
UNIX AND SHELL PROGRAMMING

Module 5: Processes and Perl Programming

5.PROCESS:
A Process is simply an instance of running program.

 A process is said to be born when the program execution starts and remains alive as long as the
program is active

 After execution is complete, the process is said to die.
 Some attributes of every process are maintained by the kernel in memory in a separate structure

called the process table.
Two important attributes of a process are

 Process id(PID): Each process is uniquely identified by a unique integer called the PID that is
allotted by the kernel when the process is born. This PID is used to control a process .

 Parent PID(PPID):The PID of the parent is also available a s process attribute.
5.1 PROCESS STATUS:
ps command to display the some process attributes.
By default the ps command displays the processes owned by the user running the command.
$ps
PID TTY TIME CMD
291 console 0:00 bash\
ps options:
5.1.1 Full listing(-f)
To get a detailed listing which also shows the parent of every process, use -f option
$ps –f
UID PID PPID C STIME TTY TI ME CMD
sumit 367 291 0 12:35:16 console 0:00 -bash
sumit 291 1 0 10:24:35 console 0:00 /usr/bin/bash

5.1.2 Displaying Processes of a user(-u)
 To know the activities of any user.
$ps -u sumit
PID TTY TIME CMD
378 ? 0:05 Xsun
403 ? 0:00 bash
347 ? 0:01 vi
460 pts/5 0:00 dtterm

5.1.3 Display all user processes(-a)
The -a option lists processes of all users but doesnot display the system processes.
$ps -a
PID TTY TIME CMD
662 pts/01 00:00:00 ksh
705 pts/04 00:00:04 sh
680 pts/05 00:00:00 sort
1056 pts/08 00:00:00 ps

5.1.4 Displays system Processes(-e or A)
$ps -e
PID TTY TIME CMD

Sandeepa G S, Asst Prof, Page 93
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

1 ? 0:01 init
3 ? 0:00 inetd
194 ? 0:00 cron
231 ? 0:00 sendmail
5.2 MECHANISM OF PROCESS CREATION:
There are three distinct phases in the creation of process and uses three important system calls or
functions
fork, exec and wait
5.2.1 Fork:

 A process in unix is created with fork system call, which creates a copy of the process that
invokes it.

 The process image is practically identical to that of the calling process except for the few
parameters like the PID.

 When a process is forked in this way, a child gets a new PID.
 The forking mechanism is responsible for the multiplication of the processes in the system.

5.2.2 Exec:
 Forking creates a process but its not enough to run a process.
 To do that, the forked child needs to overwrite its own image with the code and data of the new

program.
 This mechanism is called the exec and child process is said to exec a new program.

5.2.3 Wait:
 The parent then executes the wait system call to wait for the child process to complete.
 It picks up the exit status of the child and then continues with its other functions.

5.3 PARENT AND CHILD PROCESS:
 Every process has a parent. This parent itself is another process and a process born from it is

said to be its child.
 When you run the command

cat emp.lst
 from the keyboard a process representing the cat command is started by the shelll process.
 The shell (sh,ksh,bash) is said to be parent of cat , while cat is the child of the shell.
 The ancestry of every process is ultimately traced to the first process (PID0) that is set up when

the system is booted.

5.4 How the shell is created?
init--------------------->getty----------------------->login---------------->shell

 fork fork-exec fork-exec
 When the system moves to multi user mode, init forks and execs a getty for every active

communication port.
 Each one of the getty prints the login prompt on the respective terminal and then goes off to

sleep.
 When a user attempts to login, getty wakes up and fork execs the log in program to verify the

login name and password entered.
 On successful login, login forks execs the process representing the login shell.
 Repeated overlaying results in init becoming the immediate ancestor of the shell
 init goes off to the sleep, waiting for the death of its children processes.

Sandeepa G S, Asst Prof, Page 94
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

 When the user logs off , user shell is killed and the death is intimated to the init.
 Init then wakes up and spawns the another getty for the next login.

