, play a 

central role. 

Many of the technological elements contributing to this vision already exist. The capability for 

Web- based access to documents and their processing using sophisticated applications is one of 

the appealing factors for end users. 

Vision of cloud computing is that  in the near future it will be possible to find the solution that 

matches the customer needs by simply entering our request in a global digital market that trades 

cloud computing services.  

Defining a cloud 

 Different notions of cloud computing is as shown in figure 1.2. The Internet plays a fundamental 

role in cloud computing, since it represents either the medium or the platform through which 

many cloud computing services are delivered and made accessible. This aspect is also reflected 

in the definition given by Armbrust: 

Cloud computing refers to both the applications delivered as services over the Internet and the 

hardware and system software in the datacenters that provide those services. 

This definition describes cloud computing as a phenomenon touching on the entire stack: from 

the underlying hardware to the high-level software services and applications. It introduces the 

concept of everything as a service, mostly referred as XaaS, where the different components of a 

system—IT infrastructure, development platforms, databases, and so on—can be delivered, 

measured, and consequently priced as a service. The approach fostered by cloud computing is 

global.  

This notion of multiple parties using a shared cloud computing environment is highlighted in a 

definition proposed by the U.S. National Institute of Standards and Technology (NIST): 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access 

to a shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction. 



Cloud computing 
 

Dept of CSE Page 4 
 

According to Reese,   we can define three criteria to discriminate whether a service is delivered 

in the cloud computing style: 

• The service is accessible via a Web browser (nonproprietary) or a Web 

services application programming interface (API). 

• Zero capital expenditure is necessary to get started. 

• You pay only for what you use as you use it. 

The utility-oriented nature of cloud computing is clearly expressed by Buyya: 

A cloud is a type of parallel and distributed system consisting of a collection of interconnected   

and virtualized computers that are dynamically provisioned and presented as one or more 

unified computing resources based on service-level agreements established through 

negotiation between the service provider and consumers. 

A closer look 

Cloud computing is helping enterprises, governments, public and private institutions, and 

research organizations shape more effective and demand-driven computing systems. Practical 

examples of such systems exist across all market segments: 

• Large enterprises can offload some of their activities to cloud-based systems. Recently, 

the New York Times has converted its digital library of past editions into a Web-friendly 

format. This required a considerable amount of computing power for a short period of 

time. By renting Amazon EC2 and S3 Cloud resources, the Times performed this task in 

36 hours and relinquished these resources, with no additional costs. 

• Small enterprises and start-ups can afford to translate their ideas into business results 

more quickly, without excessive up-front costs. Animoto is a company that creates 

videos out of images, music, and video fragments submitted by users. The process 

involves a considerable amount of storage and backend processing required for producing 

the video, which is finally made available to the user. Animoto does not own a single 

server and bases its computing infrastructure entirely on Amazon Web Services. 

• System developers can concentrate on the business logic rather than dealing with the 

complexity of infrastructure management and scalability. Little Fluffy Toys is a 



Cloud computing 
 

Dept of CSE Page 5 
 

company in London that has developed a widget providing users with information about 

nearby bicycle rental services. The company has managed to back the widget’s 

computing needs on Google AppEngine and be on the market in only one  week. 

• End users can have their documents accessible from everywhere and any device. Apple 

iCloud  is a service that allows users to have their documents stored in the Cloud and 

access them from any device users connect to it.  

Cloud computing does not only contribute with the opportunity of easily accessing IT services on 

demand, it also introduces a new way of thinking about IT services and resources: as utilities. A 

bird’s-eye view of a cloud computing environment is shown in Figure 1.3. 

The three major models for deploying and accessing cloud computing environments are public 

clouds, private/enterprise clouds, and hybrid clouds. Figure 1.4. 

Public clouds are the most common deployment models in which necessary IT infrastructure 

(e.g., virtualized datacenters) is established by a third-party service provider that makes it 

available to any consumer on a subscription basis. Such clouds are appealing to users because 

they allow users to quickly leverage compute, storage, and application services. In this 

environment, users’ data and applications are deployed on cloud datacenters on the vendor’s 

premises. 

Large organizations that own massive computing infrastructures can still benefit from cloud 

computing by replicating the cloud IT service delivery model in-house. This idea has given birth 

to the concept of private clouds as opposed to public clouds. In 2010, for example, the U.S. 

federal government, one of the world’s largest consumers of IT spending started a cloud 

computing initiative aimed at providing government agencies with    a more efficient use of their 

computing facilities. The use of cloud-based in-house solutions is also driven by the need to keep 

confidential information within an organization’s premises. Institutions such as governments and 

banks that have high security, privacy, and regulatory concerns prefer to build and use their own 

private or enterprise clouds. 

Whenever private cloud resources are unable to meet users’ quality-of-service requirements, 

hybrid computing systems, partially composed of public cloud resources and privately owned 

infra- structures, are created to serve the organization’s needs. These are often referred as hybrid 



Cloud computing 
 

Dept of CSE Page 6 
 

clouds, which are becoming a common way for many stakeholders to start exploring the 

possibilities offered by cloud computing. 

The cloud computing reference model 

A fundamental characteristic of cloud computing is the capability to deliver, on demand, a 

variety of IT services that are quite diverse from each other. This variety creates different 

perceptions of what cloud computing is among users. Despite this lack of uniformity, it is 

possible to classify cloud computing services offerings into three major categories: 

Infrastructure-as-a-Service (IaaS),  

Platform-as-a-Service (PaaS), and 

Software-as-a-Service (SaaS).  

These categories are related to each other as described in Figure 1.5 

The model organizes the wide range of cloud computing services into a layered view that walks 

the computing stack from bottom to top. 

At the base of the stack, Infrastructure-as-a-Service solutions deliver infrastructure on demand   

in the form of virtual hardware, storage, and networking. Virtual hardware is utilized to provide 

compute on demand in the form of virtual machine instances. These are created at users’ request 

on the provider’s infrastructure, and users are given tools and interfaces to configure the software 

stack installed in the virtual machine. The pricing model is usually defined in terms of dollars per 

hour. Virtual storage is delivered in the form of raw disk space or object store. Virtual 

networking identifies the collection of services that manage the networking among virtual 

instances and their connectivity to the Internet or private networks. 

Platform-as-a-Service solutions are the next step in the stack. They deliver scalable and elastic 

runtime environments on demand and host the execution of applications. These services are 

backed by a core middleware platform that is responsible for creating the abstract environment 

where applications are deployed and executed. It is the responsibility of the service provider to 

provide scalability and to manage  fault  tolerance,  while  users  are  requested  to  focus  on  the  

logic  of  the application developed by leveraging the provider’s APIs and libraries. This 

approach increases the level of abstraction at which cloud computing is leveraged but also 

constrains the user in a more controlled environment. 



Cloud computing 
 

Dept of CSE Page 7 
 

At the  top  of  the  stack,  Software-as-a-Service  solutions  provide  applications  and  services  

on   demand.   Most   of   the   common   functionalities   of   desktop   applications—such   as 

office automation, document management, photo editing, and customer relationship management 

(CRM) software—are replicated on the provider’s infrastructure and made more scalable and 

accessible through a browser on demand. These applications are shared across multiple users 

whose interaction is isolated from the other users. The SaaS layer is also the area of social 

networking Websites, which leverage cloud-based infrastructures to sustain the load generated 

by their popularity. 

Each layer provides a different service to users. IaaS solutions are sought by users who want to 

leverage cloud computing from building dynamically scalable computing systems requiring a 

specific software stack. IaaS services are therefore used to develop scalable Websites or for 

back- ground processing.  

PaaS solutions provide scalable programming platforms for developing applications and are 

more appropriate when new systems have to be developed. 

 SaaS solutions target mostly end users who want to benefit from the elastic scalability of the 

cloud without doing any software development, installation, configuration, and maintenance.  

Characteristics and benefits 

Cloud computing has some interesting characteristics that bring benefits to both cloud service 

consumers (CSCs) and cloud service providers (CSPs). These characteristics are: 

• No up-front commitments 

• On-demand access 

• Nice pricing 

• Simplified application acceleration and  scalability 

• Efficient resource allocation 

• Energy efficiency 

• Seamless creation and use of third-party  services 

Challenges ahead 

Challenges’ concerning the dynamic provisioning of cloud computing services and resources 



Cloud computing 
 

Dept of CSE Page 8 
 

arises. For example, in the Infrastructure-as-a-Service domain, how many resources need to be 

provisioned, and for how long should they be used, in order to maximize the benefit? Technical 

challenges also arise for cloud service providers for the management of large computing 

infrastructures and the use of virtualization technologies on top of them.  

Security in terms of confidentiality, secrecy, and protection of data in a cloud environment is 

another important challenge. Organizations do not own the infrastructure they use to process data 

and store information. This condition poses challenges for confidential data, which organizations 

cannot afford to reveal. 

Legal issues may also arise. These are specifically tied to the ubiquitous nature of cloud 

computing, which spreads computing infrastructure across diverse geographical locations. 

Different legislation about privacy in different countries may potentially create disputes as to the 

rights that third parties (including government agencies) have to your data. 

 

Historical developments 

The idea of renting computing services by leveraging large distributed computing facilities has been 

around for long time. It dates back to the days of the mainframes in the early 1950s. From there on, 

technology has evolved and been refined. This process has created a series of favorable conditions for the 

realization of cloud computing. 

Figure 1.6 provides an overview of the evolution of the distributed computing technologies that 

have influenced cloud computing. In tracking the historical evolution, we briefly review five 

core technologies that played an important role in the realization of cloud computing. These 

technologies are distributed systems, virtualization, Web 2.0, service orientation, and utility   

computing. 

Distributed systems: Clouds are essentially large distributed computing facilities that make 

available their services to third parties on demand. As a reference, we consider the 

characterization of a distributed system proposed by Tanenbaum et al. [1]: 

A distributed system is a collection of independent computers that appears to its users as a single 

coherent system. 



Cloud computing 
 

Dept of CSE Page 9 
 

Three major milestones have led to cloud computing: mainframe computing, cluster computing, 

and grid computing. 

Mainframes. These were the first examples of large computational facilities leveraging multiple 

processing units.  Mainframes were  powerful,  highly  reliable  computers  specialized  for large 

data movement and massive input/output (I/O) operations. They were mostly used by large 

organizations for bulk data processing tasks such as online transactions, enterprise resource 

planning, and other operations involving the processing of significant amounts of data. One of 

the most attractive features of mainframes was the ability to be highly reliable computers that 

were “always on” and capable of tolerating failures transparently. No system shutdown was 

required to replace failed components, and the system could work without interruption.  Now 

their popularity and deployments have reduced, but evolved versions of such systems are still in 

use for transaction processing (such as online banking, airline ticket booking, supermarket and 

telcos, and government services). 

Clusters. Cluster computing started as a low-cost alternative to the use of mainframes and 

supercomputers. The technology advancement that created faster and more powerful mainframes 

and supercomputers eventually generated an increased availability of cheap commodity 

machines as a side effect. These machines could then be connected by a high-bandwidth network 

and controlled by specific software tools that  manage  them  as  a  single system. Built by 

commodity machines, they were cheaper than mainframes and made high-performance 

computing available to a large number of groups, including universities and small research labs. 

Moreover, clusters could be easily extended if more computational power was required. 

Grids. Grid computing appeared in the early 1990s as an evolution of cluster computing. In an 

analogy to the power grid, grid computing proposed a new approach to access large 

computational power, huge storage facilities, and a variety of services. Users can “consume” 

resources in the same way as they use other utilities such as power, gas, and water. Grids initially 

developed as aggregations of geographically dispersed clusters by means of Internet connections. 

These clusters belonged to different organizations, and arrangements were made among them to 

share the computational power. Several developments made possible the diffusion of computing 

grids: (a) clusters became quite common resources; (b) they were often underutilized; (c) new 

problems were requiring computational power that went beyond the capability of single clusters; 



Cloud computing 
 

Dept of CSE Page 10 
 

and (d) the improvements in networking and the diffusion of the Internet made possible long-

distance, high-bandwidth connectivity. All these elements led to the development of grids, which 

now serve a multitude of users across the world. 

Virtualization 

Virtualization is another core technology for cloud computing. It encompasses a collection of 

solutions allowing the abstraction of some of the fundamental elements for computing, such as 

hardware, runtime environments, storage, and networking. Today virtualization has become a 

fundamental element of cloud computing. Virtualization confers that degree of customization 

and control that makes cloud computing appealing for users and, at the same time, sustainable 

for cloud services providers. 

Virtualization is essentially a technology that allows creation of different computing 

environments. These environments are called virtual because they simulate the interface that is 

expected by a guest. The most common example of virtualization is hardware virtualization. 

This technology allows simulating the hardware interface expected by an operating system. 

Hardware virtualization allows the coexistence of different software stacks on top of the same 

hardware. These stacks are contained inside virtual machine instances, which operate in 

complete isolation from each other. High-performance servers can host several virtual machine 

instances, thus creating the opportunity to have a customized software stack on demand. This is 

the base technology that enables cloud computing solutions to deliver virtual servers on demand, 

such as Amazon EC2, RightScale, VMware vCloud, and others. Together with hardware 

virtualization, storage and network virtualization complete the range of technologies for the 

emulation of IT infrastructure. Virtualization technologies are also used to replicate runtime 

environments for programs.  

Web 2.0 

The Web is the primary interface through which cloud computing delivers its services. At 

present, the Web encompasses a set of technologies and services that facilitate interactive 

information sharing, collaboration, user-centered design, and application composition. This 

evolution has transformed the Web into a rich platform for application development and is 

known as Web 2.0. This term captures a new way in which developers architect applications and 



Cloud computing 
 

Dept of CSE Page 11 
 

deliver services through the Internet and provides new experience for users of these applications 

and services. 

Web 2.0 brings interactivity and flexibility into Web pages, providing enhanced user experience 

by gaining Web-based access to all the functions that are normally found in desktop applications. 

These capabilities are obtained by integrating a collection of standards and technologies such as 

XML, Asynchronous JavaScript and XML (AJAX), Web Services, and others. 

Service-oriented computing 

Service orientation is the core reference model for cloud computing systems. This approach 

adopts the concept of services as the main building blocks of application and system 

development. Service-oriented computing (SOC) supports the development of rapid, low-cost, 

flexible, interoperable, and evolvable applications and systems. 

A service is an abstraction representing a self-describing and platform-agnostic component that 

can perform any function anything from a simple function to a complex business process.  

Virtually any piece of code that performs a task can be turned into a service and expose its 

functionalities through a network-accessible protocol. A service is supposed to be loosely 

coupled, reusable, programming language independent, and location transparent. Services are 

composed and aggregated into a service-oriented architecture (SOA). Service-oriented 

computing introduces and diffuses two important concepts, which are also fundamental to cloud 

computing: quality of service (QoS) and Software-as-a-Service  (SaaS). 

Quality of service (QoS) identifies a set of functional and nonfunctional attributes that can be 

used to evaluate the behavior of a service from different perspectives. These could be 

performance metrics such as response time, or security attributes, transactional integrity, 

reliability, scalability, and availability. QoS requirements are established between the client and 

the provider via an SLA that identifies the minimum values (or an acceptable range) for the QoS 

attributes that need to be satisfied upon the service call. 

The concept of Software-as-a-Service introduces a new delivery model for applications. The   

term has been inherited from the world of application service providers (ASPs), which deliver 



Cloud computing 
 

Dept of CSE Page 12 
 

software services-based solutions across the wide area network from a central datacenter and 

make them available on a subscription or rental basis. 

Utility-oriented computing 

Utility computing is a vision of computing that defines a service-provisioning model for 

compute services in which resources such as storage, compute power, applications, and 

infrastructure are packaged and offered on a pay-per-use basis. The idea of providing 

computing as a utility like natural gas, water, power, and telephone connection has a long 

history but has become a reality today  with the advent of cloud computing.  

Building cloud computing environments 

The creation of cloud computing environments encompasses both the development of 

applications and systems that leverage cloud computing solutions and the creation of 

frameworks, platforms,   and infrastructures delivering cloud computing services. 

Application development 

Applications that leverage cloud computing benefit from its capability to dynamically scale on 

demand. One class of applications that takes the biggest advantage of this feature is that of Web 

applications. These   applications are characterized by complex processes that are triggered by 

the interaction with users and develop through the interaction between several tiers behind the 

Web front end. 

Another class of applications that can potentially gain considerable advantage by leveraging 

cloud computing is represented by resource-intensive applications. These can be either data- 

intensive or compute-intensive applications. In both cases, considerable amounts of resources 

are required to complete execution in a reasonable timeframe. It is worth noticing that these 

large amounts of resources are not needed constantly or for a long duration.  

Infrastructure and system development 

Distributed computing, virtualization, service orientation, and Web 2.0 form the core 

technologies enabling the provisioning of cloud services from anywhere on the globe. 

Developing applications and systems that leverage the cloud requires knowledge across all 

these technologies.  

Infrastructure-as-a-Service solutions provide the capabilities to add and remove resources, but it 



Cloud computing 
 

Dept of CSE Page 13 
 

is up to those who deploy systems on this scalable infrastructure to make use of such 

opportunities with wisdom and effectiveness. Platform-as-a-Service solutions embed into their 

core offering algorithms and rules that control the provisioning process and the lease of 

resources. These can be either completely transparent to developers or subject to   fine control. 

Web 2.0 technologies constitute the interface through which cloud computing services are 

delivered, managed, and provisioned. Besides the interaction with rich interfaces through the 

Web browser, Web services have become the primary access point to cloud computing systems 

from a programmatic standpoint. Service orientation is the underlying paradigm that defines the 

architecture of a cloud computing system.  

Virtualization is another element that plays a fundamental role in cloud computing. This 

technology is a core feature of the infrastructure used by cloud providers. 

Computing platforms and technologies 

Amazon web services (AWS) 

AWS offers comprehensive cloud IaaS services ranging from virtual compute, storage, and 

networking to complete computing stacks. AWS is mostly known for its compute and storage-

on- demand services, namely Elastic Compute Cloud (EC2) and Simple Storage Service (S3). 

EC2 provides users with customizable virtual hardware that can be used as the base 

infrastructure for deploying computing systems on the cloud. It is possible to choose from a 

large variety of virtual hardware configurations, including GPU and cluster instances. S3 is 

organized into buckets; these are containers of objects that are stored in binary form. Users can 

store  objects of any size, from simple  files to entire disk images, and have them accessible 

from everywhere. 

Google AppEngine 

Google AppEngine is a scalable runtime environment mostly devoted to executing Web 

applications. AppEngine provides both a secure execution environment and a collection of 

services that simplify the development of scalable and high-performance Web applications. 

These services include in-memory caching, scalable data store, job queues, messaging, and  

cron tasks. Developers can build and test applications on their own machines using the 

AppEngine software development kit (SDK), which replicates the production runtime 

environment and helps  test and profile applications. Once development is complete, developers 

can easily migrate their application to AppEngine, and make the application available to the 



Cloud computing 
 

Dept of CSE Page 14 
 

world. The languages currently supported are Python, Java. 

Microsoft Azure 

Microsoft Azure is a cloud operating system and a platform for developing applications in the    

cloud. It provides a scalable runtime environment for Web applications and distributed 

applications in general. Applications in Azure are organized around the concept of roles. 

Currently, there are three types of role: Web role, worker role, and virtual machine role. The 

Web role is designed to host a Web application, the worker role is a more generic container of 

applications and can be used to perform workload processing, and the virtual machine role 

provides a virtual environment in which the computing stack can be fully customized, including 

the operating systems.  

Hadoop 

Apache Hadoop is an open-source framework that is suited for processing large data sets on 

commodity hardware. Yahoo!, the sponsor of the Apache Hadoop project, has put considerable 

effort into transforming the project into an enterprise-ready cloud computing platform for data 

processing. Hadoop is an integral part of the Yahoo! cloud infrastructure and supports several 

business processes of the company. Currently, Yahoo! manages the largest Hadoop cluster in 

the world. 

Force.com and Salesforce.com 

Force.com is a cloud computing platform for developing social enterprise applications. 

Force.com allows developers to create applications by composing ready-to-use blocks; a 

complete set of components supporting all the activities of an enterprise are available.  The 

Force.com platform is completely hosted on the cloud and provides complete access to its 

functionalities and those implemented in the hosted applications through Web services 

technologies. 

Manjrasoft Aneka 

Manjrasoft Aneka  is a cloud application platform for rapid creation of scalable applications  

and their deployment on various types of clouds in a seamless and elastic manner. It supports a 

collection of programming abstractions for developing applications and a distributed runtime 

environment that can be deployed on heterogeneous hardware (clusters, networked desktop 



Cloud computing 
 

Dept of CSE Page 15 
 

computers, and cloud resources). 

These platforms are key examples of technologies available for cloud computing. They mostly 

fall into the three major market segments identified in the reference model: Infrastructure-as-a-

Service, Platform-as-a-Service, and Software-as-a-Service. 

 

VIRTUALIZATION 

 

Virtualization is a large umbrella of technologies and concepts that are meant to provide an 

abstract environment—whether virtual hardware or an operating system—to run applications. 

The term virtualization is often synonymous with hardware virtualization, which plays a 

fundamental role in efficiently delivering Infrastructure-as-a-Service (IaaS) solutions for cloud 

computing. In fact, virtualization technologies available in many flavors by providing virtual 

environments at the operating system level, the programming language level, and the application 

level. Moreover, virtualization technologies provide a virtual environment for not only executing 

applications but also for storage, memory, and networking. 

Virtualization technologies have gained renewed interested recently due to the confluence of 

several   phenomena: 

• Increased performance and computing capacity.  Nowadays, the average end-user desktop 

PC is powerful enough to meet almost all the needs of everyday computing, with extra 

capacity that is rarely used. Almost all these PCs have resources enough to host a virtual 

machine manager and execute a virtual machine with by far acceptable performance. The 

same consideration applies to the high-end side of the PC market, where supercomputers 

can provide immense compute power that can accommodate the execution of hundreds or 

thousands of virtual machines. 

• Underutilized hardware and software resources. Hardware and software underutilization is 

occurring  due  to  (1)  increased  performance  and  computing  capacity,  and  (2)  the  

effect   of limited or sporadic use of resources. Computers today are so powerful that in 

most cases only a fraction of their capacity is used by an application or the system. 

