
Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 1

UNIT-3: CLASSES, INHERITANCE, EXCEPTIONS,

PACKAGES AND INTERFACES

Beautiful thought: “You have to grow from the inside out. None can teach you, none

can make you spiritual. There is no other teacher but your own soul.” ― Swami

Vivekananda

Syllabus:

Classes, Inheritance, Exceptions, Packages and Interfaces:

 Classes: Classes fundamentals; Declaring objects; Constructors, this

keyword, garbage collection.

Inheritance: inheritance basics, using super, creating multi level

hierarchy, method overriding.

Exception handling: Exception handling in Java. Packages, Access

Protection, Importing Packages, Interfaces.

.

https://www.goodreads.com/author/show/80592.Swami_Vivekananda
https://www.goodreads.com/author/show/80592.Swami_Vivekananda

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 2

1. CLASSES:

Definition

A class is a template for an object, and defines the data fields and methods

of the object. The class methods provide access to manipulate the data fields. The

“data fields” of an object are often called “instance variables.”

Example Program:

Program to calculate Area of Rectangle

class Rectangle

{

 int length; //Data Member or instance Variables

 int width;

 void getdata(int x,int y) //Method

 {

 length=x;

 width=y;

 }

 int rectArea() //Method

 {

 return(length*width);

 }

}

class RectangleArea

{

 public static void main(String args[])

 {

 Rectangle rect1=new Rectangle(); //object creation

rect1.getdata(10,20); //calling methods using object with dot(.)

 int area1=rect1.rectArea();

 System.out.println("Area1="+area1);

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 3

 After defining a class, it can be used to create objects by instantiating the

class. Each object occupies some memory to hold its instance variables (i.e.

its state).

 After an object is created, it can be used to get the desired functionality

together with its class.

Creating instance of a class/Declaring objects:

Rectangle rect1=new Rectangle()

Rectangle rect2=new Rectangle()

 The above two statements declares an object rect1 and rect2 is of type

Rectangle class using new operator , this operator dynamically allocates

memory for an object and returns a refernce to it.in java all class objects

must be dynamically allocated.

We can also declare the object like this:

Rectangle rect1; // declare reference to object.

rect1=new Rectangle() // allocate memory in the Rectangle object.

The Constructors:

 A constructor initializes an object when it is created. It has the same

name as its class and is syntactically similar to a method. However,

constructors have no explicit return type.

 Typically, you will use a constructor to give initial values to the

instance variables defined by the class, or to perform any other

startup procedures required to create a fully formed object.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 4

 All classes have constructors, whether you define one or not, because

Java automatically provides a default constructor that initializes all

member variables to zero. However, once you define your own

constructor, the default constructor is no longer used.

Example:

Here is a simple example that uses a constructor:

// A simple constructor.

class MyClass

{

 int x;

 // Following is the constructor

 MyClass()

 {

 x = 10;

 }

}

You would call constructor to initialize objects as follows:

class ConsDemo

{

 public static void main(String args[])

 {

 MyClass t1 = new MyClass();

 MyClass t2 = new MyClass();

 System.out.println(t1.x + " " + t2.x);

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 5

Parameterized Constructor:

 Most often you will need a constructor that accepts one or

more parameters. Parameters are added to a constructor in the

same way that they are added to a method: just declare them

inside the parentheses after the constructor's name.

Example:

Here is a simple example that uses a constructor:

// A simple constructor.

class MyClass

{

 int x;

 // Following is the Parameterized constructor

 MyClass(int i)

 {

 x = 10;

 }

}

You would call constructor to initialize objects as follows:

class ConsDemo

{

 public static void main(String args[])

 {

 MyClass t1 = new MyClass(10);

 MyClass t2 = new MyClass(20);

 System.out.println(t1.x + " " + t2.x);

 }

}

This would produce following result:

10 20

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 6

static keyword

The static keyword is used in java mainly for memory management.

We may apply static keyword with variables, methods, blocks and nested

class. The static keyword belongs to the class than instance of the class.

The static can be:

1. variable (also known as class variable)

2. method (also known as class method)

3. block

4. nested class

static variable

Example Program without static variable

In this example, we have created an instance variable named count

which is incremented in the constructor. Since instance variable gets the

memory at the time of object creation, each object will have the copy of the

instance variable, if it is incremented, it won't reflect to other objects. So

each objects will have the value 1 in the count variable.

class Counter

{

int count=0;//will get memory when instance is created

 Counter()

{

count++;

System.out.println(count);

}

}

Class MyPgm

{

public static void main(String args[])

{

Counter c1=new Counter();

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 7

Counter c2=new Counter();

Counter c3=new Counter();

 }

}

Output: 1

 1

 1

Example Program with static variable

As we have mentioned above, static variable will get the memory only

once, if any object changes the value of the static variable, it will retain its

value.

class Counter

{

static int count=0;//will get memory only once and retain its value

Counter()

{

count++;

System.out.println(count);

}

 }

Class MyPgm

{

public static void main(String args[])

{

Counter c1=new Counter();

Counter c2=new Counter();

Counter c3=new Counter();

 }

}

Output:1

 2

 3

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 8

static method

If you apply static keyword with any method, it is known as static method

 A static method belongs to the class rather than object of a class.