5.5 THREE TYPES OF COMMANDS
The shell recognizes three types of commands.
External commands: The shell creates a process for each of these commands that it executes while
remaining their parent. Ex: cat,ls

Internal commands: The shell has a number of built in commands. Ex: cd , echo

Shell scripts: The shell executes these scripts by spawning another shell which then executes the
command listed in the script.The child shell becomes teh parent of the commands that features in the
script.

Why directory change cant be made in separate process?
• As the child process inherits the current working directory from its parent as one of its

environmental parameters. This inheritance has important consequences for the cd command.
• Its necessary for the cd command not to spawn the child to achieve a change of directory.
• If it did so, then after the child process completes its run control would revert back to parent and

original directory would be restored. It would then be impossible to change the directories.

5.6 EXECUTING A COMMAND AT SPECIFIED POINT OF TIME:
at and batch command

5.6.1 at command:ONE TIME EXECUTION
• at takes its argument the time the job is to be executed and displays the at> prompt.
• Input has to be supplied from the standard input.

$ at > 14:08
at>empawk2.sh
[ctrl-d]

 commands will be executed using /usr/bin/bash
 job 1041188880 at Wed Nov 09 14:08:00 2016
 The job goes to the queue and at 2:08 p.m today ,the script file empawk2.sh will be executed .
 at shows the job number, date and time of scheduled execution.

 At also offers the keyword now, noon,today and tomorrow.
 Moreover it accepts the + symbol to act as an operator.The words that can be used with this

operator
 include hours,days,weeks,month,years.
 The following form shows the use of some keywords and operators.

at 15
at 5pm
at 3:08 pm
at noon
at now + 1 year //at current time after one year
at 3:08pm + 1 year //at 3:08 pm after one year
at 9 am tomorrow

Sandeepa G S, Asst Prof, Page 95
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

5.6.2 batch: Execute in batch queue:
The batch command also schedules job for later execution.
The command doesnot take any arguments but uses an internal algorithm to determine the execution
time.
$batch < empawk2.sh
commands will be executed using /usr/bin/bash
job 1041188880 at Wed Nov 09 14:08:00 2016

5.7 EXECUTE COMMAND PERIODICALLY:

5.7.1 cron and crontab files
 The ps -e command always shows the cron daemon running.
 cron executes the programs at regular intervals.
 It is mostly dormant but for every minute it wakes up and looks in crontab file

/var/spool/cron/crontabs for instructions to be performed at that time.
 A user may also be permitted to place a crontab file named after his login name in the crontabs

directory.
 For ex:Kumar can place his crontab commnads in the file /var/spool/cron/crontabs/kumar
 A specimen entry in the file/var/spool/cron/crontabs/kumar can look like this:

00-10 17 * 3,6,9,12 5 find / -newer .lst_time -print > backuplist
 Each line consists of six fields separate dby whitespaces.
 The first field:(values 00 to 59) specifies the number of minutes after the hour when the

command has to be executed.
The range here 00-10 schedules execution every minute in the first 10 minutes of the hour.

 The second field(values 1-24): indicates the hour in 24 hour format for scheduling.
Here 17 represents 5 p.m

 The third field(values 1 to 31): controls the day of the month
This field here uses * implies that the command is to be executed every minute for the first 10
minutes starting 5 p.m everyday.

 The fourth field(values 1 to 12): specifies the month
Here 3,6,9,12 represents march,june,september,december

 The fifth field (values 0 to 6): indicates the days of the week.
Here 5 represents friday.

 The sixth field indicates the command to be executed.

5.7.2 Crontab:

Creating a crontab file:
 use the crontab command to place the file in directory containing crontab files for cron to read

the file again.
 crontab cron.txt
 If kumar runs this command, a fil enamed after kumar will be created in

/var/spool/cron/crontabs containing the contents of cron.txt.
 Cron is mainly used by admins to perform housekeeping operations like removing the outdated

files, collecting data or system performance.
 Its also used to periodically dial up to an internet mail server to send and retrieve mail.

