
MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

MODULE – 4

ARM EMBEDDED SYSTEMS & ARM PROCESSOR FUNDAMENTALS

ARM EMBEDDED SYSTEMS
The ARM processor core is a key component of many successful 32-bit embedded systems. ARM cores are

widely used in mobile phones, handheld organizers, and a multitude of other everyday portable consumer

devices.

The first ARM1 prototype was designed in 1985. Over one billion ARM processors had been

shipped worldwide by the end of 2001. The ARM Company bases their success on a simple and

powerful original design, which continues to improve today through constant technical innovation.

For example, one of ARM’s most successful cores is the ARM7TDMI. It provides up to 120

Dhrystone MIPS and is known for its high code density and low power consumption, making it ideal for

mobile embedded devices.

THE RISC DESIGN PHYLOSOPHY:

 The ARM core uses reduced instruction set computer (RISC) architecture. RISC is a design

philosophy aimed at delivering simple but powerful instructions that execute within a single cycle

at a high clock speed.

 The RISC philosophy concentrates on reducing the complexity of instructions performed by the

hardware because it is easier to provide greater flexibility and intelligence in software rather than

hardware. As a result, a RISC design places greater demands on the compiler.

 In contrast, the traditional complex instruction set computer (CISC) relies more on the hardware

for instruction functionality, and consequently the CISC instructions are more complicated. The

following Figure illustrates these major differences.

Fig: CISC vs. RISC

CISC RISC

1. Complex instructions, taking multiple clock 1. Simple instructions, taking single clock

2. Emphasis on hardware, complexity is in the 2. Emphasis on software, complexity is in the

MAHESH PRASANNA K., VCET, PUTTUR

1

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

micro-program/processor complier

3. Complex instructions, instructions executed by

micro-program/processor

3. Reduced instructions, instructions executed by

hardware

4. Variable format instructions, single register set

and many instructions

4. Fixed format instructions, multiple register sets

and few instructions

5. Many instructions and many addressing modes 5. Fixed instructions and few addressing modes

6. Conditional jump is usually based on status

register bit

6. Conditional jump can be based on a bit

anywhere in memory

7. Memory reference is embedded in many

instructions

7. Memory reference is embedded in

LOAD/STORE instructions

The RISC philosophy is implemented with four major design rules:

1. Instructions—RISC processors have a reduced number of instruction classes. These classes

provide simple operations that can each execute in a single cycle. The compiler or programmer

synthesizes complicated operations (for example, a divide operation) by combining several

simple instructions. Each instruction is having fixed length to allow the pipeline to fetch future

instructions before decoding the current instruction.

o In contrast, in CISC processors the instructions are often of variable size and take many

cycles to execute.

2. Pipelines—The processing of instructions is broken down into smaller units that can be executed

in parallel by pipelines. Ideally the pipeline advances by one step on each cycle for maximum

throughput. Instructions can be decoded in one pipeline stage.

o There is no need for an instruction to be executed by a mini-program called microcode as

on CISC processors.

3. Registers—RISC machines have a large general-purpose register set. Any register can contain

either data or an address. Registers act as the fast local memory store for all data processing

operations.

o In contrast, CISC processors have dedicated registers for specific purposes.

4. Load-store architecture—The processor operates on data held in registers. Separate load and

store instructions transfer data between the register bank and external memory. Memory accesses

are costly, so separating memory accesses from data processing provides an advantage because

you can use data items held in the register bank multiple times without needing multiple memory

accesses.

o In contrast, with a CISC design the data processing operations can act on memory

directly.

MAHESH PRASANNA K., VCET, PUTTUR

2

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

• These design rules allow a RISC processor to be simpler, and thus the core can operate at higher

clock frequencies.

o In contrast, traditional CISC processors are more complex and operate at lower clock

frequencies.

THE ARM DESIGN PHYLOSOPHY:

There are a number of physical features that have driven the ARM processor design.

 Portable embedded systems require battery power. The ARM processor has been specially

designed to be small to reduce power consumption and extend battery operation—essential for

applications such as mobile phones and personal digital assistants (PDAs).

 High code density is another major requirement since embedded systems have limited memory

due to cost and/or physical size restrictions—useful for applications that have limited on-board

memory, such as mobile phones and mass storage devices.

 Embedded systems are price sensitive

o Hence, use slow and low-cost memory devices to get substantial savings—essential for

high-volume applications like digital cameras.

o Also, reduce the area of the die taken up by the embedded processor; smaller the area

used by the embedded processor, reduced cost of the design and manufacturing for the

end product.

 ARM has incorporated hardware debug technology within the processor so that software

engineers can view what is happening while the processor is executing code. With greater

visibility, software engineers can resolve issues faster.

 The ARM core is not a pure RISC architecture because of the constraints of its primary

application—the embedded system. In some sense, the strength of the ARM core is that it does

not take the RISC concept too far.

Instruction Set for Embedded Systems:

The ARM instruction set differs from the pure RISC definition in several ways that make the ARM

instruction set suitable for embedded applications:

 Variable cycle execution for certain instructions—Not every ARM instruction executes in a

single cycle. For example, load-store-multiple instructions vary in the number of execution cycles

depending upon the number of registers being transferred. The transfer can occur on sequential

memory addresses. Code density is also improved since multiple register transfers are common

operations at the start and end of functions.

