

Acknowledgements to

Donald Hearn & Pauline Baker: Computer Graphics with OpenGL

Version,3rd / 4th Edition, Pearson Education,2011

Edward Angel: Interactive Computer Graphics- A Top Down approach

with OpenGL, 5th edition. Pearson Education, 2008

M M Raiker, Computer Graphics using OpenGL, Filip learning/Elsevier

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

3.1.1 The Clipping Window

 We can design our own clipping window with any shape, size, and orientation we choose.

 But clipping a scene using a concave polygon or a clipping window with nonlinear

boundaries requires more processing than clipping against a rectangle.

 Rectangular clipping windows in standard position are easily defined by giving the

coordinates of two opposite corners of each rectangle

Viewing-Coordinate Clipping Window

 A general approach to the two-dimensional viewing transformation is to set up a viewing-

coordinate system within the world-coordinate frame

 We choose an origin for a two-dimensional viewing-coordinate frame at some world

position P0 = (x0, y0), and we can establish the orientation using a world vector V that

defines the yview direction.

 Vector V is called the two-dimensional view up vector.

3.1 Clipping:

3.1.1Clipping window,

3.1.2 Normalization and Viewport transformations,

3.1.3 Clipping algorithms:

 2D point clipping,

 2D line clipping algorithms: cohen-sutherland

 line clipping.

 Polygon fill area clipping: Sutherland

 Hodgeman polygon clipping algorithm.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 An alternative method for specifying the orientation of the viewing frame is to give a

rotation angle relative to either the x or y axis in the world frame.

 The first step in the transformation sequence is to translate the viewing origin to the

world origin.

 Next, we rotate the viewing system to align it with the world frame.

 Given the orientation vector V, we can calculate the components of unit vectors v = (vx,

vy) and u = (ux, uy) for the yview and xview axes, respectively.

Where,

 T is the translation matrix,

 R is the rotation matrix

 A viewing-coordinate frame is moved into coincidence with the world frame is shown in

below figure

(a) applying a translation matrix T to move the viewing origin to the world origin, then

(b) applying a rotation matrix R to align the axes of the two systems.

World-Coordinate Clipping Window

 A routine for defining a standard, rectangular clipping window in world coordinates is

typically provided in a graphics-programming library.

 We simply specify two world-coordinate positions, which are then assigned to the two

opposite corners of a standard rectangle.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

 Once the clipping window has been established, the scene description is processed

through the viewing routines to the output device.

 Thus, we simply rotate (and possibly translate) objects to a desired position and set up the

clipping window all in world coordinates.

A triangle

(a), with a selected reference point and orientation vector, is translated and rotated to position

(b) within a clipping window.

3.1.2 Normalization and Viewport Transformations

 The viewport coordinates are often given in the range from 0 to 1 so that the viewport is

positioned within a unit square.

 After clipping, the unit square containing the viewport is mapped to the output display

device

Mapping the Clipping Window into a Normalized Viewport

 We first consider a viewport defined with normalized coordinate values between 0 and 1.

 Object descriptions are transferred to this normalized space using a transformation that

maintains the same relative placement of a point in the viewport as it had in the clipping

window Position (xw, yw) in the clipping window is mapped to position (xv, yv) in the

associated viewport.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 To transform the world-coordinate point into the same relative position within the

viewport, we require that

 Solving these expressions for the viewport position (xv, yv), we have

xv = sxxw + tx

yv = syyw + ty

Where the scaling factors are

and the translation factors are

 We could obtain the transformation from world coordinates to viewport coordinates with

the following sequence:

1. Scale the clipping window to the size of the viewport using a fixed-point position of

 (xwmin, ywmin).

2. Translate (xwmin, ywmin) to (xvmin, yvmin).

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

 The scaling transformation in step (1) can be represented with the two dimensional

Matrix

 The two-dimensional matrix representation for the translation of the lower-left corner of

the clipping window to the lower-left viewport corner is

 And the composite matrix representation for the transformation to the normalized

viewport is

Mapping the Clipping Window into a Normalized Square

 Another approach to two-dimensional viewing is to transform the clipping window into a

normalized square, clip in normalized coordinates, and then transfer the scene description

to a viewport specified in screen coordinates.

 This transformation is illustrated in Figure below with normalized coordinates in the

range from −1 to 1

 The matrix for the normalization transformation is obtained by substituting −1 for xvmin

and yvmin and substituting +1 for xvmax and yvmax.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 Similarly, after the clipping algorithms have been applied, the normalized square with

edge length equal to 2 is transformed into a specified viewport.

 This time, we get the transformation matrix by substituting −1 for xwmin and ywmin and

substituting +1 for xwmax and ywmax

 Typically, the lower-left corner of the viewport is placed at a coordinate position

specified relative to the lower-left corner of the display window. Figure below

demonstrates the positioning of a viewport within a display window.

Display of Character Strings

 Character strings can be handled in one of two ways when they are mapped through the

viewing pipeline to a viewport.

 The simplest mapping maintains a constant character size.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

 This method could be employed with bitmap character patterns.

 But outline fonts could be transformed the same as other primitives; we just need to

transform the defining positions for the line segments in the outline character shape

Split-Screen Effects and Multiple Output Devices

 By selecting different clipping windows and associated viewports for a scene, we can

provide simultaneous display of two or more objects, multiple picture parts, or different

views of a single scene.