 A static method can be invoked without the need for creating an instance

of a class.

 static method can access static data member and can change the value of

it.

//Program to get cube of a given number by static method

 class Calculate

{

 static int cube(int x)

{

 return x*x*x;

 }

 Class MyPgm

{

 public static void main(String args[])

{

 //calling a method directly with class (without creation of object)

int result=Calculate.cube(5);

 System.out.println(result);

 }

}

Output:125

this keyword

 this keyword can be used to refer current class instance variable.

 If there is ambiguity between the instance variable and parameter,

this keyword resolves the problem of ambiguity.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 9

Understanding the problem without this keyword

Let's understand the problem if we don't use this keyword by the example

given below:

class student

{

 int id;

 String name;

 student(int id,String name)

{

 id = id;

 name = name;

 }

 void display()

{

System.out.println(id+" "+name);

}

}

Class MyPgm

{

public static void main(String args[])

{

 student s1 = new student(111,"Anoop");

 student s2 = new student(321,"Arayan");

 s1.display();

 s2.display();

 }

}

Output: 0 null

 0 null

In the above example, parameter (formal arguments) and instance variables are

same that is why we are using this keyword to distinguish between local variable and

instance variable.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 10

Solution of the above problem by this keyword

//example of this keyword

class Student

{

 int id;

 String name;

 student(int id,String name)

{

 this.id = id;

 this.name = name;

 }

 void display()

{

System.out.println(id+" "+name);

 }

}

 Class MyPgm

 {

public static void main(String args[])

{

 Student s1 = new Student(111,"Anoop");

 Student s2 = new Student(222,"Aryan");

 s1.display();

 s2.display();

}

 }

Output111 Anoop

 222 Aryan

Inner class

 It has access to all variables and methods of Outer class and may refer to

them directly. But the reverse is not true, that is, Outer class cannot

directly access members of Inner class.

 One more important thing to notice about an Inner class is that it can be

created only within the scope of Outer class. Java compiler generates an

error if any code outside Outer class attempts to instantiate Inner class.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 11

Example of Inner class

class Outer

{

 public void display()

 {

 Inner in=new Inner();

 in.show();

 }

 class Inner

 {

 public void show()

 {

 System.out.println("Inside inner");

 }

 }

}

class Test

{

 public static void main(String[] args)

 {

 Outer ot=new Outer();

 ot.display();

 }

}

Output:

Inside inner

Garbage Collection

In Java destruction of object from memory is done automatically by the JVM.

When there is no reference to an object, then that object is assumed to be no

longer needed and the memories occupied by the object are released. This

technique is called Garbage Collection. This is accomplished by the JVM.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 12

Can the Garbage Collection be forced explicitly?

No, the Garbage Collection cannot be forced explicitly. We may request JVM for

garbage collection by calling System.gc() method. But this does not guarantee that

JVM will perform the garbage collection.

Advantages of Garbage Collection

1. Programmer doesn't need to worry about dereferencing an object.

2. It is done automatically by JVM.

3. Increases memory efficiency and decreases the chances for memory leak.

finalize() method

Sometime an object will need to perform some specific task before it is destroyed

such as closing an open connection or releasing any resources held. To handle such

situation finalize() method is used. finalize() method is called by garbage collection

thread before collecting object. It’s the last chance for any object to perform

cleanup utility.

Signature of finalize() method

protected void finalize()

{

 //finalize-code

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 13

gc() Method

gc() method is used to call garbage collector explicitly. However gc() method does

not guarantee that JVM will perform the garbage collection. It only requests the

JVM for garbage collection. This method is present in System and Runtime class.

Example for gc() method

public class Test

{

 public static void main(String[] args)

 {

 Test t = new Test();

 t=null;

 System.gc();

 }

 public void finalize()

 {

 System.out.println("Garbage Collected");

 }

}

Output :

Garbage Collected

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 14

Inheritance:

 As the name suggests, inheritance means to take something that is

already made. It is one of the most important features of Object

Oriented Programming. It is the concept that is used for reusability

purpose.

 Inheritance is the mechanism through which we can derive classes

from other classes.

 The derived class is called as child class or the subclass or we can say

the extended class and the class from which we are deriving the

subclass is called the base class or the parent class.

 To derive a class in java the keyword extends is used. The following

kinds of inheritance are there in java.

Types of Inheritance

1. Single level/Simple Inheritance

2. Multilevel Inheritance

3. Multiple Inheritance (Java doesn’t support Multiple inheritance

but we can achieve this through the concept of Interface.)

