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MODULE 4 
 

BAYESIAN LEARNING 
 

 

Bayesian reasoning provides a probabilistic approach to inference. It is based on the 

assumption that the quantities of interest are governed by probability distributions and that 

optimal decisions can be made by reasoning about these probabilities together with observed 

data 

 

INTRODUCTION 
 

Bayesian learning methods are relevant to study of machine learning for two different reasons.  

1. First, Bayesian learning algorithms that calculate explicit probabilities for hypotheses, 

such as the naive Bayes classifier, are among the most practical approaches to certain 

types of learning problems 

2. The second reason is that they provide a useful perspective for understanding many 

learning algorithms that do not explicitly manipulate probabilities. 

 

 

Features of Bayesian Learning Methods 

 

 Each observed training example can incrementally decrease or increase the estimated 

probability that a hypothesis is correct. This provides a more flexible approach to 

learning than algorithms that completely eliminate a hypothesis if it is found to be 

inconsistent with any single example 

 Prior knowledge can be combined with observed data to determine the final probability 

of a hypothesis. In Bayesian learning, prior knowledge is provided by asserting (1) a 

prior probability for each candidate hypothesis, and (2) a probability distribution over 

observed data for each possible hypothesis. 

 Bayesian methods can accommodate hypotheses that make probabilistic predictions  

 New instances can be classified by combining the predictions of multiple hypotheses, 

weighted by their probabilities.  

 Even in cases where Bayesian methods prove computationally intractable, they can 

provide a standard of optimal decision making against which other practical methods 

can be measured. 
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Practical difficulty in applying Bayesian methods 
 

1. One practical difficulty in applying Bayesian methods is that they typically require 

initial knowledge of many probabilities. When these probabilities are not known in 

advance they are often estimated based on background knowledge, previously available 

data, and assumptions about the form of the underlying distributions. 

2. A second practical difficulty is the significant computational cost required to determine 

the Bayes optimal hypothesis in the general case. In certain specialized situations, this 

computational cost can be significantly reduced. 

 

 

BAYES THEOREM 
 

Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior 

probability, the probabilities of observing various data given the hypothesis, and the observed 

data itself. 

Notations 

 P(h) prior probability of h, reflects any background knowledge about the chance that h 

is correct 

 P(D) prior probability of D, probability that D will be observed 

 P(D|h) probability of observing D given a world in which h holds 

 P(h|D) posterior probability of h, reflects confidence that h holds after D has been 

observed 

 

Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to 

calculate the posterior probability P(h|D), from the prior probability P(h), together with P(D) 

and P(D|h). 

 
 

 P(h|D) increases with P(h) and with P(D|h) according to Bayes theorem.  

 P(h|D) decreases as P(D) increases, because the more probable it is that D will be 

observed independent of h, the less evidence D provides in support of h. 
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Maximum a Posteriori (MAP) Hypothesis 

 

 In many learning scenarios, the learner considers some set of candidate hypotheses H 

and is interested in finding the most probable hypothesis h ∈ H given the observed data 

D. Any such maximally probable hypothesis is called a maximum a posteriori (MAP) 

hypothesis. 

 Bayes theorem to calculate the posterior probability of each candidate hypothesis is hMAP 

is a MAP hypothesis provided 

 

 
 

 P(D) can be dropped, because it is a constant independent of h 

 

Maximum Likelihood (ML) Hypothesis  

 

 In some cases, it is assumed that every hypothesis in H is equally probable a priori  

(P(hi) = P(hj) for all hi and hj in H).  

 In this case the below equation can be simplified and need only consider the term P(D|h) 

to find the most probable hypothesis.  

 
 

P(D|h) is often called the likelihood of the data D given h, and any hypothesis that maximizes 

P(D|h) is called a maximum likelihood (ML) hypothesis 

 

 

Example 

 Consider a medical diagnosis problem in which there are two alternative hypotheses: 

(1) that the patient has particular form of cancer, and (2) that the patient does not. The 

available data is from a particular laboratory test with two possible outcomes: + 

(positive) and - (negative).  
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 We have prior knowledge that over the entire population of people only .008 have this 

disease. Furthermore, the lab test is only an imperfect indicator of the disease.  

 The test returns a correct positive result in only 98% of the cases in which the disease is 

actually present and a correct negative result in only 97% of the cases in which the 

disease is not present. In other cases, the test returns the opposite result.  

 The above situation can be summarized by the following probabilities: 

 

 
 

Suppose a new patient is observed for whom the lab test returns a positive (+) result. 

