
UNIX AND SHELL PROGRAMMING

Module 4:ESSENTIAL SHELL PROGRAMMING

4. ORDINARY AND ENVIRONMENT VARIABLES
A local variable is a variable that is present within the current instance of the shell. It is not available to

programs that are started by the shell. They are set at command prompt.
4.1 VARIABLE NAMES

 A variable is a character string to which we assign a value. The value assigned could be a
number, text, filename, device, or any other type of data.

 A variable is nothing more than a pointer to the actual data. The shell enables you to create,
assign, and delete variables.

 The name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9) or the
underscore character (_).

 By convention, Unix Shell variables would have their names in UPPERCASE.

 The following examples are valid variable names −
VAR_1
VAR_2
TOKEN _A

4.2 DEFINING VARIABLES:

 Variables are defined as follows –

 variable_name=variable_value
For example:
NAME="Sumitabha Das"

4.3 ACCESSING VARIABLES:

 To access the value stored in a variable, prefix its name with the dollar sign ($) –

 For example, following script would access the value of defined variable NAME and would
print it on STDOUT –

#!/bin/sh
NAME=“Sumitabha Das“
echo $NAME

4.4 ENVIRONMENT VARIABLES –
An environment variable is a variable that is available to any child process of the shell. Some programs
need environment variables in order to function correctly. Usually a shell script defines only those
environment variables that are needed by the programs that it runs.
SHELL: points to the shell defined as default.
DISPLAY : Contains the idenifier for the display that X11 programs should use by default.
HOME: Indicates the home directory of the current user; the default argument for the cd built in
command
IFS: Indicates the Internal Field Separator that is used by the parser for word splitting after
expansion.

Sandeepa G S, Asst Prof, Page 70
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

PATH : Indicates search path for commands.It is a colon separated list of directories in which the shell
looks for commands.
PWD: Indicates the current working directory as set by the cd command.
RANDOM: Generates a random integer between 0 and 32767 each time it is referenced.
SHLVL: Increments by one each time an instance of bash is created.
UID: Expands to the numeric user ID of the current user initialized at shell prompt.

 Following is the sample example showing few environment variables −

$ echo $HOME
/root
]$ echo $DISPLAY

$ echo $TERM
xterm
$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/home/amrood/bin:/usr/local/bin
$

PS1(Prompt String one) and PS2 Environment Variables
The characters that the shell displays as your command prompt are stored in the variable PS1. You can
change this variable to be anything you want. As soon as you change it, it'll be used by the shell from
that point on.
For example, if you issued the command −

$PS1='=>'
=>
=>

Your prompt would become =>.
When you issue a command that is incomplete, the shell will display a secondary prompt and wait for
you to complete the command and hit Enter again.
The default secondary prompt is > (the greater than sign), but can be changed by re-defining
the PS2 shell variable −
Following is the example which uses the default secondary prompt −

$ echo "this is a
> test"
this is a
test
$

$PS= '-->'
$ echo "this is a
--> test"

Sandeepa G S, Asst Prof, Page 71
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

4.5 The .profile File

 The file /etc/profile is maintained by the system administrator of your UNIX machine and
contains shell initialization information required by all users on a system.

 The file .profile is under your control. You can add as much shell customization information as
you want to this file. The minimum set of information that you need to configure includes

 The type of terminal you are using
A list of directories in which to locate commands
A list of variables effecting look and feel of your terminal.

 You can check your .profile available in your home directory. Open it using vieditor and check
all the variables set for your environment.

4.6 SHELL SCRIPTS
When a group of commands have to be executed regularly they should be stored in a file and the file
itself executed as a shell script or shell program.

 Structure of shell script:
#!/bin/sh
script.sh: Sample shell script
echo “ Todays date: `date`”
echo “This month calendar”
 cal `date` “+%m 20%y”
echo “My Shell: $SHELL”

output:
$sh script.sh
Todays date : Mon Nov 7 10:03:42 IST 2016
This month's calendar:
November 2016

My shell: /bin/sh

 Use your vi editor to create the shell script script.sh.
 The script runs three echo commands and shows the use of variable evaluation and command

substitution. It also prints the calendar of the current month.
 Note that the # is comment character, that can be placed anywhere in a line; the shell ignores all

characters placed on its right.
 However this doesnot apply to the first line, which also begins with a #. This is interpreter line

that was mentioned previously.
 It always begins with #! and is followed by pathname of the shell to be used for running the

script. However this line specifies the bourne shell.
 To run the script, make it executable first and then invoke the script name

Sandeepa G S, Asst Prof, Page 72
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

$chmod a+x script.sh
$sh script.sh

 Shell scripts are executed in a separate child shell process and this sub shell need not be of the
same type as your login shell.By default child and parent shell belongs to the same type, but
you can provide a interpreter line in the first line of the script to specify a different shell for
your script.

