
ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 1 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

What Is the ARM Cortex-M3 PROCESSOR?

The microcontroller market is vast, with more than 20 billion devices per year estimated to be

shipped in 2010. A bewildering array of vendors, devices, and architectures is competing in this

market. The requirement for higher performance microcontrollers has been driven globally by

the industry’s changing needs; for example, microcontrollers are required to handle more work

without increasing a product’s frequency or power. In addition, microcontrollers are becoming

increasingly connected, whether by Universal Serial Bus (USB), Ethernet, or wireless radio, and

hence, the processing needed to support these communication channels and advanced peripherals

are growing.

The ARM Cortex™-M3 processor, the first of the Cortex generation of processors released by

ARM in 2006, was primarily designed to target the 32-bit microcontroller market. The Cortex-

M3 processor provides excellent performance at low gate count and comes with many new

features previously available only in high-end processors. The Cortex-M3 addresses the

requirements for the 32-bit embedded processor market in the following ways:

• Greater performance efficiency: allowing more work to be done without increasing the

frequency or power requirements

• Low power consumption: enabling longer battery life, especially critical in portable products

including wireless networking applications.

• Enhanced determinism: guaranteeing that critical tasks and interrupts are serviced as

quickly as possible and in a known number of cycles

 • Improved code density: ensuring that code fits in even the smallest memory footprints

• Ease of use: providing easier programmability and debugging for the growing number of 8-bit

and 16-bit users migrating to 32 bits

• Lower cost solutions: reducing 32-bit-based system costs close to those of legacy 8-bit and 16-

bit devices and enabling low-end, 32-bit microcontrollers to be priced at less than US$1 for the

first time

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 2 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

 • Wide choice of development tools: from low-cost or free compilers to full-featured

development suites from many development tool vendors.

Background of ARM and ARM Architecture

ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple Computer,

Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6 processor

family, and VLSI became the initial licensee. Subsequently, additional companies, including

Texas Instruments, NEC, Sharp, and ST Microelectronics, licensed the ARM processor designs,

extending the applications of ARM processors into mobile phones, computer hard disks, personal

digital assistants (PDAs), home entertainment systems, and many other consumer products.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 3 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Architecture Versions:

Over the years, ARM has continued to develop new processors and system blocks. These include the

popular ARM7TDMI processor and, more recently, the ARM1176TZ(F)-S processor, which is used in

high-end applications such as smart phones. The evolution of features and enhancements to the processors

over time has led to successive versions of the ARM architecture. Note that architecture version numbers

are independent from processor names. For example, the ARM7TDMI processor is based on the

ARMv4T architecture (the T is for Thumb® instruction mode support).

Over the past several years, ARM extended its product portfolio by diversifying its CPU

development, which resulted in the architecture version 7 or v7. In this version, the architecture

design is divided into three profiles:

 • The A profile is designed for high-performance open application platforms.

 • The R profile is designed for high-end embedded systems in which real-time performance is

needed.

• The M profile is designed for deeply embedded microcontroller-type systems.

• A Profile (ARMv7-A): Application processors which are designed to handle complex

applications such as high-end embedded operating systems (OSs) (e.g., Symbian, Linux,

and Windows Embedded). These processors requiring the highest processing power,

virtual memory system support with memory management units (MMUs), and,

optionally, enhanced Java support and a secure program execution environment. Example

products include high-end mobile phones and electronic wallets for financial transactions.

• R Profile (ARMv7-R): Real-time, high-performance processors targeted primarily at

the higher end of the real-time1 market—those applications, such as high-end breaking

systems and hard drive controllers, in which high processing power and high reliability

are essential and for which low latency is important.

 • M Profile (ARMv7-M): Processors targeting low-cost applications in which

processing efficiency is important and cost, power consumption, low interrupt latency,

and ease of use are critical, as well as industrial control applications, including real-time

control systems.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 4 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Thumb-2 Technology and Instruction Set Architecture:

The Thumb-23 technology extended the Thumb Instruction Set Architecture (ISA) into a

highly efficient and powerful instruction set that delivers significant benefits in terms of

ease of use, code size, and performance (see Figure 1). The extended instruction set in

Thumb-2 is a superset of the previous 16-bit Thumb instruction set, with additional 16-bit

instructions alongside 32-bit instructions. It allows more complex operations to be carried

out in the Thumb state, thus allowing higher efficiency by reducing the number of states

switching between ARM state and Thumb state.