Sandeepa G S, Asst Prof, Page 96
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

5.8 nice command: Job Execution with low priority.:
 Processes in UNIX system are usually executed with equal priority.
 This is not always desirable, since high priority jobs has to be executed first.
 UNIX offers the nice command which is used with & operator to reduce the priority of jobs.
 To run a job with low priority the command name shouls be prefixed with nice.

$nice wc -l uxmanual
 nice is a shell built in command and its value are system dependent and typically range from 1

to 19.
 A higher nice value implies low priority.
 nice reduces the priority of any process and thereby raising the nice value.
 We can also specify the nice value explicitly with -n option

$nice -n 5 wc -l uxmanual &
5.9 RUNNING JOBS IN BACKGROUND:

5.9.1 &:No Logging Out
The & is the shell operator used to run a process in the background. The parent in this case doesnot
wait for the childs death.Just terminate the command with a & and the command will run in
background.

$sort -o emp.lst emp.lst &
550
The shell immediately returns a number the PID of the invoked command..
The prompt is returned and the shell is ready to accept another command even though the previous
command has not been terminated yet.
The shell however remains th parent of the background process.
5.9.2 nohup: Log out safely:
The nohup(no Hangup) command when prefixed to command, permits execution of the process even
after the user has logged out.
You must use the & with it as well.
$ nohup sort emp.lst &
586
Sending output to nohup.out
The shell return the PID this time too, and some shell displays this message as well.
When the nohup command is run in these shells , nohup sends the standard output to file nohup.out.

5.10 JOB CONTROL
A job is the name given to group of processes.
Following are the list of job control commands:

 Relegate a job to background(bg)
 Bring it back to foreground(fg)
 List the active jobs(jobs)
 Suspend a foreground job([ctrl-z])
 kill a job(kill)

Sandeepa G S, Asst Prof, Page 97
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

The bg command
$bg
[1] spell uxtip02 > uxtip02.spell &
$bg %2 // sends second job to background
The fg command:
$fg
$fg %1 //Bring the first job to foreground
$fg %sort // brings sort job to foreground

5.11 Signals:
Killing the processes with signals:

5.11.1 kill:Premature termination of a process:
 The kill command sends a signal usually with the intention of killing on eor more processes.
 kill is an internal command in most shells; the external /bin/kill is executed only when the shell

lacks the kill capability.
 The kill command uses one or more PID as its arguments and by default uses

SUGTERM(15)signal

kill 105 to terminate the job with pid 105
To terminate more than on job
kill 121 123 125 132 //to terminate the jobs with all these pid

Killing the last background job.
$sort -o emp.lst emp.lst &
345
$ kill $! // kills the last background job

Kill with other signals:
kill -9 121 //kills the job with PID 121 with SIGKILL(9) signal

5.12 find command:LOCATING FILES

 find is one of the powerful tools of the UNIX system.it recursively examines a directory tree to
look for files matching some criteria and then takes some action on the selected files.

 find has three components
find path_list selection_criteria action

 This is how find operates:
 First it recursively examines all files in the directories specified in path_list
 It then matches each file for one or more selection_criteria.
 Finally it takes some action on those selected files.

5.12.1 Selection Criteria:
• Locating files by inode number(-inum):

Find allows us to locate files by their inode numbers. Use the –inum option to find all filenames that
have the same inode number.
$ find / -inum 13875 -print

Sandeepa G S, Asst Prof, Page 98
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

• File types and permissions(-type and –perm)
The –type option followed by letter f,d or l selects the files of ordinary , directory and symbolic link
type.

$find . –type d -print

The –perm option specifies the permissions to match.

$find $HOME –perm 777 –type d -print

• Finding unused files(-mtime and –atime)
The –mtime is files modification time and (-atime) access times to select them.
find options can easily match files which are unaccessed or unmodified for months
$find . –mtime -2 -print

5.12.2 The find operators(!, -0 and –a)
• The ! operator is used before an option to negate its meaning.
• The –o option represents the OR condition
• The –a option represents the AND condition.

