	<u> </u>	<u> </u>	- ·
A.Year / Chapter	Semester	Subject	lopic
2013 / 5	6	Power system analysis and	Unsymmetrical faults
		stability	

5.1 Introduction:

The concept of faults has been already introduced in chapter 2 which was dedicated to the treatment of symmetrical faults. In this chapter, we shall deal with unsymmetrical faults. The unsymmetrical faults are basically categorized into two types, namely,

1)Shunt type of faults and

2)Series type of faults.

Shunt type of fault involves short circuit between conductors or between the conductors and ground. They are characterized by an increase in current and fall in voltage and frequency in the faulted phase. Shunt type of faults are in turn classified as:

1)Single line to ground (LG) fault

2)Line to line (LL) fault

3)Double line to ground (LLG) fault.

When one or two lines in a thee phase system get opened while other lines or line remain intact, such faults are called as series type of faults. They are characterized by increase in voltage and frequency and fall in current in the faulted phase series type of faults cab be grouped as:

1)One conductor open fault

2)Two conductor open fault

We will individually consider each of these faults in this chapter. Before that, let us look into the typical relative frequencies of different kinds of faults in a power system in order of decreasing severity.

Symmetrical faults (3L) -5%

Double line to ground (LLG) faults -10%

Double line (LL) faults -15%

Single line to ground (LG) fault- 70%

It can be observed that three phase faults (3L) has the maximum severity, though its occurrence is infrequent. Hence the rapturing capacity of circuit breakers are calculated on the basis of a three phase symmetrical fault. However, for relay setting, single phase switching and performing the system stability studies, the analysis of unsymmetrical faults are very important. Since any unsymmetrical fault causes unbalanced currents to flow in the system, the method of symmetrical components is very useful in an analysis to determine the currents and voltages in all parts of the system after the occurrence of the fault. Also the sequence networks of the system will come quite handy in this process. First, we shall discuss fault at the terminals of an unloaded synchronous generator. Then, we shall consider faults on a power system by applying Thevenin's theorem, which

	S J P N Trust's	Author	TCP04
8	Hirasugar Institute of Technology, Nidasoshi-591236	Pramod M	V 1.1
	Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	EEE
ESTD 1984	Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	1	FEB 2013

A.Year / Chapter Semester Subject Topic 2013 / 5 6 Power system analysis and
--

allows us to find the current in the fault by replacing the entire system by a single generator (voltage source) and series impedance.

5.2 Fault calculations of synchronous generator.

Consider a balanced three phase synchronous generator (alternator), which is subjected to some unsymmetrical fault F at the terminal, as shown in fig 5.1.

The fault may be unsymmetrical one. But to the left of the fault point F, the system (alternator) is completely symmetrical. Hence, in such a system, currents of a given sequence produce voltage drops of the same sequence only. The sequence impedances are uncoupled. Since the generates balanced voltages only (positive sequence voltages only), the following equations are applicable to a synchronous generator, even during an unsymmetrical fault.

These equations cab be called the system equations. For any fault at the terminals of synchronous generator, the quantities that are to be determined are the three sequence currents (I_{a1} , I_{a2} , I_{a0}) and the three sequence terminal voltages (V_{a1} , V_{a2} , V_{a0}). Out of the six unknowns, only three quantities are linearly independent. Hence to determine these three linearly independent quantities, three terminal conditions are to be specified for any type of fault at the terminals of the generator.

Before proceeding to the analysis of faults at the terminals of an unloaded generator, it is good enough to remember that the single phase representation of the positive sequence network of a synchronous generator consists of positive sequence generated emf E_{a1} in series with positive sequence impedance Z_1 (fig 4.5b). The negative sequence network consists of negative sequence impedance Z_2 with no negative sequence generated voltage (fig 4.6b). The zero sequence network consists of zero sequence impedance Z_0 with no zero sequence generated voltage (fig 4.7b).

	S J P N Trust's	Author	TCP04
8	Hirasugar Institute of Technology, Nidasoshi-591236	Pramod M	V 1.1
	Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	EEE
1984 C DT23	Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	2	FEB 2013

A.Year / Chapter 2013 / 5	Semester 6	Subject Power system analysis and stability	Topic Unsymmetrical faults

5.2.1 Single line to ground (LG) fault on an unloaded generator:

The circuit diagram for an LG fault on an unloaded star connected generator with its neutral grounded through a reactance is shown in fig 5.2. Here it is assumed that phase a is shorted to ground directly. The condition at the fault are represented by the following terminal conditions.