Fig.1 the Relationship between the Thumb Instructions Set in Thumb-2 Technology and the Traditional

Thumb

With support for both 16-bit and 32-bit instructions in the Thumb-2 instruction set, there is no

need to switch the processor between Thumb state (16-bit instructions) and ARM state (32-bit

instructions). For example, in ARM7 or ARM9 family processors, you might need to switch to

ARM state if you want to carry out complex calculations or a large number of conditional

operations and good performance is needed, whereas in the Cortex-M3 processor, you can mix

32-bit instructions with 16-bit instructions without switching state, getting high code density and

high performance with no extra complexity.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 5 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Cortex-M3 Processor Applications:

• Low-cost microcontrollers: The Cortex-M3 processor is ideally suited for low-cost

microcontrollers, which are commonly used in consumer products, from toys to electrical

appliances. It is a highly competitive market due to the many well-known 8-bit and 16-bit

microcontroller products on the market. Its lower power, high performance, and ease-of-

use advantages enable embedded developers to migrate to 32-bit systems and develop

products with the ARM architecture.

• Automotive: Another ideal application for the Cortex-M3 processor is in the automotive

industry. The Cortex-M3 processor has very high-performance efficiency and low

interrupt latency, allowing it to be used in real-time systems. The Cortex-M3 processor

supports up to 240 external vectored interrupts, with a built-in interrupt controller with

nested interrupt supports and an optional MPU, making it ideal for highly integrated and

cost-sensitive automotive applications.

• Data communications: The processor’s low power and high efficiency, coupled with

instructions in Thumb-2 for bit-field manipulation, make the Cortex-M3 ideal for many

communications applications, such as Bluetooth and ZigBee.

• Industrial control: In industrial control applications, simplicity, fast response, and

reliability are key factors. Again, the Cortex-M3 processor’s interrupt feature, low

interrupt latency, and enhanced fault-handling features make it a strong candidate in this

area.

• Consumer products: In many consumer products, a high-performance microprocessor (or

several of them) is used. The Cortex-M3 processor, being a small processor, is highly

efficient and low in power and supports an MPU enabling complex software to execute

while providing robust memory protection.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 6 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Architecture of ARM Cortex M3:

The Cortex™-M3 is a 32-bit microprocessor. It has a 32-bit data path, a 32-bit register bank, and

32-bit memory interfaces (see Figure 2). The processor has a Harvard architecture, which means

that it has a separate instruction bus and data bus. This allows instructions and data accesses to

take place at the same time, and as a result of this, the performance of the processor increases

because data accesses do not affect the instruction pipeline. This feature results in multiple bus

interfaces on Cortex-M3, each with optimized usage and the ability to be used simultaneously.

However, the instruction and data buses share the same memory space (a unified memory

system). In other words, you cannot get 8 GB of memory space just because you have separate

bus interfaces.

Fig2. A Simplified View of the Cortex-M3.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 7 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

• The Cortex-M3 processor is a 32-bit processor, with a 32-bit wide data path, register

bank and memory interface. There are 13 general-purpose registers, two stack pointers, a

link register, a program counter and a number of special registers including a program

status register.

• The Cortex-M3 core contains a decoder for traditional Thumb and new Thumb-2

instructions, an advanced ALU with support for hardware multiply and divide, control

logic, and interfaces to the other components of the processor.

• The Cortex-M3 processor is a 32-bit processor, with a 32-bit wide data path, register

bank and memory interface. There are 13 general-purpose registers, two stack pointers, a

link register, a program counter and a number of special registers including a program

status register.

• The Cortex-M3 processor is a memory mapped system with a simple, fixed memory map

for up to 4 gigabytes of addressable memory space with predefined, dedicated addresses

for code (code space), SRAM(memory space), external memories/devices and

internal/external peripherals. There is also a special region to provide for vendor specific

addressability.

• The MPU is an optional component of the Cortex-M3 processor that can improve the

reliability of an embedded system by protecting critical data used by the operating system

from user applications, separating processing tasks by disallowing access to each other's

data, disabling access to memory regions, allowing memory regions to be defined as

read-only and detecting unexpected memory accesses that could potentially break the

system.