5.12.3 options in Action component:

• Displaying the listing:(ls)
The –print option belongs to action component.

• Taking action on seleted files(-exec and –ok)
• The –exec option lets you take the action by running Unix command on the selected files.
• The –exec takes the ommand to execute its own argument followed by {} and finally the rather

cryptic symbols \;
• The –ok option is used for user confirmation as interactive option(-i).

Sandeepa G S, Asst Prof, Page 99
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

Major expressions used by find command

Sandeepa G S, Asst Prof, Page 100
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

6. PERL
Practical Extraction and Report Language

6.1 A perl program runs in a special interpretive mode; the entire script is compiled internally memory
before being executed.
$perl -e 'print ("GNU not Unix\n");
output:
GNU not Unix

A sample perl program
to run a perl program: filename.pl
#!/usr/bin/perl
#script sample.pl
print(" Enter your name:");
$name = < STDIN>;
print ("enter a temperature in centigrade:");
$centigrade=<STDIN>;
$fahrenheit=$centigrade*9/5 + 32;
print "The temperature $name in Fahrenheit is $fahrenheit \n";
output:
$sample.pl
Enter your name: stallman
Enter a temperature in centigrade: 40.5
The temperature stallman in Fahrenheit is 104.9

6.2: The chop function: Removing the last character
 The chop function is used to remove the last character.\
 The syntax of the chop function

chop variable
chop(LIST)

 This function returns the character removed from EXPR and in list context, the character is
removed from the last element of LIST.

#!/usr/bin/perl
Script chop.pl
$string1="This is test";
$retval = chop($string1);
print "Choped string is :$string1 \n";
print "character removed:$retval\n";

output:
Choped string is : This is tes
Character removed: t

6.3 :chomp() function:
 The chomp() function will remove (usually) any newline character from the end of a string. The

reason we say usually is that it actually removes any character that matches the current value of
$/ (the input record separator), and $/ defaults to a newline.

 The syntax of chomp function is:

Sandeepa G S, Asst Prof, Page 101
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

chomp variable
chomp (LIST)

#!/usr/bin/perl
$string1 = "This is test"; /*string without \n(newline character)
$retval = chomp($string1);
print " Choped String is : $string1\n";
print " Number of characters removed : $retval\n";

$string1 = "This is test\n"; /*string with \n
$retval = chomp($string1);
print " Choped String is : $string1\n";
print " Number of characters removed : $retval\n"

output:
Choped String is : This is test
Number of characters removed : 0
Choped String is : This is test
Number of characters removed : 1

6.4 VARIABLES AND OPERATORS:
 Perl variables have no type and do not require initialization.
 There are some of the variable attributes one should remember:
 When a string is used for numeric comparison, perl immediately converts it into a number.
 If a variable is undefined it is assumed to be a null string and a null string is equivalent to zero.

Ex:
$ perl -e '$x++; print("$x");'
output
$x is uninitialized.so it automatically takes the value(0) null.
Next incrementing $x will result in 1
output:1

 perl uses same set of numeric comparison operators with ==, !=, >=,<=,>,<.
 perl uses similar operators as shell for string comparison- -ne,-lt,gt,eq,-le,-ge.
 Perl supports both unquoted and quoted strings(single and double).
 When perl compares strings , it has to match ASCII value of each character.

6.5 The concatenation operator . and x
 The .(dot)operator is used to concatenate variables.

$ perl -e '$x="yahoo"; $y=".com"; print($x . $y);'
output:
yahoo.com

 $perl -e '$x="David"; $y="Marshall"; print ($x . " " . $y);'
output:
David Marshall
Here $x (David) is concatenated with space and then space is concatenated with $y(Marshall).