Moreover, if we consider the IT infrastructure of an enterprise, many computers are only 



Cloud computing 
 

Dept of CSE Page 16 
 

partially utilized whereas they could be used without interruption on a 24/7/365 basis. For 

example, desktop PCs mostly devoted to office automation tasks and used by 

administrative staff are only used during work hours, remaining completely unused 

overnight. Using these resources for other purposes after hours could improve the 

efficiency of the IT infrastructure. To transparently provide such a service, it would be 

necessary to deploy a completely separate environment, which can be achieved through 

virtualization. 

• Lack of space. The continuous need for additional capacity, whether storage or compute 

power, makes data centers grow quickly. Companies such as Google and Microsoft expand 

their infrastructures by building data centers as large as football fields that are able to host 

thousands of nodes. Although this is viable for IT giants, in most cases enterprises cannot 

afford to build another data center to accommodate additional resource capacity. This 

condition, along with hardware underutilization, has led to the diffusion of a technique 

called server consolidation, for which virtualization technologies are fundamental. 

• Greening initiatives. Recently, companies are increasingly looking for ways to reduce the 

amount of energy they consume and to reduce their carbon footprint. Data centers are one 

of the major power consumers; Maintaining a data center operation not only involves 

keeping servers on, but a  great deal of energy is also consumed in keeping them cool. 

Infrastructures for cooling have a significant impact on the carbon footprint of a data 

center. Hence, reducing the number of servers through server consolidation will definitely 

reduce the impact of cooling and power consumption of a data center. Virtualization 

technologies can provide an efficient way of consolidating servers. 

• Rise of administrative costs. The  increased demand for additional capacity, which translates 

into more servers in a data center, is also responsible for a significant increment in 

administrative costs. Computers—in particular, servers—do not operate all on their own, 

but they require care and feeding from system administrators. Common system 

administration tasks include hardware monitoring, defective hardware replacement, server 

setup and updates, server resources monitoring, and backups. These are labor-intensive 

operations, and the higher the number of servers that have to be managed, the higher the 



Cloud computing 
 

Dept of CSE Page 17 
 

administrative costs. Virtualization can help reduce the number of required servers for a 

given workload, thus reducing the cost of the administrative personnel. 

Characteristics of virtualized environments 

Virtualization is a broad concept that refers to the creation of a virtual version of something, 

whether hardware, a software environment, storage, or a network.  In a virtualized 

environment there are three major components: guest, host, and virtualization layer. The 

guest represents the system component that interacts with the virtualization layer rather than 

with the host, as would normally happen. The host represents the original environment where 

the guest is supposed to be managed. The virtualization layer is responsible for recreating the 

same or a different environment where the guest will operate (see Figure 2.1). 

 

Figure 2.1: The virtualization reference model. 

The Characteristics of Virtualization is as follows 

1. Increased security: The ability to control the execution of a guest in a 

completely transparent manner opens new possibilities for delivering a secure, 

controlled execution environment.  The virtual machine represents an emulated 

environment in which the guest is executed. All the operations of the guest are 

generally performed against the virtual machine, which then translates and 

Guest Virtual Image Applications Applications 

Virtual Hardware Virtual Storage Virtual Networking 

Virtualization Layer 

Software Emulation 

Host Physical Hardware Physical Storage Physical Networking 



Cloud computing 
 

Dept of CSE Page 18 
 

applies them to the host. Resources exposed by  the  host  can  then  be  hidden  

or  simply  protected  from  the  guest.  Sensitive information that is contained 

in the host can be naturally hidden without the need to install complex security 

policies. 

2. Managed execution: Virtualization of the execution environment not only 

allows increased security, but a wider range of features also can be 

implemented. In particular, sharing, aggregation, emulation, and isolation   are 

the most relevant features 

 

                 

Figure 2.2 : Functions enabled by managed execution 

• Aggregation. Not only is it possible to share physical resource among several 

guests, but virtualization also allows aggregation, which is the opposite process. 

A group of separate hosts can be tied together and represented to guests as a 

single virtual host. This function is naturally implemented in middleware for 

distributed computing, with a classical example represented by cluster 

management software, which harnesses the physical resources of a homogeneous 

group of machines and represents them as a single resource. 

• Emulation. Guest programs are executed within an environment that is controlled 

by the virtualization layer, which ultimately is a program. This allows for 

controlling and tuning the environment that is exposed to guests. For instance, a 

completely different environment with respect to the host can be emulated, thus 

Virtual 

Resources 

Sharing Aggregation Emulation Isolation Virtualization 

Physical 

Resources 



Cloud computing 
 

Dept of CSE Page 19 
 

allowing the execution of guest programs requiring specific characteristics that 

are not present in the physical host.   Hardware virtualization solutions are able to 

provide virtual hardware and emulate a particular kind of device such as Small 

Computer System Interface (SCSI) devices for file I/O, without the hosting 

machine having such hardware installed.  

• Isolation. Virtualization allows providing guests—whether they are operating 

systems, applications, or other entities—with a completely separate environment, 

in which they are executed. The guest program performs its activity by 

interacting with an abstraction layer, which provides access to the underlying 

resources. The virtual machine can filter the activity of the guest and prevent 

harmful operations against the host. 

3. Portability: The concept of portability applies in different ways 

according to the specific type of virtualization considered. In the case 

of a hardware virtualization solution, the guest is packaged into a 

virtual image that, in most cases, can be safely moved and executed 

on top of different virtual machines. Except for the file size, this 

happens with the same simplicity with which we can display a picture 

image in different computers. Virtual images are generally 

proprietary formats that require a specific virtual machine manager 

to be executed.  

Taxonomy of virtualization techniques 

Virtualization covers a wide range of emulation techniques that are applied to different areas 

of computing. A classification of these techniques helps us better understand their 

characteristics and use (see Figure 2.3). 

The first classification discriminates against the service or entity that is being emulated. 

Virtualization is mainly used to emulate execution environments, storage, and networks. 

Among these categories, execution virtualization constitutes the oldest, most popular, and 

most developed area. In particular we can divide these execution virtualization techniques 

into two major categories by considering the type of host they require. Process-level 



Cloud computing 
 

Dept of CSE Page 20 
 

techniques are implemented on top of an existing operating system, which has full control of 

the hardware. System-level techniques are implemented directly on hardware and do not 

require—or require a minimum of support from—an existing operating system. Within these 

two categories we can list various techniques that offer the guest a different type of virtual 

computation environment: bare hardware, operating system resources, low-level 

programming language, and application libraries. 

 

 

Figure 2.3 A taxonomy of virtualization techniques 

Execution virtualization 

Execution virtualization includes all techniques that aim to emulate an execution environment 

that is separate from the one hosting the virtualization layer. All these techniques concentrate 

their interest on providing support for the execution of programs, whether these are the operating 

system, a binary specification of a program compiled against an abstract machine model, or an 

application. Therefore, execution virtualization can be implemented directly on top of the 

hardware by the operating system, an application, or libraries dynamically or statically linked to 

an application image. 



Cloud computing 
 

Dept of CSE Page 21 
 

Machine reference model 

Virtualzing an execution environment at different levels of the computing stack requires a 

reference model that defines the interfaces between the levels of abstractions, which hide 

implementation details. From this perspective, virtualization techniques actually replace one of 

the layers and intercept the calls that are directed toward it.  

Modern computing systems can be expressed in terms of the reference model described in Figure 

2.4. At the bottom layer, the model for the hardware is expressed in terms of the Instruction Set 

Architecture (ISA), which defines the instruction set for the processor, registers, memory, and 

interrupts management. ISA is the interface between hardware and software, and it is important 

to the operating system (OS) developer (System ISA) and developers of applications that directly 

manage the underlying hardware (User ISA).  

 

Figure 2.4 A  Machine Reference Model 

The application binary interface (ABI) separates the operating system layer from the applications 

and libraries, which are managed by the OS. ABI covers details such as low-level data types, 

alignment, and call conventions and defines a format for executable programs. System calls are 

defined at this level.  This  interface  allows  portability  of  applications  and  libraries  across  

operating  systems  that implement the same ABI. The highest level of abstraction is represented 

by the application programming interface (API), which interfaces applications to libraries and/or 

the underlying operating system. 



Cloud computing 
 

Dept of CSE Page 22 
 

The instruction set exposed by the hardware has been divided into different security classes that 

define who can operate with them. The first distinction can be made between privileged and 

nonprivileged instructions. Nonprivileged instructions are those instructions that can be used 

without interfering with other tasks because they do not access shared resources. This category 

contains, for example, all the floating, fixed-point, and arithmetic instructions. Privileged 

instructions are those that are executed under specific restrictions and are mostly used for 

sensitive operations, which expose (behavior-sensitive) or modify (control-sensitive) the 

privileged state. For instance, behavior-sensitive instructions are those that operate on the I/O, 

whereas control-sensitive instructions alter the state of the CPU registers. 

A possible implementation features a hierarchy of privileges (see Figure 2.5) in the form of ring-

based security: Ring 0, Ring 1, Ring 2, and Ring 3; Ring 0 is in the most privileged level and 

Ring 3 in the least privileged level. Ring 0 is used by the kernel of the OS, rings 1 and 2 are used 

by the OS-level services, and Ring 3 is used by the user. Recent systems support only two levels, 

with Ring 0 for supervisor mode and Ring 3 for user mode. 

 

Figure 2.5 Security Rings and Privileged mode 

All the current systems support at least two different execution modes: supervisor mode and user 

mode. The first mode denotes an execution mode in which all the instructions (privileged and 

nonprivileged) can be executed without any restriction. This mode, also called master mode or 

kernel mode, is generally used by the operating system (or the hypervisor) to perform sensitive 

operations on hardware level resources. In user mode, there are restrictions to control the 



Cloud computing 
 

Dept of CSE Page 23 
 

machine-level resources. If code running in user mode invokes the privileged instructions, 

hardware interrupts occur and trap the potentially harmful execution of the instruction. 

Conceptually, the hypervisor runs above the supervisor mode. 

Hardware-level virtualization 

Hardware-level virtualization is a virtualization technique that provides an abstract execution 

environment in terms of computer hardware on top of which a guest operating system can be run. 

In this model, the guest is represented by the operating system, the host by the physical computer 

hardware, the virtual machine by its emulation, and the virtual machine manager by the 

hypervisor (see Figure 2.6). The hypervisor is generally a program or a combination of software 

and hardware that allows the abstraction of the underlying physical hardware. 

Hardware-level virtualization is also called system virtualization, since it provides ISA to virtual 

machines, which is the representation of the hardware interface of a system. 

 

Figure 2.6 A hardware virtualization reference model. 

Hypervisors: A fundamental element of hardware virtualization is the hypervisor, or virtual 

machine manager (VMM).  

It recreates a hardware environment in which guest operating systems are installed. There are 

two major types of hypervisor: Type I and Type II (see Figure   2.7). 



Cloud computing 
 

Dept of CSE Page 24 
 

• Type I hypervisors run directly on top of the hardware. Therefore, they take the 

place of the operating systems and interact directly with the ISA interface 

exposed by the underlying hardware, and they emulate this interface in order to 

allow the management of guest operating systems. This type of hypervisor is 

also called a native virtual machine since it runs natively on hardware. 

• Type II hypervisors require the support of an operating system to provide 

virtualization services. This means that they are programs managed by the 

operating system, which interact with it through the ABI and emulate the ISA of 

virtual hardware for guest operating systems.  This type of hypervisor is also 

called a hosted virtual machine since it is hosted within an operating system. 

Figure 2.7 Hosted (left) and native (right) virtual machines.  

A virtual machine manager is internally organized as described in Figure 2.8.   Three main 

modules, dispatcher, allocator, and interpreter, coordinate their activity in order to emulate the 

underlying hardware. The dispatcher constitutes the entry point of the monitor and reroutes the 

instructions issued by the virtual machine instance to one of the two other modules.  The 

allocator is responsible for deciding the system resources to be provided to the VM: whenever     

a virtual machine tries to execute an instruction that results in changing the machine resources 

associated with that VM, the allocator is invoked by the dispatcher. The interpreter module 

consists of interpreter routines. These are executed whenever a virtual machine executes a 

privileged instruction: a trap is triggered and the corresponding routine is   executed. 

VM VM VM VM 

ISA 

Virtual Machine Manager 
VM VM VM VM 

ABI ISA 

Operative System Virtual Machine Manager 

ISA ISA 

Hardware Hardware 



Cloud computing 
 

Dept of CSE Page 25 
 

 

Figure 2.8 A hypervisor reference architecture. 

 Three properties of Virtual Machine Manager that have to be satisfied: 

• Equivalence. A guest running under the control of a virtual machine manager 

should exhibit the same behavior as when it is executed directly on the physical   

host. 

• Resource control. The virtual machine manager should be in complete control of 

virtualized resources. 

• Efficiency. A statistically dominant fraction of the machine instructions should be 

executed without intervention from the virtual machine  manager. 

Popek and Goldberg provided a classification of the instruction set and proposed three theorems 

that define the properties that hardware instructions need to satisfy in order to efficiently support 

virtualization 

THEOREM 1 

For any conventional third-generation computer, a VMM may be constructed if the set of 

sensitive instructions for that computer is a subset of the set of privileged  instructions. 



Cloud computing 
 

Dept of CSE Page 26 
 

This theorem establishes that all the instructions that change the configuration of the system 

resources should generate a trap in user mode and be executed under the control of the virtual 

machine manager. This allows hypervisors to efficiently control only those instructions that 

would reveal the presence of an abstraction layer while executing all the rest of the instructions 

without considerable performance loss. 

THEOREM 2 

A conventional third-generation computer is recursively virtualizable if: 

• It is virtualizable and 

• A VMM without any timing dependencies can be constructed for it. 

Recursive virtualization is the ability to run a virtual machine manager on top of another virtual 

machine manager. This allows nesting hypervisors as long as the capacity of the underlying 

resources can accommodate that. Virtualizable hardware is a prerequisite to recursive 

virtualization. 

THEOREM 3 

A hybrid VMM may be constructed for any conventional third-generation machine in 

which the set of user-sensitive instructions is a subset of the set of privileged   instructions. 

There is another term, hybrid virtual machine (HVM), which is less efficient than the virtual 

machine system. In the case of an HVM, more instructions are interpreted rather than being 

executed directly. All instructions in virtual supervisor mode are interpreted. Whenever there is 

an attempt to execute a behavior-sensitive or control-sensitive instruction, HVM controls the 

execution directly or gains the control via a trap. 

Hardware virtualization techniques 

Hardware-assisted virtualization.  This term refers to a scenario in which the hardware   

provides architectural support for building a virtual machine manager able to run a guest 

operating system in complete isolation. This technique was originally introduced in the IBM 

System/370. At present, examples of hardware-assisted virtualization are the extensions to the 

x86-64 bit architecture introduced with Intel VT (formerly known as Vanderpool) and AMD V 

(formerly known as Pacifica).. Products such as VMware Virtual Platform, introduced in 1999 

by VMware, which pioneered the field of x86 virtualization, were based on this technique. After 

2006, Intel and AMD introduced processor extensions, and a wide range of virtualiza- tion 



Cloud computing 
 

Dept of CSE Page 27 
 

solutions took advantage of them: Kernel-based Virtual Machine (KVM), VirtualBox, Xen, 

VMware, Hyper-V, Sun xVM, Parallels, and others. 

Full  virtualization.  Full  virtualization  refers  to  the  ability  to  run  a  program,  most  likely  

an operating system, directly on top of a virtual machine and without any modification, as 

though it were run on the raw hardware. To make this possible, virtual machine managers are 

required to provide a complete emulation of the entire underlying hardware. The principal 

advantage of full virtualization is complete isolation, which leads to enhanced security, ease of 

emulation of different architectures, and coexistence of different systems on the same platform. 

A simple solution to achieve full virtualization is to provide a virtual environment for all the 

instructions, thus posing some limits on performance.  

Paravirtualization.  This  is  a  not-transparent  virtualization  solution  that  allows    

implementing thin virtual machine managers. Paravirtualization techniques expose a software 

interface to the virtual machine that is slightly modified from the host and, as a consequence, 

guests need to be modified. The aim of paravirtualization is to provide the capability to demand 

the execution of performance-critical operations directly on the host, thus preventing 

performance losses that would otherwise be experienced in managed execution. This technique 

has been successfully used by Xen for providing virtualization solutions for Linux-based 

operating systems specifically ported to run on Xen hypervisors.  

Partial virtualization. Partial virtualization provides a partial emulation of the underlying 

hardware, thus not allowing the complete execution of the guest operating system in complete 

isolation. Partial virtualization allows many applications to run transparently, but not all the 

features of the operating system can be supported, as happens with full virtualization. Partial 

virtualization was implemented on the experimental IBM M44/44X. Address space virtualization 

is a common feature of contemporary operating systems. 

Operating system-level virtualization 

Operating system-level virtualization offers the opportunity to create different and separated 

execution environments for applications that are managed concurrently. Differently from 

hardware virtualization, there is no virtual machine manager or hypervisor, and the virtualization 

is done within a single operating system, where the OS kernel allows for multiple isolated user 

space instances. The kernel is also responsible  for  sharing  the  system  resources  among  

instances  and  for  limiting  the impact of instances on each other. A user space instance in 



Cloud computing 
 

Dept of CSE Page 28 
 

general contains a proper view of the file system, which is completely isolated, and separate IP 

addresses, software configurations, and access to devices. Operating  system-level  virtualization  

aims to provide separated and multiple  execution  containers  for  running  applications.  

Compared to hardware virtualization, this strategy imposes little or  no  overhead  because  

applications   directly use OS system calls and there is no need for emulation. 

Examples of operating system-level virtualizations are FreeBSD Jails, IBM Logical Partition 

(LPAR), SolarisZones and Containers, Parallels Virtuozzo Containers, OpenVZ, iCore Virtual 

Accounts, Free Virtual Private Server (FreeVPS). 

Programming language-level virtualization 

Programming language-level virtualization is mostly used to achieve ease of deployment of 

applications, managed execution, and portability across different platforms  and  operating  sys-  

tems. It consists of a virtual machine executing the byte code of a program, which is the result          

of the compilation process. Compilers implemented and used this technology to produce a binary 

format representing the machine code for an abstract architecture. The characteristics of this 

architecture vary from implementation to implementation.  

Programming language-level virtualization has a long trail in computer science history and orig- 

inally was used in 1966 for the implementation of Basic Combined Programming Language  

(BCPL), a language for writing compilers and one of the ancestors of the C programming 

language. Other important examples of the use of this technology have been the UCSD Pascal 

and Smalltalk. Virtual machine programming languages become popular again with Sun’s 

introduction of the Java platform in 1996.  

Currently, the Java platform and .NET Framework represent the most popular technologies for 

enterprise application development. The main advantage of programming-level virtual machines, 

also called process virtual machines, is the ability to provide a uniform execution environment 

across different platforms. Programs compiled into byte code can be executed on any operating 

system and platform for which a virtual machine able to execute that code has been provided. 

Application-level virtualization 

Application-level virtualization is a technique allowing applications to be run in runtime 

environments that do not natively support all the features required by such applications. In this 

scenario, applications are not installed in the expected runtime environment  but  are  run  as  



Cloud computing 
 

Dept of CSE Page 29 
 

though  they were. In general, these techniques are mostly concerned with partial file systems, 

libraries, and operating system component emulation. Such emulation is performed by a thin 

layer—a program     or an operating system component—that is in charge of executing the 

application. Emulation can also be used  to execute program binaries  compiled for different 

hardware architectures. In this   case, one of the following strategies can be implemented: 

• Interpretation. In this technique every source instruction is interpreted by an emulator for 

executing native ISA instructions, leading to poor performance. Interpretation has a minimal 

startup cost but a huge overhead, since each instruction is  emulated. 

• Binary translation. In this technique every source instruction is converted to native 

instructions with equivalent functions. After a block of instructions is translated, it is cached 

and reused. Binary translation has a large initial overhead cost, but over time it is subject to 

better performance, since previously translated instruction blocks are directly  executed. 

Application virtualization is a good solution in the case of missing libraries in the host  

operating system. One of the most popular solutions implementing application virtualization is 

Wine, which is a software application allowing Unix-like operating systems to execute 

programs written for the Microsoft Windows platform 

Other types of virtualization 

1. Storage virtualization 

Storage virtualization is a system administration practice that allows decoupling the physical 

organization of the hardware from its logical representation. Using this technique, users do not 

have to   be worried about the specific location of their data, which can be identified using a 

logical path. There are different  techniques for storage virtualization, one of  the most popular 

being network-based virtualization by means of storage area networks (SANs). 

2. Network virtualization 

Network virtualization combines hardware appliances and specific software for the creation and 

management of a virtual network. Network virtualization can aggregate different physical 

networks into a single logical network (external network virtualization) or provide network-like 

functionality  to an operating system partition (internal network virtualization). The result of 

external network virtualization is generally a virtual LAN (VLAN). A VLAN is an aggregation 

of hosts that communicate with each other as though they were located under the same 



Cloud computing 
 

Dept of CSE Page 30 
 

broadcasting domain. There are several options for implementing internal network 

virtualization: The guest can share the same net- work interface of the host and use Network 

Address Translation (NAT) to access the network; the virtual machine manager can emulate, 

and install on the host, an  additional  network  device,  together with the driver; or the guest 

can have a private network only with the   guest. 

3. Desktop virtualization 

Desktop virtualization abstracts the desktop environment available on a personal computer in 

order  to provide access to it using a client/server approach. Desktop virtualization provides the 

same out- come of hardware virtualization but serves a different purpose. Similarly to hardware 

virtualization, desktop virtualization makes accessible a different system as though it were  

natively  installed on  the host, but this system is remotely stored on a different host and 

accessed through a network connection. Moreover, desktop virtualization addresses the 

problem of making the same desktop environment accessible from everywhere. The advantages 

of desktop virtualization are high availability, persistence, accessibility, and ease of 

management. Infrastructures for desktop virtua- lization based on cloud computing solutions 

include Sun Virtual Desktop Infrastructure (VDI), Parallels Virtual Desktop Infrastructure 

(VDI), Citrix XenDesktop, and  others. 

4. Application server virtualization 

Application server virtualization abstracts a collection of application servers that provide the 

same services as a single virtual application server by using load-balancing strategies and 

providing a high-availability infrastructure for the services hosted in the application server. 

