
UNIX AND SHELL PROGRAMMING

MODULE 2: File System and Basic File attributes.

UNIX system has thousands of files. If you write a program, you add one more file to the system.
When you compile it you add some more. Files grow rapidly, and if they are not organized properly,
you will find it difficult to locate them. So UNIX has a file system (UFS) to manage or organizes its
own files in directory.
1. UNIX FILES AND BASIC FILE TYPES/CATEGORIES
FILES SUPPORTED BY UNIX FILE SYSTEM
File is a collection of records. So, files are divided into three categories
a. Ordinary file
b. Directory file
c. Device file
The UNIX file system contains several different types of files:
a.Ordinary Files or regular files

It contains only data as a stream of characters.
 An ordinary files itself divided into 2 types

Text file: contains only printable characters, and you can often view the contents and make
sense out of them. All C and Java files are example of text file. A text file contains lines of
characters where every line is terminated with the newline character, also known as linefeed
(LF) when you press Enter while inserting text, the LF character is appended to every line. You
won’t see this character normally, but there is command (od) which can make it visible.
Binary file: it contains both printable and unprintable characters that cover the entire ASCII
range(0 to 255).most UNIX commands are example of binary files.

b. Directory files
i. Contains no data, but keeps some details of the files and subdirectories that it contains.
ii. A directory file contains an entry for every file and sub directory that it houses. Each entry
has two components

 The filename
 A unique Identification number for the file or directory(called the inode number)

iii. A directory contains the filename but not the contents of file.
 iv. When you create or remove a file the kernel automatically updates its corresponding
directory by adding or removing the enter i.e inode number associated with that file.
c. Device files

i. Used to represent a real physical device such as a printer, tape drive or terminal, used for
Input/Ouput (I/O) operations

ii. Unix considers any device attached to the system to be a file - including your terminal:

iii. By default, a command treats your terminal as the standard input file (stdin) from which to
read its input

iv. Your terminal is also treated as the standard output file (stdout) to which a command's output
is sent.

v. stdin and stdout will be discussed in more detail later

vi. Two types of I/O: character and block

vii. Usually only found under directories named /dev

Sandeepa G S, Asst Prof, Page 30
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

2. NAMING FILES OR WHAT’S IN A (FILE) NAME
a. UNIX permits file names to use most characters, but avoid spaces, tabs and characters that have a
special meaning to the shell, such as:

 & ; () | ? \ ' " ` [] { } < > $ - ! /
 b. It is recommended that only the following characters be used in filenames.
 c. Alphabetic characters and numerals
 d. The period(.), the hyphen(-) and underscore(_)
 e. Case Sensitivity: uppercase and lowercase are not the same! These are three different files:

 NOVEMBER November november

f. Length: can be up to 256 characters

g. Extensions: may be used to identify types of files
 libc.a - archive, library file
 program.c - C language source file
 alpha2.f - Fortran source file
 xwd2ps.o - Object/executable code
 mygames.Z - Compressed file

3. PARENT CHILD RELATIONSHIP/ UNIX FILE SYSTEM
All files in UNIX are related to one another. The file system in unix is a collection of all ordinary,
directory and device files and organized in a hierarchical structure as shown in below fig.

The implicit feature of every UNIX file system is that there is a top which serves as reference point for
all files.This top is called root & is represented by a /(front slash). Root is actually a directory. The root

Sandeepa G S, Asst Prof, Page 31
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

directory has a number of sub directories under it. These sub directories in turn have more sub
directories and others files under them.
For instance bin and usr are two directories directly under root, while a second bin and kumar are sub
directories under usr.
Every file apart from root must have a parent. Thus the home directory is the parent of kumar , while /
is the parent of home and grandparent of kumar. If you create a file login.sql under the kumar
directory ,then kumar will be the parent of this file.
The first group contains the files that are made available during system installation

 /bin and /usr/bin: these are the directories where all the commonly used UNIX commands are
found.

 /sbin and /usr/sbin: If there’s a command that you can’t execute but the system administrator
can execute, it would be probably in one of these directories.