MAHESH PRASANNA K., VCET, PUTTUR

3

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Inline barrel shifter leading to more complex instructions—The inline barrel shifter is a hardware

component that preprocesses one of the input registers before it is used by an instruction. This

expands the capability of many instructions to improve core performance and code density.

 Thumb 16-bit instruction set—ARM enhanced the processor core by adding a second 16-bit

instruction set called Thumb that permits the ARM core to execute either 16- or 32-bit

instructions. The 16-bit instructions improve code density by about 30% over 32-bit fixed-length

instructions.

 Conditional execution—An instruction is only executed when a specific condition has been

satisfied. This feature improves performance and code density by reducing branch instructions.

 Enhanced instructions—The enhanced digital signal processor (DSP) instructions were added to

the standard ARM instruction set to support fast 16×16-bit multiplier operations. These

instructions allow a faster-performing ARM processor.

These additional features have made the ARM processor one of the most commonly used 32-bit

embedded processor cores.

EMBEDDED SYSTEM HARDWARE:

Embedded systems can control many different devices, from small sensors found on a production line, to

the real-time control systems used on a NASA space probe. All these devices use a combination of

software and hardware components.

The following Figure shows a typical embedded device based on an ARM core. Each box represents a

feature or function. The lines connecting the boxes are the buses carrying data.

Figure: An ARM-based Embedded Device, a Microcontroller

MAHESH PRASANNA K., VCET, PUTTUR

4

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
We can separate the device into four main hardware components:

1. The ARM processor controls the embedded device. Different versions of the ARM processor are

available to suit the desired operating characteristics. An ARM processor comprises a core (the

execution engine that processes instructions and manipulates data) plus the surrounding

components (memory and cache) that interface it with a bus.

2. Controllers coordinate important functional blocks of the system. Two commonly found

controllers are interrupt and memory controllers.

3. The peripherals provide all the input-output capability external to the chip and are responsible for

the uniqueness of the embedded device.

4. A bus is used to communicate between different parts of the device.

ARM Bus Technology:

Embedded devices use an on-chip bus that is internal to the chip and that allows different peripheral

devices to be interconnected with an ARM core.

There are two different classes of devices attached to the bus:

1. The ARM processor core is a bus master—a logical device capable of initiating a data transfer

with another device across the same bus.

2. Peripherals tend to be bus slaves—logical devices capable only of responding to a transfer

request from a bus master device.

A bus has two architecture levels:

A physical level—covers the electrical characteristics and bus width (16, 32, or 64 bits).

The protocol—the logical rules that govern the communication between the processor and a peripheral.

AMBA Bus Protocol:

 The Advanced Microcontroller Bus Architecture (AMBA) was introduced in 1996 and has been

widely adopted as the on-chip bus architecture used for ARM processors.

 The first AMBA buses introduced were the ARM System Bus (ASB) and the ARM Peripheral Bus

(APB). Later ARM introduced another bus design, called the ARM High Performance Bus

(AHB).

 Using AMBA, peripheral designers can reuse the same design on multiple projects. A peripheral

can simply be bolted onto the on-chip bus without having to redesign an interface for each

different processor architecture. This plug-and-play interface for hardware developers improves

availability and time to market.

 AHB provides higher data throughput than ASB because it is based on a centralized multiplexed

bus scheme rather than the ASB bidirectional bus design. This change allows the AHB bus to run

at higher clock speeds.
MAHESH PRASANNA K., VCET, PUTTUR

5

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 ARM has introduced two variations on the AHB bus: Multi-layer AHB and AHB-Lite.

o The Multi-layer AHB bus allows multiple active bus masters.

o AHB-Lite is a subset of the AHB bus and it is limited to a single bus master.

 The example device shown in the above Figure has three buses:

o an AHB bus for the high- performance peripherals

o an APB bus for the slower peripherals

o a third bus for external peripherals, proprietary to this device.

Memory:

An embedded system has to have some form of memory to store and execute code. You have to compare

price, performance, and power consumption when deciding upon specific memory characteristics, such as

hierarchy, width, and type.

Hierarchy: All computer systems have memory arranged in some form of hierarchy. The following

Figure shows the memory trade-offs: the fastest memory cache is physically located nearer the ARM

processor core and the slowest secondary memory is set further away. Generally the closer memory is to

the processor core, the more it costs and the smaller its capacity.

Figure: Memory Storage Trade-offs

 The cache is placed between main memory and the core. It is used to speed up data transfer

between the processor and main memory. A cache provides an overall increase in performance

but with a loss of predictable execution time. Although the cache increases the general

performance of the system, it does not help real-time system response.

 The main memory is large—around 256 KB to 256 MB (or even greater), depending on the

application—and is generally stored in separate chips. Load and store instructions access the main

memory unless the values have been stored in the cache for fast access.

MAHESH PRASANNA K., VCET, PUTTUR

6

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Secondary storage is the largest and slowest form of memory. Hard disk drives and CD-ROM

drives are examples of secondary storage.

Width: The memory width is the number of bits the memory returns on each access—typically 8, 16, 32,

or 64 bits.