This is a particular form of virtualization and serves the same purpose of storage virtualization: 

providing a better quality of service rather than emulating a different  environment. 

Virtualization and cloud computing 

Virtualization plays an important role in cloud computing since it allows for the appropriate 

degree  of customization, security, isolation, and manageability that are fundamental for 

delivering IT services on demand. Virtualization technologies are primarily used to offer 

configurable computing environments and storage. 

Particularly important is the role of virtual computing environment and execution virtualization 

techniques. Among these, hardware and programming language virtualization are the techniques 



Cloud computing 
 

Dept of CSE Page 31 
 

adopted in cloud computing systems. Hardware virtualization is an enabling factor for solutions 

in  the Infrastructure-as-a-Service (IaaS) market segment, while programming language 

virtualization    is a technology leveraged in Platform-as-a-Service (PaaS) offerings. In both 

cases, the capability of offering a customizable and sandboxed environment constituted an 

attractive business opportunity  for companies featuring a large computing infrastructure that was 

able to sustain and process huge workloads. Moreover, virtualization also allows isolation and a 

finer control, thus simplifying the leasing of services and their accountability on the vendor  side. 

Virtualization allows us to create isolated and controllable environments, it is possible to serve 

these environments with the same resource without them interfering with each other. If the 

underlying resources are capable enough, there will be no evidence of such sharing.It allows 

reducing the number of active resources by aggregating  virtual machines over a smaller number 

of resources that become fully utilized. This practice is also known as server consolidation, while 

the movement of virtual machine instances is called virtual machine migration (see Figure 3.10). 

Because virtual machine instances are controllable environments, consolidation can be applied 

with a minimum impact, either by temporarily stopping its execution and moving its data to the 

new resources or by performing a finer control and moving the instance while it is running. This 

second techniques is known as live migration and in general is more complex to implement but 

more efficient since there is no disruption of the activity of the virtual machine instance 

 

 

 

 



Cloud computing 
 

Dept of CSE Page 32 
 

                                       

Figure 2.10 Live migration and server consolidation. 

Pros and cons of virtualization 

Advantages of virtualization 

Managed execution and isolation are perhaps the most important  advantages of virtualization. In    

the case of techniques supporting the creation of virtualized execution environments, these two 

characteristics allow building secure and controllable computing environments. A virtual 

execution environment can be configured as a sandbox, thus preventing any harmful operation to 

cross the borders of the virtual host. Moreover, allocation of resources and their partitioning 

among different guests is simplified, being the virtual host controlled by a program. This enables 

fine-tuning of resources, which is very important in a server consolidation scenario and is also a 

requirement for effective quality of service 

Portability and self-containment also contribute to reducing the costs of maintenance, since the 

number of hosts is expected to be lower than the number of virtual machine instances. By means 

of virtualization it is possible to achieve a more efficient use of resources. Multiple systems can 

securely coexist and share the resources of the underlying host, without interfering with each 

other.  

VM 

 

VM VM VM 

VM VM 

Virtual Machine Manager 

Server A 

(running) 

Server B 

(running) 
Before Migration 

VM VM VM 

 

VM VM VM 

 

Virtual Machine Manager 

 

Server A 

(running) 

Server B 

(inactive) 
After Migration 



Cloud computing 
 

Dept of CSE Page 33 
 

 Performance degradation 

Performance is definitely one of the major concerns in using virtualization technology. Since vir- 

tualization interposes an abstraction layer between the guest and the host, the guest can 

experience increased latencies. 

For instance, in the case of hardware virtualization, where the intermediate emulates a bare 

machine on top of which an entire system can be installed, the causes of performance 

degradation  can be traced back to the overhead introduced by the following   activities: 

• Maintaining the status of virtual processors 

• Support of privileged instructions (trap and simulate privileged  instructions) 

• Support of paging within VM 

• Console functions 

Furthermore, when hardware virtualization is realized through a program that is installed or exe- 

cuted on top of the host operating systems, a major source of performance degradation is repre- 

sented by the fact that the virtual machine manager is executed and scheduled together with other 

applications, thus sharing with them the resources of the  host. 

Similar consideration can be made in the case of virtualization technologies at higher levels,    

such as in the case of programming language virtual machines (Java, .NET, and others). Binary 

translation and interpretation can slow down the execution of managed applications. Moreover, 

because their execution is filtered by the runtime environment, access to memory and other 

physi-  cal resources can represent sources of performance  degradation. 

These concerns are becoming less and less important thanks to technology advancements and    

the ever-increasing computational power available today. For example, specific techniques for 

hard- ware virtualization such as paravirtualization can increase the performance of the guest 

program     by offloading most of its execution to the host without any change. In programming-

level virtual machines such as the JVM or .NET, compilation to native code is offered as an 

option when perfor- mance is a serious concern. 

 



Cloud computing 
 

Dept of CSE Page 34 
 

Disadvantages: 

Inefficiency and degraded user   experience 

Virtualization can sometime lead to an inefficient use of the host. In particular, some of the 

specific features of the host cannot be exposed by the abstraction layer and then become 

inaccessible. In the case of hardware virtualization, this could happen for device drivers: The 

virtual machine can sometime simply provide a default graphic card that maps only a subset of 

the features available in the host. In the case of programming-level virtual machines, some of the 

features of the underlying operating systems may become inaccessible unless specific libraries 

are used.  

Security holes and new threats 

Virtualization opens the door to a new and unexpected form of phishing.The capability of emu- 

lating a host in a completely transparent manner led the way to malicious programs  that  are  

designed to extract sensitive information from the  guest. 

In the case of hardware virtualization, malicious programs can preload themselves before the 

operating system and act as a thin virtual machine manager toward it. The operating system is 

then controlled and can be manipulated to extract sensitive information of interest to third 

parties. 

Technology examples 

Xen: paravirtualization 

Xen is an open-source initiative implementing a virtualization platform based on 

paravirtualization. Initially developed by a group of researchers at the University of Cambridge 

in  the  United  Kingdom, Xen now has a large open-source community backing it. . Xen-based 

technology is used for either desktop virtualization or server virtualization, and recently it has 

also been used to provide cloud computing solutions by means of Xen Cloud Platform (XCP). 

Figure 2.11 describes the architecture of Xen and its mapping onto a classic x86 privilege    

model. A Xen-based system is managed by the Xen hypervisor, which runs in the highest 



Cloud computing 
 

Dept of CSE Page 35 
 

privileged mode  and  controls  the  access  of  guest  operating  system  to  the  underlying  

hardware.   

 

Figure 2.11 Xen architecture and guest OS management 

Guest operating systems are executed within domains, which represent virtual machine 

instances. Moreover, specific control software, which has privileged access to the host and 

controls all the   other guest operating systems, is executed in a special  domain called Domain 0. 

This is the first one that is loaded once the virtual machine manager has completely booted, and 

it hosts  a  HyperText Transfer Protocol (HTTP) server that serves requests for virtual machine 

creation, con- figuration, and termination. This component constitutes the embryonic version of a 

distributed virtual machine manager, which is an essential component of cloud computing 

systems providing Infrastructure-as-a-Service (IaaS) solutions. 

Many of the x86 implementations support four different security levels, called rings, where    

Ring 0 represent the level with the highest privileges and Ring 3 the level with the lowest ones. 

Because of the structure of the x86 instruction set, some instructions allow code executing in 

Ring 3 to jump   into Ring 0 (kernel mode). Such operation is performed at the hardware level 

and therefore within  a virtualized environment will result in a trap or silent fault, thus preventing 



Cloud computing 
 

Dept of CSE Page 36 
 

the normal operations  of the guest operating system, since this is now running in Ring 1.This 

condition is generally triggered by a subset of the system calls. To avoid this situation, operating 

systems need to be changed  in their implementation, and the sensitive system calls need to be 

reimplemented with hypercalls, which are specific calls exposed by the virtual machine interface 

of Xen. With the use of hypercalls, the Xen hypervisor is able to catch the execution of all the 

sensitive instructions, manage   them, and return the control to the guest operating system by 

means of a supplied   handler. 

Paravirtualization needs the operating system codebase to be modified, and hence not all 

operating systems can be used as guests in a Xen-based environment. Open-source operating 

systems such as Linux can be easily modified, since their code is publicly available and Xen 

provides full support for their virtualization, whereas components of the Windows family are 

generally not supported by Xen unless hardware-assisted virtualization is available. 

VMware: full virtualization: VMware’s technology is based on the concept of full 

virtualization, where the underlying hardware  is replicated and made available to the guest 

operating system, which runs unaware of such abstrac- tion layers and does not need to be 

modified. VMware implements full virtualization either in the desktop environment, by means of 

Type II hypervisors, or in the server environment, by means of Type I hypervisors. In both cases, 

full virtualization is made possible by means of direct execution (for nonsensitive instructions) 

and binary translation (for sensitive instructions), thus allowing the virtualization of architecture 

such as  x86. 

 

 

 

 

 

 



 
Cloud Computing Architecture 

 

Dept of CSE Page 1 
 

Module 2 

Cloud Computing Architecture 

Cloud computing is a utility-oriented and Internet-centric way of delivering IT services on 

demand. These services cover the entire computing stack: from the hardware infrastructure 

pack- aged as a set of virtual machines to software services such as development platforms and 

distributed applications. 

The cloud reference model 

It is possible to organize all the concrete realizations of cloud computing into a layered view 

covering the entire stack (see Figure 3.1), from hardware appliances to software systems.  Cloud 

resources are harnessed to offer “computing horsepower” required for providing services. Cloud 

infrastructure can be heterogeneous in nature because a variety of resources, such as clusters and 

even networked PCs, can be used to build it. Moreover, database systems and other storage 

services can also be part of the infrastructure. 

 

Figure 3.1 The cloud computing architecture. 

The physical infrastructure is managed by the core middleware, the objectives of which are to 

provide an appropriate runtime environment for applications and to best utilize resources. At the 

bottom of the stack, virtualization technologies are used to guarantee runtime environment 

customization, application isolation, sandboxing, and quality of service. Hardware virtualization 



 
Cloud Computing Architecture 

 

Dept of CSE Page 2 
 

is most commonly used at this level. Hypervisors manage the pool of resources and expose the 

distributed infrastructure as a collection of virtual machines. Infrastructure management is the 

key function of core middleware, which supports capabilities such as negotiation of the quality 

of service, admission control, execution management and monitoring, accounting, and billing. 

The combination of cloud hosting platforms and resources is generally classified as a 

Infrastructure-as-a-Service (IaaS) solution. The IaaS has two categories: Some of them provide 

both the management layer and the physical infrastructure; others provide only the management 

layer (IaaS (M)). In this second case, the management layer is often integrated with other IaaS 

solutions that provide physical infrastructure and adds value to them. IaaS solutions are suitable 

for designing the system infrastructure but provide limited services     to build applications.  

PaaS solutions generally include the infrastructure as well, which is bundled as part of the 

service provided to users. In the case of Pure PaaS, only the user-level middleware is offered, 

and it has to be complemented with a virtual or physical   infrastructure. The top layer of the 

reference model depicted in Figure 3.1 contains services delivered at the application level. These 

are mostly referred to as Software-as-a-Service (SaaS). 

Table 3.1 Cloud Computing Services Classification 

 

Figure 3.1 also introduces the concept of everything as a Service (XaaS). Table 3.1 summarizes 

the characteristics of the three major categories used to classify cloud computing solutions. 

Infrastructure and hardware-as-a-service 

Infrastructure and Hardware-as-a-Service (IaaS/HaaS) solutions are the most popular and 

developed market segment of cloud computing. They deliver customizable infrastructure on 



 
Cloud Computing Architecture 

 

Dept of CSE Page 3 
 

demand. The available options within the IaaS offering umbrella range from single servers to 

entire infrastructures, including network devices, load balancers, and database and Web servers. 

The main technology used to deliver and implement these  solutions is hardware virtualization: 

one or more virtual machines opportunely configured and interconnected define the distributed 

system on top of which applications are installed and deployed. IaaS/HaaS solutions bring all the 

benefits of hardware virtualization: workload partitioning, application isolation, sandboxing, and 

hard- ware tuning. From the perspective of the service provider, IaaS/HaaS allows better 

exploiting the  IT infrastructure and provides a more secure environment where executing third 

party applications. From the perspective of the customer it reduces the administration and 

maintenance cost as well as the capital costs allocated to purchase hardware.  

 

Figure 3.2 IaaS Reference implementation 

Figure 3.2 provides an overall view of the components forming an Infrastructure-as-a-Service 

solution. It is possible to distinguish three principal layers: the physical infrastructure, the 

software management infrastructure, and the user interface. At the top layer the user interface 

provides access to the services exposed by the software management infrastructure.  

The core features of an IaaS solution are implemented in the infrastructure management software 

layer. In particular, management of the virtual machines is the most important function 

performed by this layer. A central role is played by the scheduler, which is in charge of 



 
Cloud Computing Architecture 

 

Dept of CSE Page 4 
 

allocating the execution of virtual machine instances. The scheduler interacts with the other 

components that perform a variety of tasks: 

• The pricing and billing component takes care of the cost of executing each virtual 

machine instance and maintains data that will be used to charge the   user. 

• The monitoring component tracks the execution of each virtual machine instance and 

maintains data required for reporting and analyzing the performance of the   system. 

• The reservation component stores the information of all the virtual machine instances that 

have been executed or that will be executed in the  future. 

• If support for QoS-based execution is provided, a QoS/SLA management component will 

maintain a repository of all the SLAs made with the users; together with the monitoring 

component, this component is used to ensure that a given virtual machine instance is 

executed with the desired quality of  service. 

• The VM repository component provides a catalog of virtual machine images that users can 

use to create virtual instances. Some implementations also allow users to upload their  

specific virtual machine images. 

• A VM pool manager component is responsible for keeping track of all the live instances. 

• A provisioning component interacts with the scheduler to provide a virtual machine 

instance that is external to the local physical infrastructure directly managed by the pool. 

The bottom layer is composed of the physical infrastructure, on top of which the 

management layer operates. From an architectural point of view, the physical layer also 

includes the virtual resources that are rented from external IaaS providers. In the case of 

complete IaaS solutions, all three levels are offered as service.  

The reference architecture applies to IaaS implementations that provide computing 

resources, especially for the scheduling component. The role of infrastructure management 

software is not to keep track and manage the execution of virtual machines but to provide 

access to large infrastructures and implement storage virtualization solutions on top of the 

physical layer. 

Platform as a Service 

Platform-as-a-Service (PaaS) solutions provide a development and deployment platform for 

running applications in the cloud. They constitute the middleware on top of which 



 
Cloud Computing Architecture 

 

Dept of CSE Page 5 
 

applications are built. A general overview of the features characterizing the PaaS approach 

is given in Figure 3.3. 

 

Figure 3.3 The Platform-as-a-Service reference model 

Application management is the core functionality of the middleware. PaaS implementations 

provide applications with a runtime environment and do not expose any service for 

managing the underlying infrastructure. They automate the process of deploying 

applications to the infrastructure, configuring application components, provisioning and 

configuring supporting technologies such as load balancers and databases, and managing 

system change based on policies set by the user. Developers design their systems in terms of 

applications and are not concerned with hardware (physical or virtual), operating systems, 

and other low-level services. 

The core middleware is in charge of managing the resources and scaling applications  on 

demand or automatically, according to the commitments made with users. From a user point 

of view, the core middleware exposes interfaces that allow programming and deploying 

applications on the cloud. These can be in the form of a Web-based interface or in the form 

of programming APIs and libraries. 



 
Cloud Computing Architecture 

 

Dept of CSE Page 6 
 

Some implementations provide a completely Web-based interface hosted in the cloud and 

offering a variety of services. Other implementations of the PaaS model provide a complete 

object model for representing an application and provide a programming language-based 

approach. 

Table 3.1 PaaS offering classification 

 

PaaS solutions can offer middleware for developing applications together with the 

infrastructure or simply provide users with the software that is installed on the user 

premises. Table 3.2 provides a classification of the most popular PaaS implementations. It is 

possible to organize the various solutions into three wide categories: PaaS-I, PaaS-II, and 

PaaS-III. The first category identifies PaaS implementations that completely follow the 

cloud computing style for application development and deployment. They offer an 

integrated development  environment  hosted within the Web browser where applications 

are designed, developed, composed,  and  deployed. The second class gives solutions that 

are focused on providing a scalable infrastructure for Web application, mostly websites. In 

this case, developers generally  use  the  providers’  APIs,  which  are  built  on  top  of  

industrial runtimes, to develop applications. The third category consists of all those 

solutions that provide a cloud programming platform for any kind of application, not only 

Web applications. 



 
Cloud Computing Architecture 

 

Dept of CSE Page 7 
 

The essential characteristics that identify a PaaS   solution: 

➢ Runtime framework. The runtime framework executes end-user code 

according to the policies set by the user and the provider. 

➢ Abstraction. PaaS solutions are distinguished by the higher level of 

abstraction that  they  provide. This means that PaaS solutions offer a way to 

deploy and manage applications on the cloud. 

➢ Automation. PaaS environments automate the process of deploying 

applications to the infrastructure, scaling them by provisioning additional 

resources when needed. This process is performed automatically and 

according to the SLA made between the customers and the provider.  

➢ Cloud services. PaaS offerings provide developers and architects with 

services and APIs, helping them to simplify the creation and delivery of 

elastic and highly available cloud applications.  

Another essential component for a PaaS-based approach is the ability to integrate third-party 

cloud services offered from other vendors by leveraging service-oriented architecture. One 

of the major concerns of leveraging PaaS solutions for implementing applications is vendor 

lock-in. Even though a platform-based approach strongly simplifies the development and 

deployment cycle of applications, it poses the risk of making these applications completely 

dependent on the provider. Such dependency can become a significant obstacle in 

retargeting the application to another environment and runtime if the commitments made  

with the provider cease. 

PaaS solutions can cut the cost across development, deployment, and management of 

applications. It helps management reduce the risk of ever-changing technologies by 

offloading the cost of upgrading the technology to the PaaS provider. The PaaS approach, 

when bundled with underlying IaaS solutions, helps even small start-up companies quickly 

offer customers integrated solutions on a hosted platform at a very minimal cost.  

Software as a service 

Software-as-a-Service (SaaS) is a software delivery model that provides access to 

applications through the Internet as a Web-based service. It provides a means to free users 



 
Cloud Computing Architecture 

 

Dept of CSE Page 8 
 

from complex hardware and software management by offloading such tasks to third parties, 

which build applications accessible to multiple users through a Web browser. In this 

scenario, customers neither need install anything on their premises nor have to pay 

considerable up-front costs to purchase the software and the required licenses. On the 

provider side, the specific details and features of each customer’s application are maintained 

in the infrastructure and made available on   demand. 

 SaaS applications are naturally multitenant. Multitenancy, which is a feature of SaaS 

compared to traditional packaged software, allows providers to centralize and sustain the 

effort of managing large hardware infrastructures, maintaining and upgrading applications 

transparently to the users, and optimizing resources by sharing the costs among the large 

user base. On the customer side, such costs constitute a minimal fraction of the usage fee 

paid for the software. 

The acronym SaaS was then coined in 2001 by the Software Information & Industry 

Association (SIIA) with the following connotation: 

In the software as a service model, the application, or service, is deployed from a 

centralized datacenter across a network—Internet, Intranet, LAN, or VPN—providing 

access and use on a recurring fee basis. Users “rent,” “subscribe to,” “are assigned,” or 

“are granted access to” the applications from a central provider. Business models vary 

according to the level to which the software is streamlined, to lower price and increase 

efficiency, or value-added through cus- tomization to further improve digitized business 

processes. 

The analysis carried out by SIIA was mainly oriented to cover application service providers 

(ASPs) and all their variations, which capture the concept of software applications 

consumed as a service in a broader sense. ASPs already had some of the core characteristics 

of   SaaS: 

• The product sold to customer is application access. 

• The application is centrally managed. 

• The service delivered is one-to-many. 

• The service delivered is an integrated solution delivered on the contract, 

which means provided as promised. 



 
Cloud Computing Architecture 

 

Dept of CSE Page 9 
 

The SaaS approach introduces a more flexible way of delivering application services that are 

fully customizable by the user by integrating new services, injecting their own components, 

and designing the application and information workflows. Such a new approach has also 

been possible with the support of Web 2.0 technologies, which allowed turning the Web   

browser into a full-featured interface, able even to support application composition and 

development. 

Initially the SaaS model was of interest only for lead users and early adopters. The benefits 

delivered at that stage were the   following: 

• Software cost reduction and total cost of ownership (TCO) were   paramount 

Service-level improvements 

• Rapid implementation 

• Standalone and configurable  applications 

• Rudimentary application and data  integration 

• Subscription and pay-as-you-go (PAYG)  pricing 

With the advent of cloud computing there has been an increasing acceptance of SaaS as a 

viable software delivery model. This led to transition into SaaS 2.0, which does not 

introduce a new technology but transforms the way in which SaaS is used. In particular, SaaS 

2.0 is focused on providing a more robust infrastructure and application platforms driven by 

SLAs. It is important to note the role of SaaS solution enablers, which provide an 

environment in   which to integrate third-party services and share information with others. 

Types of clouds 

Clouds constitute the primary outcome of cloud computing. They are a type of parallel and 

distributed system harnessing physical and virtual computers presented as a unified 

computing resource. Clouds build the infrastructure on top of which services are 

implemented and delivered to customers. A more useful classification is given according to 

the administrative domain of a cloud: It identifies the boundaries within which cloud 

computing services are implemented, provides hints on the underlying infrastructure 

adopted to support such services, and qualifies them. It is then possible to differentiate four 

different types of   cloud: 

• Public clouds. The cloud is open to the wider public. 



 
Cloud Computing Architecture 

 

Dept of CSE Page 10 
 

• Private clouds. The cloud is implemented within the private premises of an institution and 

generally made accessible to the members of the institution or a subset of   them. 

• Hybrid or heterogeneous clouds. The cloud is a combination of the two previous solutions 

and most likely identifies a private cloud that has been augmented with resources or services 

hosted   in a public cloud. 

• Community clouds. The cloud is characterized by a multi-administrative domain involving 

different deployment models (public, private, and hybrid), and it is specifically designed to 

address the needs of a specific  industry. 