Terminal conditions:

V_a=05.4

I_b=05.5

I_c=05.6

These three terminal conditions in terms of line currents and phase voltage are to be transformed to conditions in terms of symmetrical components.

Symmetrical components relations:

Since two conditions are available regarding the line currents, it is convenient to transform them to conditions in terms of symmetrical components.

$$\begin{split} I_{a0} &= (1/3)(I_a + I_b + I_c) = (1/3)(I_a + 0 + 0) = (1/3).I_a \\ I_{a1} &= (1/3)(I_a + a.I_b + a^2.I_c) = (1/3)(I_a + 0 + 0) = (1/3).I_a \\ I_{a2} &= (1/3)(I_a + a^2.I_b + a.I_c) = (1/3)(I_a + 0 + 0) = (1/3).I_a \\ \text{so } I_{a1} &= I_{a2} = I_{a0} = (1/3).I_a \\ \end{split}$$

The terminal conditions V_a=0 gives,

As per eq. 5.7, all sequence currents are equal and as per eq. 5.8, the sum of sequence voltage equals zero. Therefore, these equations suggest a series connection of sequence networks through a short circuit as shown in fig 5.3.

Interconnection of sequence networks:

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Pramod M	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	EEE
Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	3	FEB 2013

Semester	Subject	Торіс
6	Power system	Unsymmetrical faults
	anaiysis and stability	
	Semester 6	Semester Subject 6 Power system analysis and stability

Sequence quantities:

The following relations can be directly obtained from fig 5.3

$$\begin{split} I_{a1} &= I_{a2} = I_{a0} = E_a / (Z_1 + Z_2 + Z_0) \qquad \dots \qquad 5.9 \\ V_{a1} &= E_{a1} - I_{a1}.Z_1 = E_a - (E_a / (Z_1 + Z_2 + Z_0)).Z_1 \\ &= E_a ((Z_2 + Z_0) / (Z_1 + Z_2 + Z_0)) \qquad \dots \qquad 5.10 \\ V_{a2} &= -I_{a2}.Z_2 = -(E_a.Z_2 / (Z_1 + Z_2 + Z_0)) \qquad \dots \qquad 5.11 \\ V_{a0} &= -I_{a0}.Z_0 = -(E_a.Z_0 / (Z_1 + Z_2 + Z_0)) \qquad \dots \qquad 5.12 \\ Fault current; \end{split}$$

The fault current If in this case is equal to the current in phase a i.e I_a . Hence the fault current is given as,

 $I_{f}=I_{a}=3.I_{a0}$ in view of eq. 5.7

In case the neutral of the generator is not grounded, then

 $Z_0 = Z_g 0 + 3Z_n = Z_{g0} + \infty = \infty$. Therefore, the fault current in such a condition is,

Thus, it can be inferred that fault current in the system is zero if the neutral is not grounded in the case of an LG fault.

5.2.2 Line to line (L-L) fault on an unloaded generator:

The circuit diagram for an LL fault on an unloaded star connected generator with its neutral grounded through a reactance is as shown in fig 5.4. Here it is assumed that phase b and phase c are shorted.

Terminal conditions:

The condition at the fault are expressed by the following terminal conditions:

 $I_a = 0$

.....5.15

ESTD () ISBA

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Pramod M	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	EEE
Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	4	FEB 2013

A.Year / Chapter Semester Subject Topic 2013 / 5 6 **Power system Unsymmetrical faults** analysis and stability $I_{b}+I_{c}=0$ $I_c = -I_b$5.16 i.e. $V_{\rm b} = V_{\rm c}$5.17 Symmetrical components relations: Since there are two conditions regarding current, analysing them first, we get $I_{a0} = (1/3)(I_a + I_b + I_c)$ $=(1/3)(0+I_{b}-I_{b})$in view of eq. 5.16 =0 $I_{a1} = (1/3)(I_a + a.I_b + a^2.I_c)$ $=(1/3)(0+a.I_{b}-a^{2}.I_{b})$ $=(1/3)(a-a^2).I_b$ $I_{a2} = (1/3)(I_a + a^2 \cdot I_b + a \cdot I_c)$ $=(1/3)(0+a^2.I_b-a.I_b)$ $=(1/3)(a^2-a).I_{h}$ So, we have, $I_{a0} = 0$ $I_{a2} = -I_{a1}$ Regarding sequence terminal voltages, $V_{a1} = (1/3)(V_a + a.V_b + a^2.V_c)$ $=(1/3)(V_a+(a+a^2)V_b)$in view of eq. 5.17 $=(1/3)(V_{a}-V_{b})$because $a+a^2 = -1$ $V_{a2} = (1/3)(V_a + a^2 V_b + a V_c)$in view of eq.5.17 $=(1/3)(V_a+(a^2+a)V_a)$ $=(1/3)(V_{a}-V_{b})$ Since $I_{a0}=0$; the zero sequence terminal voltage $V_{a0} = -I_{a0} \cdot Z_0 = -0 \cdot Z_0 = 0$ so, we have $V_{a0} = 0$5.205.21 $V_{a1} = V_{a2}$ Equations 5.19 and 5.21 suggest parallel connection of positive and negative sequence networks. Since $I_{a0}=V_{a0}=0$, the zero sequence networks is connected separately and shorted on itself as shown in the following diagrams. Interconnection of sequence networks: S J P N Trust's Author TCP04 Hirasugar Institute of Technology, Nidasoshi-591236 Pramod M V 1.1 Tq: Hukkeri, Dt: Belgaum, Karnataka, India, Web:www.hsit.ac.in Page No. EEE Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in 5 FEB 2013