Sandeepa G S, Asst Prof, Page 102
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

 Perl uses x (repeat operator) to repeat a string
$ perl -e 'print "*" x 40;'
It prints the 40 asterisk on the screen

6.6 STRING HANDLING FUNCTIONS
a. length:returns the length of the string
b.index:returns the index value of character within string.Index value starts from 0
c.substr(stg,offset,replacement)=value;
insert or replace a string. Substring value is placed with or without replacing characters.0 denotes non
replacement
d.reverse:returns the reverse of the given string.
e.uc:returns the given string in uppercase letters
f.ucfirst:returns the string with first letter as upper case
g.lc:returns the given string in lowercase letters
h. lcfirst:returns the string with first letter as lower case.
Examples:
Length:
$x = "abcdijklm"
print length($x);

output: /*length of the string=9. Count starts from 1
9

Index:
print index($x,j);

output:
5 /* index value of j in string abcdijklm is 5.

/*count starts from 0

substr()
substr($x,4,0)="efgh"; /* substring efgh is placed at offset 4 without replacement
print($x);

output:
abcdefghijklm

reverse()
reverse($x);
print($x);

output:
mlkjihgedcba

lc()
$name =" larry wall";
print lc($name);

output:
larry wall

uc()
print uc($name);

Sandeepa G S, Asst Prof, Page 103
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

output:
LARRY WALL

lcfirst()
print lcfirst($name);

output:
lARRY WALL

ucfirst():
print ucfirst($name);

output:
Larry wall

$x ="List of employees"
substr ($x,7,0)="sales";
print($x);

output:
List of sales employees

6.7 $_ THE DEFAULT VARIABLE:
 perl assigns the line read from input to a special variable $_; often called default variable.
 Suppose you have to prefix a line number to every line.
 This is where you need $_ to explicitly specify the line.

6.8 ($.)CURRENT LINE NUMBER AND (..) RANGE OPERATOR.
 Perl stores the current line number in another special variable called $.

ex: $perl -ne 'print if ($. < 4)' foo

 two dots (..) is used as range operator.
(1..5) represents 1,2,3,4,5

6.9 LISTS and ARRAYS:
List:is an ordered collection of scalar data
Arrays:is a variable that contains list.

 Example of a list
("Jan",123,"How are you",-34.56)

 A list need not contain data of same type.For this list to be usable, it needs to be assigned to set
of variables.
($mon, $num, $stg,$neg)=("Jan",123,"How are you",-34.56)

 Arrays in perl are not of fixed size, they grow and shrink dynamically as elements are added
and deleted.

 Arrays are defined using @ symbol.
@array_name.

 Each element of array is accessed by $variable[n] where n is the index value,which starts from
zero.
Ex :lets assign the list to a three element array.

Sandeepa G S, Asst Prof, Page 104
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

@month=("Jan","Feb","Mar");
print $month[1];
output:
Feb
$month[0] evaluates to string Jan, $month[2] evaluates to Mar.

6.10 ARGV[]: Command line arguments:
perl uses command line arguments which are stored in system array @ARGV[].the first argument is
ARGV[0].

Perl program to illustrate the usage of ARV[] command line arguments
or

Perl Program to find the square root of a number.

#!/usr/bin/perl
square_root.pl
print ("The program you are running is $0 \n");
foreach $number (@ARGV)
{
print("The square root of number is " sqrt($number));
}

$square_root.pl 123 25 436 //to run the program
output
The program you are running is square_root.pl
The square root of 123 is 11.09
The square root of 25 is 5
Th esquare root of 456 is 21.35

6.11 MODIFYING ARRAY CONTENTS: PERL ARRAY FUNCTIONS:
perl has a number of functions for manipulating the contents of array.
1.shift 2.unshift 3.push 4.pop 5.splice

 shift : For moving elements to the left/to delete element from the beginning
 unshift: to add elements to the beginning of array
 push:to add elements to the end of array
 pop:to remove and return the array last element.
 splice(arg1,arg2,arg3,arg4):

Ex :
@list=(3..5, 9); /*(3..5, 9) is 3 4 5 9 where .. is range operator
shift() :
shift (@list);
 output: 4 5 9 /* 3 is deleted from beginning
pop (@list);
output: 4 5 /* removes 9 at the end
unshift (@list, 1..3);

Sandeepa G S, Asst Prof, Page 105
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

output: 1 2 3 4 5 /*adds 1, 2, 3 to beginning
push (@list, 9);
output: 1 2 3 4 5 9 /*pushes 9 at end

The splice function can do everything that these four functions can do. Additionally it uses upto four
arguments to add or remove elements at any location of the array.