Public clouds 

Public clouds constitute the first expression of cloud computing. They are a realization of 

the canonical view of cloud computing in which the services offered are made available to 

anyone,    from anywhere, and at any time through the Internet. From a structural point of 

view they are a distributed system, most likely composed of one or more datacenters 

connected together, on top of which the specific services offered by the cloud are 

implemented. Any customer can easily sign in with the cloud provider, enter their credential 

and billing details, and use the services    offered. Public clouds are used both to completely 

replace the IT infrastructure of enterprises and to extend it when it is   required. 

A fundamental characteristic of public clouds is multitenancy. A public cloud is meant to 

serve a multitude of users, not a single customer. A public cloud is meant to serve a 

multitude of users, not a single customer. Any customer requires a virtual computing 

environment that is separated, and most likely isolated, from other users. 

QoS management is a very important aspect of public clouds. significant portion of the 

software infrastructure is devoted to monitoring the cloud resources, to bill them according 

to the contract made with the user, and to keep a complete history  of cloud usage for each 

customer.  

A public cloud can offer any kind of service: infrastructure, platform, or applications. For 

example, Amazon EC2 is a public cloud that provides infrastructure as a service; Google 

AppEngine is a public cloud that provides an application development platform as a service; 

and SalesForce.com is a public cloud that provides software as a service. 

From an architectural point of view there is no restriction concerning the type of distributed 



 
Cloud Computing Architecture 

 

Dept of CSE Page 11 
 

system implemented to support public clouds. Public clouds can be composed of 

geographically dispersed datacenters to share the load of users and better serve them 

according to their locations. 

According to the specific class of services delivered by the cloud, a different software stack 

is installed to manage the infrastructure: virtual machine managers, distributed middleware, 

or distributed   applications. 

Private clouds 

Private clouds are virtual distributed systems that rely on a private infrastructure and provide 

internal users with dynamic provisioning of computing resources. Instead of a pay-as-you-

go model as in public clouds, there could be other schemes in place, taking into account the 

usage of the cloud and proportionally billing the different departments or sections of an  

enterprise. Private clouds have the advantage of keeping the core business operations in-

house by relying on the existing IT infrastructure and reducing the burden of maintaining it 

once the cloud has been set up.  

In this scenario, security concerns are less critical, since sensitive information does not flow 

out of the private infrastructure. Existing IT resources can be better utilized because the 

private cloud can provide services to a different range of users. Another interesting 

opportunity that comes with private clouds is the possibility of testing applications and 

systems at a comparatively lower price rather than public clouds before deploying them on 

the public virtual infrastructure. 

The key advantages of using a private cloud computing   infrastructure: 

• Customer information protection. Despite assurances by the public cloud leaders about security, 

few provide satisfactory disclosure or have long enough histories with their cloud offerings to 

provide warranties about the specific level of security put in place on their systems. In-house 

security is easier to maintain and rely on. 

• Infrastructure ensuring SLAs. Quality of service implies specific operations such as appropriate 

clustering and failover, data replication, system monitoring and maintenance, and disaster 

recovery, and other uptime services can be commensurate to the application needs.  

• Compliance with standard procedures and operations. If organizations are subject to third-

party compliance standards, specific procedures have to be put in place  when  deploying  



 
Cloud Computing Architecture 

 

Dept of CSE Page 12 
 

and  executing applications.  

From an architectural point of view, private clouds can be implemented on more 

heterogeneous hardware: They generally rely on the existing IT infrastructure already 

deployed on the private premises. This could be a datacenter, a cluster, an enterprise desktop 

grid, or a combination of them.   

 

Figure 3.4 Private cloud software and hardware stack 

Figure 3.4 provides a comprehensive view of the solutions together with some reference to the 

most popular software used to deploy private clouds. Private clouds can provide in-house 

solutions for cloud computing, but if compared to public clouds they exhibit more limited 

capability to scale elastically on   demand. 

Hybrid Cloud 

Hybrid clouds allow enterprises to exploit existing IT infrastructures, maintain sensitive 

information within the premises, and naturally grow and shrink by provisioning external 

resources and releasing them when they’re no longer needed. Security concerns are then only 

limited to the public portion of the cloud that can be used to perform operations with less 

stringent constraints but that   are still part of the system workload. Figure 3.5 provides a general 

overview of a hybrid cloud: It is a heterogeneous distributed system resulting from a private 



 
Cloud Computing Architecture 

 

Dept of CSE Page 13 
 

cloud that integrates additional services or resources from one or more public clouds. For this 

reason they are also called heterogeneous clouds.  

 

Figure 3.5 Hybrid/heterogeneous cloud overview. 

As depicted in the diagram, dynamic provisioning is a fundamental component in this scenario.  

Hybrid clouds  address  scalability  issues  by  leveraging  external  resources  for   exceeding 

capacity demand. These resources or services are temporarily leased for the time required 

and then released. This practice is also known as cloud bursting. 

Whereas the concept of hybrid cloud is general, it mostly applies to IT infrastructure rather than 

software services. Service-oriented computing already introduces the concept of integration of 

paid software services with existing application deployed in the private premises. In an IaaS 

scenario, dynamic provisioning refers to the ability to acquire on demand virtual machines in 

order to increase the capability of the resulting distributed system and then release them. 

Infrastructure management software and PaaS solutions are the building blocks for deploying 

and managing hybrid clouds. In particular, with respect to private clouds, dynamic provisioning 



 
Cloud Computing Architecture 

 

Dept of CSE Page 14 
 

introduces a more complex scheduling algorithm and policies, the goal of which is also to 

optimize the budget spent to rent public resources. 

Community clouds 

Community clouds are distributed systems created by integrating the services of different clouds 

to address the specific needs of an industry, a community, or a business sector. The National 

Institute of Standards and Technologies (NIST) characterize community clouds as follows: 

The infrastructure is shared by several organizations and supports a specific community that has 

shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It     

may be managed by the organizations or a third party and may exist on premise or off premise. 

Figure 3.6 provides a general view of the usage scenario of community clouds, together with 

reference architecture. The users of a specific community cloud fall into a well-identified 

community, sharing the same concerns or needs; they can be government bodies, industries, or 

even simple users, but all of them focus on the same issues for their interaction with the cloud. 

This is a different scenario than public clouds, which serve a multitude of users with different 

needs. Community clouds are also different from private clouds, where the services are generally 

delivered within the institution that owns the cloud. 



 
Cloud Computing Architecture 

 

Dept of CSE Page 15 
 

 

Figure 3.5 A Community Cloud 

From an architectural point of view, a community cloud is most likely implemented over 

multiple administrative domains.  

This means that different organizations such as government bodies, private enterprises, research 

organizations, and even public virtual infrastructure providers contribute with their 

resources to build the cloud infrastructure. 

Candidate sectors for community clouds are as follows: 

• Media industry. In the media industry, companies are looking for low-cost, agile, and simple 

solutions to improve the efficiency of content production. Most media productions involve an 

extended ecosystem of partners. In particular, the creation of digital content is the outcome of a 

collaborative process that includes movement of large data, massive  compute-intensive  

rendering tasks, and complex workflow executions.  

• Healthcare industry. In the healthcare industry, there are different scenarios in which community 

clouds could be of use. In particular, community clouds can provide a global  platform on which 



 
Cloud Computing Architecture 

 

Dept of CSE Page 16 
 

to share information and knowledge without revealing sensitive data  maintained within the 

private infrastructure.  

• Energy and other core industries. In these sectors, community clouds can bundle the 

comprehensive set of solutions that together vertically address management, deployment, and 

orchestration of services and operations.  

• Public sector. Legal and political restrictions in the public sector can limit  the adoption  of 

public cloud offerings. Moreover, governmental processes involve several institutions and 

agencies and are aimed at providing strategic solutions at local, national, and international 

administrative levels. They involve business-to-administration, citizen-to-administration, and 

possibly business-to-business processes.  

• Scientific research. Science clouds are an interesting example of community clouds. In this case, 

the common interest driving different organizations sharing a large distributed infrastructure is 

scientific computing. 

The benefits of these community clouds are the   following: 

• Openness. By removing the dependency on cloud vendors, community clouds are open 

systems in which fair competition between different solutions can   happen. 

• Community. Being based on a collective that provides resources and services, the 

infrastructure turns out to be more scalable because the system can grow simply by expanding its 

user base. 

• Graceful failures. Since there is no single provider or vendor in control of the 

infrastructure, there is no single point of failure. 

• Convenience and control. Within a community cloud there is no conflict between 

convenience and control because the cloud is shared and owned by the community, which makes 

all the decisions through a collective democratic process. 

• Environmental sustainability. The community cloud is supposed to have a smaller carbon 

footprint because it harnesses underutilized resources. Moreover, these clouds tend to be more 

organic by growing and shrinking in a symbiotic relationship to support the demand of the 

community, which in turn sustains it. 

Economics of the cloud 



 
Cloud Computing Architecture 

 

Dept of CSE Page 17 
 

The main drivers of cloud computing are economy of scale and simplicity of software delivery 

and its operation. In fact, the biggest benefit of this phenomenon is financial: the pay-as-you-go 

model offered by cloud providers. In particular, cloud computing allows: 

• Reducing the capital costs associated to the IT  infrastructure 

• Eliminating the depreciation or lifetime costs associated with IT capital   assets 

• Replacing software licensing with  subscriptions 

• Cutting the maintenance and administrative costs of IT   resources 

A capital cost is the cost occurred in purchasing an asset that is useful in the production of   

goods or the rendering of services. Capital costs are one-time expenses that are generally 

paid up front and that will contribute over the long term to generate profit. IT resources 

constitute a capital cost for any kind of enterprise. It is good practice to try to keep capital 

costs low because they introduce expenses that will generate profit over time; more than 

that, since they are associated with material things they are subject to depreciation over 

time, which in the end reduces the profit of the enterprise because such costs are directly 

subtracted from the enterprise revenues. In the case of IT capital costs, the depreciation 

costs are represented by the loss of value of the hardware over   time and the aging of 

software products that need to be replaced because new features are required. One of the 

advantages introduced by the cloud computing model is that it shifts the capital costs previously 

allocated to the purchase of hardware and software into operational costs inducted by renting the 

infrastructure and paying subscriptions for the use of software. These costs can be better 

controlled according to the business needs and prosperity of the enterprise. Cloud computing also 

introduces reductions in administrative and maintenance costs. That is, there is no or limited 

need for having administrative staff take care of the management of the cloud infrastructure. At 

the same time, the cost of IT support staff is also reduced. When it comes to depreciation costs, 

they simply disappear for the enterprise, since in a scenario where all the IT needs are served by 

the cloud there are no IT capital assets that depreciate over time. 

The amount of cost savings that cloud computing can introduce within an enterprise is related    

to the specific scenario in which cloud services are used and how they contribute to generate a   

profit for the enterprise. In the case of a small startup, it is possible to completely leverage the     

cloud for many aspects, such as: 



 
Cloud Computing Architecture 

 

Dept of CSE Page 18 
 

• IT infrastructure 

• Software development 

• CRM and ERP 

Another important aspect is the elimination of some indirect costs that are generated by IT   

assets, such as software licensing and support and carbon footprint emissions. With cloud 

computing, an enterprise uses software applications on a subscription basis, and there is no 

need for any licensing fee because the software providing the service remains the property 

of the provider. Leveraging IaaS solutions allows room for datacenter consolidation that in 

the end could result in a smaller carbon footprint. In some countries such as Australia, the 

carbon footprint emissions are taxable, so by reducing or completely eliminating such 

emissions, enterprises can pay less tax. 

In terms of the pricing models introduced by cloud computing, we can distinguish three different 

strategies that are adopted by the providers: 

• Tiered pricing. In this model, cloud services are offered in several tiers, each of which offers a 

fixed computing specification and SLA at a specific price per unit of time.  

• Per-unit pricing. This model is more suitable to cases where the principal source of revenue for 

the cloud provider is determined in terms of units of specific services, such as data transfer and 

memory allocation.  

• Subscription-based pricing. This is the model used mostly by SaaS providers in which users pay 

a periodic subscription fee for use of the software or the specific component services that are 

integrated in their applications. 

Open challenges 

Still in its infancy, cloud computing presents many challenges for industry and academia. 

Cloud definition 

There have been several attempts made to define cloud computing and to pro- vide a 

classification of all the services and technologies identified as such. One of the most 

comprehensive formalizations is noted in the NIST working definition of cloud computing. 

Despite the general agreement on the NIST definition, there are alternative taxonomies for cloud 

services. David Linthicum, founder of BlueMountains Labs, provides a more detailed 

classification, which comprehends 10 different classes and better suits the vision of cloud 

computing within the enterprise. A different approach has been taken at the University of 

California, Santa Barbara which departs from the XaaS concept and tries to define an ontology 

for cloud computing.  



 
Cloud Computing Architecture 

 

Dept of CSE Page 19 
 

Cloud interoperability and standards 

To fully realize this goal, introducing standards and allowing interoperability between 

solutions offered by different vendors are objectives of fundamental importance. Vendor 

lock-in constitutes one of the major strategic barriers against the seam- less adoption of 

cloud computing at all stages. Vendor lock-in can prevent a customer from switching to 

another competitor’s solution, or when this is possible, it happens at considerable 

conversion cost and requires significant amounts of time. The standardization efforts are 

mostly concerned with the lower level of the cloud computing architecture, which is the 

most popular and developed. 

Scalability and fault tolerance 

Clouds allow scaling beyond the limits of the existing in-house IT resources. To implement such 

a capability, the cloud middleware has to be designed with the principle of scalability along 

different dimensions in mind—for example, performance, size, and load. the ability to tolerate 

failure becomes fundamental, sometimes even more important than providing an extremely 

efficient and optimized system. Hence, the challenge in this case is designing highly scalable and 

fault-tolerant systems. 

Security, trust, and privacy 

Security, trust, and privacy issues are major obstacles for massive adoption of cloud 

computing. The massive use of virtualization technologies exposes the existing 

system to new threats, which previously were not considered applicable. For 

example, it might be possible that applications hosted in the cloud can process 

sensitive information; such information can be stored within a cloud storage facility 

using the most advanced technology in cryptography to protect data and then be 

considered safe from any attempt to access it without the required permissions. 

Although these data are processed in memory, they must necessarily be decrypted 

by the legitimate application, but since the application is hosted in a managed virtual 

environment it becomes accessible to the virtual machine manager that by program 

is designed to access the memory pages of such an application.  

Organizational aspects 

Cloud computing introduces a significant change in the way IT services are consumed and man- 

aged. In particular, a wide acceptance of cloud computing will require a significant change to 

business processes and organizational boundaries. From an organizational point of view, the lack 

of control over the management of data and processes poses not only security threats but also 

new problems that previously did not exist. The existing IT staff is required to have a different 

kind of competency and, in general, fewer skills, thus reducing their value. These are the 

challenges from an organizational point of view that must be faced 

 



 
Cloud Computing Architecture 

 

Dept of CSE Page 20 
 

 

 

 

 

 

 

 

 

 

 

 

 

Module-2 ( Section-2) 

Aneka Cloud Application Platform 

What Aneka is? 

• Aneka is a software platform for developing cloud computing applications.  

• Aneka is a pure PaaS solution for cloud computing.  

• Aneka is a cloud middleware product that can be deployed on a heterogeneous set of 

resources: Like: a network of computers, a multi core server, data centers, virtual cloud 

infrastructures, or a mixture of all 

• The framework provides both middleware for managing and scaling distributed 

applications and an extensible set of APIs for developing them 

Aneka Framework with Diagram 



 
Cloud Computing Architecture 

 

Dept of CSE Page 21 
 

 

• A collection of interconnected containers constitute the Aneka Cloud: a single domain in 

which services are made available to users and developers. 

• The container features three different classes of services:  

o Fabric Services,  

o Foundation Services,  

o Execution Services.  

• Fabric services take care of  infrastructure management for the Aneka Cloud  

• Foundation Services take care of supporting services for the Aneka Cloud  

• Application Services take care of application management and execution respectively 

 

 

Various Services offered by Aneka Cloud Platform are: 

Elasticity and scaling: By means of the dynamic provisioning service, Aneka supports 

dynamically upsizing and downsizing of the infrastructure available for applications.  

Runtime management: The run time machinery is responsible for keeping the infrastructure up 

and running and serves as a hosting environment for services. 

Resource management: Aneka is an elastic infrastructure in which resources are added and 

removed dynamically according to application needs and user requirements 



 
Cloud Computing Architecture 

 

Dept of CSE Page 22 
 

Application management: A specific subset of services is devoted to managing applications. 

These services include scheduling, execution, monitoring, and storage management. 

User management: Aneka is a multi tenant distributed environment in which multiple 

applications, potentially belonging to different users, are executed. The framework provides an 

extensible user system via which it is possible to define users, groups, and permissions. 

QoS/SLA management and billing: Within a cloud environment, application execution is 

metered and billed. Aneka provides a collection of services that coordinate together to take into 

account the usage of resources by each application and to bill the owning user accordingly 

Anatomy of the Aneka container 

o The Aneka container constitutes the building blocks of Aneka Clouds and represents the 

runtime machinery available to services and applications 

o The container is the unit of deployment in Aneka Clouds, and it is a lightweight software 

layer designed to host services and interact with the underlying operating system and 

hardware 

The Aneka container can be classified into three major categories:  

• Fabric Services  

• Foundation Services  

• Application Services 

o These services stack resides on top of the Platform Abstraction Layer (PAL) (Refer 

Diagram-5.2) it represents the interface to the underlying operating system and hardware.  

o PAL provides a uniform view of the software and hardware environment in which the 

container is running 

Here is the functionality of each components of Aneka Framework given in diagram 5.2 

 PAL –Platform Abstraction Layer 

o In a cloud environment each operating system has a different file system organization and 

stores that information differently.  

o It is The Platform Abstraction Layer (PAL) that addresses this heterogeneity problem 

with Operating systems and provides the container with a uniform interface for accessing 

the relevant information, thus the rest of the container can be operated without 

modification on any supported platform 

 

The PAL provides the following features:  

• Uniform and platform-independent implementation interface for accessing the 

hosting platform  

• Uniform access to extended and additional properties of the hosting platform  

• Uniform and platform-independent access to remote nodes  

• Uniform and platform-independent management interfaces 



 
Cloud Computing Architecture 

 

Dept of CSE Page 23 
 

 

Also The PAL is a small layer of software that comprises a detection engine, which 

automatically configures the container at boot time, with the platform-specific 

component to access the above information and an implementation of the 

abstraction layer for the Windows, Linux, and Mac OS X operating systems.  

 

Following are the collectible data that are exposed by the PAL:  

• Number of cores, frequency, and CPU usage  

• Memory size and usage  

• Aggregate available disk space  

• Network addresses and devices attached to the node 

 

Fabric services 

o FabricServices define the lowest level of the software stack representing the 

Aneka Container. 

o They provide access to the Resource-provisioning subsystem and to the 

Monitoring facilities implemented in Aneka.  

o Resource-provisioning services are in charge of dynamically providing new nodes 

on demand by relying on virtualization technologies 

o Monitoring services allow for hardware profiling and implement a basic 

monitoring infrastructure that can be used by all the services installed in the 

container 

 

The two services of Fabric class are: 

o Profiling and monitoring 

o Resource management 

   Profiling and monitoring 

Profiling and monitoring services are mostly exposed through following services 

o Heartbeat,  

o Monitoring,  

o Reporting  

o The Heart Beat makes the information that is collected through the PAL available 

o  The Monitoring and Reporting implement a generic infrastructure for monitoring the 

activity of any service in the Aneka Cloud; 

Heartbeat Functions in detail 

o The Heartbeat Service periodically collects the dynamic performance information about 

the node and publishes this information to the membership service in the Aneka Cloud  

o It collects basic information about memory, disk space, CPU, and operating system  

o These data are collected by the index node of the Cloud, and makes them available for 

reservations and scheduling services that optimizes them for heterogeneous infrastructure 



 
Cloud Computing Architecture 

 

Dept of CSE Page 24 
 

o Heartbeat works with a specific component, called Node Resolver, which is in charge of 

collecting these data 

Reporting & Monitoring Functions in detail  

o The Reporting Service manages the store for monitored data and makes them accessible 

to other services for analysis purposes. 

o On each node, an instance of the Monitoring Service acts as a gateway to the Reporting 

Service and forwards to it all the monitored data that has been collected on the node 

Many Built-in services use this channel to provide information, important built-in 

services are: 

o The Membership Catalogue service tracks the performance information of nodes. 

o The Execution Service monitors several time intervals for the execution of jobs. 

o The Scheduling Service tracks the state transitions of jobs.  

o The Storage Service monitors and obtains information about data transfer such as 

upload and download times, file names, and sizes.  

o The Resource Provisioning Service tracks the provisioning and life time 

information of virtual nodes. 

 Resource management 

Aneka provides a collection of services that are in charge of managing resources. 

These are  

o Index Service (or Membership Catalogue) 

o Resource Provisioning Service 

      Membership Catalogue features 

o The MembershipCatalogue is Aneka’s fundamental component for resource management 

o It keeps track of the basic node information for all the nodes that are connected or 

disconnected. 

o It implements the basic services of a directory service, whereservices can be searched 

using attributes such as names and nodes 

Resource Provisioning Service Features 

o The resource provisioning infrastructure built into Aneka is mainly concentrated in the 

Resource Provisioning Service,  

o It includes all the operations that are needed for provisioning virtual instances (Providing 

virtual instances as needed by users). 

o The implementation of the service is based on the idea of resource pools.  

o A resource pool abstracts the interaction with a specific IaaS provider by exposing a 

common interface so that all the pools can be managed uniformly. 

Foundation services 

Foundation Services are related to the logical management of the distributed system built on top 

of the infrastructure and provide supporting services for the execution of distributed applications. 

These services cover: 



 
Cloud Computing Architecture 

 

Dept of CSE Page 25 
 

o Storage management for applications 

o Accounting, billing and resource pricing  

o Resource reservation 

Storage management 

Aneka offers two different facilities for storage management: 

o A centralized file storage, which is mostly used for the execution of compute- intensive 

applications,  

o A distributed file system, which is more suitable for the execution of data-intensive 

applications.  

o As the requirements for the two types of applications are rather different. Compute-

intensive applications mostly require powerful processors and do not have high demands 

in terms of storage, which in many cases is used to store small files that are easily 

transferred from one node to another. Here, a centralized storage node is sufficient to 

store data  

o Centralized storage is implemented through and managed by Aneka’s Storage Service. 

o The protocols for implementing centralized storage management are supported by a 

concept of File channel. It consists of a File Channel controller and File channel handler. 