 It is also possible that two or more output devices could be operating concurrently on a

particular system, and we can set up a clipping-window/viewport pair for each output

device.

 A mapping to a selected output device is sometimes referred to as a workstation

transformation

3.1.3 Clipping Algorithms

 Any procedure that eliminates those portions of a picture that are either inside or outside

a specified region of space is referred to as a clipping algorithm or simply clipping.

 The most common application of clipping is in the viewing pipeline, where clipping is

applied to extract a designated portion of a scene (either two-dimensional or three-

dimensional) for display on an output device.

 Different objects clipping are

1. Point clipping

2. Line clipping (straight-line segments)

3. Fill-area clipping (polygons)

4. Curve clipping

5. Text clipping

Two-Dimensional Point Clipping

 For a clipping rectangle in standard position, we save a two-dimensional point P = (x, y)

for display if the following inequalities are satisfied:

xwmin ≤ x ≤ xwmax and ywmin ≤ y ≤ ywmax

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 If any of these four inequalities is not satisfied, the point is clipped

Two-Dimensional Line Clipping

 Clipping straight-line segments using a standard rectangular clipping window.

 A line-clipping algorithm processes each line in a scene through a series of tests and

intersection calculations to determine whether the entire line or any part of it is to be

saved.

 The expensive part of a line-clipping procedure is in calculating the intersection positions

of a line with the window edges.

 Therefore, a major goal for any line-clipping algorithm is to minimize the intersection

calculations.

 To do this, we can first perform tests to determine whether a line segment is completely

inside the clipping window or completely outside.

 It is easy to determine whether a line is completely inside a clipping window, but it is

more difficult to identify all lines that are entirely outside the window.

 One way to formulate the equation for a straight-line segment is to use the following

parametric representation, where the coordinate positions (x0, y0) and (xend, yend) designate

the two line endpoints:

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

Cohen-Sutherland Line Clipping

 Processing time is reduced in the Cohen-Sutherland method by performing more tests

before proceeding to the intersection calculations.

 Initially, every line endpoint in a picture is assigned a four-digit binary value, called a

region code, and each bit position is used to indicate whether the point is inside or

outside one of the clipping-window boundaries.

 A possible ordering for the clipping window boundaries corresponding to the bit

positions in the Cohen-Sutherland endpoint region code.

 Thus, for this ordering, the rightmost position (bit 1) references the left clipping-window

boundary, and the leftmost position (bit 4) references the top window boundary.

 A value of 1 (or true) in any bit position indicates that the endpoint is outside that

window border. Similarly, a value of 0 (or false) in any bit position indicates that the

endpoint is not outside (it is inside or on) the corresponding window edge.

 Sometimes, a region code is referred to as an “out” code because a value of 1 in any bit

position indicates that the spatial point is outside the corresponding clipping boundary.

 The nine binary region codes for identifying the position of a line endpoint, relative to the

clipping-window boundaries.

 Bit values in a region code are determined by comparing the coordinate values (x, y) of

an endpoint to the clipping boundaries.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

 Bit 1 is set to 1 if x < xwmin, and the other three bit values are determined similarly.

 To determine a boundary intersection for a line segment, we can use the slopeintercept

form of the line equation.

 For a line with endpoint coordinates (x0, y0) and (xend, yend), the y coordinate of the

intersection point with a vertical clipping border line can be obtained with the calculation

y = y0 + m(x − x0)

Where the x value is set to either xwmin or xwmax, and the slope of

the line is calculated as

m = (yend − y0)/(xend − x0).

 Similarly, if we are looking for the intersection with a horizontal border, the x coordinate

can be calculated as

x = x0 + y − y0/m , with y set either to ywmin or to ywmax.

Polygon Fill-Area Clipping

 To clip a polygon fill area, we cannot apply a line-clipping method to the individual

polygon edges directly because this approach would not, in general, produce a closed

polyline.

 We can process a polygon fill area against the borders of a clipping window using the

same general approach as in line clipping.

 We need to maintain a fill area as an entity as it is processed through the clipping stages.

 Thus, we can clip a polygon fill area by determining the new shape for the polygon as

each clipping-window edge is processed, as demonstrated

 When we cannot identify a fill area as being completely inside or completely outside the

clipping window, we then need to locate the polygon intersection positions with the

clipping boundaries.

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

 One way to implement convex-polygon clipping is to create a new vertex list at each

clipping boundary, and then pass this new vertex list to the next boundary clipper.

 The output of the final clipping stage is the vertex list for the clipped polygon

Sutherland--Hodgman Polygon Clipping

 An efficient method for clipping a convex-polygon fill area, developed by Sutherland and

Hodgman, is to send the polygon vertices through each clipping stage so that a single

clipped vertex can be immediately passed to the next stage.

 The final output is a list of vertices that describe the edges of the clipped polygon fill area

the basic Sutherland-Hodgman algorithm is able to process concave polygons when the

clipped fill area can be described with a single vertex list.

 The general strategy in this algorithm is to send the pair of endpoints for each successive

polygon line segment through the series of clippers (left, right, bottom, and top)

 There are four possible cases that need to be considered when processing a polygon edge

against one of the clipping boundaries.

1. One possibility is that the first edge endpoint is outside the clipping boundary and the

second endpoint is inside.

2. Or, both endpoints could be inside this clipping boundary.

3. Another possibility is that the first endpoint is inside the clipping boundary and the

second endpoint is outside.