 The first argument takes up the list.
 The second argument is the offset from where the insertion or removal should begin.
 The third argument represents the number of elements to be removed.If the third argument is 0

then the elements has to be added.
 The fourth argument takes new list to be added or replaced

Ex:
@list=1 2 3 4 5
splice(@list,5, 0,6..8) //offset -5 , elements to be replaced is 0

//6..8(range) add 6,7,8 to list at 6th position
Adds at 6th location – 6,7,8

output:
1 2 3 4 5 6 7 8

@list =1 2 3 4 5 6 7 8
splice(@list, 0, 2)
Removes from beginning 2 elements

output:
3 4 5 6 7 8

6.12 Split() and join()
split(): This function splits a string expression into fields based on the delimiter specified by
PATTERN. If no pattern is specified whitespace is the default. An optional limit restricts the number of
elements returned.
Syntax:
split (/PATTERN(delimiter) /, EXPR, LIMIT)

split /PATTERN(delimiter) /, EXPR
Return Value

 Return Value in Scalar Context: Not recommended, but it returns the number of fields found
and stored the fields in the @_ array.

 Return Value in Array Context: A list of fields found in EXPR or $_ if no expression is
specified.

Following is the example code showing its basic usage −

#!/usr/bin/perl
@fields = split(/ : /, "1:2:3:4:5"); // delimiter value is :
print "Field values are: @fields\n";

When above code is executed, it produces the following result −

Field values are: 1 2 3 4 5 //delimiter (:) is used to split up values

Sandeepa G S, Asst Prof, Page 106
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

join():This function combines the elements of LIST into a single string using the value of EXPR to
separate each element. It is effectively the opposite of split.

 Note that EXPR is only interpolated between pairs of elements in LIST; it will not be placed
either before the first or after the last element in the string.

 Following is the simple syntax for this function −
join (delimiter,List)

Example 1:
#!/usr/bin/perl
$string = join("-", "one", "two", "three"); /* delimiter (–) is used to join values one, two, three
print"Joined String is $string\n";

output:
Joined String is one-two-three

Example 2:
#!/usr/bin/perl
$string = join("", "one", "two", "three"); /*no value is assigned to delimiter.
print"Joined String is $string\n";
output:
Joined String is onetwothree
6.13 FILE HANDLES
open():

 Perl also provides low level file handling functions that let you hard code the source and
destinationof the data stream in the script itself.

 A file is opened for reading like this:
open(INFILE, “/home/henry/mbox“);

 INFILE here is a filehandle(an identifier) of the mailbox
 Once a file has been opened , funtions that read and write the file will use the filehandle to

access the file.
 A filehandle is similar to file descriptor.
 A file is opened for writing with the shell like operators > and >> having their usual meaning.

open(OUTFILE, “>rep_out.lst“);
open(OUTFILE, “>>rep_out.lst“);

close():
close FILEHANDLE: closes the file or pipe associated with the file handle ,closes th esystem file
descriptor and flushes the IO buffers.

die:
- die List raises an exception .perl has two special variables $? and $! that helps in finding out

what happened after an error has occured. The $? Variable hold sthe status of the last pipe close
or system function.The $! variable can be used either a numeri or string context.

- In numeric context it holds the value of errno and in string context it holds the error string
associated with errno.

- Once you detect an error and you cannot correct the problem without outside intervention, you
need to communicate problem to user.