File channel controller is a server component whereas File channel handler is a client 

component (that allows browsing, downloading and uploading of files). 

o In contrast, data-intensive applications are characterized by large data files (gigabytes or 

terabytes, peta bytes) and here processing power required by tasks is not more. 

o Here instead of centralized data storage  a distributed file system is used for storing data 

by using all the nodes belonging to the cloud. 

o Data intensive applications are implemented by means of a distributed file system. 

Google File system is best example for distributed file systems. 

o Typical characteristics of Google File system are:   

o Files are huge by traditional standards (multi-gigabytes). 

o Files are modified by appending new data rather than rewriting existing data.  

o There are two kinds of major workloads: large streaming reads and small random 

reads.  

o It is more important to have a sustained bandwidth than a low latency. 

Accounting, billing, and resource pricing 

o Accounting Services keep track of the status of applications in the Aneka Cloud 

o The information collected for accounting is primarily related to infrastructure 

usage and application execution 

o Billing is another important feature of accounting.  

o Billing is important since Aneka is a multitenant cloud programming platform in 

which the execution of applications can involve provisioning additional resources 

from commercial providers.  



 
Cloud Computing Architecture 

 

Dept of CSE Page 26 
 

o Aneka Billing Service provides detailed information about each user’s usage of 

resources, with the associated costs. 

o Resource pricing is associated with the price fixed for different types of 

resources/nodes that are provided for the subscribers. Powerful resources are 

priced high and less featured resources are priced low 

o Two internal services used by accounting and billing are Accounting service and 

Reporting Service 

Resource reservation 

Resource Reservation supports the execution of distributed applications and allows for 

reserving resources for exclusive use by specific applications. 

Two types of services are used to build resource reservation: 

o The Resource Reservation 

o The Allocation Service 

o Resource Reservation keeps track of all the reserved time slots in the Aneka 

Cloud and provides a unified view of the system. (provides overview of the 

system) 

o The Allocation Service is installed on each node that features execution 

services and manages the database of information regarding the allocated slots 

on the local node. 

 Different Reservation Service Implementations supported by Aneka Cloud are: 

Basic Reservation: Features the basic capability to reserve execution slots on nodes and 

implements the alternate offers protocol, which provides alternative options in case the initial 

reservation requests cannot be satisfied.  

Libra Reservation: Represents a variation of the previous implementation that features the 

ability to price nodes differently according to their hardware capabilities.  

Relay Reservation: This implementation is useful in integration scenarios in which Aneka 

operates in an inter cloud environment. 

Application services 

Application Services manage the execution of applications and constitute a layer that 

differentiates according to the specific programming model used for developing distributed 

applications on top of Aneka 

Two types of services are: 

1. The Scheduling Service : 

Scheduling Services are in charge of planning the execution of distributed applications on top of 

Aneka and governing the allocation of jobs composing an application to nodes. Common tasks 

that are performed by the scheduling component are the following: 

o Job to node mapping  



 
Cloud Computing Architecture 

 

Dept of CSE Page 27 
 

o Rescheduling of failed jobs  

o Job status monitoring  

o Application status monitoring 

2. The Execution Service 

Execution Services control the execution of single jobs that compose applications. 

They are in charge of setting up the runtime environment hosting the execution 

of jobs. 

Some of the common operations that apply across all the range of supported models 

are:  

• Unpacking the jobs received from the scheduler  

• Retrieval of input files required for job execution  

• Sandboxed execution of jobs  

• Submission of output files at the end of execution  

• Execution failure management (i.e., capturing sufficient contextual information 

useful to identify the nature of the failure)  

• Performance monitoring  

• Packing jobs and sending them back to the scheduler 

The various Programming Models Supported by Execution Services of Aneka Cloud are: 

1. Task Model. This model provides the support for the independent “bag of tasks” 

applications and many computing tasks. In this model application is modelled as a 

collection of tasks that are independent from each other and whose execution can be 

sequenced in any order 

2. Thread Model. This model provides an extension to the classical multithreaded 

programming to a distributed infrastructure and uses the abstraction of Thread to wrap a 

method that is executed remotely. 

3. Map Reduce Model. This is an implementation of Map Reduce as proposed by Google on 

top of Aneka. 

4. Parameter Sweep Model. This model is a specialized form of Task Model for applications 

that can be described by a template task whose instances are created by generating 

different combinations of parameters. 

Building Aneka clouds 

Aneka Cloud can be realized by two methods: 

1. Infrastructure Organization 

2. Logical Organization 

Infrastructure based organization of Aneka Cloud is given in the following figure-5.3: 

The working mechanism of this model: 

It contains Aneka Repository, Administrative Console, Aneka Containers & Node 

Managers as major components. 

o The Management Console manages multiple repositories and select the one that best suits 

the specific deployment 



 
Cloud Computing Architecture 

 

Dept of CSE Page 28 
 

o A Repository provides storage for all the libraries required to layout and install the basic 

Aneka platform, by installing images of the required software in particular Aneka 

Container through node managers by using various protocols like FTP, HTTP etc. 

o A number of node managers and Aneka containers are deployed across the cloud 

platform to provision necessary services, The Aneka node manager are also known as 

AnekaDaemon 

o The collection of resulting containers identifies the final AnekaCloud 

 

Logical organization  

The logical organization of Aneka Clouds can be very diverse, since it strongly depends on the 

configuration selected for each of the container instances belonging to the Cloud. 

Here is a scenario that has master-worker configuration with separate nodes for storage, the 

Figure 5.4. Portray 

The master node comprises of following services: 

o Index Service (master copy)  

o Heartbeat Service  

o Logging Service  

o Reservation Service  

o Resource Provisioning Service  

o Accounting Service  

o Reporting and Monitoring Service  

o Scheduling Services for the supported programming models 

Here Logging service and Heartbeat service and Monitoring service are considered as Mandatory 

services in all the block diagrams whereas other services are shown ditto.  



 
Cloud Computing Architecture 

 

Dept of CSE Page 29 
 

 

Similarly the Worker Node comprises of following services: 

o Index Service 

o Execution service 

o Allocation service 

o And mandatory ( Logging, Heartbeat and monitoring services) 

The Storage Node comprises of : 

o Index service 

o Storage Service 

o And mandatory ( Logging, Heartbeat and monitoring services) 

In addition all nodes are registered with the master node and transparently refer to any failover 

partner in the case of a high-availability configuration 

Aneka Cloud Deployment Models 

All the general cloud deployment models like Private cloud deployment mode, Public cloud 

deployment mode and Hybrid Cloud deployment mode are applicable to Aneka Clouds also. 

Private cloud deployment mode 

A private deployment mode is mostly constituted by local physical resources and infrastructure 

management software providing access to a local pool of nodes, which might be virtualized. 

Figure 5.5 shows a common deployment for a private Aneka Cloud. This deployment is 

acceptable for a scenario in which the workload of the system is predictable and a local virtual 

machine manager can easily address excess capacity demand. Most of the Aneka nodes are 

constituted of physical nodes with a long lifetime and a static configuration and generally do not 

need to be reconfigured often. The different nature of the machines harnessed in a private 

environment allows for specific policies on resource management and usage that can be 



 
Cloud Computing Architecture 

 

Dept of CSE Page 30 
 

accomplished by means of the Reservation Service. For example, desktop machines that are used 

during the day for office automation can be exploited outside the standard working hours to 

execute distributed applications. Workstation clusters might have some specific legacy software 

that is required for supporting the execution of applications and should be executed with special 

requirements. 

 
Note: In the master node: Resource Provisioning, Application Management & Scheduling and 

Resource Reservation are the primary services. 

Public cloud deployment mode  

Public Cloud deployment mode features the installation of Aneka master and worker nodes over 

a completely virtualized infrastructure that is hosted on the infrastructure of one or more resource 

providers such as Amazon EC2 or GoGrid. 

Figure 5.6 provides an overview of this scenario. The deployment is generally contained within 

the infrastructure boundaries of a single IaaS pro- vider. The reasons for this are to minimize the 

data transfer between different providers, which is generally priced at a higher cost, and to have 

better network performance. In this scenario it is pos- sible to deploy an Aneka Cloud composed 

of only one node and to completely leverage dynamic provisioning to elastically scale the 

infrastructure on demand. A fundamental role is played by the Resource Provisioning Service, 

which can be configured with different images and templates to instantiate. Other important 

services that have to be included in the master node are the Accounting and Reporting Services. 

These provide details about resource utilization by users and applications and are fundamental in 

a multitenant Cloud where users are billed according to their consumption of Cloud capabilities. 



 
Cloud Computing Architecture 

 

Dept of CSE Page 31 
 

 

Note: Reporting, Billing, Accounting, Resource Provisioning and Application Management & 

Scheduling are the primary services in master node 

Hybrid cloud deployment mode  

The hybrid deployment model constitutes the most common deployment of Aneka. In many 

cases, there is an existing computing infrastructure that can be leveraged to address the 

computing needs of applications. This infrastructure will constitute the static deployment of 

Aneka that can be elastically scaled on demand when additional resources are required 

 
An overview of this deployment is presented in Figure 5.7. This scenario constitutes the most 

complete deployment for Aneka that is able to leverage all the capabilities of the framework:  

• Dynamic Resource Provisioning  

• Resource Reservation  

• Workload Partitioning (Scheduling) 

• Accounting, Monitoring, and Reporting 



 
Cloud Computing Architecture 

 

Dept of CSE Page 32 
 

In a hybrid scenario, heterogeneous resources can be used for different purposes. As we 

discussed in the case of a private cloud deployment, desktop machines can be reserved for low 

priority work- load outside the common working hours. The majority of the applications will be 

executed on work- stations and clusters, which are the nodes that are constantly connected to the 

Aneka Cloud. Any additional computing capability demand can be primarily addressed by the 

local virtualization facili- ties, and if more computing power is required, it is possible to leverage 

external IaaS providers. 

Cloud programming and management 

o Aneka’s primary purpose is to provide a scalable middleware product in which to 

execute distributed applications.  

o Application development and management constitute the two major features that are 

exposed to developers and system administrators. 

o Aneka provides developers with a comprehensive and extensible set of APIs and 

administrators with powerful and intuitive management tools. 

o The APIs for development are mostly concentrated in the Aneka SDK; management 

tools are exposed through the Management Console 

Aneka SDK 

Aneka provides APIs for developing applications on top of existing programming models, 

implementing new programming models, and developing new services to integrate into 

the Aneka Cloud. 

The SDK provides support for both programming models and services by  

o The Application Model  

o The Service Model.  

  Application Model 

• The Application Model covers the development of applications and new programming 

models 

•  It Consists of Application Class & Application Manager 

• Application Class – Provide user/developer view about distributed applications of the 

Aneka cloud 

• Application Manager – Are Internal components that control and monitor the execution 

of Aneka clouds 

The Application Class can be represented by following class diagram 



 
Cloud Computing Architecture 

 

Dept of CSE Page 33 
 

  

Note: All the Aneka Application<W,M> class where W stands for Worker and M stands for 

Manager is inherited from base class and all Manual services are represented by WorkUnitClass.  

In addition there are two other classes in Application Class representation viz: Configuration 

Class and Application Data Class  

The Application manager is represented with following class diagram: 

 

Also the table given below summarizes Application Class, The programming models supported 

and work units assigned to them. 



 
Cloud Computing Architecture 

 

Dept of CSE Page 34 
 

  

 The Service Model defines the general infrastructure for service development. 

The Aneka Service Model defines the basic requirements to implement a service that can be 

hosted in an Aneka Cloud. The container defines the runtime environment in which services are 

hosted. Each service that is hosted in the container must use IService interface, which exposes 

the following methods and properties:  

• Name and status  

• Control operations such as Start, Stop, Pause, and Continue methods 

 • Message handling by means of the HandleMessage method 

Figure 5.9 describes the reference life cycle of each service instance in the Aneka container. 

A service instance can initially be in the Unknown or Initialized state, a condition that refers to 

the creation of the service instance by invoking its constructor during the configuration of the 

container. Once the container is started, it will iteratively call the Start method on each service 

method. As a result the service instance is expected to be in a Starting state until the startup 

process is completed, after which it will exhibit the Running state. This is the condition in which 

the service will last as long as the container is active and running. This is the only state in which 

the service is able to process messages. If an exception occurs while starting the service, it is 

expected that the service will fall back to the Unknown state, thus signalling an error. When a 

service is running it is possible to pause its activity by calling the Pause method and resume it by 

calling Continue. 

As described in the figure, the service moves first into the Pausing state, thus reaching the 

Paused state. From this state, it moves into the Resuming state while restoring its activity to 

return to the Running state. Not all the services need to support the pause/continue operations, 

and the current implementation of the framework does not feature any service with these 

capabilities. When the container shutdown, the Stop method is iteratively called on each service 

running, and services move first into the transient Stopping state to reach the final Stopped state, 

whereall resources that were initially allocated have been released. 



 
Cloud Computing Architecture 

 

Dept of CSE Page 35 
 

  

Note: Here all Unfilled Circles: Running, Unknown, Initialize, Paused and Stopped are Steady 

states. The filled Circles: Starting, Pausing, Resuming and Stopping are Transient States. 

MANAGEMENT TOOLS 

Aneka is a pure PaaS implementation and requires virtual or physical hardware to be deployed. 

Aneka’s management layer, also includes capabilities for managing services and applications 

running in the Aneka Cloud. 

Infrastructure management 

Aneka leverages virtual and physical hardware in order to deploy Aneka Clouds. Virtual 

hardware is generally managed by means of the Resource Provisioning Service, which acquires 

resources on demand according to the need of applications, while physical hardware is directly 

managed by the Administrative Console by leveraging the Aneka management API of the PAL. 

Platform management 

The creation of Clouds is orchestrated by deploying a collection of services on the physical infra- 

structure that allows the installation and the management of containers. A collection of 

connected containers defines the platform on top of which applications are executed. The 

features available for platform management are mostly concerned with the logical organization 

and structure of Aneka Clouds. 

Application management 

Applications identify the user contribution to the Cloud. This is an important feature in a cloud 

computing scenario in which users are billed for their resource usage. Aneka exposes capabilities 

for giving summary and detailed information about application execution and resource 

utilization. 



 
Thread Programming 

 

Dept. of CSE Page 1 
 

   Module 3 

Concurrent Computing  

Throughput computing focuses on delivering high volumes of computation in the form of transactions. 

Advances in hardware technologies led to the creation of multi core systems, which have made possible the 

delivery of high-throughput computations 

Multiprocessing is the execution of multiple programs in a single machine, whereas multithreading relates to 

the possibility of multiple instruction streams within the same program. 

This chapter presents the concept of multithreading and describes how it supports the development of high- 

throughput computing applications. 

 

6.1 Introducing parallelism for single-machine computation 

Parallelism has been a technique for improving the performance of computers since the early 1960s. 

In particular, multiprocessing, which is the use of multiple processing units within a single machine, has 

gained a good deal of interest and gave birth to several parallel architectures. 

Asymmetric multiprocessing involves the concurrent use of different processing units that are specialized 

to perform different functions. Symmetric multiprocessing features the use of similar or identical 

processing units to share the computation load. 

Multicore systems are composed of a single processor that features multiple processing cores that share the 

memory. Each core has generally its own L1 cache, and the L2 cache is common to all the cores, which 

connect to it by means of a shared bus, as depicted in Figure 6.1. Dual- and quad-core configurations are 

quite popular nowadays and constitute the standard hardware configuration for commodity computers. 

Architectures with multiple cores are also available but are not designed for the commodity market. 

Multicore technology has been used not only as a support for processor design but also in other devices, such 

as GPUs and network devices, thus becoming a standard practice for improving performance. 



 
Thread Programming 

 

Dept. of CSE Page 2 
 

Multiprocessing is just one technique that can be used to achieve parallelism, and it does that by leveraging 

parallel hardware architectures. 

In particular, an important role is played by the operating system, which defines the runtime structure of 

applications by means of the abstraction of process and thread. A process is the runtime image of an 

application, or better, a program that is running, while a thread identifies a single flow of the execution 

within a process. A system that allows the execution of multiple processes at the same time supports 

multitasking. It supports multithreading when it provides structures for explicitly defining multiple threads 

within a process. 

6.2 Programming applications with threads 

Modern applications perform multiple operations at the same time.The use of threads might be implicit or 

explicit. 

Implicit threading happens when the underlying APIs use internal threads to perform specific tasks 

supporting the execution of applications such as graphical user interface (GUI) rendering, or garbage 

collection in the case of virtual machine-based languages. 

Explicit threading is characterized by the use of threads within a program by application developers, who 

use this abstraction to introduce parallelism. Common cases in which threads are explicitly used are I/O from 

devices and network connections, long computations, or the execution of background operations. 

6.2.1 What is a thread? 

A thread identifies a single control flow, which is a logical sequence of instructions, within a process. By 

logical sequence of instructions, we mean a sequence of instructions that have been designed to be executed 

one after the other one. 

Operating systems that support multithreading identify threads as the minimal building blocks  for  

expressing running code. 

Each process contains at least one thread but, in several cases, is composed of many threads having variable 

lifetimes. Threads within the same process share the memory space and the execution context. 

In a multitasking environment the operating system assigns different time slices to each process and 

interleaves their execution. The process of temporarily stopping the execution of one process, saving all the 

information in the registers, and replacing it with the information related to another process is known as a 

context switch. 



 
Thread Programming 

 

Dept. of CSE Page 3 
 

 

Figure 6.2 provides an overview of the relation between threads and processes and a simplified 

representation of the runtime execution of a multithreaded application. A running program is identified by a 

process, which contains at least one thread, also called the main thread. Such a thread is implicitly created by 

the compiler or the runtime environment executing the program. This thread is likely to last for the entire 

lifetime of the process and be the origin of other threads, which in general exhibit a shorter duration. As main 

threads, these threads can spawn other threads. There is no difference between the main thread and other 

threads created during the process lifetime. Each of them has its own local storage and a sequence of 

instructions to execute, and they all share the memory space allocated for the entire process. The execution 

of the process is considered terminated when all the threads are completed. 

Thread APIs 

1 POSIX Threads 

2 Threading support in java and .NET 

1 POSIX Threads 

Portable Operating System Interface for Unix (POSIX) is a set of standards related to the application 

programming interfaces for a portable development of applications over the Unix operating system flavors. 

Standard POSIX 1.c (IEEE Std 1003.1c-1995) addresses the implementation of threads and the 

functionalities that should be available for application programmers to develop portable multithreaded 

applications. 

Important to remember from a programming point of view is the following: 

• A thread identifies a logical sequence of instructions. 

• A thread is mapped to a function that contains the sequence of instructions to execute. 

• A thread can be created, terminated, or joined. 



 
Thread Programming 

 

Dept. of CSE Page 4 
 

• A thread has a state that determines its current condition, whether it is executing, stopped, 

terminated, waiting for I/O, etc. 

• The sequence of states that the thread undergoes is partly determined by the operating system 

scheduler and partly by the application developers. 

• Threads share the memory of the process, and since they are executed concurrently, they need 

synchronization structures. 

• Different synchronization abstractions are provided to solve different synchronization problems. 

2 Threading support in java and .NET 

Languages such as Java and C# provide a rich set of functionalities for multithreaded programming by using 

an object-oriented approach. both Java and .NET execute code on top of a virtual machine, the APIs exposed 

by the libraries refer to managed or logical threads. These are mapped to physical threads. 

• Both Java and .NET provide class Thread with the common operations on threads: start, stop, suspend, 

resume, abort, sleep, join, and interrupt. 

• Start and stop/abort are used to control the lifetime of the thread instance. 

• Suspend and resume are used to programmatically pause and then continue the execution of a thread. 

Sleep operation allows pausing the execution of a thread for a predefined period of time. 

• Join operation that makes one thread wait until another thread is completed. Waiting states can be 

interrupted by using the interrupt operation. 

 

6.2.2 Techniques for parallel computation with threads 

Developing parallel applications requires an understanding of the problem and its logical structure. 

Decomposition is a useful technique that aids in understanding whether a problem is divided into 

components (or tasks) that can be executed concurrently. it allows the breaking down into independent units 

of work that can be executed concurrently with the support provided by threads. 

1 Domain decomposition 

2 Functional decomposition 

3 Computation vs. Communication 

 

1 Domain decomposition 

Domain decomposition is the process of identifying patterns of functionally repetitive, but independent, 

computation on data. This is the most common type of decomposition in the case of throughput computing, 

and it relates to the identification of repetitive calculations required for solving a problem. The master-slave 

model is a quite common organization for these scenarios: 

• The system is divided into two major code segments. 

• One code segment contains the decomposition and coordination logic. 



 
Thread Programming 

 

Dept. of CSE Page 5 
 

• Another code segment contains the repetitive computation to perform. 

• A master thread executes the first code segment. 

• As a result of the master thread execution, as many slave threads as needed are created to execute the 

repetitive computation. 

• The collection of the results from each of the slave threads and an eventual composition of the final 

 result are performed by the master thread. 

Embarrassingly parallel problems constitute the easiest case for parallelization because there is no need to 

synchronize different threads that do not share any data. Embarrassingly parallel problems are quite 

common, they are based on the strong assumption that at each of the iterations of the decomposition method, 

it is possible to isolate an independent unit of work. This is what makes it possible to obtain a high 

computing throughput. If the values of all the iterations are dependent on some of the values obtained in the 

previous iterations, the problem is said to be inherently sequential. Figure 6.3 provides a schematic 

representation of the decomposition of embarrassingly parallel and inherently sequential problems. 

The matrix product computes each element of the resulting matrix as a linear combination of the 

corresponding row and column of the first and second input matrices, respectively. The formula that applies 

for each of the resulting matrix elements is the following: 

Two conditions hold in order to perform a matrix product: 

• Input matrices must contain values of a comparable nature for which the scalar product is defined. 

• The number of columns in the first matrix must match the number of rows of the second matrix 



 
Thread Programming 

 

Dept. of CSE Page 6 
 

 

 

Figure 6.4 provides an overview of how a matrix product can be performed. 