4. And, finally, both endpoints could be outside the clipping boundary

 To facilitate the passing of vertices from one clipping stage to the next, the output from

each clipper can be formulated as shown in Figure below

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

The selection of vertex edge of intersection for each clipper is given as follows

1. If the first input vertex is outside this clipping-window border and the second vertex is inside,

both the intersection point of the polygon edge with the window border and the second vertex are

sent to the next clipper.

2. If both input vertices are inside this clipping-window border, only the second vertex is sent to

the next clipper.

3. If the first vertex is inside this clipping-window border and the second vertex is outside, only

the polygon edge-intersection position with the clipping-window border is sent to the next

clipper.

4. If both input vertices are outside this clipping-window border, no vertices are sent to the next

clipper.

Example

Module 3 ***SAI RAM*** Clipping

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

 When a concave polygon is clipped with the Sutherland-Hodgman algorithm, extraneous

lines may be displayed.

 This occurs when the clipped polygon should have two or more separate sections. But

since there is only one output vertex list, the last vertex in the list is always joined to the

first vertex.

 There are several things we can do to display clipped concave polygons correctly.

 For one, we could split a concave polygon into two or more convexpolygons and process

each convex polygon separately using the Sutherland- Hodgman algorithm

 Another possibility is to modify the Sutherland- Hodgman method so that the final vertex

list is checked for multiple intersection points along any clipping-window boundary.

 If we find more than two vertex positions along any clipping boundary, we can separate

the list of vertices into two or more lists that correctly identify the separate sections of the

clipped fill area.

 A third possibility is to use a more general polygon clipper that has been designed to

process concave polygons correctly

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

3.2.1 Three-Dimensional Geometric Transformations

 Methods for geometric transformations in three dimensions are extended from two

dimensional methods by including considerations for the z coordinate.

 A three-dimensional position, expressed in homogeneous coordinates, is represented as a

four-element column vector

3.2.2 Three-Dimensional Translation

 A position P = (x, y, z) in three-dimensional space is translated to a location P’= (x’, y’,

z’) by adding translation distances tx, ty, and tz to the Cartesian coordinates of P:

 We can express these three-dimensional translation operations in matrix form

or

 Moving a coordinate position with translation vector T = (tx , ty , tz) .

3.2 3DGeometric Transformations:

3.2.1 3D Geometric Transformations

3.2.2 3D Translation,

3.2.3 Rotation,

3.2.4 Scaling,

3.2.5 Composite 3D Transformations,

3.2.6 Other 3D Transformations,

3.2.7 Affine Transformations,

3.2.8 Opengl Geometric Transformations

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 Shifting the position of a three-dimensional object using translation vector T.

CODE:

typedef GLfloat Matrix4x4 [4][4];

/* Construct the 4 x 4 identity matrix. */

void matrix4x4SetIdentity (Matrix4x4 matIdent4x4)

{

GLint row, col;

for (row = 0; row < 4; row++)

for (col = 0; col < 4 ; col++)

matIdent4x4 [row][col] = (row == col);

}

void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)

{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */

matrix4x4SetIdentity (matTransl3D);

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

matTransl3D [0][3] = tx;

matTransl3D [1][3] = ty;

matTransl3D [2][3] = tz;

}

 An inverse of a three-dimensional translation matrix is obtained by negating the

translation distances tx, ty, and tz

3.2.3 Three-Dimensional Rotation

 By convention, positive rotation angles produce counterclockwise rotations about a

coordinate axis.

 Positive rotations about a coordinate axis are counterclockwise, when looking along the

positive half of the axis toward the origin.

Three-Dimensional Coordinate-Axis Rotations

Along z axis:

 In homogeneous-coordinate form, the three-dimensional z-axis rotation equations are

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 Transformation equations for rotations about the other two coordinate axes can be

obtained with a cyclic permutation of the coordinate parameters x, y, and z

x → y→ z→ x

Along x axis

Along y axis

 An inverse three-dimensional rotation matrix is obtained in the same by replacing θ with

−θ.

General Three-Dimensional Rotations

 A rotation matrix for any axis that does not coincide with a coordinate axis can be set up

as a composite transformation involving combinations of translations and the coordinate-

axis rotations the following transformation sequence is used:

1. Translate the object so that the rotation axis coincides with the parallel coordinate axis.

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

2. Perform the specified rotation about that axis.

3. Translate the object so that the rotation axis is moved back to its original position.

 A coordinate position P is transformed with the sequence shown in this figure as

Where the composite rotation matrix for the transformation is

 When an object is to be rotated about an axis that is not parallel to one of the coordinate

axes, we must perform some additional transformations we can accomplish the required

rotation in five steps:

1. Translate the object so that the rotation axis passes through the coordinate origin.

2. Rotate the object so that the axis of rotation coincides with one of the coordinate axes.

3. Perform the specified rotation about the selected coordinate axis.

4. Apply inverse rotations to bring the rotation axis back to its original orientation.

5. Apply the inverse translation to bring the rotation axis back to its original spatial position.

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 Components of the rotation-axis vector are then computed as

V = P2 − P1

= (x2 − x1, y2 − y1, z2 − z1)

 The unit rotation-axis vector u is

Where the components a, b, and c are the direction cosines for the rotation axis

 The first step in the rotation sequence is to set up the translation matrix that repositions

the rotation axis so that it passes through the coordinate origin.

 Translation matrix is given by

 Because rotation calculations involve sine and cosine functions, we can use standard

vector operations to obtain elements of the two rotation matrices.