• The highly configurable NVIC is an integral part of the Cortex-M3 processor and

provides the processor’s outstanding interrupt handling abilities. In its standard

implementation it supplies a NonMaskable Interrupt (NMI) and 32 general purpose

physical interrupts with 8 levels of pre-emption priority. It can be configured to anywhere

between 1 and 240 physical interrupts with up to 256 levels of priority though simple

synthesis choices.

• The debug access into a Cortex-M3 processor based system is through the Debug Access

Port (DAP) that can be implemented as either a Serial Wire Debug Port (SW-DP) for a

two-pin (clock and data) Interface or a Serial Wire JTAG Debug Port (SWJ-DP) that

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 8 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

enables either JTAG or SW protocol to be used. The SWJ-DP defaults to JTAG mode on

power reset and can be made to switch protocols with a specific control sequence

provided by the external debug hardware.

• The Cortex-M3 processor bus matrix connects the processor and debug interface to the external

buses; the 32-bit AMBA® AHB-Lite based ICode, DCode and System interfaces and the 32-bit

AMBA APB™ based Private Peripheral Bus (PPB). The bus matrix also implements unaligned

data accesses and bit banding.

Registers in Cortex-M3 processor:

The Cortex-M3 processor has registers R0 through R15. R13 (the stack pointer) is banked, with only

one copy of the R13 visible at a time.

R0–R12: General-Purpose Registers R0–R12 are 32-bit general-purpose registers for data operations.

Some 16-bit Thumb® instructions can only access a subset of these registers (low registers, R0–R7).

R13: Stack Pointers The Cortex-M3 contains two stack pointers (R13). They are banked so that only

one is visible at a time. The two stack pointers are as follows: • Main Stack Pointer (MSP): The

default stack pointer, used by the operating system (OS) kernel and exception handlers • Process

Stack Pointer (PSP): Used by user application code.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 9 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

R14: The Link Register When a subroutine is called, the return address is stored in the link register.

R15: The Program Counter The program counter is the current program address. This register can be

written to control the program flow.

Stack Pointer R13

R13 is the stack pointer (SP). In the Cortex-M3 processor, there are two SPs. This duality allows

two separate stack memories to be set up. When using the register name R13, you can only

access the current SP; the other one is inaccessible unless you use special instructions to move to

special register from general-purpose register (MSR) and move special register to general-

purpose register (MRS).

The two SPs are as follows:

• Main Stack Pointer (MSP) or SP_main in ARM documentation: This is the default SP; it is

used by the operating system (OS) kernel, exception handlers, and all application codes that

require privileged access.

 • Process Stack Pointer (PSP) or SP_process in ARM documentation: This is used by the

base-level application code (when not running an exception handler).

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 10 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

In the Cortex-M3, the instructions for accessing stack memory are PUSH and POP. The assembly

language syntax is as follows (text after each semicolon [;] is a comment):

PUSH {R0} ; R13=R13-4, then Memory[R13] = R0

POP {R0} ; R0 = Memory[R13], then R13 = R13 + 4

Link Register R14:

R14 is the link register (LR). Inside an assembly program, you can write it as either R14 or LR.

LR is used to store the return program counter (PC) when a subroutine or function is called—for

example, when you’re using the branch and link (BL) instruction:

Program Counter R15:

R15 is the PC. You can access it in assembler code by either R15 or PC. Because of the pipelined nature

of the Cortex-M3 processor, when you read this register, you will find that the value is different than the

location of the executing instruction, normally by 4.

0x1000 : MOV R0, PC ; R0 = 0x1004

In other instructions like literal load (reading of a memory location related to current PC value),

the effective value of PC might not be instruction address plus 4 due to alignment in address

calculation. But the PC value is still at least 2 bytes ahead of the instruction address during

execution

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 11 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Special Registers:

The Cortex-M3 processor also has a number of special registers.

They are as follows:

 • Program Status registers (PSRs)

• Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)

• Control register (CONTROL)

Special registers can only be accessed via MSR and MRS instructions; they do not have memory

addresses:

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 12 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Built-In Nested Vectored Interrupt Controller:

The Cortex-M3 processor includes an interrupt controller called the Nested Vectored Interrupt

Controller (NVIC). It is closely coupled to the processor core and provides a number of features

as follows:

• Nested interrupt support

• Vectored interrupt support

• Dynamic priority changes support

• Reduction of interrupt latency

• Interrupt masking

Nested Interrupt Support: The NVIC provides nested interrupt support. All the external

interrupts and most of the system exceptions can be programmed to different priority levels.