Should we diagnose the patient as having cancer or not? 

 
 

The exact posterior probabilities can also be determined by normalizing the above quantities 

so that they sum to 1 

 
Basic formulas for calculating probabilities are summarized in Table 
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BAYES THEOREM AND CONCEPT LEARNING 
 

What is the relationship between Bayes theorem and the problem of concept learning? 

 

Since Bayes theorem provides a principled way to calculate the posterior probability of each 

hypothesis given the training data, and can use it as the basis for a straightforward learning 

algorithm that calculates the probability for each possible hypothesis, then outputs the most 

probable. 

 

Brute-Force Bayes Concept Learning 
 

Consider the concept learning problem  

 Assume the learner considers some finite hypothesis space H defined over the instance 

space X, in which the task is to learn some target concept c : X → {0,1}. 
 Learner is given some sequence of training examples ((x1, d1) . . . (xm, dm)) where xi is 

some instance from X and where di is the target value of xi (i.e., di = c(xi)).  

 The sequence of target values are written as D = (d1 . . . dm).  

 

We can design a straightforward concept learning algorithm to output the maximum a posteriori 

hypothesis, based on Bayes theorem, as follows: 

 

BRUTE-FORCE MAP LEARNING algorithm: 

 

1. For each hypothesis h in H, calculate the posterior probability 

 
2. Output the hypothesis hMAP with the highest posterior probability 

 
 

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING algorithm we 

must specify what values are to be used for P(h) and for P(D|h) ? 

 

Let’s choose P(h) and for P(D|h) to be consistent with the following assumptions: 

 The training data D is noise free (i.e., di = c(xi)) 

 The target concept c is contained in the hypothesis space H 

 Do not have a priori reason to believe that any hypothesis is more probable than any 

other. 
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What values should we specify for P(h)? 

 Given no prior knowledge that one hypothesis is more likely than another, it is 

reasonable to assign the same prior probability to every hypothesis h in H. 

 Assume the target concept is contained in H and require that these prior probabilities 

sum to 1. 

 
 

What choice shall we make for P(D|h)? 

 P(D|h) is the probability of observing the target values D = (d1 . . .dm) for the fixed set 

of instances (x1 . . . xm), given a world in which hypothesis h holds 

 Since we assume noise-free training data, the probability of observing classification di 

given h is just 1 if di = h(xi) and 0 if di ≠ h(xi). Therefore, 

 
 

Given these choices for P(h) and for P(D|h) we now have a fully-defined problem for the above 

BRUTE-FORCE MAP LEARNING algorithm. 

 

Recalling Bayes theorem, we have 

 
Consider the case where h is inconsistent with the training data D 

 
The posterior probability of a hypothesis inconsistent with D is zero 

 

Consider the case where h is consistent with D 

 
Where, VSH,D is the subset of hypotheses from H that are consistent with D 

 

To summarize, Bayes theorem implies that the posterior probability P(h|D) under our assumed 

P(h) and P(D|h) is 
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The Evolution of Probabilities Associated with Hypotheses 

 

 Figure (a) all hypotheses have the same probability.  

 Figures (b) and (c), As training data accumulates, the posterior probability for 

inconsistent hypotheses becomes zero while the total probability summing to 1 is 

shared equally among the remaining consistent hypotheses. 

 
 

MAP Hypotheses and Consistent Learners 
 

 A learning algorithm is a consistent learner if it outputs a hypothesis that commits zero 

errors over the training examples. 

 Every consistent learner outputs a MAP hypothesis, if we assume a uniform prior 

probability distribution over H (P(hi) = P(hj) for all i, j), and deterministic, noise free 

training data (P(D|h) =1 if D and h are consistent, and 0 otherwise). 

 

Example: 

 FIND-S outputs a consistent hypothesis, it will output a MAP hypothesis under the 

probability distributions P(h) and P(D|h) defined above. 

 Are there other probability distributions for P(h) and P(D|h) under which FIND-S 

outputs MAP hypotheses? Yes. 

 Because FIND-S outputs a maximally specific hypothesis from the version space, its 

output hypothesis will be a MAP hypothesis relative to any prior probability distribution 

that favours more specific hypotheses. 