in phases b and c.

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Pramod M	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	EEE
Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	6	FEB 2013

A.Year / Chapter 2013 / 5	Semester 6	Subject Power system analysis and stability	To Unsymmet	pic t rical faults		
Terminal condition	ons:	-				
The conditions at	t the fault a	are expressed by th	ne following equat	ions:		
V _b =0		5.26				
V _c =0		5.27				
$I_a = 0$		5.28				
Symmetrical com	nponents re	elations:				
Since there to symmetrical c	e are the c omponents	ondition regarding s) then first we get	the voltages anal	ysing (trar	nsforming	
$V_{a0} = (1/3)(V_a + V_b +$	+V₀)					
$=(1/3)(V_a+0+0)$	0)					
$=(1/3).V_{a}$						
V _{a1} =(1/3)(V _a +a.V	/₅+a².V₀)					
$=(1/3)(V_a+0+0)$	0)					
$=(1/3).V_{a}$						
$V_{a2} = (1/3)(V_a + a^2)$	V₅+a.V₀)					
$=(1/3)(V_a+0+0)$	0)					
$=(1/3).V_{a}$						
so, V _{a0} =V _{a1} =V _{a2}			5.29			
coming to seque	nce curren	ts, we have,				
$I_a = 0$						
i.e $I_{a0}+I_{a1}+I_{a2} = 0$			5.30			
Equations connected in par	5.29 and allel as sho	5.30 indicates that with the second s	t the sequence r	networks s	hould be	
Interconnection of	of sequenc	e networks:				
	F	Z_1 Z_1 Z_1 U_{a1} U_{a1} Z_2 U_{a1} Z_2 U_{a1} U_{a1} U_{a1} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a1} U_{a2} U_{a2} U_{a1} U_{a2} U_{a3} U_{a2} U_{a3}	$V_{a2} Z_0 $ $Z_{g0} $ V_{a0}			
Sequence quanti	Sequence quantities:					
The following rela	The following relations can be directly obtained from the fig 5.7					
$V_{a1} = V_{a2} = V_{a0} = E_a = I$	$V_{a1} = V_{a2} = V_{a0} = E_a = I_{a1} Z_1$					
$I_{a1} = E_a / [Z_1 + \{Z_2 Z_1 + \{Z_2 Z_2 \}]$	$I_{a1} = E_a / [Z_1 + \{Z_2 Z_0 / (Z_2 + Z_0)\}]$					
		S J P N Trust's		Author	TCP04	
Hirasug	gar Institut	e of Technology, N	idasoshi-591236	Pramod M	V 1.1	
Tq: Huk	Keri, Dt: Bel Phone:+91-8333-2	gaum, Karnataka, Indi 278887, Fax:278886, Mail: <u>principal(</u>	a, Web: <u>www.hsit.ac.in</u> <u>@hsit.ac.in</u>	Page No. 7	EEE FEB 2013	
				•	010	