When an interrupt occurs, the NVIC compares the priority of this interrupt to the current running

priority level. If the priority of the new interrupt is higher than the current level, the interrupt

handler of the new interrupt will override the current running task.

Vectored Interrupt Support: The Cortex-M3 processor has vectored interrupt support.

When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is

located from a vector table in memory. There is no need to use software to determine and branch

to the starting address of the ISR. Thus, it takes less time to process the interrupt request.

Dynamic Priority Changes Support: Priority levels of interrupts can be changed by

software during run time. Interrupts that are being serviced are blocked from further activation

until the ISR is completed, so their priority can be changed without risk of accidental reentry.

Reduction of Interrupt Latency: The Cortex-M3 processor also includes a number of advanced

features to lower the interrupt latency. These include automatic saving and restoring some

register contents, reducing delay in switching from one ISR to another, and handling of late

arrival interrupts

Interrupt Masking: Interrupts and system exceptions can be masked based on their priority

level or masked completely using the interrupt masking registers BASEPRI, PRIMASK, and

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 13 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

FAULTMASK. They can be used to ensure that time-critical tasks can be finished on time

without being interrupted.

The Memory Map:

The Cortex-M3 has a predefined memory map. This allows the built-in peripherals, such as the

interrupt controller and the debug components, to be accessed by simple memory access

instructions. Thus, most system features are accessible in C program code. The predefined

memory map also allows the Cortex-M3 processor to be highly optimized for speed and ease of

integration in system-on-a-chip (SoC) designs.

The Cortex-M3 design has an internal bus infrastructure optimized for this memory usage. In

addition, the design allows these regions to be used differently. For example, data memory can

still be put into the CODE region, and program code can be executed from an external Random

Access Memory (RAM) region.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 14 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Bus Interface:

There are several bus interfaces on the Cortex-M3 processor. They allow the Cortex-M3 to carry

instruction fetches and data accesses at the same time.

The main bus interfaces are as follows:

• Code memory buses

• System bus

• Private peripheral bus

 The code memory region access is carried out on the code memory buses, which physically

consist of two buses, one called I-Code and other called D-Code. These are optimized for

instruction fetches for best instruction execution speed. The system bus is used to access memory

and peripherals. This provides access to the Static Random Access Memory (SRAM),

peripherals, external RAM, external devices, and part of the system level memory regions.

The Instruction Set:

The Cortex-M3 supports the Thumb-2 instruction set. This is one of the most important features

of the Cortex-M3 processor because it allows 32-bit instructions and 16-bit instructions to be

used together for high code density and high efficiency. It is flexible and powerful yet easy to

use.

 In previous ARM processors, the central processing unit (CPU) had two operation states: a 32-

bit ARM state and a 16-bit Thumb state. In the ARM state, the instructions are 32 bits and can

execute all supported instructions with very high performance. In the Thumb state, the

instructions are 16 bits, so there is a much higher instruction code density, but the Thumb state

does not have all the functionality of ARM instructions and may require more instructions to

complete certain types of operations.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 15 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Cortex-M3 processor has a number of advantages over traditional ARM processors, such as:

• No state switching overhead, saving both execution time and instruction space

• No need to separate ARM code and Thumb code source files, making software development

and maintenance easier

 • It’s easier to get the best efficiency and performance, in turn making it easier to write software,

because there is no need to worry about switching code between ARM and Thumb to try to get

the best density/performance.

The Cortex-M3 processor has a number of interesting and powerful instructions. Here are a few

examples:

• UFBX, BFI, and BFC: Bit field extract, insert, and clear instructions

 • UDIV and SDIV: Unsigned and signed divide instructions

• WFE, WFI, and SEV: Wait-For-Event, Wait-For-Interrupts, and Send-Event; these allow the

processor to enter sleep mode and to handle task synchronization on multiprocessor systems

• MSR and MRS: Move to special register from general-purpose register and move special

register to general-purpose register; for access to the special registers.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 16 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Interrupts and Exceptions:

The Cortex-M3 processor implements a new exception model, introduced in the ARMv7-M

architecture. This exception model differs from the traditional ARM exception model, enabling

very efficient exception handling. It has a number of system exception handling. It has a number

of system exceptions plus a number of external Interrupt Request (IRQs) (external interrupt

inputs).