 A vector dot product can be used to determine the cosine term, and a vector cross product

can be used to calculate the sine term.

 Rotation of u around the x axis into the x z plane is accomplished by rotating u’ (the

projection of u in the y z plane) through angle α onto the z axis.

 If we represent the projection of u in the yz plane as the vector u’= (0, b, c), then the

cosine of the rotation angle α can be determined from the dot product of u’ and the unit

vector uz along the z axis:

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

where d is the magnitude of u’

 The coordinate-independent form of this cross-product is

 and the Cartesian form for the cross-product gives us

 Equating the above two equations

or

 We have determined the values for cos α and sin α in terms of the components of vector

u, the matrix elements for rotation of this vector about the x axis and into the xz plane

 Rotation of unit vector u” (vector u after rotation into the x z plane) about the y axis.

Positive rotation angle β aligns u” with vector uz .

 We can determine the cosine of rotation angle β from the dot product of unit vectors u’’

and uz. Thus,

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 Comparing the coordinate-independent form of the cross-product

with the Cartesian form

 we find that

 The transformation matrix for rotation of u” about the y axis is

 The specified rotation angle θ can now be applied as a rotation about the z axis as

follows:

 The transformation matrix for rotation about an arbitrary axis can then be expressed as

the composition of these seven individual transformations:

 The composite matrix for any sequence of three-dimensional rotations is of the form

 The upper-left 3 × 3 submatrix of this matrix is orthogonal

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

 Assuming that the rotation axis is not parallel to any coordinate axis, we could form the

following set of local unit vectors

 If we express the elements of the unit local vectors for the rotation axis as

 Then the required composite matrix, which is equal to the product Ry(β) · Rx(α), is

Quaternion Methods for Three-Dimensional Rotations

 A more efficient method for generating a rotation about an arbitrarily selected axis is to

use a quaternion representation for the rotation transformation.

 Quaternions, which are extensions of two-dimensional complex numbers, are useful in a

number of computer-graphics procedures, including the generation of fractal objects.

 One way to characterize a quaternion is as an ordered pair, consisting of a scalar part and

a vector part:

q = (s, v)

 A rotation about any axis passing through the coordinate origin is accomplished by first

setting up a unit quaternion with the scalar and vector parts as follows:

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

 Any point position P that is to be rotated by this quaternion can be represented in

quaternion notation as

 Rotation of the point is then carried out with the quaternion operation

where q−1 = (s, −v) is the inverse of the unit quaternion q

 This transformation produces the following new quaternion:

 The second term in this ordered pair is the rotated point position p’, which is evaluated

with vector dot and cross-products as

 Designating the components of the vector part of q as v = (a, b, c) , we obtain the

elements for the composite rotation matrix

 Using the following trigonometric identities to simplify the terms

we can rewrite Matrix as

3.2.4 Three-Dimensional Scaling

 The matrix expression for the three-dimensional scaling transformation of a position P =

(x, y, z) is given by

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

 The three-dimensional scaling transformation for a point position can be represented as

where scaling parameters sx, sy, and sz are assigned any positive values.

 Explicit expressions for the scaling transformation relative to the origin are

 Because some graphics packages provide only a routine that scales relative to the

coordinate origin, we can always construct a scaling transformation with respect to any

selected fixed position (xf , yf , zf) using the following transformation sequence:

1. Translate the fixed point to the origin.

2. Apply the scaling transformation relative to the coordinate origin

3. Translate the fixed point back to its original position.

 This sequence of transformations is demonstrated

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

CODE:

class wcPt3D

{

private:

GLfloat x, y, z;

public:

/* Default Constructor:

* Initialize position as (0.0, 0.0, 0.0).

*/

wcPt3D () {

x = y = z = 0.0;

}

setCoords (GLfloat xCoord, GLfloat yCoord, GLfloat zCoord) {

x = xCoord;

y = yCoord;

z = zCoord;

}

GLfloat getx () const {

return x;

}

GLfloat gety () const {

return y;

}

GLfloat getz () const {

return z;

}

};

typedef float Matrix4x4 [4][4];

void scale3D (GLfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt)

{

Matrix4x4 matScale3D;

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

/* Initialize scaling matrix to identity. */

matrix4x4SetIdentity (matScale3D);

matScale3D [0][0] = sx;

matScale3D [0][3] = (1 - sx) * fixedPt.getx ();

matScale3D [1][1] = sy;

matScale3D [1][3] = (1 - sy) * fixedPt.gety ();

matScale3D [2][2] = sz;

matScale3D [2][3] = (1 - sz) * fixedPt.getz ();

}

3.2.5 Composite Three-Dimensional Transformations

 We form a composite threedimensional transformation by multiplying the matrix

representations for the individual operations in the transformation sequence.

 We can implement a transformation sequence by concatenating the individual matrices

from right to left or from left to right, depending on the order in which the matrix

representations are specified

3.2.6 Other Three-Dimensional Transformations

Three-Dimensional Reflections

 A reflection in a three-dimensional space can be performed relative to a selected

reflection axis or with respect to a reflection plane.

 Reflections with respect to a plane are similar; when the reflection plane is a coordinate

plane (xy, xz, or yz), we can think of the transformation as a 180◦ rotation in four-

dimensional space with a conversion between a left-handed frame and a right-handed

frame

 An example of a reflection that converts coordinate specifications froma right handed

system to a left-handed system is shown below

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

 The matrix representation for this reflection relative to the xy plane is

Three-Dimensional Shears

 These transformations can be used to modify object shapes.