4.7 read and readonly commands.
 read:MAKING SRIPTS INTERACTIVE
 The read statement is the shell internal tool for taking the input from the user ie making scripts

interactive.
 It is used with one or more variables. Input is supplied through the standard input is read into

these variables.
 When you use statement like:

read name
the script pauses at that point to take input from the keyboard. whatever you enter is stored in
the variable name. since this is a form of assignment , no $ is used before the name.

 A single read statement can be used with one or more variables to let you enter multiple
arguments.

read pname flname
 The script asks for a pattern to be entered. Input the string director, which is assigned to the

variable pname. Next the script asks for the filename enter the string emp.lst which is assigned
to the variable flname.

 grep runs with these two variables as arguments
#!/bin/sh
#emp1.sh
#
echo "Enter the pattern to be searched : \c"
read pname
echo " Enter the file to be used : \c"
read flname
echo " Searching for $pname from file $flname"
grep "$pname" $flname
echo "Selected rows shown above"

Output:
$sh emp1.sh
Enter the pattern to be searched:director
Enter the file to be used: emp.lst
Searching for director from file emp.lst
101 sharma|director|production|12/03/70|7000
102|barun|director|marketing|11/06/67|7800
selected rows shown above

4.8 USING COMMAND LINE ARGUMENTS
 When arguments are specified with a shell script they are assigned to certain special variables-

positional parameters.
 $* store the complete set of positional parameters as a single string.
 $#--> It is set to the number of arguments specified.

Sandeepa G S, Asst Prof, Page 73
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

 $0- holds the command name itself.
 When arguments are specified in this way the first word (the command itself) is assigned to $0,

the second word(the first argument) to $1, the third word(the second argument) to $2.
#!/bin/sh
#emp2.sh
#
echo "Program:$0
The number of arguments specified is $#
The arguments are $*"
grep "$1" $2
echo "\n job over"

Output:
$ sh emp2.sh director emp.lst
Program: emp2.sh
The number of arguments specified is:2
The arguments are director emp.lst
101| sharma|director|production|12/03/70|7000
102|barun|director|marketing|11/06/67|7800
job over

4.9 SPECIAL PARAMETERS USED BY THE SHELL.
Shell

Parameter
Significance

$1, $2... Positional parameters representing command line arguments

$# Number of arguments specified in command line

$0 Name of executed command

$* Complete set of positional parameters as a single string

"$@" Each quoted string treated as separate argument

$? Exit status of last command

$$ PID of the current shell

$! PID of the last background job

4.10 Exit and exit status of Command.
 The shells exit command

exit 0 Used when everything went fine.
exit 1 Used when something went wrong

Its through the exit command or function that every command returns an exit status to the caller.
Further a command is said to return true exit status if it executes successfully and false if its fails.

 THE PARAMETER $? :It stores the exit status of the last command. It has the value 0 if the
command succeeds and a non zero value if it fails. This parameter is set by exit’s argument If
no exit status is specified then $? is set to zero(true).

Sandeepa G S, Asst Prof, Page 74
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

 Consider two files file1 which exist in current directory and file2 which does not exist
$ ls –l file1; echo $? /*file1 attributes are listed
Output :0 /*exit status $?=0, since cmd executed successfully

$ ls –l file2; echo $? /*error since file2 doesnot exist
Output: 1 /*exit status $?=1, since cmd execution failed.

4.11 THE LOGICAL OPERATORS && and || - CONDITIONAL EXECUTION
• The shell provides two operators that allow conditional execution.the && and ||.
• The syntax:

cmd1 && cmd2
cmd1 || cmd2

• Consider a file emp.lst
$cat emp.lst
1066| sharma | director |sales |03/09/66 | 7000
1098| Kumar |director| production|0/08/67 | 8200
1082|sumith| manager|marketing|09/09/73| 7090

• The && delimits two commands ; the command cmd2 is executed only when cmd1 succeeds.
$ grep “director” emp.lst && echo “Pattern found in file”
Output:
1066| sharma | director |sales |03/09/66 | 7000
1098| Kumar |director| production|0/08/67 | 8200
Pattern found in file

• The || operator plays inverse role. The second command is executed only when the first fails.
$grep “ deputy manager” emp.lst || echo “Pattern not found”
Output:
Pattern not found /* cmd1 -deputy manager is not found in emp.lst.

Hence cmd1 fails. Therefore cmd2 “pattern not found”
executes.