 

Note 

 Bayesian framework is a way to characterize the behaviour of learning algorithms 

 By identifying probability distributions P(h) and P(D|h) under which the output is a 

optimal hypothesis, implicit assumptions of the algorithm can be characterized 

(Inductive Bias)  

 Inductive inference is modelled by an equivalent probabilistic reasoning system based 

on Bayes theorem 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 

 

Consider the problem of learning a continuous-valued target function such as neural network 

learning, linear regression, and polynomial curve fitting 

 

A straightforward Bayesian analysis will show that under certain assumptions any learning 

algorithm that minimizes the squared error between the output hypothesis predictions and the 

training data will output a maximum likelihood (ML) hypothesis 

 

 Learner L considers an instance space X and a hypothesis space H consisting of some 

class of real-valued functions defined over X, i.e., (∀ h ∈ H)[ h : X → R] and training 
examples of the form <xi,di>  

 The problem faced by L is to learn an unknown target function f : X → R 

 A set of m training examples is provided, where the target value of each example is 

corrupted by random noise drawn according to a Normal probability distribution with 

zero mean (di = f(xi) + ei) 

 Each training example is a pair of the form (xi ,di ) where di = f (xi ) + ei .  

– Here f(xi) is the noise-free value of the target function and ei is a random variable 

representing the noise.  

– It is assumed that the values of the ei are drawn independently and that they are 

distributed according to a Normal distribution with zero mean.  

 The task of the learner is to output a maximum likelihood hypothesis or a MAP 

hypothesis assuming all hypotheses are equally probable a priori. 

 

Using the definition of hML we have 

 
Assuming training examples are mutually independent given h, we can write P(D|h) as the 

product of the various (di|h) 

 
Given the noise ei obeys a Normal distribution with zero mean and unknown variance σ2 , each 

di must also obey a Normal distribution around the true targetvalue f(xi). Because we are 

writing the expression for P(D|h), we assume h is the correct description of f.  

Hence, µ = f(xi) = h(xi) 
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Maximize the less complicated logarithm, which is justified because of the monotonicity of 

function p 

 
The first term in this expression is a constant independent of h, and can therefore be 

discarded, yielding 

 
Maximizing this negative quantity is equivalent to minimizing the corresponding positive 

quantity 

 
Finally, discard constants that are independent of h. 

 
 

Thus, above equation shows that the maximum likelihood hypothesis hML is the one that 

minimizes the sum of the squared errors between the observed training values di and the 

hypothesis predictions h(xi) 

 

Note: 

Why is it reasonable to choose the Normal distribution to characterize noise?  

 Good approximation of many types of noise in physical systems  

 Central Limit Theorem shows that the sum of a sufficiently large number of 

independent, identically distributed random variables itself obeys a Normal distribution  

Only noise in the target value is considered, not in the attributes describing the instances 

themselves 
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MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING PROBABILITIES 
 

 Consider the setting in which we wish to learn a nondeterministic (probabilistic) 

function f : X → {0, 1}, which has two discrete output values.  
 We want a function approximator whose output is the probability that f(x) = 1. In other 

words, learn the target function  f ` : X → [0, 1] such that f ` (x) = P(f(x) = 1) 
 

How can we learn f ` using a neural network?  

 Use of brute force way would be to first collect the observed frequencies of 1's and 0's 

for each possible value of x and to then train the neural network to output the target 

frequency for each x. 

 

What criterion should we optimize in order to find a maximum likelihood hypothesis for f' in 

this setting? 

 First obtain an expression for P(D|h) 

 Assume the training data D is of the form D = {(x1, d1) . . . (xm, dm)}, where di is the 

observed 0 or 1 value for f (xi). 

 Both xi and di as random variables, and assuming that each training example is drawn 

independently, we can write P(D|h) as 

 
Applying the product rule 

 
The probability P(di|h, xi) 

 
 

Re-express it in a more mathematically manipulable form, as 

 
 

Equation (4) to substitute for P(di |h, xi) in Equation (5) to obtain 

 
We write an expression for the maximum likelihood hypothesis 
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The last term is a constant independent of h, so it can be dropped 

 
It easier to work with the log of the likelihood, yielding 

 

 
 

Equation (7) describes the quantity that must be maximized in order to obtain the maximum 

likelihood hypothesis in our current problem setting 

 

Gradient Search to Maximize Likelihood in a Neural Net 

 

 Derive a weight-training rule for neural network learning that seeks to maximize G(h,D) 

using gradient ascent 

 The gradient of G(h,D) is given by the vector of partial derivatives of G(h,D) with 

respect to the various network weights that define the hypothesis h represented by the 

learned network 

 In this case, the partial derivative of G(h, D) with respect to weight wjk from input k to 

unit j is 

 
 

 Suppose our neural network is constructed from a single layer of sigmoid units.  Then,  

 
where xijk is the kth input to unit j for the ith training example, and d(x) is the derivative 

of the sigmoid squashing function.  