A.Year / Chapter	Semester	Subject	Торіс	
2013 / 5	6	Power system	Unsymmetrical faults	
		analysis and stability		
$I_{a2} = -I_{a1} . [Z_0/(Z_2 +$	-Z ₀)]			
$I_{a0} = -I_{a1} \cdot [Z_2/(Z_2 + Z_2)]$	Z ₀)]	5.34		
Equations 5.33 a	nd 5.34 are	e direct consequend	ces of current division formula.	
Fault Current:				
The fault current	$I_{\rm f}$ in this ca	ase is given by,		
$I_f = I_b + I_c$				
$=(I_{a0}+a^2.I_{a1}+a.I)$	_{a2}) + (I _{a0} +a	.I _{a1} +a ² .I _{a2})		
$=2I_{a0}+(a+a^2)I_{a1}$	+(a+a ²)I _{a2}			
$=2I_{a0} - I_{a1} - I_{a2}$	because (a	a+a²)= -1		
$=2I_{a0} - (I_{a1}+I_{a2})$				
It can be observe	ed from fig	5.7 that $(I_{a1}+I_{a2})=$	-I _{a0} .	
Substituting this	in the expr	ession for fault cur	rent, we get	
$I_f = 2I_{a0} - (-I_{a0})$				
=3I _{a0}			5.35	
$=-3.I_{a1}.[Z_2/(Z_2+Z_0)]$ in view of eq. 5.34				
If the neutral grounding is absent, then $Z_n = \infty$.				
Therefore, $Z_0 = Z_{g0} + 3Z_n = Z_{g0} + \infty = \infty$.				
Hence,				
$I_{f} = -3I_{a1}.[Z_{2}/(Z_{2}+\infty)]$				
Therefore, $I_{\ell}=0$				

Thus, it can be inferred that fault current in the system is Zero, if the neutral is not grounded in the case of LLG fault.

5.3 Fault through impedances:

All the faults discussed in the preceding section consisted of direct short circuits between line and between one or two line to ground. In these cases, the impedance between the fault points is considered as zero. There may be situation in which the fault path includes an impedance between the faulted points. In these situation the analysis is carried similar to that of the previous section, except that the fault impedance is concluded at appropriate points in the circuits obtained by connecting sequence networks. Hence the theory is not elaborated in much detail.

5.3.1 Single line to ground (LG) fault on an unloaded generator through a fault impedance:

The circuit diagram for an LG fault on an unloaded generator through a fault impedance Z_f is shown in fig 5.8.

	S J P N Trust's	Author	TCP04
8	Hirasugar Institute of Technology, Nidasoshi-591236	Pramod M	V 1.1
	Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	EEE
ESTD () 1984	Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	8	FEB 2013

$ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	A.Year / Chapter 2013 / 5	Semester 6	Subject Power system analysis and stability	To Unsymme	opic trical faults	
Terminal conditions: $V_{a}=I_{a}, Z_{r} \qquad \dots 5.37$ $I_{b}=0 \qquad \dots 5.38$ $I_{c}=0 \qquad \dots 5.39$ Symmetrical components relations: The following relations can be obtained from the terminal conditions $I_{ab}=(1/3)(I_{a}+I_{b}+I_{c}) = (1/3)(I_{a}+I_{b}+I_{c}) = (1/3)(I_{a}+0+0) = (1/3).I_{a}$ $I_{a}=(1/3)(I_{a}+0+0) = (1/3).I_{a}$ $I_{a}=(1/3)(I_{a}+0+0) = (1/3).I_{a}$ So $I_{a}=I_{ab}=(1/3).I_{a} \qquad \dots 5.40$ The terminal condition Va= I_{a}.Z_{r} gives $V_{ab}+V_{a1}+V_{a2}=I_{ab}=(1/3).I_{a} \qquad \dots 5.41$ As per equations 5.40 and 5.41 all sequence currents are equal and the sum of sequence voltages equals 2.I_{ab}.Z_{r} \qquad \dots 5.41 As per equations 5.40 and 5.41 all sequence are equal and the sum of sequence voltages equals 2.I_{ab}.Z_{r} \qquad \dots 5.41 Interconnection of sequence networks: $\boxed{V_{ab}} \frac{V_{a1}+V_{a2}=I_{ab}.Z_{r}a \cdot I_{ab}.Z_{r} \qquad \dots 5.41$ Interconnection of sequence networks: $\boxed{V_{a1}} \frac{V_{a1}}{T_{G}: Hukerin, Dt: Belgaum, Karnataka, India, web_{souw.hatracin}}{T_{G}: Hukerin, Dt: Belgaum, Karnataka, India, web_{souw.hatracin}} = \frac{9}{9} \frac{FEB 2013}{7}$			$\frac{z_n}{1000} + E_a$	$\xrightarrow{\rightarrow l_a} I_{z_1}$		
$V_{a}=I_{a}, Z_{r}$ $I_{b}=0$ $I_{c}=0$ $Symmetrical components relations: The following relations can be obtained from the terminal conditions I_{a0}=(1/3)(I_{a}+I_{b}+I_{c}) =(1/3)(I_{a}+0+0) =(1/3).I_{a} I_{a2}=(1/3)(I_{a}+0+0) =(1/3).I_{a} I_{a2}=(1/3)(I_{a}+0+0) =(1/3).I_{a} So I_{a1}=I_{a2}=I_{a0}=(1/3).I_{a} So I_{a1}=I_{a2}=I_{a0}=(1/3).I_{a} So I_{a1}=I_{a2}=I_{a0}=(1/3).I_{a} V_{a0}+V_{a1}+V_{a2}=I_{a}.Z_{r}=3.I_{a0}.Z_{r} Interconnection of sequence networks: S J P N Trust's \frac{Author TCP04}{Pramod M V 1.1} Ptore: +93.2332.7288.7.78x27888.Matt_proceediments and Proceediments and Proceediments$		ons:				
$I_{n} = 0$ I_{n	$V_a = I_a$. Z_f	•••••				
$I_{x}=0$ Symmetrical components relations: The following relations can be obtained from the terminal conditions $I_{s0}=(1/3)(I_{a}+I_{b}+I_{c})$ $=(1/3)(I_{a}+I_{b}+I_{c})$ $=(1/3)(I_{a}+0+0)$ $=(1/3)(I_{a}+0+0)$ $=(1/3)(I_{a}+0+0)$ $=(1/3)(I_{a}+0+0)$ $=(1/3)(I_{a}+0+0)$ $=(1/3)(I_{a}+0+0)$ $=(1/3).I_{a}$ So $I_{a1}=I_{a2}=I_{a0}=(1/3).I_{a}$ The terminal condition Va= $I_{a}.Z_{r}$ gives $V_{a0}+V_{a1}+V_{a2}=I_{a}.Z_{r}=3.I_{a0}.Z_{r}$ Therefore, these equations suggest a series connection of sequence networks through an impedance $3.Z_{r}$ as shown in fig 5.9. Interconnection of sequence networks: $V_{a1}=V_{a1}I_{a2}I_{a1}I_{a2}I_{a1}I_{a2$	$I_b = 0$		5.38			
Symmetrical components relations: The following relations can be obtained from the terminal conditions $I_{a0}=(1/3)(I_a+I_b+I_c)$ $=(1/3)(I_a+I_b+I_c)$ $=(1/3)(I_a+0+0)$ =(1/3)	$I_c=0$.		5.39			
$= (1/3).I_{a}$ So $I_{a1}=I_{a2}=I_{a0}=(1/3).I_{a}$	Symmetrical con The following re $I_{a0} = (1/3)(I_a + I_b + a_b + a_$	mponents re lations can I_c) 0) $(+a^2.I_c)$ 0) $I_b+a.I_c$)	elations: be obtained from th	e terminal condit	tions	
So $I_{a1}=I_{a2}=I_{a0}=(1/3).I_{a}$	$=(1/3).I_{a}$					
The terminal condition Va = I_a.Z_f gives $V_{a0}+V_{a1}+V_{a2}=I_a.Z_f=3.I_{a0}.Z_f$	So $I_{a1} = I_{a2} = I_{a0} = (1)$./3).I _a			5.40	
$V_{a0}+V_{a1}+V_{a2}=I_{a}.Z_{f}=3.I_{a0}.Z_{f} \qquad$	The terminal co	ndition Va=	$I_a.Z_f$ gives			
As per equations 5.40 and 5.41 all sequence currents are equal and the sum of sequence voltages equals 2.I _{a0} .Z _f . Therefore, these equations suggest a series connection of sequence networks through an impedance 3.Z _f as shown in fig 5.9. Interconnection of sequence networks:	$V_{a0}+V_{a1}+V_{a2}=I_a.Z$	$_{f}=3.I_{a0}.Z_{f}$		5.41		
Interconnection of sequence networks: S J P N Trust's Author TCP04 Hirasugar Institute of Technology, Nidasoshi-591236 Pramod M V 1.1 Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web:www.hsit.ac.in Page No. EEE Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in 9 FFB 2013	As per equation sequence voltage connection of se	is 5.40 and ges equals equence net	5.41 all sequence 2.I _{a0} .Z _f . Therefore, works through an ir	currents are eq these equation npedance 3.Z _f as	ual and th is suggest shown in f	e sum of a series ïg 5.9.
S J P N Trust's Author TCP04 Hirasugar Institute of Technology, Nidasoshi-591236 Pramod M V 1.1 Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web:www.hsit.ac.in Page No. EEE Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in 9 FFB 2013	Interconnection	of sequence	e networks:			
Hirasugar Institute of Technology, Nidasoshi-591236 Pramod M V 1.1 Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web:www.hsit.ac.in Page No. EEE Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in 9 FFB 2013			S J P N Trust's		Author	TCP04
Iq: Hukkeri, Dt: Belgaum, Karnataka, India, Web: Phone:+91-8333-278887, Fax:278886, Mail: principal@hsit.ac.inPage No.EEE9FFB 2013	Hirasu	gar Institut	e of Technology, Ni	uasosni-591236	Pramod M	V 1.1
	Iq: Hu	Phone:+91-8333-2	Jaum, Karnataka, India 78887, Fax:278886, Mail: <u>principal@</u>	, Web: <u>www.hsit.ac.in</u> <u>hsit.ac.in</u>	Page No. 9	EEE FEB 2013