Pictorial Representation of Simple and Multilevel Inheritance

Simple Inheritance Multilevel Inheritance

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 15

Single level/Simple Inheritance

 When a subclass is derived simply from its parent class then this

mechanism is known as simple inheritance. In case of simple

inheritance there is only a sub class and its parent class. It is also

called single inheritance or one level inheritance.

 Example

class A

{

 int x;

 int y;

 int get(int p, int q)

 {

 x=p;

 y=q;

 return(0);

 }

 void Show()

 {

 System.out.println(x);

 }

}

class B extends A

{

 public static void main(String args[])

 {

 A a = new A();

 a.get(5,6);

 a.Show();

 }

 void display()

 {

 System.out.println("y"); //inherited “y” from class A

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 16

 The syntax for creating a subclass is simple. At the beginning of your class

declaration, use the extends keyword, followed by the name of the class to

inherit from:

class A

{

}

class B extends A //B is a subclass of super class A.

{

}

Multilevel Inheritance

 When a subclass is derived from a derived class then this mechanism

is known as the multilevel inheritance.

 The derived class is called the subclass or child class for it's parent

class and this parent class works as the child class for it's just above

(parent) class.

 Multilevel inheritance can go up to any number of level.

class A

{

 int x;

 int y;

 int get(int p, int q)

 {

 x=p;

 y=q;

 return(0);

 }

 void Show()

 {

 System.out.println(x);

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 17

class B extends A

{

 void Showb()

 {

 System.out.println("B");

 }

}

class C extends B

{

 void display()

 {

 System.out.println("C");

 }

 public static void main(String args[])

 {

 A a = new A();

 a.get(5,6);

 a.Show();

 }

}

OUTPUT

5

Multiple Inheritance

 The mechanism of inheriting the features of more than one base class into a

single class is known as multiple inheritance. Java does not support multiple

inheritance but the multiple inheritance can be achieved by using the

interface.

 Here you can derive a class from any number of base classes. Deriving a

class from more than one direct base class is called multiple inheritance.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 18

Java does not support multiple Inheritance

In Java Multiple Inheritance can be achieved through use of Interfaces by

implementing more than one interfaces in a class.

super keyword

 The super is java keyword. As the name suggest super is used to access the

members of the super class. It is used for two purposes in java.

 The first use of keyword super is to access the hidden data variables of the

super class hidden by the sub class.

Example: Suppose class A is the super class that has two instance variables

as int a and float b. class B is the subclass that also contains its own data members

named a and b. then we can access the super class (class A) variables a and b inside

the subclass class B just by calling the following command.

super.member;

 Here member can either be an instance variable or a method. This form of

super most useful to handle situations where the local members of a

subclass hides the members of a super class having the same name. The

following example clarifies all the confusions.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 19

Example:

class A

{

 int a;

 float b;

 void Show()

 {

 System.out.println("b in super class: " + b);

 }

}

class B extends A

{

 int a;

 float b;

 B(int p, float q)

 {

 a = p;

 super.b = q;

 }

 void Show()

 {

 super.Show();

 System.out.println("b in super class: " + super.b);

 System.out.println("a in sub class: " + a);

 }

}

 class Mypgm

{

 public static void main(String[] args)

 {

 B subobj = new B(1, 5);

 subobj.Show();

 }

}

OUTPUT

b in super class: 5.0

b in super class: 5.0

a in sub class: 1

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 20

Use of super to call super class constructor: The second use of the keyword

super in java is to call super class constructor in the subclass. This functionality can

be achieved just by using the following command.

super(param-list);

 Here parameter list is the list of the parameter requires by the constructor

in the super class. super must be the first statement executed inside a

super class constructor. If we want to call the default constructor then we

pass the empty parameter list. The following program illustrates the use of

the super keyword to call a super class constructor.

Example:

class A

{

 int a;

 int b;

 int c;

 A(int p, int q, int r)

 {

 a=p;

 b=q;

 c=r;

 }

}

class B extends A

{

 int d;

 B(int l, int m, int n, int o)

 {

 super(l,m,n);

 d=o;

 }

 void Show()

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 21

 {

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 System.out.println("d = " + d);

 }

}

class Mypgm

{

 public static void main(String args[])

 {

 B b = new B(4,3,8,7);

 b.Show();

 }

 }

OUTPUT

a = 4

b = 3

c = 8

d = 7

Method Overriding

 Method overriding in java means a subclass method overriding a super class

method.

 Superclass method should be non-static. Subclass uses extends keyword to

extend the super class. In the example class B is the sub class and class A

is the super class. In overriding methods of both subclass and superclass

possess same signatures. Overriding is used in modifying the methods of

the super class. In overriding return types and constructor parameters of

methods should match.

Below example illustrates method overriding in java.