 For three-dimensional we can also generate shears relative to the z axis.

 A general z-axis shearing transformation relative to a selected reference position is

produced with the following matrix:

 The Below figure shows the shear transformation of a cube

A unit cube (a) is sheared relative to the origin (b) by Matrix 46, with shzx = shzy = 1.

3.2.7 Affine Transformations

 A coordinate transformation of the form

is called an affine transformation

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

 Affine transformations (in two dimensions, three dimensions, or higher dimensions) have

the general properties that parallel lines are transformed into parallel lines, and finite

points map to finite points.

 Translation, rotation, scaling, reflection,andshear are examples of affine transformations.

 Another example of an affine transformation is the conversion of coordinate descriptions

for a scene from one reference system to another because this transformation can be

described as a combination of translation and rotation

3.2.8 OpenGL Geometric-Transformation Functions

OpenGL Matrix Stacks

glMatrixMode:

 used to select the modelview composite transformation matrix as the target of

subsequent OpenGL transformation calls

 four modes: modelview, projection, texture, and color

 the top matrix on each stack is called the “current matrix”.

 for that mode. the modelview matrix stack is the 4 × 4 composite matrix that

combines the viewing transformations and the various geometric transformations

that we want to apply to a scene.

 OpenGL supports a modelview stack depth of at least 32,

glGetIntegerv (GL_MAX_MODELVIEW_STACK_DEPTH, stackSize);

 determine the number of positions available in the modelview stack for a particular

implementation of OpenGL.

 It returns a single integer value to array stackSize

 other OpenGL symbolic constants: GL_MAX_PROJECTION_STACK_DEPTH,

GL_MAX_TEXTURE_STACK_DEPTH, or GL_MAX_COLOR_STACK_DEPTH.

 We can also find out how many matrices are currently in the stack with

 glGetIntegerv (GL_MODELVIEW_STACK_DEPTH, numMats);

Module 3 ***SAI RAM*** 3D Geometric Transformations

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

We have two functions available in OpenGL for processing the matrices in a stack

glPushMatrix ();

Copy the current matrix at the top of the active stack and store that copy in the second

stack position

glPopMatrix ();

which destroys the matrix at the top of the stack, and the second matrix in the stack

becomes the current matrix

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 1

3.3.1 Illumination Models

 An illumination model, also called a lighting model (and sometimes referred to as a

shading model), is used to calculate the color of an illuminated position on the surface of

an object

3.3.2 Light Sources

 Any object that is emitting radiant energy is a light source that contributes to the lighting

effects for other objects in a scene.

 We can model light sources with a variety of shapes and characteristics, and most

emitters serve only as a source of illumination for a scene.

 A light source can be defined with a number of properties. We can specify its position,

the color of the emitted light, the emission direction, and its shape.

 We could set up a light source that emits different colors in different directions.

 We assign light emitting properties using a single value for each of the red, green, and

blue (RGB) color components, which we can describe as the amount, or the “intensity,”

of that color component.

Point Light Sources

 The simplest model for an object that is emitting radiant energy is a point light source

with a single color, specified with three RGB components

3.3 Illumination and Color
3.3.1 Illumination models

3.3.2 Light sources,

3.3.3 Basic illumination models-Ambient light, diffuse reflection, specular and

 phong model,

3.3.4 Corresponding openGL functions.

3.3.5 Properties of light,

3.3.6 Color models, RGB and CMY color models.

.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 2

 A point source for a scene by giving its position and the color of the emitted light. light

rays are generated along radially diverging paths from the single-color source position.

 This light-source model is a reasonable approximation for sources whose dimensions are

small compared to the size of objects in the scene

Infinitely Distant Light Sources

 A large light source, such as the sun, that is very far from a scene can also be

approximated as a point emitter, but there is little variation in its directional effects.

 The light path from a distant light source to any position in the scene is nearly constant

 We can simulate an infinitely distant light source by assigning it a color value and a fixed

direction for the light rays emanating from the source.

 The vector for the emission direction and the light-source color are needed in the

illumination calculations, but not the position of the source.

Radial Intensity Attenuation

 As radiant energy from a light source travels outwards through space, its amplitude at any

distance dl from the source is attenuated by the factor 1/d2 a surface close to the light

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 3

source receives a higher incident light intensity from that source than a more distant

surface.

 However, using an attenuation factor of 1/dl
2

 with a point source does not always produce

realistic pictures.

 The factor 1/dl
2 tends to produce too much intensity variation for objects that are close to

the light source, and very little variation when dl is large

 We can attenuate light intensities with an inverse quadratic function of dl that includes a

linear term:

 The numerical values for the coefficients, a0, a1, and a2, can then be adjusted to produce

optimal attenuation effects.

 We cannot apply intensity-attenuation calculation 1 to a point source at “infinity,”

because the distance to the light source is indeterminate.

 We can express the intensity-attenuation function as

Directional Light Sources and Spotlight Effects

 A local light source can be modified easily to produce a directional, or spotlight, beam of

light.

 If an object is outside the directional limits of the light source, we exclude it from

illumination by that source

 One way to set up a directional light source is to assign it a vector direction and an

angular limit θl measured from that vector direction, in addition to its position and color

 We can denoteVlight as the unit vector in the light-source direction andVobj as the unit

vector in the direction from the light position to an object position.