A.Year / Chapter 2013 / 5	Semester 6	Subject Power system analysis and stability	Topic Unsymmetrical faults	
I _a =0	5.47			
$I_{b}+I_{c}=0$; $I_{c}=-I_{b}$		5.48		
$V_{b}=V_{c}+I_{b}.Z_{f}$		5.49		
Symmetrical com	ponents re	lations:		
The following rela	ations can l	be obtained from th	e terminal conditions	
$I_{a0} = (1/3)(I_a + I_b + I_b)$.)			
$=(1/3)(I_a+I_b-I_b)$)			
=0				
$I_{a1} = (1/3)(I_a + a.I_b +$	-a².I _c)			
$=(1/3)(0+a.I_{b}-$	a².I _c)			
$=(1/3)(a-a^2)I_b$				
$I_{a2}=(1/3)(I_a+a^2.I_b)$	+a.I _c)			
$=(1/3)(0+a^2.I_t)$	-a.I _c)			
$=(1/3)(a^2-a)I_b$				
so, I _{a0} =0		5.!	50	
$\mathbf{I}_{a1} = -\mathbf{I}_{a2}$		5.5	1	
Next,				
V _{a1} =(1/3)(V _a +a.V	_b +a².V _c)			
$V_{a2} = (1/3)(V_a + a^2)$	/₅+a.V₅)			
Therefore,				
$V_{a1}-V_{a2}=(1/3)$ [(a	-a ²)V _b +(a ² -	-a)V _c]		
=(1/3) [(a-	$a^2)(V_b-V_c)]$			
=(1/3) (a-a	²)(I _b .Z _f)		in view of eq. 5.49	
$= I_{a1}.Z_{f}$				
Thus, $V_{a1}=V_{a2}+I_{a1}$	Z _f		5.52	
Since, $I_{a0}=0$, $V_{a0}=$	$-I_{a0}.Z_{0}=0$		5.53	
Equations Sequence networn $I_{a0}=V_{a0}=0$, the zero shown in fig 5.12	5.51 and 5. ks through ro sequence.	.52 suggest paralle h a series impeda ce network is conn	l connection of positive and negance Z_f as shown in fig 5.11. S ected separately through a shor	ative fince t as

Interconnection sequence networks:

A.Year / Chapter	Semester	Subject	Торіс
2013 / 5	6	Power system analysis and	Unsymmetrical faults
		stability	

Example 5.1:

A three phase generator with an open circuit voltage of 400V is subjected to an LG fault through a fault impedance of j2 Ω . Determine the fault current if Z₁=j4 Ω , Z₂=j2 Ω and Z₀=j1 Ω . Repeat the problem for LL and LLG fault.

Solution:

i)LG fault:

The interconnection of sequence networks for an LG fault is shown in fig. 5.15

In this case,

 $I_{a1}=i_{a2}=I_{a0}=E_{a} / (Z_{1}+Z_{2}+Z_{0}+3Z_{f})$ $=(400 \angle 0^{\circ} /\sqrt{3}) / j(4+2+1+6)$ =-j17.765 AFault current=I_f=3.|I_{a0}| =3(17.765) =53.295 A

ii)LL fault:

The interconnection of sequence networks to represent an LL fault is shown if fig 5.16.

A.Year / Chapter 2013 / 6	Semester 6	Subject Power system analysis and	Topic Unsymmetrical faults,Series type of faults
		stability	

5.4 Unsymmetrical faults on power system:

The unsymmetrical faults on the power system are analyzed using Thevenin's theorem. The Thevenin's equivalent of positive, negative and zero sequence networks are obtained with respect to the fault point.

The prefault voltage at the fault point is the Thevenin's voltage of positive sequence network. The negative and zero sequence components of prefault voltage at the fault point is absent.