 The memory width has a direct effect on the overall performance and cost ratio. Lower bit

memories are less expensive, but reduce the system performance.

The following Table summarizes theoretical cycle times on an ARM processor using different memory

width devices.

Table: Fetching Instruction from Memory

Instruction Size 8-bit Memory 16-bit Memory 32-bit Memory

ARM 32-bit 4 cycles 2 cycles 1 cycles

Thumb 16-bit 2 cycles 1 cycles 1 cycles

Types: There are many different types of memory:

 Read-only memory (ROM) is the least flexible of all memory types because it contains an image

that is permanently set at production time and cannot be reprogrammed.
o ROMs are used in high-volume devices that require no updates or corrections. Many devices also

use a ROM to hold boot code.

 Flash ROM can be written to as well as read, but it is slow to write so you shouldn’t use it for

holding dynamic data.
o Its main use is for holding the device firmware or storing long-term data that needs to be preserved

after power is off. The erasing and writing of flash ROM are completely software controlled with

no additional hardware circuitry required, which reduces the manufacturing costs.

 Dynamic random access memory (DRAM) is the most commonly used RAM for devices. It has

the lowest cost per megabyte compared with other types of RAM. DRAM is dynamic—it needs

to have its storage cells refreshed and given a new electronic charge every few milliseconds, so

you need to set up a DRAM controller before using the memory.

 Static random access memory (SRAM) is faster than the more traditional DRAM, but requires

more silicon area. SRAM is static—the RAM does not require refreshing. The access time for

SRAM is considerably shorter than the equivalent DRAM because SRAM does not require a

pause between data accesses. But cost of SRAM is high.

 Synchronous dynamic random access memory (SDRAM) is one of many subcategories of DRAM.

It can run at much higher clock speeds than conventional memory. SDRAM synchronizes itself

with the processor bus, because it is clocked. Internally the data is fetched from memory cells,

pipelined, and finally brought out on the bus in a burst.

MAHESH PRASANNA K., VCET, PUTTUR

7

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Peripherals:

Embedded systems that interact with the outside world need some form of peripheral device. A

peripheral device performs input and output functions for the chip by connecting to other devices or

sensors that are off-chip.

o Each peripheral device usually performs a single function and may reside on-chip.

o Peripherals range from a simple serial communication device to a more complex 802.11

wireless device.

 All ARM peripherals are memory mapped—the programming interface is a set of memory-

addressed registers. The address of these registers is an offset from a specific peripheral base

address.

 Controllers are specialized peripherals that implement higher levels of functionality within an

embedded system.

o Two important types of controllers are memory controllers and interrupt controllers.

Memory Controllers: Memory controllers connect different types of memory to the processor bus.

o On power-up a memory controller is configured in hardware to allow certain memory devices to

be active. These memory devices allow the initialization code to be executed.

Some memory devices must be set up by software; for example, when using DRAM, you first have to set

up the memory timings and refresh rate before it can be accessed.

Interrupt Controllers: When a peripheral or device requires attention, it raises an interrupt to the

processor. An interrupt controller provides a programmable governing policy that allows software to

determine which peripheral or device can interrupt the processor at any specific time by setting the

appropriate bits in the interrupt controller registers.

There are two types of interrupt controller available for the ARM processor: the standard interrupt

controller and the vector interrupt controller.

1. The standard interrupt controller sends an interrupt signal to the processor core when an external

device requests servicing. It can be programmed to ignore or mask an individual device or set of

devices.

o The interrupt handler determines which device requires servicing by reading a device

bitmap register in the interrupt controller.

2. The vector interrupt controller (VIC) is more powerful than the standard interrupt controller,

because it prioritizes interrupts and simplifies the determination of which device caused the

interrupt.

o Depending on the type, the VIC will either call the standard interrupt exception handler,

which can load the address of the handler.
MAHESH PRASANNA K., VCET, PUTTUR

8

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
EMBEDDED SYSTEM SOFTWARE:

An embedded system needs software to drive it. The following Figure shows four typical software

components required to control an embedded device.

Figure: Software Abstraction Layers Executing on Hardware

 The initialization code is the first code executed on the board and is specific to a particular target

or group of targets. It sets up the minimum parts of the board before handing control over to the

operating system.

 The operating system provides an infrastructure to control applications and manage hardware

system resources.

 The device drivers provide a consistent software interface to the peripherals on the hardware

device.

 An application performs one of the tasks required for a device.

o For example, a mobile phone might have a diary application.

There may be multiple applications running on the same device, controlled by the operating

system.

Initialization (Boot) Code:

 Initialization code (or boot code) takes the processor from the reset state to a state where the

operating system can run. It usually configures the memory controller and processor caches and

initializes some devices.

 The initialization code handles a number of administrative tasks prior to handing control over to

an operating system image.

o We can group these different tasks into three phases: initial hardware configuration,

diagnostics, and booting.

1. Initial hardware configuration involves setting up the target platform, so that it can boot an

image. The target platform comes up in a standard configuration; but, this configuration normally

requires modification to satisfy the requirements of the booted image.

MAHESH PRASANNA K., VCET, PUTTUR

9

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o For example, the memory system normally requires reorganization of the memory map,

as shown in the following Example.

Example: Initializing or organizing memory is an important part of the initialization code, because many

operating systems expect a known memory layout before they can start.