 Then Vobj ·Vlight = cos α

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 4

 where angle α is the angular distance of the object from the light direction vector.

 If we restrict the angular extent of any light cone so that 0◦ < θl ≤ 90◦, then the object is

within the spotlight if cos α ≥ cos θl , as shown

 . If Vobj ·Vlight < cos θl , however, the object is outside the light cone.

Angular Intensity Attenuation

 For a directional light source, we can attenuate the light intensity angularly about the

source as well as radially out from the point-source position

 This allows intensity decreasing as we move farther from the cone axis.

 A commonly used angular intensity-attenuation function for a directional light source is

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 5

 Where the attenuation exponent al is assigned some positive value and angle φ is

measured from the cone axis.

 The greater the value for the attenuation exponent al , the smaller the value of the angular

intensity-attenuation function for a given value of angleφ > 0◦.

 There are several special cases to consider in the implementation of the angular-

attenuation function.

 There is no angular attenuation if the light source is not directional (not a spotlight).

 We can express the general equation for angular attenuation as

Extended Light Sources and the Warn Model

 When we want to include a large light source at a position close to the objects in a scene,

such as the long neon lamp, we can approximate it as a lightemitting surface

 One way to do this is to model the light surface as a grid of directional point emitters.

 We can set the direction for the point sources so that objects behind the light-emitting

surface are not illuminated.

 We could also include other controls to restrict the direction of the emitted light near the

edges of the source

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 6

 The Warn model provides a method for producing studio lighting effects using sets of

point emitters with various parameters to simulate the barn doors, flaps, and spotlighting

controls employed by photographers.

 Spotlighting is achieved with the cone of light discussed earlier, and the flaps and barn

doors provide additional directional control

3.3.3 Basic Illumination Models

 Light-emitting objects in a basic illumination model are generally limited to point sources

many graphics packages provide additional functions for dealing with directional lighting

(spotlights) and extended light sources.

Ambient Light

 This produces a uniform ambient lighting that is the same for all objects, and it

approximates the global diffuse reflections from the various illuminated surfaces.

 Reflections produced by ambient-light illumination are simply a form of diffuse

reflection, and they are independent of the viewing direction and the spatial orientation of

a surface.

 However, the amount of the incident ambient light that is reflected depends on surface

optical properties, which determine how much of the incident energy is reflected and how

much is absorbed

Diffuse Reflection

 The incident light on the surface is scattered with equal intensity in all directions,

independent of the viewing position.

 Such surfaces are called ideal diffuse reflectors They are also referred to as Lambertian

reflectors, because the reflected radiant light energy fromany point on the surface is

calculated with Lambert’s cosine law.
 This law states that the amount of radiant energy coming from any small surface area

dAin a direction φN relative to the surface normal is proportional to cos φN

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 7

 The intensity of light in this direction can be computed as the ratio of the magnitude of

the radiant energy per unit time divided by the projection of the surface area in the

radiation direction:

 Assuming that every surface is to be treated as an ideal diffuse reflector (Lambertian), we

can set a parameter kd for each surface that determines the fraction of the incident light

that is to be scattered as diffuse reflections.

 This parameter is called the diffuse-reflection coefficient or the diffuse reflectivity. The

ambient contribution to the diffuse reflection at any point on a surface is simply

 The below figure illustrates this effect, showing a beam of light rays incident on two

equal-area plane surface elements with different spatial orientations relative to the

illumination direction from a distant source

A surface that is perpendicular to the direction of the incident light (a) is more illuminated than

an equal-sized surface at an oblique angle (b) to the incoming light direction.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 8

 We can model the amount of incident light on a surface from a source with intensity Il as

 We can model the diffuse reflections from a light source with intensity Il using the

calculation

 At any surface position, we can denote the unit normal vector as N and the unit direction

vector to a point source as L,

 The diffuse reflection equation for single point-source illumination at a surface position

can be expressed in the form

 The unit direction vector L to a nearby point light source is calculated using the surface

position and the light-source position:

 We can combine the ambient and point-source intensity calculations to obtain an

expression for the total diffuse reflection at a surface position

 Using parameter ka , we can write the total diffuse-reflection equation for a single point

source as

 Where both ka and kd depend on surface material properties and are assigned values in the

range from 0 to 1.0 for monochromatic lighting effects

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 9

Specular Reflection and the Phong Model

 The bright spot, or specular reflection, that we can see on a shiny surface is the result of

total, or near total, reflection of the incident light in a concentrated region around the

specular-reflection angle.

 The below figure shows the specular reflection direction for a position on an illuminated

surface

1. N represents: unit normal surface vector The specular reflection angle equals the angle of

the incident light, with the two angles measured on opposite sides of the unit normal

surface vector N

2. Rrepresents the unit vector in the direction of ideal specular reflection,

3. L is the unit vector directed toward the point light source, and

4. Vis the unit vector pointing to the viewer fromthe selected surface position.

 Angle φ is the viewing angle relative to the specular-reflection direction R

 An empirical model for calculating the specular reflection range, developed by Phong

Bui Tuong and called the Phong specular-reflection model or simply the Phon G

model, sets the intensity of specular reflection proportional to cosns φ

 Angle φ can be assigned values in the range 0◦ to 90◦, so that cos φ varies from 0 to 1.0.

 The value assigned to the specular-reflection exponent ns is determined by the type of

surface that we want to display.