There is no fast interrupt (FIQ) (fast interrupt in ARM7/ARM9/ ARM10/ARM11) in the Cortex-

M3; however, interrupt priority handling and nested interrupt support are now included in the

interrupt architecture. Therefore, it is easy to set up a system that supports nested interrupts (a

higher-priority interrupt can override or preempt a lower-priority interrupt handler) and that

behaves just like the FIQ in traditional ARM processors.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 17 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Debugging Support:

The Cortex-M3 processor includes a number of debugging features, such as program execution

controls, including halting and stepping, instruction breakpoints, data watchpoints, registers and

memory accesses, profiling, and traces. The debugging hardware of the Cortex-M3 processor is

based on the CoreSight™ architecture.

Unlike traditional ARM processors, the CPU core itself does not have a Joint Test Action Group

(JTAG) interface. Instead, a debug interface module is decoupled from the core, and a bus

interface called the Debug Access Port (DAP) is provided at the core level. Through this bus

interface, external debuggers can access control registers to debug hardware as well as system

memory, even when the processor is running. The control of this bus interface is carried out by a

Debug Port (DP) device.

 The DPs currently available are the Serial-Wire JTAG Debug Port (SWJ-DP) (supports the

traditional JTAG protocol as well as the Serial-Wire protocol) or the SW-DP (supports the

Serial-Wire protocol only). A JTAG-DP module from the ARM CoreSight product family can

also be used. Chip manufacturers can choose to attach one of these DP modules to provide the

debug interface.

Chip manufacturers can also include an Embedded Trace Macrocell (ETM) to allow instruction

trace. Trace information is output via the Trace Port Interface Unit (TPIU), and the debug host

(usually a Personal Computer [PC]) can then collect the executed instruction information via

external trace capturing hardware.

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 18 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Stack Memory Operations:

In the Cortex-M3, besides normal software-controlled stack PUSH and POP, the stack PUSH and POP

operations are also carried out automatically when entering or exiting an exception/interrupt handler. In

this section, we examine the software stack operations.

Operation:

In general, stack operations are memory write or read operations, with the address specified by

an SP. Data in registers is saved into stack memory by a PUSH operation and can be restored to

registers later by a POP operation. The SP is adjusted automatically in PUSH and POP so that

multiple data PUSH will not cause old stacked data to be erased.

The function of the stack is to store register contents in memory so that they can be restored

later, after a processing task is completed. For normal uses, for each store (PUSH), there must be

a corresponding read (POP), and the address of the POP operation should match that of the

PUSH operation. When PUSH/POP instructions are used, the SP is incremented/decremented

automatically. When program control returns to the main program, the R0–R2 contents are the

same as before.

Notice the order of PUSH and POP: The POP order must be the reverse of PUSH. These

operations can be simplified, thanks to PUSH and POP instructions allowing multiple load and

store. In this case, the ordering of a register POP is automatically reversed by the processor. You

can also combine RETURN with a POP operation. This is done by pushing the LR to the stack

and popping it back to PC at the end of the subroutine.

Cortex-M3 Stack Implementation:

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 19 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Reset Sequence: After the processor exits reset, it will read two words from memory

• Address 0x00000000: Starting value of R13 (the SP)

• Address 0x00000004: Reset vector (the starting address of program execution; LSB should be set to 1

to indicate Thumb state)

This differs from traditional ARM processor behavior. Previous ARM processors executed program code

starting from address 0x0. Furthermore, the vector table in previous ARM devices was instructions .

Fig3.Reset sequence

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 20 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

FIG.4 Initial Stack Pointer Value and Initial Program Counter Value Example.

In the Cortex-M3, the initial value for the MSP is put at the beginning of the memory map,

followed by the vector table, which contains vector address values. (The vector table can be

relocated to another location later, during program execution.) In addition, the contents of the

vector table are address values not branch instructions. The first vector in the vector table

(exception type 1) is the reset vector, which is the second piece of data fetched by the processor

after reset. Because the stack operation in the Cortex-M3 is a full descending stack (SP

decrement before store), the initial SP value should be set to the first memory after the top of the

stack region. For example, if you have a stack memory range from 0x20007C00 to 0x20007FFF

(1 KB), the initial stack value should be set to 0x20008000.