Figure: Memory Remapping

The above Figure shows memory before and after reorganization. It is common for ARM-based embedded

systems to provide for memory remapping because it allows the system to start the initialization code

from ROM at power-up. The initialization code then redefines or remaps the memory map to place RAM

at address 0x00000000—an important step because then the exception vector table can be in RAM and

thus can be reprogrammed.

2. Diagnostics are often embedded in the initialization code. Diagnostic code tests the system by

exercising the hardware target to check if the target is in working order. It also tracks down

standard system-related issues. The primary purpose of diagnostic code is fault identification and

isolation.

3. Booting involves loading an image and handing control over to that image. The boot process

itself can be complicated if the system must boot different operating systems or different versions

of the same operating system.

o Booting an image is the final phase, but first you must load the image. Loading an image

involves anything from copying an entire program including code and data into RAM, to

just copying a data area containing volatile variables into RAM. Once booted, the system

hands over control by modifying the program counter to point into the start of the image.

MAHESH PRASANNA K., VCET, PUTTUR

10

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Operating System:

 The initialization process prepares the hardware for an operating system to take control. An

operating system organizes the system resources: the peripherals, memory, and processing time.

 ARM processors support over 50 operating systems. We can divide operating systems into two

main categories: real-time operating systems (RTOSs) and platform operating systems.

1. RTOSs provide guaranteed response times to events. Different operating systems have different

amounts of control over the system response time.

o A hard real-time application requires a guaranteed response to work at all.

o In contrast, a soft real-time application requires a good response time, but the

performance degrades more gracefully if the response time overruns.

2. Platform operating systems require a memory management unit to manage large, non-real-time

applications and tend to have secondary storage.

o The Linux operating system is a typical example of a platform operating system.

Applications:

 The operating system schedules applications—code dedicated to handle a particular task. An

application implements a processing task; the operating system controls the environment.

o An embedded system can have one active application or several applications running

simultaneously.

 ARM processors are found in numerous market segments, including networking, auto-motive,

mobile and consumer devices, mass storage, and imaging.

 ARM processor is found in networking applications like home gateways, DSL modems for high-

speed Internet communication, and 802.11 wireless communications.

 The mobile device segment is the largest application area for ARM processors, because of mobile

phones.

 ARM processors are also found in mass storage devices such as hard drives and imaging products

such as inkjet printers—applications that are cost sensitive and high volume.

• In contrast, ARM processors are not found in applications that require leading-edge high

performance. Because these applications tend to be low volume and high cost, ARM has decided

not to focus designs on these types of applications.

MAHESH PRASANNA K., VCET, PUTTUR

11

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

ARM PROCESSOR FUNDAMENTALS
A programmer can think of an ARM core as functional units connected by data buses, as shown in the

following Figure.

Figure: ARM Core dataflow Model

The arrows represent the flow of data, the lines represent the buses, and the boxes represent either an

operation unit or a storage area.

 Data enters the processor core through the Data bus. The data may be an instruction to execute

or a data item.

o Figure shows a Von Neumann implementation of the ARM—data items and instructions

share the same bus. (In contrast, Harvard implementations of the ARM use two different

buses).

 The instruction decoder translates instructions before they are executed. Each instruction

executed belongs to a particular instruction set.

 The ARM processor, like all RISC processors, uses load-store architecture—means it has two

instruction types for transferring data in and out of the processor:
MAHESH PRASANNA K., VCET, PUTTUR

12

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o load instructions copy data from memory to registers in the core

o store instructions copy data from registers to memory

 There are no data processing instructions that directly manipulate data in memory. Thus, data

processing is carried out in registers.

 Data items are placed in the register file—a storage bank made up of 32-bit registers.

o Since the ARM core is a 32-bit processor, most instructions treat the registers as holding

signed or unsigned 32-bit values. The sign extend hardware converts signed 8-bit and

16-bit numbers to 32-bit values as they are read from memory and placed in a register.

 ARM instructions typically have two source registers, Rn and Rm, and a single result or

destination register, Rd. Source operands are read from the register file using the internal buses

A and B, respectively.

 The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values Rn

and Rm from the A and B buses and computes a result. Data processing instructions write the

result in Rd directly to the register file.

 Load and store instructions use the ALU to generate an address to be held in the address register

and broadcast on the Address bus.

o One important feature of the ARM is that register Rm alternatively can be preprocessed in

the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can

calculate a wide range of expressions and addresses.

 After passing through the functional units, the result in Rd is written back to the register file using

the Result bus.

 For load and store instructions the Incrementer updates the address register before the core reads

or writes the next register value from or to the next sequential memory location.

 The processor continues executing instructions until an exception or interrupt

changes the normal execution flow.

REGISTERS:

General-purpose registers hold either data or an address. They are identified with the

letter r prefixed to the register number. For example, register 4 is given the label r4.

The Figure shows the active registers available in user mode. (A protected mode is

normally used when executing applications).

 The processor can operate in seven different modes.

 All the registers shown are 32 bits in size.

 There are up to 18 active registers:

o 16 data registers and 2 processor status registers.

o The data registers visible to the programmer are r0 to r15.