$grep “manager” emp.lst || echo “Pattern not found”
Output

1082|sumith| manager|marketing|09/09/73| 709 /*Here cmd1 is executed successfully i,e
manager is found ,therefore cmd2 will not
be executed.

4.12 CONDITIONAL STATEMENTS:
4.12.1 If 4.12.2 case
4.12.1 The if CONDITIONAL

If command is successful
then
execute commands
else
execute commands
fi

If command is successful
then
execute commands
fi

If command is successful
then
execute commands
elif command is successful
then ..
else ..
fi

Sandeepa G S, Asst Prof, Page 75
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

The if statement makes two way decision making depending on the fulfillment of a certain condition.

 If also requires a then.
 It evaluates the success or failure of the command that is specified in its command line. If

command succeeds the sequence of the commands following it is executed. If commands fails
then the else statement is executed

 Every if is closed with corresponding with fi.

#!/bin/sh
a=10
b=20
if [$a==$b]
then
echo “a is equal to b”
elif [$a –gt $b]
then
echo “ a is greater than b”
elif [$a -lt $b]
then
echo “ a is lesser than b”
else
echo “ None of the conditions met”
fi
output:
a is lesser than b

4.12.2 The case CONDITIONAL
 The case statement is the second conditional offered by the shell
 The statement matches an expression for more than one alternative and uses a compact

construct to permit multiway branching.
The general syntax is

case expression in
pattern1) commands1 ;;
pattern2) commands2 ;;
pattern3) commands3 ;;
……..
esac

case first matches expression with pattern1. If the match succeeds, then it executes commands1, which
may be one or more commands. If the match fails, then pattern2 is matched and so on….Each
command list is terminated with a pair of semicolons and the entire construct is closed with esac .

#!/bin/sh
#menu.sh
echo “ MENU \n
1.List of files\n 2.Processes of user\n 3.Todays date\n
4.Users of system\n 5.Quit\n
Enter your option: \”

Sandeepa G S, Asst Prof, Page 76
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

read choice
case “$choice” in
1) ls –l ;;
2) ps –f ;;
3) date ;;
4) who ;;
5) exit ;;
*) echo “invalid option”
esac

To run the program:
$ sh menu.sh

Output:
 MENU
1. List of files
2. Processes of user
3. Todays date
4.Users of system
5. Quit
Enter your option : 3
Sun Nov 6 18:03:06 IST 2016

4.12.2.1 Matching multiple patterns:
 case can also specify same action for more than one pattern.
 For example the expression y|Y can be used to match y in both upper and lower case letters.

echo “Do you wish to continue? : \c”
read answer
case “$answer” in
y|Y) ;;
n|N) exit ;;
esac

4.12.2.2 Wild cards: case uses them
 case has a string matching feature that uses wild cards.
 It uses the filename matching meta characters *, ? and the character class but only to match

strings but not the files in the current directory.
case “$answer” in
[yY][eE] *) ;;
[nN][oO]) exit ;;
*) echo “Invalid response”
esac

4.13 USING test and [] to evaluate the expressions.
Test uses the certain operators to evaluate the condition on its right and returns either true or false exit
status which is then used by if for making decision .

Test works in 3 ways:
4.13.1. Compares two numbers (NUMERIC COMPARISION)
4.13.2. compares two strings or a single one for a null value.(STRING COMPARISION)
4.13.3. checks a file attributes. (FILE TEST)

Sandeepa G S, Asst Prof, Page 77
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

4.13.1. NUMERIC COMPARISION:
The numeric comparison operators used by test are
Operator Meaning
-eq Equal to
-ne Not equal to
-gt Greater than
-ge Greater than or equal to
-lt Less than
-le Less than or equal to

Numeric comparison in the shell is confined to integer values only , decimal values are simply
truncated.
$ x=5; y=7; z=7.2
$ test $x –eq $y ; echo $?
Output : 1

$ test $x –lt $y ; echo $?
Output: 0

$ test $z –gt $y ; echo $?
Output: 1

4.13.2. STRING COMPARISION
test can be used to compare strings with yet another set of operators.

Test True if
s1=s2 String s1=s2

s1!=s2 String s1 is not equal to s2

-n stg String stg is not a null string

-z stg String stg is null string

Stg String stg is assigned and not null

s1==s2 String s1= s2(Korn and bash only)

Example:
#!/bin/sh
a=”abc”
b=”efg”
if [$a = $b]
then
echo “a is equal to b”
else
echo “a is not equal to b”
fi

output:
a is not equal to b

Sandeepa G S, Asst Prof, Page 78
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