Example:

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 22

class A

{

 int i;

 A(int a, int b)

 {

 i = a+b;

 }

 void add()

 {

 System.out.println("Sum of a and b is: " + i);

 }

}

class B extends A

{

 int j;

 B(int a, int b, int c)

 {

 super(a, b);

 j = a+b+c;

 }

 void add()

 {

 super.add();

 System.out.println("Sum of a, b and c is: " + j);

 }

}

class MethodOverriding

{

 public static void main(String args[])

 {

 B b = new B(10, 20, 30);

 b.add();

 }

}

OUTPUT

Sum of a and b is: 30

Sum of a, b and c is: 60

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 23

Method Overloading

 Two or more methods have the same names but different argument lists.

The arguments may differ in type or number, or both. However, the return

types of overloaded methods can be the same or different is called method

overloading. An example of the method overloading is given below:

Example:

class MethodOverloading

{

 int add(int a,int b)

 {

 return(a+b);

 }

 float add(float a,float b)

 {

 return(a+b);

 }

 double add(int a, double b,double c)

 {

 return(a+b+c);

 }

}

class MainClass

{

 public static void main(String arr[])

 {

 MethodOverloading mobj = new MethodOverloading ();

 System.out.println(mobj.add(50,60));

 System.out.println(mobj.add(3.5f,2.5f));

 System.out.println(mobj.add(10,30.5,10.5));

 }

}

OUTPUT

110

6.0

51.0

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 24

Abstract Class

 abstract keyword is used to make a class abstract.

 Abstract class can’t be instantiated with new operator.

 We can use abstract keyword to create an abstract method; an abstract

method doesn’t have body.

 If classes have abstract methods, then the class also needs to be made

abstract using abstract keyword, else it will not compile.

 Abstract classes are used to provide common method implementation to all

the subclasses or to provide default implementation.

Example Program:

abstract Class AreaPgm

{

 double dim1,dim2;

 AreaPgm(double x,double y)

 {

 dim1=x;

 dim2=y;

 }

 abstract double area();

}

class rectangle extends AreaPgm

{

 rectangle(double a,double b)

 {

 super(a,b);

 }

 double area()

 {

 System.out.println("Rectangle Area");

 return dim1*dim2;

 }

}

class triangle extends figure

{

 triangle(double x,double y)

 {

 super(x,y);

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 25

 }

 double area()

 {

 System.out.println("Traingle Area");

 return dim1*dim2/2;

 }

}

class MyPgm

{

 public static void main(String args[])

 {

AreaPgm a=new AreaPgm(10,10); // error, AreaPgm is a abstract class.

 rectangle r=new rectangle(10,5);

 System.out.println("Area="+r.area());

 triangle t=new triangle(10,8);

 AreaPgm ar;

 ar=obj;

 System.out.println("Area="+ar.area());

 }

}

final Keyword In Java

The final keyword in java is used to restrict the user. The final keyword can be

used in many context. Final can be:

1. variable

2. method

3. class

1) final variable: If you make any variable as final, you cannot change the value of

final variable(It will be constant).

Example:There is a final variable speedlimit, we are going to change the value of

this variable, but It can't be changed because final variable once assigned a value

can never be changed.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 26

class Bike

{

 final int speedlimit=90;//final variable

 void run()

{

 speedlimit=400;

 }

}

Class MyPgm

{

 public static void main(String args[])

{

 Bike obj=new Bike();

 obj.run();

 }

}

Output:Compile Time Error

2) final method: If you make any method as final, you cannot override it.

Example:

class Bike

{

final void run()

{

System.out.println("running");

}

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with 100kmph");

}

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 27

Class MyPgm

{

public static void main(String args[])

{

Honda honda= new Honda();

honda.run();

}

}

Output:Compile Time Error

3) final class:If you make any class as final, you cannot extend it.

Example:

final class Bike

{

}

class Honda extends Bike

{

 void run()

 {

System.out.println("running safely with 50kmph");

 }

}

Class MyPgm

{

 public static void main(String args[])

{

 Honda honda= new Honda();

 honda.run();

 }

}

Output:Compile Time Error

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 28

Exception handling:

Introduction

An Exception, It can be defined as an abnormal event that occurs during program

execution and disrupts the normal flow of instructions. The abnormal event can be

an error in the program.

Errors in a java program are categorized into two groups:

1. Compile-time errors occur when you do not follow the syntax of a

programming language.

2. Run-time errors occur during the execution of a program.

Concepts of Exceptions

An exception is a run-time error that occurs during the exception of a java

program.

Example: If you divide a number by zero or open a file that does not exist, an

exception is raised.

In java, exceptions can be handled either by the java run-time system or by a user-

defined code. When a run-time error occurs, an exception is thrown.