MAHESH PRASANNA K., VCET, PUTTUR

13

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 The ARM processor has three registers assigned to a particular task or special function: r13, r14,

and r15. They are given with different labels to differentiate them from the other registers.

o Register r13 is traditionally used as the stack pointer (sp) and stores the head of the stack

in the current processor mode.

o Register r14 is called the link register (lr) and is where the core puts the return address

whenever it calls a subroutine.

o Register r15 is the program counter (pc) and contains the address of the next instruction

to be fetched by the processor.

 In ARM state the registers r0 to r13 are orthogonal—any instruction that you can apply to r0 you

can equally well apply to any of the other registers.

 In addition to the 16 data registers, there are two program status registers: cpsr (current program

status register) and spsr (saved program status register).

CURRENT PROGRAM STATUS REGISTER:

The ARM core uses the cpsr to monitor and control internal operations. The cpsr is a dedicated 32-bit

register and resides in the register file. The following Figure shows the basic layout of a generic program

status register. Note that the shaded parts are reserved for future expansion.

Figure: A Generic Program Status Register (psr)

The cpsr is divided into four fields, each 8 bits wide: flags, status, extension, and control. In current

designs the extension and status fields are reserved for future use.

 The control field contains the processor mode, state, and interrupt mask bits.

 The flags field contains the condition flags.

Some ARM processor cores have extra bits allocated. For example, the J bit, which can be found in the

flags field, is only available on Jazelle-enabled processors, which execute 8-bit instructions.

It is highly probable that future designs will assign extra bits for the monitoring and control of new

features.

MAHESH PRASANNA K., VCET, PUTTUR

14

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Processor Modes:

 The processor mode determines which registers are active and the access rights to the cpsr

register itself. Each processor mode is either privileged or non-privileged:

o A privileged mode allows full read-write access to the cpsr.

o A non-privileged mode only allows read access to the control field in the cpsr, but still

allows read-write access to the condition flags.

 There are seven processor modes in total:

o six privileged modes (abort, fast interrupt request, interrupt request, supervisor, system,

and undefined)

• The processor enters abort mode when there is a failed attempt to access

memory.

• Fast interrupt request and interrupt request modes correspond to the two

interrupt levels available on the ARM processor.

• Supervisor mode is the mode that the processor is in after reset and is generally

the mode that an operating system kernel operates in.

• System mode is a special version of user mode that allows full read-write access

to the cpsr.

• Undefined mode is used when the processor encounters an instruction that is

undefined or not supported by the implementation.

o one non-privileged mode (user).

• User mode is used for programs and applications.

Banked Registers:

The following Figure shows all 37 registers in the register file.

 Of these, 20 registers are hidden from a program at different times.

 These registers are called banked registers and are identified by the shading in the diagram.

 They are available only when the processor is in a particular mode; for example, abort mode has

banked registers r13_abt, r14_abt and spsr_abt.

 Banked registers of a particular mode are denoted by an underline character post-fixed to the

mode mnemonic or _mode.

 Every processor mode except user mode can change mode by writing directly to the mode bits of

the cpsr.

 All processor modes except system mode have a set of associated banked registers that are a

subset of the main 16 registers.

 A banked register maps one-to-one onto a user mode register.

MAHESH PRASANNA K., VCET, PUTTUR

15

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 If you change processor mode, a banked register from the new mode will replace an existing

register.

o For example, when the processor is in the interrupt request mode, the instructions you

execute still access registers named r13 and r14. However, these registers are the banked

registers r13_irq and r14_irq. The user mode registers r13_usr and r14_usr are not

affected by the instruction referencing these registers. A program still has normal access

to the other registers r0 to r12.

Figure: Complete ARM Register Set

 The processor mode can be changed by a program that writes directly to the cpsr (the processor

core has to be in privileged mode) or by hardware when the core responds to an exception or

interrupt.

 The following exceptions and interrupts cause a mode change: reset, interrupt request, fast

interrupt request, software interrupt, data abort, prefetch abort, and undefined instruction.

 Exceptions and interrupts suspend the normal execution of sequential instructions and jump to a

specific location.
MAHESH PRASANNA K., VCET, PUTTUR

16

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 The following Figure illustrates what happens when an interrupt forces a mode change.

Figure: Changing Mode on an Exception

 The Figure shows the core changing from user mode to interrupt request mode, which happens

when an interrupt request occurs due to an external device raising an interrupt to the processor

core.

 This change causes user registers r13 and r14 to be banked. The user registers are replaced with

registers r13_irq and r14_irq, respectively.

o Note r14_irq contains the return address and r13_irq contains the stack pointer for

interrupt request mode.

 The above Figure also shows a new register appearing in interrupt request mode: the saved

program status register (spsr), which stores the previous mode’s cpsr. The cpsr being copied into

spsr_irq.

 To return back to user mode, a special return instruction is used that instructs the core to restore

the original cpsr from the spsr_irq and bank in the user registers r13 and r14.

MAHESH PRASANNA K., VCET, PUTTUR

17

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Note that, the spsr can only be modified and read in a privileged mode. There is no spsr available

in user mode.

 Another important feature to note is that the cpsr is not copied into the spsr when a mode change

is forced due to a program writing directly to the cpsr. The saving of the cpsr only occurs when

an exception or interrupt is raised.