- This is usualluy done by die() funtion

Sandeepa G S, Asst Prof, Page 107
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

6.14 ASSOCIATIVE ARRAYS
 Perl also supports hash or associative array.It alternates the array subscripts(called keys) and

values in series of strings.
 When declaring array these strings are delimited by commas .
 This array uses the % symbol to prefix the array name.This assignment creates an array of four

elements where the subsript precedes the value in the array definition.
 The array subscript which an also be a string is enclosed within a pair of curly braces rather

than [].
 For ex $region(‘‘N“) produces NORTH.

 We use associative arrays %region in the program, region.pl to expand region codes.
 The program also shows how to use two associative arrays functions :keys and values.
 Keys stores the list of subsripts in a separate array.(here @key_list)
 Value holds the value of each element in another array(here @value_list)

Ex:region.pl

#!/usr/bin/perl
#
%region =(‘‘N“, ‘‘NORTH‘‘, “S“,“SOUTH“,“E“,“EAST“,“W“,“WEST“);
foreach $ letter(@ARGV)
{
print(‘‘The letter $letter stands for $region($letter)“);
}
@key_list=keys(%region);
print(‘‘The subscripts are @key_list\n“);
@value_list= values % region;
print(‘‘The values are @value_list \n“);

output
$region.pl S W
The letter S stands for South
The letter W stands for West
The subscripts are S E N W
The values are South East North West

6.15 DECISION MAKING LOOP CONTROL STRUCTURE:
foreach: Looping through a list

 perl provides an extremely useful foreach construct to loop through a list.
foreach $var (@arr)
{
statements
}

 Each element of the array @arr is picked up and assigned to the variable $var.
 The iteration is continued as many times as there are items in the list.

6.16 REGULAR EXPRESSIONS:

Sandeepa G S, Asst Prof, Page 108
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

SIMPLE AND MULTIPLE SEARCH PATTERNS:
THE MATCH AND SUBSTITUTE OPERATORS

 Perl offers a grand superset of all possible regular expressions found in the UNIX system.
The s and tr functions:

 These functions handles all substitution in perl.
 The s funtion(substitute command) is just the same way as in sed.
 tr translates characters in just the way the UNIX tr command does but slightly with different

syntax:
 s/:/~/g ;
 tr /a-z/A-Z/ ; in Unix we use tr ‘[a-z]‘ ‘[A-Z]‘
 s and tr also accepts flags for global substitution.
 Identifying whitespaces,digits and words
 Perl also offers some escaped characters to represent the whitespace, digits and word

Boundaries.

 Here are some commonly used ones
\s A whitespace character
\d A digit
\w A word character
Additional regular expressions Sequences used by Perl

Symbols Significance

\w Matches a word character
\W Doesnot match a word character
\d Matches a digit
\D Doesnot match a digit
\s Matches a whitespace character
\S Doesnot math a whitespace character
\b Matches on word boundary
\B Doesnot Matches on word boundary

6.17 DEFINING AND USING SUB ROUTINES

 Perl supports functions but calls the subroutines.
 A subroutine is called by the & symbol followed by the subroutine name.
 If the subroutine is defined without any formal parameter , perl uses the array @_ as the

default.
 Variables inside the subroutine must be declared by my to make them invisible in the calling

program.
The general form of a subroutine definition in perl programming language is as follows:
sub subroutine
{
body of the subroutine
}

Sandeepa G S, Asst Prof, Page 109
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

The typical way of calling the subroutine in perl is as follows:
&subroutine_name(list of arguments);

Example of simple function and then call it.
 #!/usr/bin/perl
#
sub Hello
{
print “Hello World“;
}
#function call
Hello()
 Output:
 Hello World
Passing List to Sub routines:
Because the @_ variable is an array, it can be used to supply lists to a subroutine.However because of
the way in which perl accepts and parses list and arrays, it can be difficult to extract the individual
elements from @_.
#!/usr/bin/perl
#
sub PrintList
{
my @list =@_;
print (“Given list is @list\n“);
}
$a=10;
@b= (1,2,3,4);

#Function call with list parameter.
PrintList($a,@b);

Output:
Given list is 10 1 2 3 4

Sandeepa G S, Asst Prof, Page 110
Dept of CSE, GMIT