Let,

 Z_1 = Thevenin's impedance of positive sequence network.

 Z_2 = Thevenin's impedance of negative sequence network.

 Z_0 = Thevenin's impedance of zero sequence network.

 V_{TH} =prefault voltage at the fault point.

=Thevenin's impedance of positive sequence network.

Thevenin's equivalent of positive, negative and zero sequence networks of the power system with respect to the fault point will be as shown in fig 5.29, 5.30 and 5.31 respectively.

Using Using Kirchoff's law to the circuits s	shown below, we get
$V_{a1} = V_{TH} - I_{a1} \cdot Z_1$	5.70
$V_{a2} = -I_{a2} \cdot Z_2$	5.71
$V_{a0} = -I_{a0} Z_0$	5.72

These equations are similar to that of a synchronous generator. They are useful in the analysis of unsymmetrical faults on the power system. We shall now consider the various types of unsymmetrical faults on a general power system.

5.4.1 Single line to ground (LG) fault:

fig 5.32 shows an LG fault at F in a power system through a fault impedance Z_{f} . The phases are so labeled that the fault occurs on phase a.

A.Year / Chapter 2013 / 6	Semester 6	Subject Power system analysis and stability	Topic Unsymmetrical faults,Series type of faults
$I_{f} = I_{a} = 3I_{a0} = 3V_{TH}$	$(Z_1 + Z_2 + Z_3)$	₀ +3Z _f)	5.78
Netes			

Note:

In the absence of fault impedance, replace Z_f by zero in the above calculations.

5.4.2 Line to line (LL) fault:

Fig 5.34 shows a LL fault at F in a power system on phase b and c through a fault impedance $\rm Z_{\rm f}$

Terminal conditions:

.....5.79 $I_a = 0$ $I_{b}+I_{c}=0$; $I_{c}=-I_{b}$5.80 $V_{b} = V_{c} + I_{b} \cdot Z_{f}$5.81 Symmetrical components relations: The following relations can be obtained from the terminal conditions $I_{a0} = (1/3)(I_a + I_b + I_c)$ $=(1/3)(I_a+I_b-I_b)$ =0 $I_{a1} = (1/3)(I_a + a.I_b + a^2.I_c)$ $=(1/3)(0+a.I_{b}-a^{2}.I_{c})$ $=(1/3)(a-a^2)I_b$ $I_{a2} = (1/3)(I_a + a^2 I_b + a I_c)$ $=(1/3)(0+a^2.I_b-a.I_c)$ $=(1/3)(a^2-a)I_b$ so, $I_{a0} = 0$ $I_{a1} = -I_{a2}$5.83 Next,

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Pramod M	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	EEE
Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	3	FEB 2013

A.Year / Chapter 2013 / 6	Semester 6	Subject Power system analysis and stability	Topic Unsymmetrical faults,Series type of faults
V _{a1} =(1/3)(V _a +a.\	/ _b +a ² .V _c)		
$V_{a2}=(1/3)(V_{a}+a^{2}.$	V _b +a.V _c)		
Therefore,			
$V_{a1}-V_{a2}=(1/3)$ [(a	$a-a^2)V_b+(a^2)$	-a)V _c]	
=(1/3) [(a-	$-a^2)(V_{b}-V_{c})]$		
=(1/3) (a-a	$a^2)(I_b.Z_f)$		
$= I_{a1}.Z_{f}$			
Thus, $V_{a1}=V_{a2}+I_{a1}$.Z _f		5.84
Since, $I_{a0}=0$, $V_{a0}=$	$= -I_{a0}.Z_0 = 0$		5.85

Equations 5.83 and 5.85 suggest parallel connection of positive and negative sequence networks through a series impedance Z_f as shown in fig 5.35. Since $I_{a0}=V_{a0}=0$, the zero sequence network is connected separately and a shorted as shown in fig 5.36.

Interconnection sequence networks:

Fault current:

$I_f = I_b = I_{a0} + a^2 \cdot I_{a1} + a \cdot I_{a2}$	
$=0+a^2.I_{a_1}-a.I_{a_1}$	
$=(a^2 - a)I_{a_1}$	
= - j√3I _{a1}	
or $ I_f = \sqrt{3} I_{a1}$	
$=\sqrt{3.V_{TH}}/(Z_1+Z_2+Z_f)$	5.86

Note:

In the absence of fault impedance, replace Z_f by zero in the above calculations.