The unexpected situations that may occur during program execution are:

 Running out of memory

 Resource allocation errors

 Inability to find files

 Problems in network connectivity

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 29

Exception handling techniques:

Java exception handling is managed via five keywords they are:

1. try:

2. catch.

3. throw.

4. throws.

5. finally.

Exception handling Statement Syntax

Exceptions are handled using a try-catch-finally construct, which has the Syntax.

try

{

 <code>

}

catch (<exception type1> <parameter1>)

{

 // 0 or more<statements>

}

finally

{

 // finally block<statements>

}

1. try Block: The java code that you think may produce an exception is placed

within a try block for a suitable catch block to handle the error.

If no exception occurs the execution proceeds with the finally block else it

will look for the matching catch block to handle the error.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 30

Again if the matching catch handler is not found execution proceeds with

the finally block and the default exception handler throws an exception.

2. catch Block: Exceptions thrown during execution of the try block can be caught

and handled in a catch block. On exit from a catch block, normal execution

continues and the finally block is executed (Though the catch block throws an

exception).

3. finally Block: A finally block is always executed, regardless of the cause of exit

from the try block, or whether any catch block was executed. Generally finally

block is used for freeing resources, cleaning up, closing connections etc.

 Example:

The following is an array is declared with 2 elements. Then the code tries to access

the 3rd element of the array which throws an exception.

// File Name : ExcepTest.java

import java.io.*;

public class ExcepTest

{

 public static void main(String args[])

 {

 try

 {

 int a[] = new int[2];

 System.out.println("Access element three :" + a[3]);

 }

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println("Exception thrown :" + e);

 }

 System.out.println("Out of the block");

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 31

This would produce following result:

Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3

Out of the block

Multiple catch Blocks:

A try block can be followed by multiple catch blocks. The syntax for multiple catch

blocks looks like the following:

try

{

 // code

}

catch(ExceptionType1 e1)

{

 //Catch block

}

catch(ExceptionType2 e2)

{

 //Catch block

}

catch(ExceptionType3 e3)

{

 //Catch block

}

The previous statements demonstrate three catch blocks, but you can have any

number of them after a single try.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 32

Example: Here is code segment showing how to use multiple try/catch

statements.

class Multi_Catch

{

 public static void main (String args [])

 {

 try

 {

 int a=args.length;

 System.out.println(“a=”+a);

 int b=50/a;

 int c[]={1}

 }

 catch (ArithmeticException e)

 {

 System.out.println ("Division by zero");

 }

 catch (ArrayIndexOutOfBoundsException e)

 {

 System.out.println (" array index out of bound");

 }

 }

}

OUTPUT

Division by zero

array index out of bound

Nested try Statements

 Just like the multiple catch blocks, we can also have multiple try blocks.

These try blocks may be written independently or we can nest the try blocks

within each other, i.e., keep one try-catch block within another try-block.

The program structure for nested try statement is:

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 33

Syntax

try

{

 // statements

 // statements

 try

 {

 // statements

 // statements

 }

 catch (<exception_two> obj)

 {

 // statements

 }

 // statements

 // statements

}

catch (<exception_two> obj)

{

 // statements

}

 Consider the following example in which you are accepting two numbers from

the command line. After that, the command line arguments, which are in the

string format, are converted to integers.

 If the numbers were not received properly in a number format, then during

the conversion a NumberFormatException is raised otherwise the control

goes to the next try block. Inside this second try-catch block the first

number is divided by the second number, and during the calculation if there

is any arithmetic error, it is caught by the inner catch block.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 34

Example

class Nested_Try

{

 public static void main (String args [])

 {

 try

 {

 int a = Integer.parseInt (args [0]);

 int b = Integer.parseInt (args [1]);

 int quot = 0;

 try

 {

 quot = a / b;

 System.out.println(quot);

 }

 catch (ArithmeticException e)

 {

 System.out.println("divide by zero");

 }

 }

 catch (NumberFormatException e)

 {

 System.out.println ("Incorrect argument type");

 }

 }

}

The output of the program is: If the arguments are entered properly in the

command prompt like:

OUTPUT

java Nested_Try 2 4 6

 4

If the argument contains a string than the number:

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 35

OUTPUT

java Nested_Try 2 4 aa

 Incorrect argument type

If the second argument is entered zero:

OUTPUT

java Nested_Try 2 4 0

 divide by zero

throw Keyword

 throw keyword is used to throw an exception explicitly. Only object of

Throwable class or its sub classes can be thrown.

 Program execution stops on encountering throw statement, and the closest

catch statement is checked for matching type of exception.

Syntax : throw ThrowableInstance

Creating Instance of Throwable class

There are two possible ways to get an instance of class Throwable,

1. Using a parameter in catch block.

2. Creating instance with new operator.

 new NullPointerException("test");

This constructs an instance of NullPointerException with name test.