 A very shiny surface is modeled with a large value for ns (say, 100 or more), and smaller

values (down to 1) are used for duller surfaces.

 For a perfect reflector, ns is infinite. For a rough surface, such as chalk or cinderblock, ns

is assigned a value near 1.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 10

 Plots of cosns φ using five different values for the specular exponent ns .

 We can approximately model monochromatic specular intensity variations using a

specular-reflection coefficient,W(θ), for each surface.

 In general, W(θ) tends to increase as the angle of incidence increases. At θ = 90◦, all the

incident light is reflected (W(θ) = 1).

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 11

 Using the spectral-reflection function W(θ), we can write the Phong specular-reflection

model as

where Il is the intensity of the light source, and φ is the viewing angle relative to the specular-

reflection direction R.

 BecauseVand R are unit vectors in the viewing and specular-reflection directions, we can

calculate the value of cos φ with the dot product V·R.

 In addition, no specular effects are generated for the display of a surface if V and L are

on the same side of the normal vector N or if the light source is behind the surface

 We can determine the intensity of the specular reflection due to a point light source at a

surface position with the calculation

 The direction for R, the reflection vector, can be computed from the directions for vectors

L and N.

 The projection of L onto the direction of the normal vector has a magnitude equal to the

dot productN·L, which is also equal to the magnitude of the projection of unit vector R

onto the direction of N.

 Therefore, from this diagram, we see that

 R + L = (2N·L)N

 and the specular-reflection vector is obtained as

 R = (2N·L)N – L

 A somewhat simplified Phong model is obtained using the halfway vector H between L

and V to calculate the range of specular reflections.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 12

 If we replace V·R in the Phong model with the dot productN·H, this simply replaces the

empirical cos φ calculation with the empirical cos α calculation

 The halfway vector is obtained as

 For nonplanar surfaces, N·H requires less computation than V·R because the calculation

of R at each surface point involves the variable vector N.

3.3.4 OpenGL Illumination Functions

OpenGL Point Light-Source Function

glLight* (lightName, lightProperty, propertyValue);

 A suffix code of i or f is appended to the function name, depending on the data type of

the property value

 lightName: GL_LIGHT0, GL_LIGHT1, GL_LIGHT2, . . . , GL_LIGHT7

 lightProperty: must be assigned one of the OpenGL symbolic property constants

glEnable (lightName); turn on that light with the command

glEnable (GL_LIGHTING); activate the OpenGL lighting routines

Specifying an OpenGL Light-Source Position and Type

GL_POSITION:

 specifies light-source position

 this symbolic constant is used to set two light-source properties at the same time: the

light-source position and the light-source type

Example:

GLfloat light1PosType [] = {2.0, 0.0, 3.0, 1.0};

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 13

GLfloat light2PosType [] = {0.0, 1.0, 0.0, 0.0};

glLightfv (GL_LIGHT1, GL_POSITION, light1PosType);

glEnable (GL_LIGHT1);

glLightfv (GL_LIGHT2, GL_POSITION, light2PosType);

glEnable (GL_LIGHT2);

Specifying OpenGL Light-Source Colors

 Unlike an actual light source, an OpenGL light has three different color properties the

symbolic color-property constants GL_AMBIENT, GL_DIFFUSE, and

GL_SPECULAR

Example:

GLfloat blackColor [] = {0.0, 0.0, 0.0, 1.0};

GLfloat whiteColor [] = {1.0, 1.0, 1.0, 1.0};

glLightfv (GL_LIGHT3, GL_AMBIENT, blackColor);

glLightfv (GL_LIGHT3, GL_DIFFUSE, whiteColor);

glLightfv (GL_LIGHT3, GL_SPECULAR, whiteColor);

Specifying Radial-Intensity Attenuation Coefficients

 For an OpenGL Light Source we could assign the radial-attenuation coefficient values as

glLightf (GL_LIGHT6, GL_CONSTANT_ATTENUATION, 1.5);

glLightf (GL_LIGHT6, GL_LINEAR_ATTENUATION, 0.75);

glLightf (GL_LIGHT6, GL_QUADRATIC_ATTENUATION, 0.4);

OpenGL Directional Light Sources (Spotlights)

 There are three OpenGL property constants for directional effects:

GL_SPOT_DIRECTION, GL_SPOT_CUTOFF, and GL_SPOT_EXPONENT

GLfloat dirVector [] = {1.0, 0.0, 0.0};

glLightfv (GL_LIGHT3, GL_SPOT_DIRECTION, dirVector);

glLightf (GL_LIGHT3, GL_SPOT_CUTOFF, 30.0);

glLightf (GL_LIGHT3, GL_SPOT_EXPONENT, 2.5);

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 14

OpenGL Global Lighting Parameters

glLightModel* (paramName, paramValue);

 We append a suffix code of i or f, depending on the data type of the parameter value.

 In addition, for vector data, we append the suffix code v.

 Parameter paramName is assigned an OpenGL symbolic constant that identifies the

global property to be set, and parameter paramValue is assigned a single value or set of

values.

globalAmbient [] = {0.0, 0.0, 0.3, 1.0);

glLightModelfv (GL_LIGHT_MODEL_AMBIENT, globalAmbient);

glLightModeli (GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

 turn off this default and use the actual viewing position (which is the viewing-coordinate

origin) to calculate V

Texture

 patterns are combined only with the nonspecular color, and then the two colors are

combined.