5.4.3 Double line to ground fault (LLG):

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Pramod M	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	EEE
Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	4	FEB 2013

The asugar institute of rechnology, Muasoshi-391230	Pramod M	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web:www.hsit.ac.in	Page No.	EEE
Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	6	FEB 2013

A.Year / Chapter 2013 / 6	Semester 6	Subject Power system analysis and	Topic Unsymmetrical faults,Series type of faults
		stability	

Example 3.8:

A synchronous motor is receiving 10MW of power at 0.8pf lag at 6kV. An LG fault takes place at the middle point of the transmission line as shown in fig 5.39. Find the fault current. The ratings of the generator motor and transformer are as under.

Generator: 20MVA, 11kV, $X_1=0.2p.u$; $X_2=0.1p.u$; $X_0=0.1p.u$. Transformer T_1 : 18MVA, 11.5Y-34.5Y kV, X=0.1p.u. Transmission line: $X_1=X_2=5\Omega$; $X_0=10\Omega$. Transformer T_2 : 15MVA, 6.9Y-34.5Y kV, X=0.1p.u. Motor : 15MVA, 6.9kV, $X_1=0.2p.u$; $X_2=X_0=0.1p.u$.

Solution:

base values: Let we choose, base MVA=20 base kV on the generator=11 we calculate, base kV on the transmission line=11(34.5/11.5)=33 base kV on the motor= 33(6.9/34.5)=6.6 Sequence reactances of generator:

 $X_{1} = X_{1/p.u, old} \times ((MVA)_{B, new} / (MVA)_{B, old}) \times ((kV)^{2}_{B, old} / (kV)^{2}_{B, new})$ $= j0.2 \times (20 / 20) \times (11^{2} / 11^{2})$ = j0.2 p.u $X_{2} = X_{2/p.u, old} \times ((MVA)_{B, new} / (MVA)_{B, old}) \times ((kV)^{2}_{B, old} / (kV)^{2}_{B, new})$ $= j0.1 \times (20 / 20) \times (11^{2} / 11^{2})$ = j0.1 p.u $X_{0} = X_{0/p.u, old} \times ((MVA)_{B, new} / (MVA)_{B, old}) \times ((kV)^{2}_{B, old} / (kV)^{2}_{B, new})$ $= j0.1 \times (20 / 20) \times (11^{2} / 11^{2})$ $= j0.1 \times (20 / 20) \times (11^{2} / 11^{2})$ = j0.1 p.u

Sequence reactances of transformer T₁: (calculated primary side of it) $X_1 = X_2 = X_0 = X_{p.u, old} \times ((MVA)_{B, new} / (MVA)_{B, old}) \times ((kV)^2_{B, old} / (kV)^2_{B, new})$ $= j0.1 \times (20 / 18) \times (11.5^2 / 11^2)$ = j 0.12 p.uSequence reactances of transmission line: $X_{1TL} = X_{2TL} = X_{TL} (\Omega) \times (MVA)_B / (kV)^2_B$ $= 5 \times 20 / 33^2$ = 0.092p.u $X_{0TL} = 10 \times 20 / 30^2$ = 0.184p.u

5.5 Series type of faults:

We have so far discussed the various shunt type of faults that occur in a power system. But unsymmetrical faults in the form of open conductors (series type) also do take place in power system. It is required to determine the sequence components of line currents and the voltages across the broken ends of the conductors.

Fig 5.56 shows a system wherein an open conductor fault takes place.

The ends of the system on the sides of the fault are identified as F, F', while the conductor ends are denoted by aa', bb' and cc'. The voltage across the

deter ends are denoted by day bb and eet the	voltage at	
S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Pramod M	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	EEE
Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	10	FEB 2013

A.Year / Chapter 2013 / 6	Semester 6	Subject Power system analysis and	Topic Unsymmetrical faults,Series type of faults				
Symmetrical components relations:							
consider,							
$I_{a0} = (1/3)(I_a + I_b + I_c) = (1/3)(I_a + 0 + 0) = (1/3).I_a$							
$I_{a1} = (1/3)(I_a + a.I_b + a^2.I_c) = (1/3)(I_a + 0 + 0) = (1/3).I_a$							
$I_{a2} = (1/3)(I_a + a^2 I_b + a I_c) = (1/3)(I_a + 0 + 0) = (1/3) I_a$							
so $I_{a1} = I_{a2} = I_{a0} = (1/$	3).I _a		5.102				
The terminal conditions $V_{aa'}=0$ gives the result,							
$(V_{aa'})_0 + (V_{aa'})_1 + (V_{aa})_1 + ($	a')2=0		5.103				

These conditions are similar to those of line to ground fault and suggest that the three sequence networks be connected in series and shorted as shown in fig5.61.