 

 

 

The problem is embarrassingly parallel, and we can logically organize the multithreaded program in the 

following steps: 

• Define a function that performs the computation of the single element of the resulting matrix by 

implementing the previous equation. 

• Create a double for loop (the first index iterates over the rows of the first matrix and the second over 

the columns of the second matrix) that spawns a thread to compute the elements of the resulting 

matrix. 

• Join all the threads for completion, and compose the resulting matrix. 



 
Thread Programming 

 

Dept. of CSE Page 7 
 

 

The .NET framework provides the System.Threading.Thread class that can be configured with a function 

pointer, also known as a delegate, to execute asynchronously. This class will also define the method for 

performing the actual computation.  

Functional decomposition 

Functional decomposition is the process of identifying functionally distinct but independent computations. 

The focus here is on the type of computation rather than on the data manipulated by the computation. 

This kind of decomposition is less common and does not lead to the creation of a large number of threads, 

since the different computations that are performed by a single program are limited. 

Functional decomposition leads to a natural decomposition of the problem in separate units of work. 

Figure 6.5 provides a pictorial view of how decomposition operates and allows parallelization. 

 

 

The problems that are subject to functional decomposition can also require a composition phase in which the 

outcomes of each of the independent units of work are composed together. 

In the following, we show a very simple example of how a mathematical problem can be parallelized using 

functional decomposition. Suppose, for example, that we need to calculate the value of the following 

function for a given value of x: 

f(x) = sin(x) + cos(x) + tan(x) 

Once the value of x has been set, the three different operations can be performed independently of each other. 

This is an example of functional decomposition because the entire problem can be separated into three 

distinct operations.  

Computation vs. Communication 

It is very important to carefully evaluate the communication patterns among the components that have been 

identified during problem decomposition. The two decomposition methods presented in this section and the 

corresponding sample applications are based on the assumption that the computations are independent. This 



 
Thread Programming 

 

Dept. of CSE Page 8 
 

means that: 

• The input values required by one computation do not depend on the output values generated by 

another computation. 

• The different units of work generated as a result of the decomposition do not need to interact (i.e., 

exchange data) with each other. 

These two assumptions strongly simplify the implementation and allow achieving a high degree of 

parallelism and a high throughput. 

 

6.3 Multithreading with Aneka 

As applications become increasingly complex, there is greater demand for computational power that can be 

delivered by a single multicore machine. 

Often this demand cannot be addressed with the computing capacity of a single machine. It is then necessary 

to leverage distributed infrastructures such as clouds. 

Decomposition techniques can be applied to partition a given application into several units of work, 

submitted for execution by leveraging clouds. 

Aneka, as middleware for managing clusters, grids, and clouds, provides developers with advanced 

capabilities for implementing distributed applications. In particular, it takes traditional thread programming a 

step further. It lets you write multithreaded applications the traditional way, with the added twist that each of 

these threads can now be executed outside the parent process and on a separate machine. In reality, these 

“threads” are independent processes executing on different nodes and do not share memory or other 

resources, but they allow you to write applications using the same thread constructs for concurrency and 

synchronization as with traditional threads. Aneka threads, as they are called, let you easily port existing 

multithreaded compute-intensive applications to distributed versions that can run faster by utilizing multiple 

machines simultaneously, with minimum conversion effort. 

 

6.3.1 Introducing the thread programming model 

Aneka offers the capability of implementing multithreaded applications over the cloud by means of the 

Thread Programming Model. 

This model introduces the abstraction of distributed thread, also called Aneka thread, which mimics the 

behavior of local threads but executes over a distributed infrastructure. 

This model provides the best advantage in the case of embarrassingly parallel applications. 

The Thread Programming Model exhibits APIs that mimic the ones exposed by .NET base class libraries for 

threading. In this way developers do not have to completely rewrite applications in order to leverage Aneka 

by replacing the System.Threading.Thread class and introducing the AnekaApplication class. 

There are three major elements that constitute the object model of applications based on the Thread 



 
Thread Programming 

 

Dept. of CSE Page 9 
 

Programming Model: 

Application. This class represents the interface to the Aneka middleware and constitutes a local view of a 

distributed application. In the Thread Programming Model the single units of work are created by the 

programmer. Therefore, the specific class used will be Aneka.Entity. AnekaApplication<T,M>, with T and M 

properly selected. 

Threads. Threads represent the main abstractions of the model and constitute the building blocks of the 

distributed application. Aneka provides the Aneka.Threading.AnekaThread class, which represents a 

distributed thread. 

Thread Manager. This is an internal component that is used to keep track of the execution of distributed 

threads and provide feedback to the application. Aneka provides a specific version of the manager for this 

model, which is implemented in the Aneka.Threading.ThreadManager class. 

 

6.3.2 Aneka thread vs. common threads 

To efficiently run on a distributed infrastructure, Aneka threads have certain limitations compared to local  

threads. 

These limitations relate to the communication and synchronization strategies. 

1 Interface compatibility 

2 Thread life cycle 

3 Thread synchronization 

4 Thread priorities 

5 Type serialization 

 

1 Interface compatibility 

The Aneka.Threading.AnekaThread class exposes almost the same interface as the System.Threading.Thread 

class with the exception of a few operations that are not supported. Table 6.1 compares the operations that 

are exposed by the two classes. 



 
Thread Programming 

 

Dept. of CSE Page 10 
 

 

The basic control operations for local threads such as Start and Abort have a direct mapping, whereas 

operations that involve the temporary interruption of the thread execution have not been supported. 

The reasons for such a design decision are twofold. First, the use of the Suspend/Resume operations is 

generally a deprecated practice, even for local threads, since Suspend abruptly interrupts the execution state 

of the thread. Second, thread suspension in a distributed environment leads to an ineffective use of the 

infrastructure, where resources are shared among different tenants and applications. 

Sleep operation is not supported. Therefore, there is no need to support the Interrupt operation, which 

forcibly resumes the thread from a waiting or a sleeping state. 

 

2 Thread life cycle 

Aneka Thread life cycle is different from the life cycle of local threads. It is not possible to directly map the 

state values of a local thread to Aneka threads. Figure 6.6 provides a comparative view of the two life cycles. 

The white balloons in the figure indicate states that do not have a corresponding mapping on the other life 

cycle; the shaded balloons indicate the common states. 



 
Thread Programming 

 

Dept. of CSE Page 11 
 

In local threads most of the state transitions are controlled by the developer, who actually triggers the state 

transition by invoking methods. Whereas in Aneka threads, many of the state transitions are controlled by the 

middleware. 

 

Aneka threads support file staging and they are scheduled by the middleware, which can queue them for a 

considerable amount of time. 

An Aneka thread is initially found in the Unstarted state. Once the Start() method is called, the thread transits 

to the Started state, from which it is possible to move to the StagingIn state if there are files to upload for its 

execution or directly to the Queued state. If there is any error while uploading files, the thread fails and it 

ends its execution with the Failed state, which can also be reached for any exception that occurred while 

invoking Start(). 

Another outcome might be the Rejected state that occurs if the thread is started with an invalid reservation 

token. This is a final state and implies execution failure due to lack of rights. 

Once the thread is in the queue, if there is a free node where to execute it, the middleware moves all the 

object data and depending files to the remote node and starts its execution, thus changing the state into 

Running. 

If the thread generates an exception or does not produce the expected output files, the execution is 

considered failed and the final state of the thread is set to Failed. If the execution is successful, the final state 

is set to Completed. If there are output files to retrieve, the thread state is set to StagingOut while files are 



 
Thread Programming 

 

Dept. of CSE Page 12 
 

collected and sent to their final destination. 

At any point, if the developer stops the execution of the application or directly calls the Abort() method, the 

thread is aborted and its final state is set to Aborted. 

 

3 Thread synchronization 

The .NET base class libraries provide advanced facilities to support thread synchronization by the means of 

monitors, semaphores, reader-writer locks, and basic synchronization constructs at the language level. Aneka 

provides minimal support for thread synchronization that is limited to the implementation of the join 

operation for thread abstraction. 

This requirement is less stringent in a distributed environment, where there is no shared memory among the 

thread instances and therefore it is not necessary. 

Providing coordination facilities that introduce a locking strategy in such an environment might lead to 

distributed deadlocks that are hard to detect. Therefore, by design Aneka threads do not feature any 

synchronization facility except join operation. 

 

4 Thread priorities 

The System.Threading.Thread class supports thread priorities, where the scheduling priority can be one 

selected from one of the values of the ThreadPriority enumeration: Highest, AboveNormal, Normal, 

BelowNormal, or Lowest. 

Aneka does not support thread priorities, the Aneka.Threading.Thread class exhibits a Priority property 

whose type is ThreadPriority, but its value is always set to Normal, and changes to it do not produce any 

effect on thread scheduling by the Aneka middleware. 

 

5 Type serialization 

Serialization is the process of converting an object into a stream of bytes to store the object or transmit it to 

memory, a database, or a file. Main purpose is to save the state of an object to recreate it when needed. The 

reverse process is called deserialization. 

Local threads execute all within the same address space and share memory; therefore, they do not need 

objects to be copied or transferred into a different address space. Aneka threads are distributed and execute 

on remote computing nodes, and this implies that the object code related to the method to be executed within 

a thread needs to be transferred over the network. 

A .NET type is considered serializable if it is possible to convert an instance of the type into a binary array 

containing all the information required to revert it to its original form or into a possibly different execution 

context. This property is generally given for several types defined in the .NET framework by simply tagging 

the class definition with the Serializable attribute. 

Aneka threads execute methods defined in serializable types, since it is necessary to move the enclosing 



 
Thread Programming 

 

Dept. of CSE Page 13 
 

instance to remote execution method. In most cases, providing serialization is as easy as tagging the class 

definition with the Serializable attribute; in other cases it might be necessary to implement the ISerializable 

interface and provide appropriate constructors for the type. 

 

6.4 Programming applications with Aneka threads 

To show how it is possible to quickly port multithreaded application to Aneka threads, we provide a 

distributed implementation of the previously discussed examples for local threads. 

6.4.1 Aneka threads application model 

The Thread Programming Model is a programming model in which the programmer creates the units of work 

as Aneka threads. Therefore, it is necessary to utilize the AnekaApplicatioN<W,M> class, which is the 

application reference class for all the programming models. 

The Aneka APIs support different programming models through template specialization. Hence, to develop 

distributed applications with Aneka threads, it is necessary to specialize the template type as follows: 

AnekaApplication<AnekaThread, ThreadManager> 

These two types are defined in the Aneka.Threading namespace noted in the Aneka. Threading.dll library 

of the Aneka SDK. 

Another important component of the application model is the Configuration class, which is defined in the 

Aneka.Entity namespace (Aneka.dll). This class contains a set of properties that allow the application class 

to configure its interaction with the middleware, such as the address of the Aneka index service, which 

constitutes the main entry point of Aneka Clouds. 

 



 

 

Data Intensive Computing: 
Map-Reduce Programming 

• Focuses on class of applications that deal with a large amount of data. 

• Cmputational science to social networking, produce large volumes of data 

that need to be efficiently stored, made accessible, indexed, and analyzed. 

• Distributed computing is definitely of help in addressing these challenges . 

• This chapter characterizes nature of data-intensive computing and presents 

an overview of the challenges of large volumes of data and how they are 

handled. 

• MapReduce. 



8.1 What is data-intensive computing? 
 

 

 

• Concerned with production, manipulation, and analysis of large-scale data in 

MB to PB or beyond. 

• Dataset is used to identify a collection of information that is relevant to one or 

more applications. 

• Datasets are maintained in repositories. 

• Metadata are attached to datasets. 

• Data-intensive computations occur in many application domains. 

• Computational science - People conducting scientific simulations and 

experiments produce, analyze, and process huge volumes of data. 

• Bioinformatics applications mine databases that may end up containing 

terabytes of data. 

• Earthquake simulators process a massive amount of data, which is produced 

as a result of recording the vibrations of the Earth across the entire globe. 



8.1 What is data-intensive computing? 
 

 

 
 
 

8.1.1 Characterizing data-intensive computations 

8.1.2 Challenges ahead 

8.1.3 Historical perspective 

1 The early age: high-speed wide-area networking 

2 Data grids 

3 Data clouds and “Big Data” 

4 Databases and data-intensive computing 



8.1 What is data-intensive computing? 
 

 

 
 
 
 

8.1.1 Characterizing data-intensive computations 

• Deals with huge volumes of data, also exhibit compute-intensive properties. 

• Handle datasets on the scale of multiple terabytes and petabytes. 

• Applications process data in multistep analytical pipelines, including 

transformation and fusion stages. 



 

 
 



8.1 What is data-intensive computing?  

 

 
 
 
 

 

8.1.2 Challenges ahead 

• Huge amount of data produced, analyzed, or stored imposes requirements on 

infrastructures and middleware that are least found in the traditional solutions. 

• Moving terabytes of data. 

• Data partitioning, content replication and scalable algorithms help in 

improving performance. 



8.1 What is data-intensive computing?  

 

 

8.1.2 Challenges ahead 

 
Open challenges in data-intensive computing given by Ian Gorton et al. 

1. Scalable algorithms that can search and process massive datasets. 

2. New metadata management technologies that can handle complex, 

heterogeneous, and distributed data sources. 

3. Advances in high-performance computing platforms for accessing 

in-memory multi terabyte data structures. 

4. High-performance, highly reliable, petascale distributed file systems. 

5. Data signature-generation techniques for data reduction and rapid 

processing. 

6. Software mobility to move computation where data is present. 

7. Interconnected architectures that provide support for filtering multi gigabyte 

datastreams. 

8. Software integration techniques that facilitate the combination of software 

modules running on different platforms. 



8.1 What is data-intensive computing?  

 

8.1.3 Historical perspective 

 
1 The early age: high-speed wide-area networking 

• In 1989, the first experiments in high-speed networking as a support for remote 

visualization of scientific data. 

• Two years later, TCP/IP-based distributed applications was demonstrated at 

Supercomputing 1991 (SC91). 

• Wide Area Large Data Object (WALDO) system: 

• auto- matic generation of metadata; 

• automatic cataloguing of data and metadata; 

• facilitation of cooperative research by providing local and remote users 

access to data; 

• mechanisms to incorporate data into databases and other documents. 

• Distributed Parallel Storage System (DPSS) to support TerraVision, a terrain 

visualization application that lets users explore and navigate a tridimensional 

real landscape. 

• Clipper project: a collection of independent, architecturally consistent service 

components to support data-intensive computing. 

• Clipper’s main focus to develop collection of services for applications to build 

on-demand, large-scale, high-performance, wide-area problem-solving 



8.1 What is data-intensive computing?  

 

environments. 



8.1 What is data-intensive computing?  

 

 

 

8.1.3 Historical perspective 

 
2 Data grids 

A data grid provides services that help users discover, transfer, and manipulate 

large datasets stored in distributed repositories as well as create and manage 

copies of them. 

two main functionalities: high-performance and reliable file transfer. 

Data grids mostly provide storage and dataset management facilities as support 

for scientific experiments 

Heterogeneity and security. 

Data grids have their own characteristics and introduce new challenges: 

1. Massive datasets. 

2. Shared data collections. 

3. Unified namespace. 

4. Access restrictions. 



 

 

 



8.1 What is data-intensive computing? 
 

 

8.1.3 Historical perspective 

 
3 Data clouds and “Big Data” 

• Big Data - characterizes the nature of data- intensive computations and 

identifies datasets that grow large they become complex to work using DBMS 

tools. 

• The term Big Data applies to datasets of which the size is beyond the ability of 

commonly used software tools to capture, manage, and process within a 

tolerable elapsed time. 

 
Cloud technologies support data-intensive computing in several ways: 

1. By providing a large amount of compute instances on demand, which can be 

used to process and analyze large datasets in parallel. 

2. By providing a storage system optimized for keeping large blobs of data and 

other distributed data store architectures. 

3. By providing frameworks and programming APIs optimized for the processing 

and management of large amounts of data. 



8.1 What is data-intensive computing? 
8.1.3 Historical perspective 

 

 

 

 

3 Data clouds and “Big Data” 

 
A datacloud is a combination of above 3 components. 

 
Ex 1: MapReduce framework, which provides the best performance for leveraging 

Google File System on top of Google’s large computing infrastructure. 

 
Ex 2: Hadoop system, the most mature, large, and open-source datacloud. It 

consists of Hadoop Distributed File System (HDFS) and Hadoop’s implementation 

of MapReduce. 

 
Ex 3: Sector, which consists of Sector Distributed File System (SDFS) and 

compute service called Sphere, that allows users to execute arbitrary user-defined 

functions (UDFs) over the data managed by SDFS. 



8.1 What is data-intensive computing? 
8.1.3 Historical perspective 

 

 

 

4. Databases and data-intensive computing 

• Traditional distributed database using DBMS less computation power. 

• Distributed databases are a collection of data stored at different sites of a 

computer network. 

• A distributed database can be created by splitting and scattering the data of an 

existing database over different sites. 

• These systems are very robust and provide distributed transaction processing, 

distributed query optimization, and efficient management of resources. 



8.2 Technologies for data-intensive computing  

 

 
 
 
 

 

Concerns the development of applications that are mainly focused on processing 

large quantities of data. 

 
8.2.1 Storage systems 

1. High-performance distributed file systems and storage clouds 

2. NoSQL systems 

 
8.2.2 Programming platforms 

1. The MapReduce programming model. 

2. Variations and extensions of MapReduce. 

3. Alternatives to MapReduce. 



8.2 Technologies for data-intensive computing  

 

 
 

 

8.2.1 Storage systems 

 
● DBMS constituted de facto storage support. 

● Due to the explosion of unstructured data - blogs, Web pages, software logs, 

and sensor readings, the relational model is not preferred solution. 

 
Some factors contributing to change in data are: 

1. Growing of popularity of Big Data. 

2. Growing importance of data analytics in the business chain. 

3. Presence of data in several forms, not only structured. 

4. New approaches and technologies for computing. 



8.2 Technologies for data-intensive computing  

 

 

8.2.1 Storage systems 

 
1. High-performance distributed file systems and storage clouds. 

● Distributed file systems constitute primary support for data management. 

● They provide interface to store information in the form of files 

● later access them for read and write operations. 

 
a. Lustre. 

● massively parallel distributed file system 

● covers small workgroup of clusters to a large-scale computing cluster. 

● The file system is used by several of the Top 500 supercomputing systems. 

● Designed to provide access to petabytes (PBs) of storage to serve 

thousands of clients with an I/O throughput of hundreds of gigabytes per 

second (GB/s). 

● The system is composed of metadata server that contains the metadata 

about the file system and collection of object storage servers that are in 

charge of providing storage. 



8.2 Technologies for data-intensive computing  

 

 

8.2.1 Storage systems 

 
1. High-performance distributed file systems and storage clouds. 

 
b. IBM General Parallel File System (GPFS). 

● GPFS is high-performance distributed file system. 

● provides support for RS/6000 supercomputer and Linux computing clusters. 

● Multiplatform distributed file system. 

● Concept of shared disks, in which a collection of disks is attached to the file 

system nodes by switching fabric. 

● The file system makes this infrastructure transparent to users and stripes 

large files over the disk array by replicating portions of the file to ensure high 

availability. 

● Eliminates a single point of failure. 



8.2 Technologies for data-intensive computing  

 

 

8.2.1 Storage systems 

1.High-performance distributed file systems and storage clouds. 

 
c. Google File System (GFS) 

storage infrastructure supports execution of distributed applications in Google’s 

computing cloud. 

GFS is designed with the following assumptions: 

1. System is built on top of commodity hardware that often fails. 

2. System stores large files; multi-GB files are common and should be treated 

efficiently, and small files must be supported. 

3. Workloads has two kinds of reads: large streaming reads and small random 

reads. 

4. Workloads also have large, sequential writes that append data to files. 

5. High-sustained bandwidth is more important than low latency. 

 
Architecture organized into a single master, which contains the metadata of file 

system, and collection of chunk servers, which provide storage space.. 



8.2 Technologies for data-intensive computing  

 

 
 

 

8.2.1 Storage systems 

1.High-performance distributed file systems and storage clouds. 

 
d. Sector. 

Storage cloud that supports execution of data-intensive applications defined 

according to Sphere framework. 

Architecture is composed of four nodes: 

● security server, 

● master nodes, 

● slave nodes, and 

● client machines. 
 

Security server maintains all the information about access control policies for 

user and files, 

Master servers coordinate and serve the I/O requests of clients, 

which interact with Slave nodes to access files. 



8.2 Technologies for data-intensive computing  

 

 
 
 

 

8.2.1 Storage systems 
 

1. High-performance distributed file systems and storage clouds. 

 
e. Amazon Simple Storage Service (S3). 

● Amazon S3 is the online storage service provided by Amazon. 

● System offers flat storage space organized into buckets, which are attached 

to an Amazon Web Services (AWS) account. 

● Each bucket can store multiple objects, identified by a unique key. 



8.2 Technologies for data-intensive computing  

 

 
 

8.2.1 Storage systems 
 

2. NoSQL systems 

● Not Only SQL (NoSQL) identify set of UNIX shell scripts and commands 

to operate on text files containing the actual data. 

● NoSQL cannot be considered a relational database, it is a collection of 

scripts that allow users to manage database tasks by using text files as 

information stores. 

 
Some prominent implementations that support data-intensive applications: 

a. Apache CouchDB and MongoDB. 

b. Amazon Dynamo. 

c. Google Bigtable. 

d. Apache Cassandra. 

e. Hadoop HBase. 



8.2 Technologies for data-intensive computing 

8.2.1 Storage systems 

 

 

 

2. NoSQL systems 

a. Apache CouchDB and MongoDB. 

● Both provide a schema-less store whereby the primary objects are 

documents organized into a collection of key-value fields. 

● The value of each field can be of type string, integer, float, date, or an 

array of values. 

● RESTful interface and represent data in JSON format. 

● querying and indexing data by using the MapReduce programming model. 

● JavaScript as a base language. 

● support large files as documents. 



8.2 Technologies for data-intensive computing 

8.2.1 Storage systems 

 

 

 

2. NoSQL systems 

b. Amazon Dynamo. 

● provide an incrementally scalable and highly available storage system. 