Example demonstrating throw Keyword

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 36

class Test

{

 static void avg()

 {

 try

 {

 throw new ArithmeticException("demo");

 }

 catch(ArithmeticException e)

 {

 System.out.println("Exception caught");

 }

 }

 public static void main(String args[])
 {

 avg();

 }

}

In the above example the avg() method throw an instance of ArithmeticException,

which is successfully handled using the catch statement.

throws Keyword

 Any method capable of causing exceptions must list all the exceptions

possible during its execution, so that anyone calling that method gets a prior

knowledge about which exceptions to handle. A method can do so by using

the throws keyword.

Syntax :

 type method_name(parameter_list) throws exception_list

 {

 //definition of method

 }

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 37

NOTE : It is necessary for all exceptions, except the exceptions of type Error and

RuntimeException, or any of their subclass.

Example demonstrating throws Keyword

class Test

{

 static void check() throws ArithmeticException

 {

 System.out.println("Inside check function");

 throw new ArithmeticException("demo");

 }

 public static void main(String args[])

 {

 try

 {

 check();

 }

 catch(ArithmeticException e)

 {

 System.out.println("caught" + e);

 }

 }

}

finally

 The finally clause is written with the try-catch statement. It is guaranteed

to be executed after a catch block or before the method quits.

Syntax

try

{

 // statements

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 38

catch (<exception> obj)

{

 // statements

}

finally

{

 //statements

}

 Take a look at the following example which has a catch and a finally block.

The catch block catches the ArithmeticException which occurs for

arithmetic error like divide-by-zero. After executing the catch block the

finally is also executed and you get the output for both the blocks.

Example:

class Finally_Block

{

 static void division ()

 {

 try

 {

 int num = 34, den = 0;

 int quot = num / den;

 }

 catch(ArithmeticException e)

 {

 System.out.println ("Divide by zero");

 }

 finally

 {

 System.out.println ("In the finally block");

 }

 }

class Mypgm

{

 public static void main(String args[])

 {

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 39

 Finally_Block f=new Finally_Block();

 f.division ();

 }

}

OUTPUT

Divide by zero

In the finally block

Java’s Built in Exceptions

Java defines several exception classes inside the standard package java.lang.

 The most general of these exceptions are subclasses of the standard type

RuntimeException. Since java.lang is implicitly imported into all Java

programs, most exceptions derived from RuntimeException are

automatically available.

Java defines several other types of exceptions that relate to its various class

libraries. Following is the list of Java Unchecked RuntimeException.

Exception Description

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException
Assignment to an array element of an

incompatible type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException
Illegal monitor operation, such as waiting on an

unlocked thread.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 40

IllegalStateException
Environment or application is in incorrect

state.

IllegalThreadStateException
Requested operation not compatible with

current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException
Invalid conversion of a string to a numeric

format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds
Attempt to index outside the bounds of a

string.

UnsupportedOperationException An unsupported operation was encountered.

Following is the list of Java Checked Exceptions Defined in java.lang.

Exception Description

ClassNotFoundException Class not found.

CloneNotSupportedException
Attempt to clone an object that does not implement

the Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException
Attempt to create an object of an abstract class or

interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 41

Creating your own Exception Subclasses

 Here you can also define your own exception classes by extending Exception.

These exception can represents specific runtime condition of course you will

have to throw them yourself, but once thrown they will behave just like

ordinary exceptions.

 When you define your own exception classes, choose the ancestor carefully.

Most custom exception will be part of the official design and thus checked,

meaning that they extend Exception but not RuntimeException.

Example: Throwing User defined Exception

public class MyException extends Exception

{

 String msg = "";

 int marks=50;

 public MyException()

 {

 }

 public MyException(String str)

 {

 super(str);

 }

 public String toString()

 {

 if(marks <= 40)

 msg = "You have failed";

 if(marks > 40)

 msg = "You have Passed";

 return msg;

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 42

 class test

 {

 public static void main(String args[])

 {

 test t = new test();

 t.dd();

 }

 public void add()

 {

 try

 {

 int i=0;

 if(i<40)

 throw new MyException();

 }

 catch(MyException ee1)

 {

 System.out.println("Result:"+ee1);

 }

 }

}

OUTPUT

Result: You have Passed

Chained Exception

 Chained exceptions are the exceptions which occur one after another i.e.

most of the time to response to an exception are given by an application by

throwing another exception.

 Whenever in a program the first exception causes an another exception,

that is termed as Chained Exception. Java provides new functionality for

chaining exceptions.

 Exception chaining (also known as "nesting exception") is a technique for

handling the exception, which occur one after another i.e. most of the time

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 43

is given by an application to response to an exception by throwing another

exception.

 Typically the second exception is caused by the first exception. Therefore

chained exceptions help the programmer to know when one exception causes

another.