 

 Finally, substituting this expression into Equation (1), we obtain a simple expression for 

the derivatives that constitute the gradient 
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Because we seek to maximize rather than minimize P(D|h), we perform gradient ascent rather 

than gradient descent search. On each iteration of the search the weight vector is adjusted in 

the direction of the gradient, using the weight update rule 

 
Where, η is a small positive constant that determines the step size of the i gradient ascent search 

 

 

MINIMUM DESCRIPTION LENGTH PRINCIPLE 
 

 A Bayesian perspective on Occam’s razor 
 Motivated by interpreting the definition of hMAP in the light of basic concepts from 

information theory. 

 
which can be equivalently expressed in terms of maximizing the log2  

 
 

or alternatively, minimizing the negative of this quantity  

 
 

This equation (1) can be interpreted as a statement that short hypotheses are preferred, 

assuming a particular representation scheme for encoding hypotheses and data 

 

 -log2P(h): the description length of h under the optimal encoding for the hypothesis 

space H, LCH (h) = −log2P(h), where CH is the optimal code for hypothesis space H.  

 -log2P(D | h): the description length of the training data D given hypothesis h, under the 

optimal encoding from the hypothesis space H: LCH (D|h) = −log2P(D| h) , where C D|h 

is the optimal code for describing data D assuming that both the sender and receiver 

know the hypothesis h. 

 Rewrite Equation (1) to show that hMAP is the hypothesis h that minimizes the sum given 

by the description length of the hypothesis plus the description length of the data given 

the hypothesis.  

 
 

Where, CH and CD|h are the optimal encodings for H and for D given h 
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The Minimum Description Length (MDL) principle recommends choosing the hypothesis that 

minimizes the sum of these two description lengths of equ. 

 
 

Minimum Description Length principle: 

 
 

Where, codes C1 and C2 to represent the hypothesis and the data given the hypothesis 

 

The above analysis shows that if we choose C1 to be the optimal encoding of hypotheses CH, 

and if we choose C2 to be the optimal encoding CD|h, then hMDL = hMAP  

 

 

Application to Decision Tree Learning 

 

Apply the MDL principle to the problem of learning decision trees from some training data.  

What should we choose for the representations C1 and C2 of hypotheses and data?  

 For C1: C1 might be some obvious encoding, in which the description length grows with 

the number of nodes and with the number of edges 

 For C2: Suppose that the sequence of instances (x1 . . .xm) is already known to both the 

transmitter and receiver, so that we need only transmit the classifications (f (x1) . . . f 

(xm)).  

 Now if the training classifications (f (x1) . . .f(xm)) are identical to the predictions of the 

hypothesis, then there is no need to transmit any information about these examples. The 

description length of the classifications given the hypothesis ZERO 

 If examples are misclassified by h, then for each misclassification we need to transmit 

a message that identifies which example is misclassified as well as its correct 

classification  

 The hypothesis hMDL under the encoding C1 and C2 is just the one that minimizes the 

sum of these description lengths. 
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NAIVE BAYES CLASSIFIER 
 

 The naive Bayes classifier applies to learning tasks where each instance x is described 

by a conjunction of attribute values and where the target function f (x) can take on any 

value from some finite set V.  

 A set of training examples of the target function is provided, and a new instance is 

presented, described by the tuple of attribute values (al, a2.. .am).  

 The learner is asked to predict the target value, or classification, for this new instance. 

 

The Bayesian approach to classifying the new instance is to assign the most probable target 

value, VMAP, given the attribute values (al, a2.. .am) that describe the instance 

 
Use Bayes theorem to rewrite this expression as 

 

 
 

 The naive Bayes classifier is based on the assumption that the attribute values are 

conditionally independent given the target value. Means, the assumption is that given 

the target value of the instance, the probability of observing the conjunction (al, a2.. .am), 

is just the product of the probabilities for the individual attributes: 

 
Substituting this into Equation (1),  

 

Naive Bayes classifier: 

 
Where, VNB denotes the target value output by the naive Bayes classifier 
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An Illustrative Example 

 Let us apply the naive Bayes classifier to a concept learning problem i.e., classifying 

days according to whether someone will play tennis. 