4.13.3.FILE TESTS
test can be used to test the various file attributes like its type(file, directory or symbolic link) or its
permissions(read,write,execute)

Test True if File
-f file File exists and is regular file
-r file File exist and is readable
-w file File exists and is writable
-x file File exists and is execuatble
-d file File exists and is a directory
-s file File exists and has a size greater than zero
-e file File exists (Korn and bash only)
-L file File exists and is symbolic link
f1 -nt f2 f1 is newer than f2(Korn and bash only)
f1 -ot f2 f1 is older than f2(Korn and bash only)
f1 -ef f2 f1 is linked to f2(Korn and bash only)

$ls –l emp.lst
-rw-rw-rw- 1 kumar group 870 Sep 8 15:52 emp.lst

$ [-f emp.lst] ; echo $? // -f (emp.lst file exist and its regular file)
0 // Yes
$ [-x emp.lst] ; echo $? // -x (emp.lst file is executable or not)
1 //No
4.14 while Looping

 The while statement repeatedly performs a set of instructions until the control command return
a true exit status .

 The general syntax is
while condition is true
do
commands
done

 The commands enclosed by do and done are executed repeatedly as long as condition remains
true.

4.14.1 Using while to wait for a file
 There are situations when a program needs to read a file that is created by another program, but

it has to wait until the file is created.
 The script, monitfile.sh periodically monitors the disk for the existence of the file. And then

executes the program once the file has been located.
 It makes use of the external sleep command that makes the script pauses for the duration in

seconds as specified in its arguments .
 The loop executes repeatedly as long as the file invoice.lst cannot be read.
 If the file becomes readable the loop is terminated and the program alloc.pl is executed.
 We use the sleep command to check every 60 seconds for the existence of the file.

Sandeepa G S, Asst Prof, Page 79
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

4.14.2 Setting up an infinite loop
Suppose you as system administrator want to see the free space available on your disk every five
minutes

while true
do
df –t
sleep 300
done &

df reports free space on disk . sleep command is used to hek for every 300 seconds(5 minutes).
& after done runs loop in background

4.15 for : LOOPING WITH A LIST
The shells for loop differs in structure from the ones used in other programming languages.
There is no three part structure.

for variables in list
do
commands
done

The loop body also uses the keyword do and done. But the additional parameters here are variable and
list. Each whitespace separated word in list is assigned to variable and commands are executed until list
is executed .

Ex:
 $for file in chap20 chap21 chap22
 do
 cp $file {$file}.bak
 echo $file copied to $file.bak
 done

Output:
chap20 copied to chap20.bak
chap21 copied to chap21.bak
chap22 copied to chap22.bak

POSSIBLE SOURCES OF THE LIST
4.15.1 List from variables:
You can use series of variables in the command line. They are evaluated by the shell before executing
the loop

$ for var in $PATH $HOME
do
echo “$var”
done

 Output:
/bin:/usr/bin:/home/local/bin /*$var= $PATH
/home/henry /*$var=$HOME

4.15.2 List from command substitution
The following for command line picks up its list from clist.

for file in `cat clist`

Sandeepa G S, Asst Prof, Page 80
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

4.15.3 List from wild cards
When the list consists of wild cards, the shell interprets them as filename.

for file in *.htm *.html
do
gzip $file
done

4.15.4 List from positional parameters
for is also used to process positional parameters that are assigned from command line arguments
it uses the shell parameter $@ to represent all command line arguments

for pattern in “$@”

4.15.5 basename: changing filename extensions
 When basename is used with two arguments it strips off the second argument from the first

argument
$ basename note.txt txt
note. //txt stripped off

 Used to rename filename extensions from txt to doc

for file in *.txt
do
leftname= `basename $file txt `
mv $file ${{leftname}doc
done

 If for picks up note .txt as the first file,
 Leftname stores note.(with dot)
 mv simply adds doc to the extracted string(note.)

4.16 set and shift: MANIPULATING THE POSITIONAL PARAMETERS
 set assigns its argument to positional parameters $1,$2 and so on.