 When power is applied to the core, it starts in supervisor mode, which is privileged. Starting in a

privileged mode is useful since initialization code can use full access to the cpsr to set up the

stacks for each of the other modes.

 The following Table lists the various modes and the associated binary patterns. The last column

of the table gives the bit patterns that represent each of the processor modes in the cpsr.

Table: Processor Mode

Mode Abbreviation Privileged Mode[4:0]

Abort abt yes 10111

Fast Interrupt Request fiq yes 10001

Interrupt Request irq yes 10010

Supervisor svc yes 10011

System sys yes 11111

Undefined und yes 11011

User usr no 10000

State and Instruction Sets:

 The state of the core determines which instruction set is being executed. There are three

instruction sets:

• ARM

• Thumb

• Jazelle.

 The ARM instruction set is only active when the processor is in ARM state.

 The Thumb instruction set is only active when the processor is in Thumb state. Once in Thumb

state the processor is executing purely Thumb 16-bit instructions.

 You cannot inter-mingle sequential ARM, Thumb, and Jazelle instructions.

 The Jazelle J and Thumb T bits in the cpsr reflect the state of the processor.

o When both J and T bits are 0, the processor is in ARM state and executes ARM

instructions. This is the case when power is applied to the processor.

o When the T bit is 1, then the processor is in Thumb state.

MAHESH PRASANNA K., VCET, PUTTUR

18

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 To change states the core executes a specialized branch instruction.

The following Table compares the ARM and Thumb instruction set features.

Table: ARM and Thumb Instruction Set Features

- ARM (cspr T = 0) Thumb (cspr T = 1)

Instruction size 32-bit 16-bit

Core instructions 58 30

Conditional execution most only branch instructions

Data processing

instructions

access to barrel shifter and

ALU

separate barrel shifter and

ALU instructions

Program status register read-write in privileged mode no direct access

Register usage
15 general-purpose registers

+pc

8 general-purpose registers +7 high registers

+pc

 The ARM designers introduced a third instruction set called Jazelle. Jazelle executes 8-bit

instructions and is a hybrid mix of software and hardware designed to speed up the execution of

Java byte-codes.

 To execute Java byte-codes, you require the Jazelle technology plus a specially modified version

of the Java virtual machine.

The following Table gives the Jazelle instruction set features.

Table: Jazelle instruction set features

- Jezelle (cspr T = 0, J – 1)

Instruction size 8-bit

Core Instructions
Over 60% of the Java byte-codes are implemented in hardware;

the rest of the codes are implemented in software

Interrupt Masks:

 Interrupt masks are used to stop specific interrupt requests from interrupting the processor.

 There are two interrupt request levels available on the ARM processor core—

o interrupt request (IRQ)

o fast interrupt request (FIQ).

 The cpsr has two interrupt mask bits, 7 and 6 (or I and F), which control the masking of IRQ and

FIQ, respectively.

 The I bit masks IRQ when set to binary 1; and similarly, the F bit masks FIQ when set to binary

1.

MAHESH PRASANNA K., VCET, PUTTUR

19

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Condition Flags:

 Condition flags are updated by comparisons and the result of ALU operations that specify the S

instruction suffix.

o For example, if a SUBS subtract instruction results in a register value of zero, then the Z

Flag in the cpsr is set. This particular subtract instruction specifically updates the cpsr.

 With processor cores that include the DSP extensions, the Q bit indicates if an overflow or

saturation has occurred in an enhanced DSP instruction. The flag is “sticky” in the sense that the

hardware only sets this flag. To clear the flag you need to write to the cpsr directly.

 In Jazelle-enabled processors, the J bit reflects the state of the core; if it is set, the core is in

Jazelle state. The J bit is not generally usable and is only available on some processor cores. To

take advantage of Jazelle, extra software has to be licensed from both ARM Limited and Sun

Microsystems.

 Most ARM instructions can be executed conditionally on the value of the condition flags.

The following Table lists the condition flags and a short description on what causes them to be set.

Table: Condition Flags

Flag Flag Name Set When

Q Saturation the result causes an overflow and/or saturation

V oVerflow the result causes a signed overflow

C Carry the result causes an unsigned carry

Z Zero the result is zero

N Negative bit 31 of the result is a binary 1

These flags are located in the most significant bits in the cpsr. These bits are used for conditional

execution. The following Figure shows a typical value for the cpsr with both DSP extensions and Jazelle.

Figure: Example: cspr = nzCvqjiFt_SVC

 For the condition flags a capital letter shows that the flag has been set. For interrupts a capital

letter shows that an interrupt is disabled.

 In the cpsr example shown in above Figure, the C flag is the only condition flag set. The rest

nzvq flags are all clear.

MAHESH PRASANNA K., VCET, PUTTUR

20

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 The processor is in ARM state because neither the Jazelle j nor Thumb t bits are set. The IRQ

interrupts are enabled, and FIQ interrupts are disabled.

 Finally, you can see from the Figure, the processor is in supervisor (SVC) mode, since the

mode[4:0] is equal to binary 10011.

Conditional Execution:

 Conditional execution controls whether or not the core will execute an instruction.

 Prior to execution, the processor compares the condition attribute with the condition flags in the

cpsr. If they match, then the instruction is executed; otherwise the instruction is ignored.