The constructors that support chained exceptions in Throwable class are:

Throwable initCause(Throwable)

Throwable(Throwable)

Throwable(String, Throwable)

Throwable getCause()

http://www.roseindia.net/java/exceptions/what-are-chained-exceptions.shtml

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 44

Packages in JAVA

 A java package is a group of similar types of classes, interfaces and sub-

packages.

 Package in java can be categorized in two form,

o built-in package and

o user-defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util,

sql etc.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be

easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

The package keyword is used to create a package in java.

//save as Simple.java

package mypack;

public class Simple
{

 public static void main(String args[])
{

 System.out.println("Welcome to package");
 }
}

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 45

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be

accessible but not subpackages.

The import keyword is used to make the classes and interface of another package

accessible to the current package.

Example of package that import the packagename.*

//save by A.java

package pack;

public class A
{

 public void msg(){System.out.println("Hello");}
}

//save by B.java

package mypack;

import pack.*;

class B
{

 public static void main(String args[])
{

 A obj = new A();
 obj.msg();
 }
}

Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be

accessible.

Example of package by import package.classname

//save by A.java

package pack;

public class A
{

 public void msg(){System.out.println("Hello");

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 46

}
}

//save by B.java

package mypack;

import pack.A;

class B
{

 public static void main(String args[])
{

 A obj = new A();
 obj.msg();
 }
}

Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be

accessible. Now there is no need to import. But you need to use fully qualified name

every time when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and

java.sql packages contain Date class.

Example of package by import fully qualified name

//save by A.java

package pack;

public class A
{

 public void msg()
{

System.out.println("Hello");
}

}

//save by B.java

package mypack;

class B
{

 public static void main(String args[])

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 47

{

 pack.A obj = new pack.A();//using fully qualified name
 obj.msg();
 }
}

Output:Hello

Access Modifiers/Specifiers

The access modifiers in java specify accessibility (scope) of a data member,

method, constructor or class.

There are 4 types of java access modifiers:

1. private

2. default

3. protected

4. public

1) private access modifier

The private access modifier is accessible only within class.

2) default access modifier

If you don't use any modifier, it is treated as default by default. The default

modifier is accessible only within package.

3) protected access modifier

The protected access modifier is accessible within package and outside the

package but through inheritance only.

The protected access modifier can be applied on the data member, method and

constructor. It can't be applied on the class.

4) public access modifier

The public access modifier is accessible everywhere. It has the widest scope

among all other modifiers.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 48

Understanding all java access modifiers by a simple table.

Access

Modifier

within

class

within

package

outside package by

subclass only

outside

package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Interface in java

 An interface in java is a blueprint of a class. It has static final variables

and abstract methods.

 The interface in java is a mechanism to achieve abstraction. There can be

only abstract methods in the java interface does not contain method body.

It is used to achieve abstraction and multiple inheritance in Java.

 It cannot be instantiated just like abstract class.

 Interface fields are public, static and final by default, and methods are

public and abstract.

There are mainly three reasons to use interface. They are given below.

 It is used to achieve abstraction.

 By interface, we can support the functionality of multiple inheritance.

Understanding relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface

extends another interface but a class implements an interface.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 49

Example 1

In this example, Printable interface has only one method, its implementation is

provided in the Pgm1 class.

interface printable

{

void print();

}

class Pgm1 implements printable

{

public void print()

{

System.out.println("Hello");

}

}

 class IntefacePgm1

{

public static void main(String args[])

{

Pgm1 obj = new Pgm1 ();

obj.print();

 }

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 50

Output:

Hello

Example 2

In this example, Drawable interface has only one method. Its implementation is

provided by Rectangle and Circle classes. In real scenario, interface is defined by

someone but implementation is provided by different implementation providers.

And, it is used by someone else. The implementation part is hidden by the user

which uses the interface.

//Interface declaration: by first user

interface Drawable
{

void draw();
}

//Implementation: by second user

class Rectangle implements Drawable
{

public void draw()
{

System.out.println("drawing rectangle");
}

}

class Circle implements Drawable
{

public void draw()
{

System.out.println("drawing circle");
}

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 51

//Using interface: by third user

class TestInterface1
{

public static void main(String args[])
{

//In real scenario, object is provided by method e.g. getDrawable()

Drawable d=new Circle();

d.draw();
}

}

Output:

drawing circle

Multiple inheritance in Java by interface

 If a class implements multiple interfaces, or an interface extends multiple

interfaces i.e. known as multiple inheritance.

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 52

Example

interface Printable
{

void print();
}

interface Showable
{

void show();
}

class Pgm2 implements Printable,Showable
{

public void print()
{

System.out.println("Hello");
}

public void show()
{

System.out.println("Welcome");
}

}

Class InterfaceDemo

{

public static void main(String args[])
{

Pgm2 obj = new Pgm2 ();
obj.print();
obj.show();

 }
}

Output:

Hello

Welcome

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 53

 Multiple inheritance is not supported through class in java but it is

possible by interface, why?