$set 989 878 779
$_
This assigns the value 989 to the positional parameter $1, 878 to the positional parameter $2
and 779 to $3

Ex:
$echo “\$1 is $1, \$2 is $2, \$3 is $3”
Output: $1 is 989, $2 is 878, $3 is 779
$echo “The $# arguments are $*”
Output: The 3 arguments are 989 878 779

Shift : Shifting Arguments left
Shift transfers the contents of a positional parameter to its immediate lower numbered one.
$ set `date’
$echo “$*
Output: Wed Nov 9 09:04:30 IST 2016

Sandeepa G S, Asst Prof, Page 81
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

$shift
$ echo $1 $2 $3 $4 $5
Output: Nov 9 09:04:30 IST 2016

$shift 2
$echo $1 $2 $3
Output: 09:04:30 IST 2016

4.17 The HERE DOCUMENT (<<)
 The shell uses << symbols to read data from the same file containing the script.
 This is referred to as here document , signifying that the data is here rather than in a separate

file .
 If the message is short you can have both the command and message in the same script.

mail sharma << MARK
Your program for printing the invoices has been executed
on `date`. The updated file is $flname
MARK

 The here document symbol(<<) followed by three lines of data and a delimiter (the string
MARK)

 The shell treats every line following the command and delimited by MARK as input to the
command.

 Sharma at the other end will see the three lines of message text with the date inserted by
command substitution and the evaluated filename.

4.18 trap: INTERRUPTING A PROGRAM
 By default shell scripts terminate whenever the interrupt key is pressed. It may leave a lot of

temporary files on disk .
 The trap statement lets you do things you want in case the script receives a signal. The

statement is normally placed at the beginning of a shell script and uses two lists
trap ‘command _list’ signal_list

 When a script is sent any of the signals in signal_list, trap executes the commands in
command_list

 The signal_list can contain the integer values or names of one or more signals.

trap ‘rm $$* ; eho “Program Interrupted” ; exit ’ HUP INT TERM
trap ‘cmd_list’ sig_list

 trap is a signal handler.
 Here it first removes all the files expanded from $$*, echoes a message and finally terminates

the script when the signals SIGHUP(1), SIGINT(2), SIGTERM(15) are sent to the shell process
running the script.

 When the interrupt key is pressed it sends the signal number 2.

4.19 FILE SYSTEM and INODES
 Every file system has a directory structure headed by root.
 If you have three file systems on one hard disk then they will have three separate root

directories.

Sandeepa G S, Asst Prof, Page 82
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

 Of these multiple file systems, one of them is considered to be the main one and contains the
most of the essential files of the Unix system. This is the root file system.

 Every file is associated with a table that contains all that you could possibly need to know about
a file except its name and contents. This table is called the inode and is accessed by inode
number.

The inode contains the following attributes of a file
 File type(regular,directory,device etc)
 File permissions
 Number of links
 The UID of the owner
 The GID of the group owner
 File size in bytes
 Date and time of last modification
 Date and time of last access
 Date and time of last change of the inode
 An array of pointers that keep track of all disk blocks used by the file

4.20 LINKS:HARD AND SYMBOLIC(SOFT) LINKS
4.20.1 HARD LINKS: is merely an additional name for an existing file.

Creating hard links:ln command
 A file is linked with the ln command which takes two filenames as arguments.
 The following command links file1 to file2

$ln file1 file2
 -i option:The –i option to ls shows the inode number of the files

 $ls –li file1 file2
Output:
Inode number permissions links owner group size last modified time filename
29518 -rwxr-xr-x 2 Kumar metal 915 May 4 09:58 file1
29518 -rwxr-xr-x 2 Kumar metal 915 May 4 09:58 file2

 Original and link file will have same inode number: all files with inode number 29518
 File size is same for original and linked files:915
 The link count here is 2.

Consider another file- file3 is linked to existing file- file2.
 The link count increases to 3

$ln file2 file3
$ls –li file2 file3
Output:
29518 -rwxr-xr-x 3 Kumar metal 915 May 4 09:58 file1
29518 -rwxr-xr-x 3 Kumar metal 915 May 4 09:58 file2
29518 -rwxr-xr-x 3 Kumar metal 915 May 4 09:58 file3

Application of Hard Links:
1. Links provides some protection against accidental deletion especially when they exist in different
directories.
2. Because of links we don’t need to maintain two programs as two separate disk files if there is very

Sandeepa G S, Asst Prof, Page 83
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

little difference between them.
3. lets consider that you have written a number of programs that read a file foo.txt in
/HOME/input_files.
Later you reorganized your directory structure and moved foo.txt to /HOME/data.
What happens to all the programs that look for foo.txt at its original location.
Solution:Just link foo.txt to directory input_files
 $ln data/foo.txt input_files

LIMITATIONS
 Hard links cannot be used to have two linked filenames in two filesystem.
 Hard links cannot be used to link a directory even within the same file system.

4.20.2 SYMBOLIC LINKS/SOFT LINKS

- Unlike hard link a symbolic link doesnot have the file contents, but simply the pathname of the
file that actually has contents.