 /etc: this directory contains the configuration files of the system. You can change a very
important aspect of system functioning by editing a text file in this directory. Your login name
and password are stored in files /etc/passwd and etc/shadow

 /dev: This directory contains all device files. These files don’t occupy space on disk.there could
be more sub directories like pts, dsk and rdsk in this directory

 /lib and /usr/lib: Contains shared library files and sometimes other kernel-related files.
 /usr and /include: contains the standard header files used by C programs. The statement

#include<stdio.h> used in most C programs referes to the file stdio.h in this directory.
 /usr/share/man: this is where the man pages are stored. There are separate subdirectories

here(like man1,man2 etc) that contains the pages for each section. For instance, the man page of
ls can be found in /usr/share/man/man1

User also work with their own files, they write programs, send and receive mail and also create
temporary files. These files are available in the second group shown below

 /tmp: the directory where users are allowed to create temporary files. These files are wiped
away regularly by the system

 /var: The variable part of the file system. Contains all your print jobs and your outgoing and
incoming mail.

 /home:On many systems users are housed here.Kumar would have his home directory in
/home/kumar

4. THE HOME VARIABLE and THE PATH VARIABLE
HOME DIRECTORY : When log on to the system, UNIX automatically places you in a directory
called the home directory.

 It is created by the system when user account is opened.
 If you log in using the login name sharma , you will land up in a directory that could have the

pathname
/home/sharma

 The shell variable HOME known’s yours home directory
$echo $HOME
/home/sharma
You will be doing much of your work in your home directory and subdirectories.

 Home variable: it is also called environment variables. Environment variables are a set of
dynamic named values that can affect the way running processes will behave on a computer.
 Here $HOME is a environment variable it indicates the home directory of the current user: the

default argument for the cd built-in command.

Sandeepa G S, Asst Prof, Page 32
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

5. PATH VARIABLE:
 The PATH environment variable is a colon-delimited list of directories that your shell searches

through when you enter a command.
 Program files (executables) are kept in many different places on the Unix system. Your path

tells the Unix shell where to look on the system when you request a particular program.
 To find out what your path is, at the Unix shell prompt echo $PATH
 Your path will look something like the following.

 /usr2/username/bin:/usr/local/bin:/usr/bin:.

You will see your username in place of username. Using the above example path, if you enter the ls
command, your shell will look for the appropriate executable file in the following order: first, it would
look through the directory /usr2/username/bin, then /usr/local/bin, then /usr/bin, and finally the local
directory, indicated by the . (a period).

6.DIRECTORY COMMANDS – PWD, CD, MKDIR, RMDIR COMMANDS
6.1 pwd (PRINT WORKING DIRECTORY) (checking your current directory)
As the name states, command ‘pwd‘ prints the current working directory or simply the directory user
is, at present. It prints the current directory name with the complete path starting from root (/). This
command is built in shell command and is available on most of the shell – bash, Bourne shell, ksh,zsh,
etc.
Basic syntax
$pwd [option]
 Options Description
 -L (logical) Use PWD from environment, even if it contains symbolic links
 -P (physical) Avoid all symbolic links
 –help Display this help and exit
 –version Output version information and exit

If both ‘-L‘ and ‘-P‘ options are used, option ‘L‘ is taken into priority. If no option is specified at the
prompt, pwd will avoid all symlinks, i.e., take option ‘-P‘ into account.

6.2 cd: CHANGING THE CURRENT DIRECTORY
 The cd command, which stands for "change directory", changes the shell's current working

directory.
 The cd command is one of the commands you will use the most at the command line in UNIX.
 It allows you to change your working directory. You use it to move around within the hierarchy

of your file system.
Ex 6.2.1 When used with an argument it changes the current directory to the directory specified as
argument for example assume gmit is a directory under user directory Kumar.To change from Kumar
directory to gmit directory , issue the command as follows
$pwd
/home/kumar
$cd gmit
$pwd
/home/kumar/gmit

Ex 6.2.2:When cd used without arguments: cd when used without arguments reverts to home directory

Sandeepa G S, Asst Prof, Page 33
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

$pwd
/home/kumar/gmit
$cd

 cd without argument will change directory from gmit to its home directory Kumar
$pwd
/home/kumar

Ex 6.2.3: If your present working directory is /home/Kumar and you need to switch to /bin directory
directly, use absolute pathname i.e /bin wd cd command
$pwd
/home/kumar
$cd /bin
$pwd
/bin

6.3 mkdir: "making directory".

 mkdir is used to create directories on a file system.