 The below table provides a set of 14 training examples of the target concept PlayTennis, 

where each day is described by the attributes Outlook, Temperature, Humidity, and 

Wind 

 

Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

 

 Use the naive Bayes classifier and the training data from this table to classify the 

following novel instance: 

< Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong > 

 

 Our task is to predict the target value (yes or no) of the target concept PlayTennis for 

this new instance 
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The probabilities of the different target values can easily be estimated based on their 

frequencies over the 14 training examples 

 P(P1ayTennis = yes) = 9/14 = 0.64 

 P(P1ayTennis = no) = 5/14 = 0.36 

 

Similarly, estimate the conditional probabilities. For example, those for Wind = strong  

 P(Wind = strong | PlayTennis = yes) = 3/9 = 0.33 

 P(Wind = strong | PlayTennis = no) = 3/5 = 0.60 

 

Calculate VNB according to Equation (1) 

 
 

Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this new 

instance, based on the probability estimates learned from the training data. 

 

By normalizing the above quantities to sum to one, calculate the conditional probability that 

the target value is no, given the observed attribute values 

 

 
 

Estimating Probabilities 
 

 We have estimated probabilities by the fraction of times the event is observed to occur 

over the total number of opportunities.  

 For example, in the above case we estimated P(Wind = strong | Play Tennis = no) by 

the fraction nc /n where, n = 5 is the total number of training examples for which 

PlayTennis = no, and nc = 3 is the number of these for which Wind = strong. 

 When nc = 0, then nc /n will be zero and this probability term will dominate the quantity 

calculated in Equation (2) requires multiplying all the other probability terms by this 

zero value 

 To avoid this difficulty we can adopt a Bayesian approach to estimating the probability, 

using the m-estimate defined as follows 

 

m -estimate of probability: 
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 p is our prior estimate of the probability we wish to determine, and m is a constant 

called the equivalent sample size, which determines how heavily to weight p relative 

to the observed data 

 Method for choosing p in the absence of other information is to assume uniform 

priors; that is, if an attribute has k possible values we set p = 1 /k. 

 

 

BAYESIAN BELIEF NETWORKS 
 

 The naive Bayes classifier makes significant use of the assumption that the values of the 

attributes a1 . . .an are conditionally independent given the target value v. 

 This assumption dramatically reduces the complexity of learning the target function 

 

A Bayesian belief network describes the probability distribution governing a set of variables 

by specifying a set of conditional independence assumptions along with a set of conditional 

probabilities 

Bayesian belief networks allow stating conditional independence assumptions that apply to 

subsets of the variables 

 

Notation 

 Consider an arbitrary set of random variables Y1 . . . Yn , where each variable Yi can 

take on the set of possible values V(Yi).  

 The joint space of the set of variables Y to be the cross product V(Y1) x V(Y2) x. . . 

V(Yn).  

 In other words, each item in the joint space corresponds to one of the possible 

assignments of values to the tuple of variables (Y1 . . . Yn). The probability distribution 

over this joint' space is called the joint probability distribution.  

 The joint probability distribution specifies the probability for each of the possible 

variable bindings for the tuple (Y1 . . . Yn).  

 A Bayesian belief network describes the joint probability distribution for a set of 

variables. 

 

Conditional Independence 

 

Let X, Y, and Z be three discrete-valued random variables. X is conditionally independent of 

Y given Z if the probability distribution governing X is independent of the value of Y given a 

value for Z, that is, if 

 

 
Where, 
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The above expression is written in abbreviated form as  

P(X | Y, Z) = P(X | Z) 

 

Conditional independence can be extended to sets of variables. The set of variables X1 . . . Xl 

is conditionally independent of the set of variables Y1 . . . Ym given the set of variables Z1 . . . 

Zn if 

 
 

The naive Bayes classifier assumes that the instance attribute A1 is conditionally independent 

of instance attribute A2 given the target value V. This allows the naive Bayes classifier to 

calculate P(Al, A2 | V) as follows, 

 
 

Representation 

 

A Bayesian belief network represents the joint probability distribution for a set of variables. 

Bayesian networks (BN) are represented by directed acyclic graphs. 

 

 
 

 

The Bayesian network in above figure represents the joint probability distribution over the 

boolean variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup 

 

A Bayesian network (BN) represents the joint probability distribution by specifying a set of 

conditional independence assumptions  

 BN represented by a directed acyclic graph, together with sets of local conditional 

probabilities 

 Each variable in the joint space is represented by a node in the Bayesian network 

 The network arcs represent the assertion that the variable is conditionally independent 

of its non-descendants in the network given its immediate predecessors in the network. 