- Syntax to create symbolic link
 -s option along with ln command is used to create soft link
 Consider two files note and note.sym. Creating soft link is as follows:

$ln –s note note.sym
$ls –li note note.sym

9948 -rw-r—r-- 1 kumar group 80 Feb 16 14:52 note
9952 lrwxrwxrwx 1 kumar group 4 Feb 15 15:07 note.symnote

 The inode number of linked file is 9952 whereas that of original file is 9948
 The file size of the linked file is 4 whereas the original file is 80

HARD LINKS SOFT LINKS
 merely an additional name for an existing file. name for any file that contains a reference to

another file

Original and link file will have same inode
number

Inode number of the link file will be different

If original file is deleted, still link file exist If original file is deleted , link file will not be
accessible

Size of hardlink file is same as original file Size of soft link file is smaller than original
file.

It cannot be created across the partitions It can be created across the partitions

4.21. SIMPLE FILTER Commands
a. pr b. Head c. tail d. Cut e. paste f. Sort g.tr

a. pr :PAGINATING FILES
 The pr command prepares file for printing by adding suitable header, footers and formatted text.
$pr filename
$pr dept.lst

Sandeepa G S, Asst Prof, Page 84
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

Output:

Nov 07 08:30 2016 dept.lst page1
01:accounts:6213
02:admin:5423
03:marketing:6542
04:sales:1008
pr adds five lines of margin at the top and bottom.
The header shows the date and time of last modification of the file along with the filename and page
number.

pr options
 -k option

pr's -k option prints in k columns
 -d option

Doublespaces input
 -n option

Number lines
 -o n

offset lines by n spaces.

Consider a sample file emp.lst
$cat emp.lst
2233|a.k shukla |general manager|sales |12/12/52|6000
9876|jai sharma |director |production|03/06/50|7000
5678|sumit chakrobarty|deputy manager |marketing|04/09/43|8000
2365|barun sengupta |director |personnel|05/11/47|7600
5423|n.k.gupta |chairman |admin |08/07/56|5400
0110|v.k.agarwal |general manager|accounts |12/03/45|9900

b. head: Displaying the beginning of a file
 The head command as the name suggests displays the top of the file.
 When used without an option it displays the first ten lines of the file

$head emp.lst
 option

-n option
$head -n 3 emp.lst
Output: /*displays first three lines of file

2233|a.k shukla |general manager|sales |12/12/52|6000
9876|jai sharma |director |production|03/06/50|7000
5678|sumit chakrobarty|deputy manager |marketing|04/09/43|8000

c. tail:Displaying the end of a file
 tail command displays the end of file.
 $tail -n 3 emp.lst

Output: /*displays last three lines of file

Sandeepa G S, Asst Prof, Page 85
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

2365|barun sengupta |director |personnel|05/11/47|7600
5423|n.k.gupta |chairman |admin |08/07/56|5400
0110|v.k.agarwal |general manager|accounts |12/03/45|9900

d. cut: Slitting a file vertically
 1. cutting columns(-c)

 To extract specific columns you need to use -c option with a list of column numbers delimited
by a comma.

 Range can also be used using hyphen
 here is an example to extract name and designation from emp.lst

$cut -c 6-22,24-38 emp.lst

Output
a.k shukla general manager
jai sharma director
sumit chakrobarty deputy manager
barun sengupta director
n.k.gupta chairman
v.k.agarwal general manager

 2.cutting fields(-f)
 cut uses the tab as the default field delimiter.
 Two options need to be used here

-d for the field delimiter
-f for the field list

$cut -d \| -f 2,3 emp.lst
Output
a.k shukla general manager
jai sharma director
sumit chakrobarty deputy manager
barun sengupta director
n.k.gupta chairman
v.k.agarwal general manager

$cut -d \| -f 2,3 emp.lst | tee cutlist1
a.k shukla | general manager
jai sharma |director
sumit chakrobarty |deputy manager
barun sengupta |director
n.k.gupta |chairman
v.k.agarwal |general manager

$cut -d \| -f 1,4-6 emp.lst | tee cutlist2
2233|sales |12/12/52|6000
9876 |production|03/06/50|7000

Sandeepa G S, Asst Prof, Page 86
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