 The condition attribute is post-fixed to the instruction mnemonic, which is encoded into the

instruction.

 The following Table lists the conditional execution code mnemonics. When a condition

mnemonic is not present, the default behavior is to set it to always (AL) execute.

Table: Condition Mnemonics

PIPELINE:

 A pipeline is the mechanism in a RISC processor, which is used to execute instructions.

 Pipeline speeds up execution by fetching the next instruction while other instructions are being

decoded and executed.

Figure: ARM7 Three-stage Pipeline

MAHESH PRASANNA K., VCET, PUTTUR

21

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
The above Figure shows a three-stage pipeline:

o Fetch loads an instruction from memory.

o Decode identifies the instruction to be executed.

o Execute processes the instruction and writes the result back to a register.

The following Figure illustrates pipeline using a simple example.

Figure: Pipelined Instruction Sequence

 The Figure shows a sequence of three instructions being fetched, decoded, and executed by the

processor.

o The three instructions are placed into the pipeline sequentially.

o In the first cycle, the core fetches the ADD instruction from memory.

o In the second cycle, the core fetches the SUB instruction and decodes the ADD

instruction.

o In the third cycle, both the SUB and ADD instructions are moved along the pipeline. The

ADD instruction is executed, the SUB instruction is decoded, and the CMP instruction is

fetched.

 This procedure is called filling the pipeline.

 The pipeline allows the core to execute an instruction every cycle.

o As the pipeline length increases, the amount of work done at each stage is reduced, which allows

the processor to attain a higher operating frequency. This in turn increases the performance.

o The increased pipeline length also means increased system latency and there can be data

dependency between certain stages.

o The pipeline design for each ARM family differs. For example, The ARM9 core increases the

pipeline length to five stages, as shown in Figure.

Figure: ARM9 Five-stage Pipeline

MAHESH PRASANNA K., VCET, PUTTUR

22

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

o The ARM9 adds a memory and writeback stage, which allows the ARM9 to –

 process on average 1.1 Dhrystone MIPS per MHz

 increase the instruction throughput in ARM9 by around 13% compared with an

ARM7.

o The ARM10 increases the pipeline length still further by adding a sixth stage, as shown in the

following Figure.

Figure: ARM10 Six-stage Pipeline

o The ARM10 –

 can process on average 1.3 Dhrystone MIPS per MHz

 have about 34% more throughput than an ARM7 processor core

 but again at a higher latency cost.

NOTE: Even though the ARM9 and ARM10 pipelines are different, they still use the same pipeline

executing characteristics as an ARM7. Hence, code written for the ARM7 will execute on an ARM9 or

ARM10.

Pipeline Executing Characteristics:

 The ARM pipeline will not process an instruction, until it passes completely through the execute

stage.

o For example, an ARM7 pipeline (with three stages) has executed an instruction only

when the fourth instruction is fetched.

The following Figure shows an instruction sequence on an ARM7 pipeline.

Figure: ARM Instruction Sequence

 The MSR instruction is used to enable IRQ interrupts, which only occurs once the MSR

instruction completes the execute stage of the pipeline. It clears the I bit in the cpsr to enable the

IRQ interrupts.

MAHESH PRASANNA K., VCET, PUTTUR

23

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 Once the ADD instruction enters the execute stage of the pipeline, IRQ interrupts are enabled.

The following Figure illustrates the use of the pipeline and the program counter pc.

Figure: Example: pc = address + 8

 In the execute stage, the pc always points to the address of the instruction plus 8 bytes. In other

words, the pc always points to the address of the instruction being executed plus two instructions

ahead.

 Note when the processor is in Thumb state the pc is the instruction address plus 4.

 There are three other characteristics of the pipeline.

o First, the execution of a branch instruction or branching by the direct modification of the

pc causes the ARM core to flush its pipeline.

o Second, ARM10 uses branch prediction, which reduces the effect of a pipeline flush by

predicting possible branches and loading the new branch address prior to the execution of

the instruction.

o Third, an instruction in the execute stage will complete even though an interrupt has been

raised. Other instructions in the pipeline will be abandoned, and the processor will start

filling the pipeline.

EXCEPTIONS, INTERRUPTS AND THE VECTOR TABLE:

 When an exception or interrupt occurs, the processor sets the pc to a specific memory address.

The address is within a special address range called the vector table.

o The entries in the vector table are instructions that branch to specific routines designed to

handle a particular exception or interrupt.

o The memory map address 0x00000000 (or in some processors starting at the offset

0xffff0000) is reserved for the vector table, a set of 32-bit words.

 When an exception or interrupt occurs, the processor suspends normal execution and starts

loading instructions from the exception vector table (see the following Table).