 If the specified DIRECTORY does not already exist,mkdir creates it.

 More than one DIRECTORY may be specified when calling mkdir.
mkdir syntax
mkdir [OPTION ...] DIRECTORY ...

Ex 6.3.1: To create a directory named gmit, issue the following command.
$mkdir gmit
gmit directory is created under present working directory.
Assume that pwd is /home/kumar , then gmit directory is created under kumar directory.

Ex 6.3.2: To create three directories at a time, named patch, dbs, doc, pass directory names as argu-
ments.

$mkdir patch dbs doc

Ex 6.3.3:To create a directory tree:
To create a directory named gmit and create two subdirectories named cse and ise under gmit, issue the
command. gmit is a parent directory.
$mkdir parent directory sub-directories
$mkdir gmit gmit/cse gmit/ise

Ex 6.3.4: Error while creating a directory tree
$mkdir gmit/cse gmit/ise
mkdir: Failed to make a directory “gmit/cse”; no such file or directory
mkdir: Failed to make a directory “gmit/ise”; no such file or directory

Sandeepa G S, Asst Prof, Page 34
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

Error is due to the fact that the parent directory named gmit is not created before creating sub directo-
ries cse and ise.
Ex 6.3.5: $mkdir test
mkdir: Failed to make directory “test”; Permission denied.
This can happen due to:
a. The directory named test may already exist
b. There may be an ordinary file by the same name in the current directory.
c. The permissions set for the current directory do not permit the creation of files and directories by the
user.

6.4 rmdir: REMOVING DIRECTORIES
The rmdir utility removes the directory entry specified by each directory argument, provided the direc-
tory is empty.
Ex 6.4.1: $rmdir progs
removes the directory named progs
Arguments are processed in the order given. To remove both a parent directory and a subdirectory of
that parent, the subdirectory must be specified first, so the parent directory is empty when rmdir tries
to remove it.
The reverse logic of mkdir is applied.
$rmdir subdirectories parent directory

$rmdir gmit/cse gmit/ise gmit

 You cant delete a directory with rmdir unless it is empty.In this example gmit directory cannot
be removed until the sub directories cse and ise are removed.

 You cant remove a sub directory unless you are place in a directory which is hierarchically
above the one you have chosen to remove.

6.5 ABSOLUTE PATHNAMES:
 If the first character of a pathname is / the files location must be determined with respect to

root(/) . Such a pathname is called absolute pathname.
cat /home/kumar

 When you have more than one / in a pathname for such / you have to descend one level in the
file system. Thus Kumar is one level below home and two levels below root.

 When you specify a file y using frontslashes to demarcate the various levels,you have a
mechanism of identifying a file uniquely.No two files in a UNIX system can have same
absolute pathnames.

 When you specify the date command, the system has to locate the file date from a list of
directories specified in the PATH variable and then execute it.

 However if you know the location of a command in prior, for example date is usually located in
/bin or /usr/bin . Use absolute pathname i,e precede its name with complete path

$/bin/date
 For example if you need to execute program less residing in /usr/local/bin you need to enter
the absolute pathname

$/usr/local/bin/less

Sandeepa G S, Asst Prof, Page 35
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

6.6 RELATIVE PATHNAMES
 Pathnames that don’t begin with / specify locations relative to your current working directory.
 Uses either the current or parent directory as reference and specifies path relative to it.
 A relative pathname uses one of these cryptic symbols.

. (a single dot)- this represents the current directory.

.. (two dots)this represents the parent directory

Command Function
cd Returns you to your login directory

cd ~ Also returns you to your login directory
cd / Takes you to the entire system’s root directory

cd /root Takes you to the home directory of the root or superuser,account
created at installation, you must be root user to access this directory.

cd /home Takes you to the home directory where user login directories are
usually stored

cd .. Moves you up one directory
cd ~otheruser Takes you to the otheruser’s login directory

cd /dir/subdirfoo Regardless of which directory you are in, the absolute path takes you
directly to subdirfoo, a subdirectory of dir.