5678|marketing|04/09/43|8000
2365|personnel|05/11/47|7600
5423|admin |08/07/56|5400
0110|accounts |12/03/45|9900

e. paste:Pasting files
 paste command can be used as follows

$paste cutlist1 cutlist2
a.k shukla | general manager 2233|sales |12/12/52|6000
jai sharma |director 9876 |production|03/06/50|7000
sumit chakrobarty |deputy manager 5678|marketing|04/09/43|8000
barun sengupta |director 2365|personnel|05/11/47|7600
n.k.gupta |chairman 5423|admin |08/07/56|5400
v.k.agarwal |general manager 0110|accounts |12/03/45|9900

 paste can also be used with delimiter option -d
 $paste -d "|" cutlist1 cutlist2

a.k shukla | general manager | 2233|sales |12/12/52|6000
jai sharma |director | 9876 |production|03/06/50|7000
sumit chakrobarty |deputy manager | 5678|marketing|04/09/43|8000
barun sengupta |director |2365|personnel|05/11/47|7600
n.k.gupta |chairman | 5423|admin |08/07/56|5400
v.k.agarwal |general manager |0110|accounts |12/03/45|9900

 joining lines(-s)
consider theaddress book that contains details of three employees with three lines each
anup kumar
anup_k@yahoo.com
24568799
vinod sharma
vinod_sharma@yahoo.com
87764543
barun gupta
barun_gupta@gmail.com
45943890

$paste -s -d "||\n" addressbook
Output:
anup kumar | anup_k@yahoo.com |24568799
vinod sharma | vinod_sharma@yahoo.com|87764543
barun gupta|barun_gupta@gmail.com|45943890

 The -s option is used for joining three lines
 the -d (delimiter option) is used here with ||\n (two vertical bar and one newline

character)

Sandeepa G S, Asst Prof, Page 87
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

 The first | is used to separate the first and second fields.
 The second | is used to separate the second and third field
 The third \n (next line character) is used to display next field in new line

f. sort: ORDERING A FILE
 sorting is the ordering of data in ascending or descending sequence.
 The sort command orders a file
 By default entire line is sorted

$sort shortlist
sort options
option Description
-t char Uses delimiter char to identify fields
-k n Sorts on nth field
-k m,n Starts sorts on mth field and ends sort on nth field
-k m.n Starts sorts on nth column of mth field
-u Removes repeated lines
-n Sorts numerically
-r Reverses sort order
-m list Merges sorted files in list
-c Checks if file sorted
-o filename Places output in file filename

Consider a sample file named shortlist with employee details
$cat shortlist
2233|a.k shukla| general manager|sales|12/12/52|6000
9876|jai sharma |director|production|03/06/50|7000
5678|sumit chakrobarty|deputy manager|marketing|04/09/43|8000
2365|barun sengupta|director|personnel|05/11/47|7600
5423|n.k.gupta|chairman|admin|08/07/56|5400

• The -t option is used to specify the delimiter
 1.Sorting on primary key(-k)

$sort -t "|" -k 2 shortlist
sorting is done on key 2 i,e field 2 is sorted with | as delimiter
output:

2233|a.k shukla| general manager|sales|12/12/52|6000
2365|barun sengupta|director|personnel|05/11/47|7600
9876|jai sharma |director|production|03/06/50|7000
5423|n.k.gupta|chairman|admin|08/07/56|5400
5678|sumit chakrobarty|deputy manager|marketing|04/09/43|8000

2. Sorting in reverse order
 $ sort -t "|" -r -k 2 shortlist
sort order can be reversed with -r option.
Here the sorting is reversed on field 2 with | as delimiter
Output:
5678|sumit chakrobarty|deputy manager|marketing|04/09/43|8000

Sandeepa G S, Asst Prof, Page 88
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

5423|n.k.gupta|chairman|admin|08/07/56|5400
9876|jai sharma |director|production|03/06/50|7000
2365|barun sengupta|director|personnel|05/11/47|7600
2233|a.k shukla| general manager|sales|12/12/52|6000

 3. Sorting on secondary key(-k m,n)
Sorting can be done on more than one key i,e you can provide a secondary key to sort.
For ex: If the primary key is third field,and the secondary key is second field, then you need to
specify for every -k option
$sort -t "|" -k 3,3 -k 2,2 shortlist

Output:
5423|n.k.gupta|chairman|admin|08/07/56|5400
5678|sumit chakrobarty|deputy manager|marketing|04/09/43|8000
2365|barun sengupta|director|personnel|05/11/47|7600
9876|jai sharma |director|production|03/06/50|7000
2233|a.k shukla| general manager|sales|12/12/52|6000

 4.Sorting on columns(-k m.n)
Sorting can also be done on a specific character position within field to be the beginning of the
sort.
For ex:
If you need to sort the file according to the date of birth, then you need to sort on the seventh
and eight h columns positions within fifth field. 19/04/43- this is the fifth field
$sort -t "|" -k 5.7, 5.8 shortlist
Output:
5678|sumit chakrobarty|deputy manager|marketing|04/09/43|8000
2365|barun sengupta|director|personnel|05/11/47|7600
9876|jai sharma |director|production|03/06/50|7000
2233|a.k shukla| general manager|sales|12/12/52|6000
5423|n.k.gupta|chairman|admin|08/07/56|5400