 We select this two-color option with

glLightModeli (GL_LIGHT_MODEL_COLOR_CONTROL,

GL_SEPARATE_SPECULAR_COLOR);

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 15

Color Models

3.3.5 Properties of Light

 We can characterize light as radiant energy, but we also need other concepts to describe

our perception of light.

The Electromagnetic Spectrum

 Color is electromagnetic radiation within a narrow frequency band.

 Some of the other frequency groups in the electromagnetic spectrum are referred to as

radio waves, microwaves, infrared waves, and X-rays. The frequency is shown below

 Each frequency value within the visible region of the electromagnetic spectrum

corresponds to a distinct spectral color.

 At the low-frequency end (approximately 3.8×1014 hertz) are the red colors, and at the

high-frequency end (approximately 7.9 × 1014 hertz) are the violet colors.

 In the wave model of electromagnetic radiation, light can be described as oscillating

transverse electric and magnetic fields propagating through space.

 The electric and magnetic fields are oscillating in directions that are perpendicular to

each other and to the direction of propagation.

 For one spectral color (a monochromatic wave), the wavelength and frequency are

inversely proportional to each other, with the proportionality constant as the speed of

light (c):

 c = λf
 A light source such as the sun or a standard household light bulb emits all frequencies

within the visible range to produce white light.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 16

 When white light is incident upon an opaque object, some frequencies are reflected and

some are absorbed.

 If low frequencies are predominant in the reflected light, the object is described as red. In

this case, we say that the perceived light has a dominant frequency (or dominant

wavelength) at the red end of the spectrum.

 The dominant frequency is also called the hue, or simply the color, of the light.

Psychological Characteristics of Color

 Other properties besides frequency are needed to characterize our perception of Light

 Brightness: which corresponds to the total light energy and can be quantified as the

luminance of the light.

 Purity, or the saturation of the light: Purity describes how close a light appears to be to

a pure spectral color, such as red.

 chromaticity, is used to refer collectively to the two properties describing color

characteristics: purity and dominant frequency (hue).

 We can calculate the brightness of the source as the area under the curve, which gives the

total energy density emitted.

 Purity (saturation) depends on the difference between ED and EW

 Below figure shows Energy distribution for a white light source

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 17

 Below figure shows, Energy distribution for a light source with a dominant frequency

near the red end of the frequency range.

3.3.7 Color Models

 Any method for explaining the properties or behavior of color within some particular

context is called a color model.

Primary Colors

 The hues that we choose for the sources are called the primary colors, and the color

gamut for the model is the set of all colors that we can produce from the primary colors.

 Two primaries that produce white are referred to as complementary colors.

 Examples of complementary color pairs are red and cyan, green and magenta, and blue

and yellow

Intuitive Color Concepts

 An artist creates a color painting by mixing color pigments with white and black

pigments to form the various shades, tints, and tones in the scene.

 Starting with the pigment for a “pure color” (“pure hue”), the artist adds a black pigment

to produce different shades of that color.

 Tones of the color are produced by adding both black and white pigments.

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 18

The RGB Color Model

 According to the tristimulus theory of vision, our eyes perceive color through the

stimulation of three visual pigments in the cones of the retina.

 One of the pigments is most sensitive to light with a wavelength of about 630 nm (red),

another has its peak sensitivity at about 530 nm (green), and the third pigment is most

receptive to light with a wavelength of about 450 nm (blue).

 The three primaries red, green, and blue, which is referred to as the RGB color model.

 We can represent this model using the unit cube defined on R, G, and B axes, as shown in

Figure

 The origin represents black and the diagonally opposite vertex, with coordinates (1, 1, 1),

is white the RGB color scheme is an additive model.

 Each color point within the unit cube can be represented as a weighted vector sum of the

primary colors, using unit vectors R, G, and B:

 C(λ) = (R, G, B) = RR + G G + B B

 where parameters R, G, and B are assigned values in the range from 0 to 1.0

 Chromaticity coordinates for the National Television System Committee (NTSC)

standard RGB phosphors are listed in Table

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 19

 Below figure shows the approximate color gamut for the NTSC standard RGB primaries

The CMY and CMYK Color Models

The CMY Parameters

 A subtractive color model can be formed with the three primary colors cyan, magenta,

and yellow

 A unit cube representation for the CMY model is illustrated in Figure

Module 3 ***SAI RAM*** Illumination and color model

Mr. Sukruth Gowda M A, Dept., of CSE, SVIT 20

 In the CMY model, the spatial position (1, 1, 1) represents black, because all components

of the incident light are subtracted.

 The origin represents white light.

 Equal amounts of each of the primary colors produce shades of gray along the main

diagonal of the cube.

 A combination of cyan and magenta ink produces blue light, because the red and green

components of the incident light are absorbed.

 Similarly, a combination of cyan and yellow ink produces green light, and a combination

of magenta and yellow ink yields red light.

 The CMY printing process often uses a collection of four ink dots, which are arranged in

a close pattern somewhat as an RGB monitor uses three phosphor dots.

 Thus, in practice, the CMY color model is referred to as the CMYK model, where K is

the black color parameter.

 One ink dot is used for each of the primary colors (cyan, magenta, and yellow), and one

ink dot is black

Transformations Between CMY and RGB Color Spaces

 We can express the conversion from an RGB representation to a CMY representation

using the following matrix transformation:

 Where the white point in RGB space is represented as the unit column vector.

 And we convert from a CMY color representation to an RGB representation using the

matrix transformation