● provides a simplified interface based on get/put semantics, where objects 

are stored and retrieved with a unique identifier (key). 



 

 

 

 



 

 

8.2 Technologies for data-intensive computing 

8.2.1 Storage systems 

 
2. NoSQL systems 

c. Google Bigtable. 

● provides storage support: from throughput-oriented batch-processing 

jobs to latency-sensitive serving of data. 

● design goals: wide applicability, scalability, high performance, and high 

availability. 

● Bigtable organizes the data storage in tables of which the rows are 

distributed over the distributed file system supporting the middleware, i.e 

Google File System. 

● A table is organized into rows and columns; 

● columns can be grouped in column family, which allow for specific 

optimization for better access control, storage and indexing of data. 



 

 

 



 

 
 



8.2 Technologies for data-intensive computing 
8.2.1 Storage systems 

 

 

 

2. NoSQL systems 

d. Apache Cassandra. 

● designed to avoid a single point of failure and offer highly reliable service. 

● developed by Facebook; now it is part of Apache incubator initiative. 

● provides storage support for Web applications such as Facebook, Digg, 

Twitter. 

 
● concept: tables implemented as a distributed multidimensional map indexed 

by a key. 

● value corresponding to key is structured object and constitutes the row of a 

table. 

● Cassandra organizes the row of a table into columns, and sets of columns 

can be grouped into column families. 

● APIs provided by the system to access and manipulate data: insertion, 

retrieval, and deletion. 

● The insertion is performed at the row level; retrieval and deletion operate at 



8.2 Technologies for data-intensive computing 
8.2.1 Storage systems 

 

 

column level. 



8.2 Technologies for data-intensive computing 
8.2.1 Storage systems 

 

 

 

2. NoSQL systems 

e. Hadoop HBase. 

● inspiration from Google Bigtable. 

● offer real-time read/write operations for tables with billions of rows and 

millions of columns. 

● architecture and logic model of HBase is very similar to Google Bigtable, 

and the entire system is backed by the Hadoop Distributed File System 

(HDFS). 



8.2 Technologies for data-intensive computing 
 

 

 
 
 

8.2.2 Programming platforms 

 
focus on the processing of data and move into the runtime system the 

management of transfers, thus making the data always available where 

needed. 

 
approach followed by the MapReduce programming platform. 



8.2 Technologies for data-intensive computing 
 

 

 
 

8.2.2 Programming platforms 
1. The MapReduce programming model. 

● the computational logic of an application in two simple functions: map and 

reduce. 

● Data transfer and management are completely handled by the distributed 

storage infrastructure (i.e., the Google File System) 
 
 

● map function reads a key-value pair and produces a list of key-value pairs of 

different types. 

● reduce function reads a pair composed of a key and a list of values and 

produces a list of values of the same type. 

● (k1,v1,k2,kv2) hints how these two functions are connected and are 

executed. 



 

 

 



 

 

 



8.2 Technologies for data-intensive computing 
 

 

 
 

8.2.2 Programming platforms 
1. The MapReduce programming model. 

● The master process is in charge of controlling the execution of map and 

reduce tasks, partitioning, and reorganizing the intermediate output 

● The worker processes are used to host the execution of map and reduce 

tasks and provide basic I/O facilities 



8.2 Technologies for data-intensive computing 

8.2.2 Programming platforms 
2. Variations and extensions of MapReduce. 

 

 

A. Hadoop. 

B. Pig. 

C. Hive. 

D. Map-Reduce-Merge. 

E. Twister. 

 
A. Hadoop. 

● collection of software projects for reliable and scalable distributed computing. 

● Hadoop Distributed File System (HDFS) and Hadoop MapReduce. 

● Same as Google File System & Google MapReduce. 
 

B. Pig. 

● analysis of large datasets. 

● Pig consists of a high-level language for data analysis programs, coupled with 

infrastructure. 

● compiler for high-level language that produces sequence of MapReduce jobs. 



8.2 Technologies for data-intensive computing 

8.2.2 Programming platforms 
2. Variations and extensions of MapReduce. 

 

 

C. Hive. 

● data warehouse infrastructure on top of Hadoop MapReduce. 

● tools  for  easy data summarization, ad hoc queries, and analysis of large 

datasets 

● major advantages is ability to scale out, since it is based on the Hadoop 

framework. 

D. Map-Reduce-Merge. 

● a third phase — Merge phase—that allows efficiently merging data already 

partitioned and sorted. 

● simplifies the management of heterogeneous related datasets. 

● provides abstraction to express the common relational algebra operators & 

several join algorithms. 



 

 

8.2 Technologies for data-intensive computing 

8.2.2 Programming platforms 
2. Variations and extensions of MapReduce. 

E. Twister. 

● iterative executions of MapReduce jobs. 

● Twister proposes the following extensions: 

1. Configure Map 

2. Configure Reduce 

3. While Condition Holds True Do 

a. Run MapReduce 

b. Apply Combine Operation to Result 

c. Update Condition 

4. Close 

 
● additional phase called combine, run at the end of MapReduce job, that 

aggregates output together. 



8.2 Technologies for data-intensive computing 
8.2.2 Programming platforms 
3. Alternatives to MapReduce. 

 

 

 

a. Sphere. 

b. All-Pairs. 

c. DryadLINQ. 

 
a. Sphere. 

● Sector Distributed File System (SDFS). 

● implements the stream processing model (Single Program, Multiple Data) 

● developers to express the computation in terms of user-defined functions 

(UDFs) 

● built on top of Sector’s API. 

● execution of UDFs is achieved through Sphere Process Engines (SPEs), 

 
● Sphere client sends a request for processing to the master node, 

● returns the list of available slaves, 

● client will choose the slaves on which to execute Sphere processes. 



8.2 Technologies for data-intensive computing 
8.2.2 Programming platforms 
3. Alternatives to MapReduce. 

 

 

b. All-Pairs. 

implements All-pairs function 

All-pairs(A:set; B:set; F:function) -> M:matrix 

The All-pairs function can be easily solved by the following algorithm: 

1. For each $i in A 

2. For each $j in B 

3. Submit job F $i $j 
 

Execution of a distributed application is developed in four stages: 

(1) model the system; 

(2) distribute the data; 

(3) dispatch batch jobs; and 

(4) clean up the system. 
 

Ex1: field of biometrics, similarity matrices are composed by comparison of several 

images. 



8.2 Technologies for data-intensive computing 
8.2.2 Programming platforms 
3. Alternatives to MapReduce. 

 

 

Ex2: applications and algorithms in data mining. 



 

 

8.2 Technologies for data-intensive computing 

8.2.2 Programming platforms 
3. Alternatives to MapReduce. 

c. DryadLINQ. 

● Microsoft Research project 

● investigates programming models for writing parallel and distributed programs 

to scale from a small cluster to a large datacenter. 

● Developers express distributed applications as set of sequential programs 

connected by channels. 

● Computation is expressed as directed acyclic graph - nodes are sequential 

programs and vertices are channels connecting programs. 

● Superset of the MapReduce model. 



8.3 Aneka MapReduce programming  

 

 
 

 

Aneka provides an implementation of MapReduce introduced by Google and 

implemented by Hadoop. 

 
8.3.1 Introducing the MapReduce programming model 

1 Programming abstractions 

2 Runtime support 

3 Distributed file system support 

 
8.3.2 Example application 

1 Parsing Aneka logs 

2 Mapper design and implementation 

3 Reducer design and implementation 

4 Driver program 

5 Running the application 



8.3 Aneka MapReduce programming  

 

 

8.3.1 Introducing the MapReduce programming model 

defines the abstractions and runtime support for developing MapReduce 

applications on top of Aneka. 
 

 



8.3 Aneka MapReduce programming  

 

 

8.3.1 Introducing the MapReduce programming model 

The runtime support is composed of three main elements: 

1. MapReduce Scheduling Service, which plays the role of the master process in 

the Google and Hadoop implementation. 

2. MapReduce Execution Service, which plays the role of the worker process in 

the Google and Hadoop implementation. 

3. A specialized distributed file system that is used to move data files. 

 

 
● Client components, MapReduce Application, are used to submit the execution 

of a MapReduce job, upload data files, and monitor it. 

● Local data files are automatically uploaded to Aneka, and output files are 

automatically downloaded to client machine. 



8.3 Aneka MapReduce programming  

 

 

8.3.1 Introducing the MapReduce programming model 

1 Programming abstractions 

● Aneka executes any piece of user code within distributed application. 

● task creation is responsibility of the infrastructure once the user has defined 

the map and reduce functions. 



 

 

 



 

 

 



8.3 Aneka MapReduce programming 
 

 

 

8.3.1 Introducing the MapReduce programming model 

1 Programming abstractions 

 
Listing 8.1 definition of the Mapper<K,V> class and of the related types that 

developers should be aware of for implementing the map function. 

Listing 8.2 implementation of the Mapper<K,V> component for Word Counter 

sample. 

Listing 8.3 definition of Reducer<K,V> class. The implementation of a specific 

reducer requires specializing the generic class and overriding the abstract method: 

Reduce(IReduceInputEnumerator<V> input). 

Listing 8.4 implement the reducer function for word-counter example. 

Listing 8.5 interface of MapReduceApplication<M,R>. 

Listing 8.6 displays collection of methods that are of interest in this class for 

execution of MapReduce jobs. 

Listing 8.7 MapReduce application for running the word-counter example defined 

by the previous WordCounterMapper and WordCounterReducer classes. 



8.3 Aneka MapReduce programming 
 

 

 

8.3.1 Introducing the MapReduce programming model 

2 Runtime support 

comprises the collection of services that deal with scheduling and executing 

MapReduce tasks. 

These are 

the MapReduce Scheduling Service and 

the MapReduce Execution Service. 

 
Job and Task Scheduling. responsibility of the MapReduce Scheduling Service. 

covers the same role as the master process in the Google MapReduce 

implementation. 

The architecture of the Scheduling Service is organized into two major 

components: 

the MapReduceSchedulerService and 

the MapReduceScheduler. 



 

 

8.3 Aneka MapReduce programming 

 



 

 

8.3 Aneka MapReduce programming 
 

8.3.1 Introducing the MapReduce programming model 

2 Runtime support 

 
Task Execution. 

Controlled by MapReduce Execution Service. 

This component plays role of the worker process in the Google MapReduce 

implementation. 

 
There are three major components that coordinate together for executing tasks: 

1. MapReduce- SchedulerService, 

2. ExecutorManager, and 

3. MapReduceExecutor. 



 

 

 



8.3 Aneka MapReduce programming 
 

 

 
 

8.3.1 Introducing the MapReduce programming model 

 
3 Distributed file system support 

Aneka supports, the MapReduce model. 

guarantee high availability and better efficiency by means of replication and 

distribution. 

interfacing with different storage implementations and it maintains the same 

flexibility for the integration. 

 
The level of integration requires to perform the following tasks: 

● Retrieving the location of files and file chunks 

● Accessing a file by means of a stream 



8.3 Aneka MapReduce programming 
 

 

 

8.3.1 Introducing the MapReduce programming model 

3 Distributed file system support 
 



8.3 Aneka MapReduce programming 
 

 

 

8.3.1 Introducing the MapReduce programming model 

 
3 Distributed file system support 

 
Listing 8.8 shows the interface of the SeqReader and SeqWriter classes. 

 
Listing 8.9 shows a practical use of the SeqReader class by implementing the 

callback used in the word-counter example. 



8.3 Aneka MapReduce programming 
 

 

 

 

8.3.2 Example application 

1 Parsing Aneka logs 

2 Mapper design and implementation 

3 Reducer design and implementation 

4 Driver program 

5 Running the application 



8.3 Aneka MapReduce programming 
 

 

 

 

1 Parsing Aneka logs 

Aneka components (daemons, container instances, and services) produce a lot of 

information that is stored in the form of log files. 

The entire framework leverages the log4net library for collecting and storing the log 

information. 
 



8.3 Aneka MapReduce programming 
 

 

 

 

1 Parsing Aneka logs 

 
Possible information that we might want to extract from such logs is the 

following: 

● The distribution of log messages according to the level 

● The distribution of log messages according to the components 

The structure of the map and reduce functions will  be  the following: 

map: (long; string) => (string; long) 

reduce: (long; string) => (string; long) 



8.3 Aneka MapReduce programming 
 

 

 

 

2 Mapper design and implementation 

 
The operation performed by the map function is a very simple text extraction that 

identifies the level of the logging and the name of the component entering the 

information in the log. 

Once this information is extracted, a key-value pair (string, long) is emitted by 

the function. 

 
Listing 8.10 shows the implementation of the Mapper class for the log parsing 

task. 



8.3 Aneka MapReduce programming 
 

 

 

 

3 Reducer design and implementation 

Add all the values that are associated to the same key and emit a 

key-value pair with the total sum. 

 
Listing 8.11 , the operation to perform  is  very  simple  and  actually  is  the  

same for both of  the  two  different  key-value  pairs extracted  from  the  log  

lines. 



8.3 Aneka MapReduce programming 
 

 

 

 

4 Driver program 

LogParsingMapper and LogParsingReducer constitute  the  core  functionality 

of the MapReduce job, which only requires to be  properly  configured  in  the  

main program in order to process and produce text tiles. 

 
Listing 8.12 shows the implementation of the driver program. With respect 

to the previous examples, there are three 

things to be noted: 

● The configuration of the MapReduce job 

● The post-processing of the result files 

● The management of errors 



8.3 Aneka MapReduce programming 
 

 

 
 

5 Running the application 

Aneka produces a considerable amount of logging information. 

By continuing to run an Aneka Cloud for a few days, it is quite easy to collect 

enough data to mine for our sample application. 
 
 
 
 



 

 

8.3 Aneka MapReduce programming 

5 Running the application 

 



 
 

 

 

Cloud Platforms in Industry 
Overview 

9.1 Amazon web services 

9.1.1 Compute services 

9.1.2 Storage services 

9.1.3 Communication services 

9.1.4 Additional services 

 
9.2 Google AppEngine 

9.2.1 Architecture and core concepts 

9.2.2 Application life cycle 

9.2.3 Cost model 

9.2.4 Observations 

 
9.3 Microsoft Azure 



 
 

9.3.1 Azure core concepts 

9.3.2 SQL Azure 

9.3.3 Windows Azure platform appliance 

9.3.4 Observations 



9.1 Amazon web services 
 

 

● Development of flexible applications by providing solutions for elastic 

infrastructure scalability, messaging, and data storage. 

● Accessible through SOAP (Simple Object Access Protocol) or RESTful 

(Representational State Transfer) Web service interfaces 

● Expenses computed on a pay-as-you-go basis. 



 

9.1 Amazon web services 
9.1.1 Compute services 

1 Amazon machine images 

 



9.1 Amazon web services 
 

 

9.1.1 Compute services 

● fundamental element of cloud computing systems. 

● Amazon EC2, which delivers an IaaS solution. 

● Amazon EC2 allows deploying servers in the form of virtual machine 

images. 

● Images come with a preinstalled operating system and a software stack. 

 
1 Amazon machine images 

● Amazon Machine Images (AMIs) are templates from which it is possible to 

create a virtual machine. 

● They are stored in Amazon S3. 

● An AMI contains a physical file system layout with a predefined operating 

system installed. 

● Predefined operating system installed as 

Amazon Ramdisk Image (ARI, id: ari-yyyyyy) and 

Amazon Kernel Image (AKI, id: aki-zzzzzz) 



9.1 Amazon web services 
9.1.1 Compute services 

 

2 EC2 instances 

EC2 instances represent virtual machines. 

The processing power is expressed in terms of virtual cores and EC2 Compute 

Units (ECUs). 

 
six major categories: 

1. Standard instances. 

2. Micro instances. 

3. High-memory instances. 

4. High-CPU instances. 

5. Cluster Compute instances. 

6. Cluster GPU instances. 



9.1 Amazon web services 
9.1.1 Compute services 

 

 

3 EC2 environment 

● virtual environment, which provides them with the services they require to 

host applications. 

● In charge of allocating addresses, attaching storage volumes, and 

configuring security in terms of access control and network connectivity. 

● Instances are created with an internal IP address, which makes them 

capable of communicating within the EC2 network and accessing the 

Internet as clients. 

● Instance owners can partially control where to deploy instances. Instead, 

they have a finer control over the security of the instances as well as their 

network accessibility. 

● EC2 instances are given domain name in the form ec2-xxx-xxx-

xxx.compute-x.amazonaws.com 



9.1 Amazon web services 
9.1.1 Compute services 

 

 

4. Advanced compute services 

 
● AWS CloudFormation - model that characterizes EC2 instances. 

● Concepts of templates, which are JSON formatted text files. 

● Templates provide a simple and declarative way to build complex systems. 

● AWS Elastic Beanstalk constitutes a simple and easy way to package 

applications and deploy them on the AWS Cloud. 

● Service is available for Web applications developed with the Java/Tomcat 

technology stack. 

● Amazon Elastic MapReduce provides AWS users with a cloud computing 

platform for MapReduce applications. It utilizes Hadoop as the MapReduce 

engine. 



9.1 Amazon web services 
9.1.2 Storage services 

 

 

The core service is represented by Amazon Simple Storage Service (S3). 

The core components of S3 are two: buckets and objects. 

 
1 S3 key concepts 

2 Amazon elastic block store 

3 Amazon ElastiCache 

4 Structured storage solutions 

5 Amazon CloudFront 



9.1 Amazon web services 
9.1.2 Storage services 

 

1 S3 key concepts 

accessible through a Representational State Transfer (REST) interface. 

● The storage is organized in a two-level hierarchy. 

● Stored objects cannot be manipulated like standard files. 

● Content is not immediately available to users. 

● Requests will occasionally fail. 

 
HTTP requests (GET, PUT, DELETE, HEAD, and POST). 

 
Resource naming - uniform resource identifiers (URIs) 

Amazon offers three different ways of addressing a bucket: 

1. Canonical form: http://s3.amazonaws.com/bukect_name/ 

2. Subdomain form: http://bucketname.s3.amazon.com/ 

3. Virtual hosting form: http://bucket-name.com/ 

Buckets - container of objects. virtual drive hosted on the S3 distributed 

storage 

Objects and metadata - object is identified by a name that needs to be unique 

within the bucket in which the content is stored. 

Access control and security - access to buckets and objects by means of 

Access Control Policies (ACPs). Different permissions can be used. 

http://s3.amazonaws.com/bukect_name/
http://bucketname.s3.amazon.com/
http://bucket-name.com/


9.1 Amazon web services 
9.1.2 Storage services 

 

 

2 Amazon elastic block store 

Amazon Elastic Block Store (EBS) provide EC2 instances with persistent 

storage in the form of volumes that can be mounted at instance startup. 

EBS volumes normally reside within the same availability zone of the EC2 

instances that will use them to maximize the I/O performance. 

 
3 Amazon ElastiCache 

implementation of an elastic in-memory cache based on a cluster of EC2 

instances. 

based on a cluster of EC2 instances running the caching software, which is 

made available through Web services. 

ElastiCache cluster can be dynamically resized according to the demand of the 

client applications. 



9.1 Amazon web services 
9.1.2 Storage services 

 

 

4 Structured storage solutions 

Amazon provides applications with structured storage services in three different 

forms: 

● Preconfigured EC2 AMIs, 

● Amazon Relational Data Storage (RDS), and 

● Amazon SimpleDB. 

Preconfigured EC2 AMIs are predefined templates featuring an installation of 

a given database management system. EC2 instances created from these 

AMIs can be completed with an EBS volume for storage persistence. 

IBM DB2, Microsoft SQL Server, MySQL, Oracle, PostgreSQL, Sybase, and 

Vertica. 

RDS is relational database service that relies on the EC2 infrastructure and is 

managed by Amazon. 

Developers do not have to worry about configuring the storage for high 

availability, designing failover strategies, or keeping the servers up-to-date. 

Amazon SimpleDB is a lightweight, highly scalable, and flexible data storage 

solution for applications that do not require a fully relational model for their data. 



9.1 Amazon web services 
9.1.2 Storage services 

 

 

5 Amazon CloudFront 

● Content delivery network. 

● Collection of edge servers strategically located around the globe to better 

serve requests for static and streaming Web content. 

● Content that can be delivered through CloudFront is static (HTTP and 

HTTPS) or streaming (Real Time Messaging Protocol, or RMTP). 



9.1 Amazon web services 
9.1.3 Communication services 

 

 

Facilities to structure and facilitate the communication among existing 

applications and services residing within the AWS infrastructure. 

These facilities can be organized into two major categories: 

1. Virtual networking and 

2. Messaging. 



9.1 Amazon web services 
9.1.3 Communication services 

 

 

1. Virtual networking 

● Virtual networking comprises a collection of services that allow AWS users 

to control the connectivity to and between compute and storage services. 

● Amazon Virtual Private Cloud (VPC) and Amazon Direct Connect provide 

connectivity solutions in terms of infrastructure. 

● Flexibility in creating virtual private networks within the Amazon 

infrastructure and beyond. 

 
2. Messaging. 

● Amazon Simple Queue Service (SQS), 

● Amazon Simple Notification Service (SNS), and 

● Amazon Simple Email Service (SES). 



9.2 Google AppEngine  

 

● Google AppEngine is a PaaS implementation. 

● Distributed and scalable runtime environment that leverages Google’s 

distributed infrastructure to scale out applications. 

 
9.2.1 Architecture and core concepts 

9.2.2 Application life cycle 

9.2.3 Cost model 

9.2.4 Observations 



9.2 Google AppEngine  

 

 

 



9.2 Google AppEngine 
9.2.1 Architecture and core concepts 

 

The platform is logically divided into four major components: 

 
1 Infrastructure 

2 Runtime environment 

3 Storage 

4 Application services 

5 Compute services 



9.2 Google AppEngine 
9.2.1 Architecture and core concepts 

 

1 Infrastructure 

● AppEngine’s infrastructure takes advantage of many servers available 

within Google datacenters. For each HTTP request, AppEngine locates the 

servers hosting the application that processes the request, evaluates their 

load, and, if necessary, allocates additional resources (i.e., servers) or 

redirects the request to an existing server. 

● 

● Also responsible for monitoring application performance and collecting sta- 

● tistics on which the billing is calculated. 



9.2 Google AppEngine 
 

9.2.1 Architecture and core concepts 

2 Runtime environment 

represents the execution context of applications hosted on AppEngine. 