 5.Numeric sort(-n)
$sort numfile
Sort a file based on ASCII collating sequence
10
2
27
4
$sort –n numfile
2
4
10
27

 6. Removes repeated lines(-u):
The –u option lets you to remove the repeated lines.
$cut –d ‘‘|“ –f 2,3 emp.lst| sort –u
Output:

Sandeepa G S, Asst Prof, Page 89
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

a.k shukla general manager
jai sharma director
sumit chakrobarty deputy manager
n.k.gupta chairman

7. Checks if file sorted(-c)
$sort –c shortlist
Output:
$_ File is sorted

8. Merges sorted files in list(-m)
The –m option can merge two or more files that are sorted individually.

$sort –m foo1 foo2 foo3

9. Places output in filename(-o flname)
The output can be redirected to a file using –o option

$ sort –o shortlist shortlist

g. Tr-translating characters
• tr translate filter command manipulates individual characters in a line.
• The syntax is

tr options expression1 expression2 standard input
• tr command takes it input only from standard input, it doesnt take filename as input
$ tr '|/' '~- ' < emp.lst
output
2233~a.k shukla~general manager~sales~21-02-52~6000
9876~jai sharma~director~production~03-05-50~7000
5678~sumit chakrobarty~deputy manager~marketing~14-9-43~8000
 It replaces each occurence of |(vertical bar) by ~ (tilde sign)
and each occurence of /(forward slash) by -(hyphen) sign

$ tr '[a-z] '[A-Z]' < emp.lst
output'
2233~a.k shukla~general manager~sales~21-02-52~6000
9876~jai sharma~director~production~03-05-50~7000
5678~sumit chakrobarty~deputy manager~marketing ~14-9-43~8000

tr options
1. Deleting characters: (-d)

To delete characters |/ from the file emp.lst.
$tr -d '|/' < emp.lst
output:
2233 a.k shukla general manager sales 210252 6000
9876 jai sharma director production 030550 7000
5678 sumit chakrobarty deputy manager marketing 14943 8000

Sandeepa G S, Asst Prof, Page 90
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

 2. Compressing Multiple consecutive characters (-s)
Eliminate all redundant spaces
$tr -s ' ' < emp.lst
output:
2233|a.k shukla| general manager|sales|12/12/52|6000
9876|jai sharma |director|production|03/06/50|7000
5678|sumit chakrobarty|deputy manager|marketing|04/09/43|8000

3. Complementing values of expression(-c)
To delete all characters except | and /
$tr -cd '|/' < emp.lst
||||//||///|//////|/|||////////////|||||//////////////|||//////////|

4. Using ASCII octal values and Escape sequences
So to have each field in separate line, So | is replaced with newline character(octal value 012)
$tr '|' '012' < emp.lst
2233
a.k.shukla
general manager
sales
12/12/52
6000

4.22. The umask command and default permissions
• When you create files and directories , the permissions assigned to them depend on the system

default settings.
• The UNIX system has the following default file and directory permissions.

rw-rw-rw-(octal 666) for regular files
rwxrwxrwx(octal 777) for directories.

• To evaluate the current value of mask by using umask command
$umask
022

• This is an octal number that has to be subtracted from the system default to obtain the actual
default.

• This becomes 644(666-022) for files and 755(777-022) for directories.
• A user can also use this command to set a new default.

4.23 Two special files
/dev/null:

 Especially in shell programming quite often you would like to check whether program runs
successfully without seeing its output on the screen.

 You may not want save this file output either.
 You have a special file that simply accepts any stream without growing in size
$cmp foo1 foo2 >/dev/null
$cat /dev/null.
$ /* checks file size its always zero
/dev/null simply incinerates all output written to it. Whether you direct or append, it always remains

Sandeepa G S, Asst Prof, Page 91
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

zero.This facility is useful in redirecting the error messages away from the terminal so that they
don’t appear on screen.

/dev/tty:stands for controlling the terminal for the current process.For the shell process you are in
/dev/tty is the terminal you are now using.

 Consider for instance that kumar is working on terminal /dev/pts/1 and sharma on /dev/pts/2.
 However both can refer to their own terminals with the same filename /dev/tty.
 Thus if kumar issues the command

who > /dev/tty
 The list of current users is sent to terminal he is currently using /dev/pts/1.
 Similarly sharma an issue the same command to see the output on his terminal /dev/pts/2
 Thus /dev /tty can be accessed independently by several users at same time without conflict.

Sandeepa G S, Asst Prof, Page 92
Dept of CSE, GMIT