 A conditional probability table (CPT) is given for each variable, describing the 

probability distribution for that variable given the values of its immediate predecessors 
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The joint probability for any desired assignment of values (y1, . . . , yn) to the tuple of network 

variables (Y1 . . . Ym) can be computed by the formula  

 
Where, Parents(Yi) denotes the set of immediate predecessors of Yi in the network. 

 

 

Example:  

Consider the node Campfire. The network nodes and arcs represent the assertion that Campfire 

is conditionally independent of its non-descendants Lightning and Thunder, given its 

immediate parents Storm and BusTourGroup. 

 
 

This means that once we know the value of the variables Storm and BusTourGroup, the 

variables Lightning and Thunder provide no additional information about Campfire 

The conditional probability table associated with the variable Campfire. The assertion is 

 

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4 

 

Inference 

 

 Use a Bayesian network to infer the value of some target variable (e.g., ForestFire) given 

the observed values of the other variables.  

 Inference can be straightforward if values for all of the other variables in the network 

are known exactly. 

 A Bayesian network can be used to compute the probability distribution for any subset 

of network variables given the values or distributions for any subset of the remaining 

variables. 

 An arbitrary Bayesian network is known to be NP-hard 
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Learning Bayesian Belief Networks 

 

Affective algorithms can be considered for learning Bayesian belief networks from training 

data by considering several different settings for learning problem 

 First, the network structure might be given in advance, or it might have to be inferred from 

the training data. 

 Second, all the network variables might be directly observable in each training example, 

or some might be unobservable. 

 In the case where the network structure is given in advance and the variables are fully 

observable in the training examples, learning the conditional probability tables is 

straightforward and estimate the conditional probability table entries 

 In the case where the network structure is given but only some of the variable values 

are observable in the training data, the learning problem is more difficult. The learning 

problem can be compared to learning weights for an ANN. 

 

Gradient Ascent Training of Bayesian Network 

 

The gradient ascent rule which maximizes P(D|h) by following the gradient of ln P(D|h) with 

respect to the parameters that define the conditional probability tables of the Bayesian network. 

 

Let wijk denote a single entry in one of the conditional probability tables. In particular wijk 

denote the conditional probability that the network variable Yi will take on the value yi, given 

that its immediate parents Ui take on the values given by uik. 

The gradient of ln P(D|h) is given by the derivatives   for each of the wijk.  

As shown below, each of these derivatives can be calculated as 

 

 

Derive the gradient defined by the set of derivatives  for all i, j, and k. Assuming the 

training examples d in the data set D are drawn independently, we write this derivative as 
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We write the abbreviation Ph(D) to represent P(D|h). 
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THE EM ALGORITHM 
 

The EM algorithm can be used even for variables whose value is never directly observed, 

provided the general form of the probability distribution governing these variables is known. 

 

Estimating Means of k Gaussians 

 

 Consider a problem in which the data D is a set of instances generated by a probability 

distribution that is a mixture of k distinct Normal distributions. 

 

 
 This problem setting is illustrated in Figure for the case where k = 2 and where the 

instances are the points shown along the x axis. 

 Each instance is generated using a two-step process.  

 First, one of the k Normal distributions is selected at random.  

 Second, a single random instance xi is generated according to this selected 

distribution. 

 This process is repeated to generate a set of data points as shown in the figure. 
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 To simplify, consider the special case  

 The selection of the single Normal distribution at each step is based on choosing 

each with uniform probability 

 Each of the k Normal distributions has the same variance σ2, known value. 

 The learning task is to output a hypothesis h = (μ1 , . . . ,μk) that describes the means of 

each of the k distributions. 

 We would like to find a maximum likelihood hypothesis for these means; that is, a 

hypothesis h that maximizes p(D |h). 

 
In this case, the sum of squared errors is minimized by the sample mean 

 
 

 Our problem here, however, involves a mixture of k different Normal distributions, and 

we cannot observe which instances were generated by which distribution. 

 Consider full description of each instance as the triple (xi, zi1, zi2), 

 where xi is the observed value of the ith instance and 

 where zi1 and zi2 indicate which of the two Normal distributions was used to 

generate the value xi 

 In particular, zij has the value 1 if xi was created by the jth Normal distribution and 0 

otherwise. 

 Here xi is the observed variable in the description of the instance, and zil and zi2 are 

hidden variables. 

 If the values of zil and zi2 were observed, we could use following Equation to solve for 

the means p1 and p2 

 Because they are not, we will instead use the EM algorithm 

 

 

EM algorithm 
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