Sandboxing 

Major responsibilities of the runtime environment is to provide the application 

environment with an isolated and protected context. 

Supported runtimes 

● Java, Python, and Go. 

● Currently supports Java 6, Java Server Pages (JSP), and applications 

interact with environment by using the Java Servlet standard. 

● Developers can create applications with the AppEngine Java SDK. 

● Python is provided by an optimized Python 2.5.2 interpreter. 

● Python Web application framework- webapp. 

● Go programming language - SDK includes compiler and standard libraries 

for developing applications in Go and interfacing it AppEngine services. 



 

9.2 Google AppEngine 
9.2.1 Architecture and core concepts 

3 Storage 

operate differently depending on the volatility of the data. 

 
Static file servers 

● Dynamic and static data. 

● Dynamic data - logic of the application and the interaction with the user. 

● Static data constitute of components that define the graphical layout of the 

application (CSS files, plain HTML files, JavaScript files, images, icons, 

and sound files) or data files. 

 
DataStore 

● DataStore is a service that allows developers to store semistructured data. 

● DataStore is based on Bigtable a redundant, distributed, and 

semistructured 

● data store that organizes data in the form of tables. 



9.2 Google AppEngine 
9.2.1 Architecture and core concepts 

4 Application services 

 

Simplify common operations that are performed in Web applications: 

● access to data, 

● account management, 

● integration of external resources, 

● messaging and communication, 

● image manipulation, and 

● asynchronous computation. 

 
UrlFetch 

● The sandbox environment does not allow applications to open arbitrary 

connections. 

● HTTP/HTTPS by means of the UrlFetch service. 

● Applications can make synchronous and asynchronous Web requests and 

integrate the resources obtained. 

● Ability to set deadlines for requests so that they can be completed (or 

aborted) within a given time. 



9.2 Google AppEngine 
9.2.1 Architecture and core concepts 

4 Application services 

 

MemCache 

● caching services by means of MemCache. 

● distributed in-memory cache that is optimized for fast access and provides 

volatile store for objects that are frequently accessed. 

● significantly reduce the access time to data. 

 
Mail and instant messaging 

● Email can also be used to trigger activities in Web applications. 

● send and receive mails through Mail service - allows sending email on 

behalf of the application to specific user accounts. 

● Extensible Messaging and Presence Protocol (XMPP), Any chat service 

that supports XMPP, such as Google Talk, can send and receive chat 

messages to and from the Web application. 

 
Account management 

● Web applications can conveniently store profile settings in the form of key-

value pairs, attach them to a given Google account, and quickly retrieve 

them once the user authenticates. 



9.2 Google AppEngine 
 

9.2.1 Architecture and core concepts 

5 Compute services 

● Users navigate the Web pages and get instantaneous feedback. 

● Feedback is result of some computation happening on the Web 

application. 

● Immediate feedback and notification once the required operation is 

completed. 

● Task queues 

● Task Queues allow applications to submit a task for a later execution. 

● Cron jobs 

● Schedule the required operation at the desired time. 



9.2 Google AppEngine 
9.2.2 Application life cycle 

 

Testing and development, deployment, and monitoring. 

Java SDK and Python SDK 

 
1 Application development and testing 

2 Application deployment and management 

 
1 Application development and testing 

● Java SDK - facility for building applications with the Java 5 and Java 6 

runtime environments. 

● Eclipse development environment by using the Google AppEngine plug-in - 

install Java SDK, Google Web Toolkit, and Google AppEngine plug-ins into 

Eclipse. 

● Python SDK - Python 2.5. 

● Standalone tool, called GoogleAppEngineLauncher, for managing Web 

applications locally and deploying them to AppEngine. 

● webapp - includes a set of models, components, and tools that simplify 

development of Web applications. 



9.2 Google AppEngine 
9.2.2 Application life cycle 

 

2 Application deployment and management 

 
● Deployed on AppEngine with a simple click or command-line tool. 

● Also from GoogleAppEngineLauncher and Google AppEngine plug-in. 

● http://<application-id>.appspot.com. 

● Also map the application with registered DNS domain name. 



9.2 Google AppEngine 
 

9.2.3 Cost model 

 
● Set up a billing account and be charged on a pay-per-use basis. 

● Developers to identify the appropriate daily budget. 

● An application is measured against billable quotas, fixed quotas, and 

per-minute quotas. 

● Once an application reaches the quota, resource is depleted and will not 

be available to application until the quota is replenished. 

● Once a resource is depleted, subsequent requests to that resource will 

generate an error or an exception. 



 

9.3 Microsoft Azure 
Built on top of Microsoft datacenters infrastructure and provides with collection 

of services. 

● Services range from compute, storage, and networking to application 

connectivity, access control, and business intelligence. 

 
● Figure 9.3 provides an overview of services provided by Azure. 



 

 



9.3 Microsoft Azure 
 

9.3.1 Azure core concepts 

9.3.2 SQL Azure 

9.3.3 Windows Azure platform appliance 

9.3.4 Observations 

 
9.3.1 Azure core concepts 

● Made up of foundation layer and a set of developer services that can be 

used to build scalable applications. 

● Services cover compute, storage, networking, and identity 

management, which are tied together by middleware called AppFabric. 

1 Compute services 

Web role 

Worker role 

Virtual machine role 

2 Storage services 

Blobs 

Azure drive 

Tables 

Queues 



9.3 Microsoft Azure 
 

 

9.3.1 Azure core concepts 

3 Core infrastructure: AppFabric 

Access control 

Service bus 

Azure cache 

4 Other services 

Windows Azure virtual network 

Windows Azure content delivery network 



9.3 Microsoft Azure 
9.3.1 Azure core concepts 

1 Compute services 

 

● Compute services are core components, they are delivered by means of 

abstraction of roles. 

● A role is a runtime environment that is customized for specific compute 

task. 

● Roles are managed by Azure OS and instantiated on demand. 

Web role 

● The Web role is designed to implement scalable Web applications. 

● hosted on the IIS 7 Web Server, which is a component of the infrastructure 

that supports Azure. 

● .NET technology supports Web roles; developers can directly develop their 

applications in Visual Studio, test them locally, and upload to Azure. 

● Used to run and scale PHP Web applications on Azure. 

Worker role 

● Worker roles are designed to host general compute services on Azure. 

● Quickly provide compute power or to host services. 

● Runs continuously from the creation of its instance. 

● Azure SDK provides APIs and libraries that allow connecting the role with 

the service provided by runtime and easily controlling its startup. 



9.3 Microsoft Azure 
9.3.1 Azure core concepts 

1 Compute services 

 

Virtual machine role 

● allows to fully control the computing stack of compute service by defining a 

custom image of Windows Server 2008 R2 OS & their applications. 

● Hyper-V virtualization technology. 

● Developers can image Windows server installation into a Virtual Hard 

Disk (VHD). 
 
 



9.3 Microsoft Azure 
 

9.3.1 Azure core concepts 

2 Storage services 

● Windows Azure provides different types of storage solutions that 

complement compute services with a more durable and redundant option 

compared to local storage. 

Blobs 

● Store large amount of data in the form of binary large objects (BLOBs). 

● Two types of blobs are available: 

○ Block blobs. composed of blocks optimized for sequential access; 

○ Blocks are of 4 MB, and a single block blob can reach 200 GB. 

○ Page blobs. pages that are identified by an offset from the beginning 

of blob. 

○ Split into multiple pages or constituted of single page. 

○ Optimized for random access. 

○ Maximum dimension of a page blob can be 1 TB. 

Azure drive 

● Entire file system in the form of single Virtual Hard Drive (VHD) file. 

● NTFS file system, providing persistent and durable storage. 

Tables 

● semistructured storage solution. Tables are more similar to spreadsheets. 

● Handle large amounts of data and queries returning huge result sets. 

● Currently, table can contain up to 100 TB of data, and rows can have up to 

255 properties, with a maximum of 1 MB for each row. 



9.3 Microsoft Azure 
 

9.3.1 Azure core concepts 

2 Storage services 

Queues 

● Queue storage allows applications to communicate by exchanging 

messages through durable queues, thus avoiding lost or unprocessed 

messages. 

● Applications enter messages into a queue, and other applications can read 

them in a first-in, first-out (FIFO) style. 

● When an application reads a message it is marked as invisible; hence it 

will not be available to other clients. 

● Once Application has completed processing message, it explicitly deletes 

message from queue. 

● Alternative to reading a message is peeking, which allows retrieving 

message but letting it stay visible in the queue. 

 
 

● All the services described are geo-replicated three times to ensure their 

availability in case of major disasters. 

● Geo-replication involves the copying of data into a different datacenter 

that is hundreds or thousands of miles away from the original 

datacenter. 



9.3 Microsoft Azure 
9.3.1 Azure core concepts 

3 Core infrastructure: AppFabric 

 

● Middleware for developing, deploying, and managing applications on 

cloud or for integrating existing applications with cloud services. 

● Scaling out and high availability; sandboxing and multitenancy; state 

management; and dynamic address resolution and routing. 

● Simplify many common tasks in distributed application, such as 

communication, authentication and authorization, and data access. 

Access control 

● AppFabric provides capability of encoding access control to resources in 

Web applications. 

● Services into set of rules that are expressed outside application code base. 

● Applications can leverage Active Directory, Windows Live, Google, 

Facebook, and other services to authenticate users. 

Service bus 

● Messaging and connectivity infrastructure. 

● Designed to allow transparent network traversal and to simplify 

development of loosely coupled applications letting developers focus on 

logic of interaction. 

● Applications need to be connected to bus, which provides these services. 



9.3 Microsoft Azure 
9.3.1 Azure core concepts 

3 Core infrastructure: AppFabric 

 

Azure cache 

● provides a set of durable storage solutions that allow applications to persist 

their data. 

● Azure Cache is a service that allows developers to quickly access data 

persisted on Windows Azure storage or in SQL Azure. 

● implements a distributed in-memory cache of which, size can be 

dynamically adjusted by applications. 



9.3 Microsoft Azure 
 

9.3.1 Azure core concepts 

4 Other services 

● Simplify the development and integration of applications. 

Windows Azure virtual network 

● includes Windows Azure Connect and Windows Azure Traffic 

Manager. 

● Windows Azure Connect allows easy setup of IP-based network 

connectivity among machines hosted on private premises and roles 

deployed on Azure Cloud. 

● Windows Azure Traffic Manager provides load-balancing features for 

services listening to HTTP or HTTPS ports and hosted on multiple roles. 

Windows Azure content delivery network 

● Content delivery network solution that improves content delivery 

capabilities of Windows Azure Storage and Microsoft Windows Update, 

Bing maps. 



9.3 Microsoft Azure 
 

 

9.3.2 SQL Azure 

● SQL Azure is a relational database service hosted on Windows Azure and 

built on the SQL Server technologies. 

● via SQL Server - provides developers with scalable, highly available, and 

fault-tolerant relational database. 

● Service is manageable using REST APIs, allowing developers to control 

databases. 



 

9.3 Microsoft Azure 
9.3.2 SQL Azure 

 



 

9.3 Microsoft Azure 
9.3.2 SQL Azure 

● Developers have to sign up for Windows Azure account in order to use 

SQL Azure. 

● Closely resemble physical SQL Servers: They have a fully qualified domain 

name under the database.windows.net 

( i.e., server-name.database.windows.net) domain name. 

● This simplifies management tasks and the interaction with SQL Azure from 

client applications. 



 

9.3 Microsoft Azure 
9.3.3 Windows Azure platform appliance 

● Can also be deployed as appliance on third-party data centers and 

constitutes the cloud infrastructure governing the physical servers of 

datacenter. 

● Includes Windows Azure, SQL Azure, and Microsoft- specified 

configuration of network, storage, and server hardware. 

● The appliance targets governments and service providers who want to 

have their own cloud computing infrastructure. 

● Full-featured implementation of Windows Azure. 

● Goal is to replicate Azure on a third-party infrastructure and make available 

its services beyond boundaries of Microsoft Cloud. 

 
The appliance addresses two major scenarios: 

● institutions that have very large computing needs (such as government 

agencies) and 

● institutions that cannot afford to transfer their data outside their premises. 



 

9.3 Microsoft Azure 
9.3.4 Observations 

● Windows Azure is Microsoft’s solution for developing cloud computing 

applications. 

● PaaS layer. 

● Provides developer with collection of services and scal- able middleware 

hosted on Microsoft datacenters that address compute, storage, 

networking, and identity management needs of applications. 

● Individually or all together for building both applications. 

● Compute services are based on the abstraction of roles. 

● AppFabric, constitutes distributed and scalable middleware of Azure. 

● SQL Azure is another important element of Windows Azure and provides 

support for relational data in the cloud. 

● Platform is based on .NET technology and Windows systems. 



 

 
 
 
 
 
 
 

Chapter 10 – Cloud Applications 
 

● Huge popularity in industry due to its ability to host applications for which 

the services can be delivered to consumers rapidly at minimal cost. 

● We discuss Application case studies, detailing their architecture and how 

they leveraged various cloud technologies. 

● Range of domains, from scientific to engineering, gaming, and social 

networking. 



 

Overview 
10.1 Scientific applications 

10.1.1 Healthcare: ECG analysis in the cloud 

10.1.2 Biology: protein structure prediction 

10.1.3 Biology: gene expression data analysis for cancer diagnosis 

10.1.4 Geoscience: satellite image processing 

10.2 Business and consumer applications 

10.2.1 CRM and ERP 

1 Salesforce.com 

2 Microsoft dynamics CRM 

3 NetSuite 

10.2.2 Productivity 

1 Dropbox and iCloud 

2 Google docs 

3 Cloud desktops: EyeOS and XIOS/3 

10.2.3 Social networking 

1 Facebook 

10.2.4 Media applications 

1 Animoto 

2 Maya rendering with Aneka 

3 Video encoding on the cloud: Encoding.com 

10.2.5 Multiplayer online gaming 



10.1 Scientific applications  

 

 

● increasingly using cloud computing systems and technologies. 

● high-performance computing (HPC) applications, high-throughput 

computing (HTC) applications, and data-intensive applications. 

● minimal changes need to be made to existing applications. 

● IaaS solutions, offer optimal environment for running bag-of-tasks 

applications and workflows. 

● Scientists explore new programming models for tackling computationally 

challenging problems. 

● Applications - redesigned and implemented on top of cloud programming 

application models and platforms to leverage their unique capabilities. 



10.1 Scientific applications  

 

10.1.1 Healthcare: ECG analysis in the cloud 

● cloud technologies to support doctors in providing more effective 

diagnostic processes. 

● Internet connectivity and its accessibility from any device at any time has 

made cloud technologies an attractive option for developing health-

monitoring systems. 



10.1 Scientific applications  

10.1.1 Healthcare: ECG analysis in the cloud 
 



10.1 Scientific applications 
 

 

10.1.2 Biology: protein structure prediction 

● Require high computing capabilities and often operate on large data-sets 

that cause extensive I/O operations. 

● extensive use of supercomputing and cluster computing infrastructures. 

● Protein structure prediction is a computationally intensive task. 

● The geometric structure of a protein cannot be directly inferred from the 

sequence of genes that compose its structure, but it is the result of 

complex computations aimed at identifying the structure. 

● This task requires investigation of space with massive number of states, 

creating large number of computations for each of these states. 

 
 

● One project that investigates the use of cloud technologies for protein 

structure prediction is Jeeva — an integrated Web portal that enables 

scientists to offload the prediction task to a computing cloud based on 

Aneka (Figure 10.2). 

● Uses machine learning tecniques. 

● E,H,C classification. 



10.1 Scientific applications 
 

 

 



10.1 Scientific applications 
10.1.3 Biology: gene expression data analysis for cancer diagnosis 

 

● measurement of the expression levels of thousands of genes at once. 

● used to understand the biological processes that are triggered by medical 

treatment at a cellular level. 

● Gene expression profiling is utilized to provide a more accurate 

classification of tumors. 

 
● Learning classifiers, which generate a population of condition-action rules 

that guide the classification process. 

● eXtended Classifier System (XCS) has been utilized for classifying large 

datasets in bioinformatics and computer science domains. 

● CoXCS divides the entire search space into subdomains and employs 

standard XCS algorithm in each of these subdomains. 



10.1 Scientific applications 
10.1.3 Biology: gene expression data analysis for cancer diagnosis 

 

 

 
 

 



10.1 Scientific applications  

 

 

10.1.4 Geoscience: satellite image processing 

● collect, produce, and analyze massive amounts of geospatial and 

nonspatial data. 

● the geographic information system (GIS) is a major element of 

geoscience applications. GIS applications capture, store, manipulate, 

analyze, manage, and present all types of geographically referenced data. 



10.1 Scientific applications  

10.1.4 Geoscience: satellite image processing 
 



 

10.2 Business & consumer applications 

10.2.1 CRM and ERP 

1 Salesforce.com 

2 Microsoft dynamics CRM 

3 NetSuite 

10.2.2 Productivity 

1 Dropbox and iCloud 

2 Google docs 

3 Cloud desktops: EyeOS and XIOS/3 

10.2.3 Social networking 

1 Facebook 

10.2.4 Media applications 

1 Animoto 

2 Maya rendering with Aneka 

3 Video encoding on the cloud: Encoding.com 

10.2.5 Multiplayer online gaming 



 

10.2 Business & consumer 

applications 
10.2.1 CRM and ERP 

● Customer relationship management (CRM) and enterprise resource 

planning (ERP) applications are market segments that are flourishing in 

the cloud. 

● access to business and customer data from everywhere and from any 

device. 

● ERP systems integrate several aspects of enterprise: finance and 

accounting, human resources, manufacturing, supply chain management, 

project management, and CRM. 

● ERP solutions are less popular than CRM solutions at this time. 

 
1 Salesforce.com 

● most popular and developed CRM solution available today. 

● Salesforce.com is based on Force.com cloud development platform. 



 

10.2 Business & consumer applications 
10.2.1 CRM and ERP 

 



 

10.2 Business & consumer applications 
10.2.1 CRM and ERP 
2 Microsoft dynamics CRM 

● completely hosted in Microsoft’s datacenters across the world and offers to 

customers a 99.9% SLA. 

● Each CRM 

● instance is deployed on a separate database, and the application provides 

users with facilities for marketing, sales, and advanced customer 

relationship management. 

● SOAP and RESTful Web services. 

● integrate with other Microsoft products and line-of-business applications. 

 
3 NetSuite 

● Three major products: NetSuite Global ERP, NetSuite Global CRM1 , 

and NetSuite Global Ecommerce. 

● All-in-one solution: NetSuite One World, integrates all three products 

together. 

● Two large datacenters on the East and West coasts of the United States, 

connected by redundant links. 

● The NetSuite Business Operating System (NS-BOS) is complete stack 

of technologies for building SaaS. 



10.2 Business & consumer applications 
 

10.2.2 Productivity 
1 Dropbox and iCloud 

Also Windows Live, Amazon Cloud Drive, and CloudMe. 
 



10.2 Business & consumer applications 
 

10.2.2 Productivity 

2 Google docs 

● Google Docs allows users to create and edit text documents, 

spreadsheets, presentations, forms, and drawings. 

 
● It aims to replace desktop products such as Microsoft Office and 

OpenOffice and provide similar interface and functionality as a cloud 

service. 



 

10.2 Business & consumer applications 
10.2.2 Productivity 

3 Cloud desktops: EyeOS and XIOS/3 

● EyeOS 1 is one of the most popular Web desktop solutions. 

● Replicates the functionalities of a classic desktop environment and comes 

with pre-installed applications for the most common file and document 

management tasks. 

 
 

Xcerion XML Internet OS/3 (XIOS/3) 

● Another example of a Web desktop environment. 

● Strong leverage of XML, used to implement many of the tasks of the OS: 

rendering user interfaces, defining application business logics, structuring 

file system organization, and even application development. 



10.2 Business & consumer applications 
 

10.2.2 Productivity 

3 Cloud desktops: EyeOS 
 
 



10.2 Business & consumer applications 
 

 

10.2.3 Social networking 

1 Facebook 

● 800 million users 

● Two data centers built and optimized to reduce costs and impact on 

environment. 

● Technologies constitute a powerful platform for developing cloud 

applications. 

● The reference stack serving Facebook is based on LAMP (Linux, Apache, 

MySQL, and PHP). 

● The social graph identifies collection of interlinked information that is of 

relevance for a given user. 

● Most of the user data are served by querying a distributed cluster of 

MySQL. 

● These data are then cached for faster retrieval. 

● Thrift - collection of abstractions that allow cross-language development. 



10.2 Business & consumer applications 
 

10.2.4 Media applications 

● Video-processing operations, such as encoding, transcoding, composition, 

and rendering, are good candidates for a cloud-based environment. 

● Computationally intensive tasks offloaded to cloud computing infrastructures. 

 
1 Animoto 

● interface for quickly creating videos out of images, music, and video 

fragments submitted by users. 

● process is executed in the background and the user is notified via email 

once the video is rendered. 

● ability to quickly create videos with stunning effects without user intervention. 

● 

● Artificial intelligence (AI) engine, which selects the animation and transition 

effects according to pictures and music, drives the rendering operation. 



 

 



 

10.2 Business & consumer applications 
10.2.4 Media applications 

2 Maya rendering with Aneka 

● A private cloud solution for rendering train designs by engineering 

department of GoFront group, a division of China Southern Railway. 
 



10.2 Business & consumer applications 
 

10.2.4 Media applications 

3 Video encoding on the cloud: Encoding.com 

● Video-transcoding services on demand. 

● Leverages cloud technology to provide both horsepower required for video 

conversion and storage for staging videos. 

● Service integrates with both Amazon Web Services technologies (EC2, S3, 

and CloudFront) and Rackspace (Cloud Servers, Cloud Files, and Limelight 

CDN access). 

● Also offers other video-editing operations such as the insertion of 

thumbnails, watermarks, or logos. 



10.2 Business & consumer applications 
 

 
 

10.2.5 Multiplayer online gaming 

● based on game log processing. 

● Players update game server hosting game session, and server integrates all 

updates into a log that is made available to all players through a TCP port. 

● Client software used for game connects to the log port and, by reading log, 

updates local user interface with actions of other players. 



10.2 Business & consumer applications 
 

10.2.5 Multiplayer online gaming 