 As we have explained in the inheritance chapter, multiple inheritance is not

supported in case of class because of ambiguity.

 But it is supported in case of interface because there is no ambiguity as

implementation is provided by the implementation class. For example:

Example

interface Printable
{

void print();
}

interface Showable
{

void print();
}

class InterfacePgm1 implements Printable, Showable
{

public void print()
{

System.out.println("Hello");
}

}
class InterfaceDemo
{

public static void main(String args[])
{

InterfacePgm1 obj = new InterfacePgm1 ();
obj.print();

 }
}

Output:

Hello

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 54

 As you can see in the above example, Printable and Showable interface have

same methods but its implementation is provided by class TestTnterface1,

so there is no ambiguity.

Interface inheritance

 A class implements interface but one interface extends another interface .

interface Printable
{

void print();
}

interface Showable extends Printable
{

void show();
}

class InterfacePgm2 implements Showable
{

public void print()
{

System.out.println("Hello");
}

public void show()
{

System.out.println("Welcome");
}

Class InterfaceDemo2
{

public static void main(String args[])
{

InterfacePgm2 obj = new InterfacePgm2 ();
obj.print();
obj.show();

 }
}

Output:

Hello

Welcome

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 55

Program to implement Stack
public class StackDemo

{

private static final int capacity = 3;

int arr[] = new int[capacity];

int top = -1;

public void push(int pushedElement)

{

if (top < capacity - 1)

{

top++;

arr[top] = pushedElement;

System.out.println("Element " + pushedElement + " is pushed to Stack !")

;

printElements();

}

else

 {

System.out.println("Stack Overflow !");

}

}

public void pop()

 {

if (top >= 0)

 {

top--;

System.out.println("Pop operation done !");

}

else

 {

System.out.println("Stack Underflow !");

}

}

public void printElements()

 {

if (top >= 0)

 {

System.out.println("Elements in stack :");

for (int i = 0; i <= top; i++)

{

System.out.println(arr[i]);

}

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 56

}

}

class MyPgm

{

public static void main(String[] args)

{

StackDemo stackDemo = new StackDemo();

stackDemo.pop();

stackDemo.push(23);

stackDemo.push(2);

stackDemo.push(73);

stackDemo.push(21);

stackDemo.pop();

stackDemo.pop();

stackDemo.pop();

stackDemo.pop();

}

}

Output

http://2.bp.blogspot.com/-g2nDb7CDNc8/UevfGok-tAI/AAAAAAAAAkE/qmZjdkeM7l0/s1600/stack-in-java.png

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 57

Questions

1. Distinguish between Method overloading and Method

overriding in JAVA, with suitable examples.(Jan 2014) 6marks

2. What is super? Explain the use of super with suitable example

 (Jan 2014) 6marks

3. Write a JAVA program to implement stack operations.

 (Jan 2014) 6marks

4. What is an Exception? Give an example for nested try

statements? (Jan 2013) 6 Marks

5. WAP in java to implement a stack that can hold 10 integers

values (Jan 2013) 6 Marks

6. What is mean by instance variable hiding ?how to overcome it?

(Jan 2013) 04 Marks

7. Define exception .demonstrate the working of nested try blocks

with suitable example? (Dec 2011)08Marks

8. Write short notes on (Dec 2011)04Marks

 i) Final class ii) abstract class

9. Write a java program to find the area and volume of a room.

Use a base class rectangle with a constructor and a method for

finding the area. Use its subclass room with a constructor that

gets the value of length and breadth from the base class and

has a method to find the volume. Create an object of the class

room and obtain the area and volume. (Jan-2006) 8Marks

10. Explain i) Instance variables ii) Class Variables iii) Local

variables (Jan-2009) 06 marks

Object Oriented Concepts 15CS/IS45

Prepared by Nagamahesh BS, Asst.Professor, CSE, Sai Vidya Institute of Technology 58

11. Distinguish between method overloading and method

overriding? How does java decide the method to call?

 (Jan-2008-8Marks) 6Marks

12. Explain the following with example.

 i) Method overloading ii) Method overriding (jun-2006) 8Marks

13. Write a java program to find the distance between two points

whose coordinates are given. The coordinates can be 2-

dimensional or 3-dimensional (for comparing the distance

between 2D and a 3D point, the 3D point, the 3D x and y

components must be divided by z). Demonstrate method

overriding in this program. (May-2007)10 marks

14. What is an interface? Write a program to illustrate multiple

inheritance using interfaces. (Jan-2010) 8Marks

15. Explain packages in java.

16. What are access specifiers? Explain with an example.

17. With an example explain static keyword in java.

18. Why java is not support concept of multiple inheritance?

Justify with an example program.

19. Write a short note on:

1. this keyword

2. super keyword

3. final keyword

4. abstract

20. Illustrate constructors with an example program