MAHESH PRASANNA K., VCET, PUTTUR

24

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44

Table: The Vector Table

Exception/Interrupt Shorthand Address High Address

Reset RESET 0x00000000 0x00000000

Undefined instruction UNDEF 0x00000004 0xffff0004

Software interrupt SWI 0x00000008 0xffff0008

Prefetch abort PABT 0x0000000c 0xffff000c

Data abort SABT 0x00000010 0xffff0010

Reserved – 0x00000014 0xffff0014

Interrupt request IRQ 0x00000018 0xffff0018

Fast interrupt request FIQ 0x0000001c 0xffff001c

 Each vector table entry contains a form of branch instruction pointing to the start of a specific

routine:

o Reset vector is the location of the first instruction executed by the processor when power

is applied. This instruction branches to the initialization code.

o Undefined instruction vector is used when the processor cannot decode an instruction.

o Software interrupt vector is called when you execute a SWI instruction. The SWI

instruction is frequently used as the mechanism to invoke an operating system routine.

o Prefetch abort vector occurs when the processor attempts to fetch an instruction from an

address without the correct access permissions. The actual abort occurs in the decode

stage.

o Data abort vector is similar to a prefetch abort, but is raised when an instruction attempts

to access data memory without the correct access permissions.

o Interrupt request vector is used by external hardware to interrupt the normal execution

flow of the processor. It can only be raised if IRQs are not masked in the cpsr.

o Fast interrupt request vector is similar to the interrupt request, but is reserved for

hardware requiring faster response times. It can only be raised if FIQs are not masked in

the cpsr.

CORE EXTENSIONS:

 Core extensions are the standard hardware components placed next to the ARM core.

 They improve performance, manage resources, and provide extra functionality and are designed

to provide flexibility in handling particular applications.

Each ARM family has different extensions available. There are three hardware extensions: cache and

tightly coupled memory, memory management, and the coprocessor interface.

MAHESH PRASANNA K., VCET, PUTTUR

25

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
Cache and Tightly Coupled Memory:

 The cache is a block of fast memory placed between main memory and the core. It allows for

more efficient fetches from some memory types. With a cache the processor core can run for the

majority of the time without having to wait for data from slow external memory.

 Most ARM-based embedded systems use a single-level cache internal to the processor.

 ARM has two forms of cache. The first is found attached to the Von Neumann–style cores. It

combines both data and instruction into a single unified cache, as shown in the following Figure.

Figure: Von Neumann Architecture with Cache

 The second form, attached to the Harvard-style cores, has separate caches for data and

instruction, as shown in the following Figure.

Figure: Harvard Architecture with TCMs

 A cache provides an overall increase in performance, but at the expense of predictable execution.

But the real-time systems require the code execution to be deterministic— the time taken for

loading and storing instructions or data must be predictable.
MAHESH PRASANNA K., VCET, PUTTUR

26

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 This is achieved using a form of memory called tightly coupled memory (TCM). TCM is fast

SRAM located close to the core and guarantees the clock cycles required to fetch instructions or

data.

 TCMs appear as memory in the address map and can be accessed as fast memory.

By combining both technologies, ARM processors can have both improved performance and predictable

real-time response. The following Figure shows an example core with a combination of caches and

TCMs.

Figure: Harvard Architecture with Caches and TCMs

Memory Management:

 Embedded systems often use multiple memory devices. It is usually necessary to have a method

to organize these devices and protect the system from applications trying to make inappropriate

accesses to hardware. This is achieved with the assistance of memory management hardware.

 ARM cores have three different types of memory management hardware—

o no extensions providing no protection

o a memory protection unit (MPU) providing limited protection

o a memory management unit (MMU) providing full protection

 Non protected memory is fixed and provides very little flexibility. It is normally used for small,

simple embedded systems that require no protection from rogue applications.

 MPUs employ a simple system that uses a limited number of memory regions. These regions are

controlled with a set of special coprocessor registers, and each region is defined with specific

access permissions. This type of memory management is used for systems that require memory

protection but don’t have a complex memory map.

MAHESH PRASANNA K., VCET, PUTTUR

27

MICROPROCESSORS AND MICROCONTROLLERS
 15CS44
 MMUs are the most comprehensive memory management hardware available on the ARM. The

MMU uses a set of translation tables to provide fine-grained control over memory. These tables

are stored in main memory and provide a virtual-to-physical address map as well as access

permissions. MMUs are designed for more sophisticated platform operating systems that support

multitasking.

Coprocessors:

 Coprocessors can be attached to the ARM processor. A coprocessor extends the processing

features of a core by extending the instruction set or by providing configuration registers. More

than one coprocessor can be added to the ARM core via the coprocessor interface.

 The coprocessor can be accessed through a group of dedicated ARM instructions that provide a

load-store type interface.

o For example, coprocessor 15: The ARM processor uses coprocessor 15 registers to

control the cache, TCMs, and memory management.

 The coprocessor can also extend the instruction set by providing a specialized group of new

instructions.

o For example, there are a set of specialized instructions that can be added to the standard

ARM instruction set to process vector floating-point (VFP) operations.

 These new instructions are processed in the decode stage of the ARM pipeline.

o If the decode stage sees a coprocessor instruction, then it offers it to the relevant

coprocessor.

o If the coprocessor is not present or doesn’t recognize the instruction, then the ARM takes

an undefined instruction exception, which allows you to emulate the behavior of the

coprocessor in software.

By: Mahesh Prasanna K.,

DePt. of Cse, VCet.

____________*********____________

MAHESH PRASANNA K., VCET, PUTTUR

28

	MODULE – 4
	ARM EMBEDDED SYSTEMS & ARM PROCESSOR FUNDAMENTALS