Ex .6.6.1: Assume the current directory is /home/kumar/progs/data/text, using cd .. will move one level
up

$pwd
/home/kumar/progs/data/text
$ cd ..
$pwd
/home/kumar/progs/data

Ex 6.6.2 : To move two levels up
$pwd
/home/kumar/progs
$ cd ../..
$pwd
/home

Ex 6.6.3: My present location is /etc/samba and now I want to change directory to /etc.
Using relative path: $ cd ..
Using absolute path: $cd /etc

Ex 6.6.4: My present location is /var/ftp/ and I want to change the location to /var/log
Using relative path: cd ../log
Using absolute path: cd /var/log

Ex 6.6.5: My present location is /etc/lvm and I want to change my location to /opt/oradba
Using relative path: cd ../../opt/oradba
Using absolute path: cd /opt/oradba

Sandeepa G S, Asst Prof, Page 36
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

7. ls : listing directory contents:

 To obtain a list of all filenames in the current directory.

Numerals first

Uppercase next

Lowercase Then

$ls

Output:08_packets.html

calendar

dept.lst

emp.lst

helpdir

uskdsk06

ls options:

 Output in multiple columns(-x):

$ls -x

08_packets.html calendar dept.lst emp.lst

helpdir progs usdsk07 usdsk07

 Identifying directories and executables(-F)

$ ls –Fx

08_packets.html calendar* cptodos.sh* dept.lst

emp.lst helpdir / progs / usdsk07

The * indicates the file contains the executable code and / refers to directory

 Showing Hidden files also(-a):

$ls –axF

.profile .exrc .kshrc .xinitrc

08_packets.html calendar* cptodos.sh* dept.lst

emp.lst helpdir / progs / usdsk07

The hidden files are indicated by . (dot) displayed before filename.

 Listing directory contents:

$ls –x helpdir progs

helpdir:

forms.obd graphics.obd

progs:

array.pl n2words.pl

Sandeepa G S, Asst Prof, Page 37
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

If we specify two directories named helpdir and progs , the contents of the directory i,e filenames are

listed out.

 Recursive listing(-R)

The recursive option lists all sub-directories and files in a directory tree structure.

$ls -xR

08_packets.html calendar cptodos.sh dept.lst

emp.lst helpdir progs usdsk07

./helpdir

forms.hlp graphics.hlp

./progs

arrays.pl n2words.pl

8.Cat command : Displaying and creating files
cat is one of the most well known commands of UNIX system.
Cat is useful for creating a file .
Its mainly used to display the contents of a small file on the terminal.

• Using cat to create a file:
Enter the command cat, followed by >(right chevron) character and the filename.
Example: take a filename named foo
$ cat > foo
> Symbol following command means that the output goes to filename following it.
[ctrl+d] /* to terminate or to signify end of the input.
$

• Using cat to display a file
Enter the cat command followed by filename
$ cat foo
Symbol following command means that the output goes to filename following it.

Cat options (-v and -n)
Displaying Non printing characters(-v)
cat is normally used for displaying text files only. If you have non-printing ASCII characters in
your input , you can see cat with -v option to display these characters
Numbering lines(-n)
The -n option numbers lines.

Cat with more than one filename as arguments:
cat filename1 filename2
cat chap01 chap02
The contents of second file are displayed immediately after the first file without any header
information.

9. cp: copying a file
• cp command copies a file or a group of files.it creates an exact image of the file on the disk with

the different name.
• The syntax requires atleast two filenames to be specified in the command line.
• When both are ordinary files, the first is copied to second file.

cp source file destination file

Sandeepa G S, Asst Prof, Page 38
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

cp chap01 unit1
 if destination file i.e unit1 does not exist, first it will be created before copying.if not it will
be simply overwritten without any warning.

• Copying a file to another directory
ex: assume there is a file named chap01 and it has to be copied to progs directory
cp chap01 progs
output: chap01 is now copied to directory named progs with the same name chap01.

• Copying a file to another directory with different name
ex: assume there is a file named chap01 and it has to be copied to progs directory with chap01
file renamed as unit1
cp chap01 progs/unit1
output: chap01 is now copied to directory named progs with the same name unit1

• Copy more than one file with a single command.
cp chap01 chap02 chap03 progs
chap01, chap02, chap03 files are copied to directory named progs.

• Copy all files beginning with chap
 cp chap* progs

9.1 cp options:
Interactive copying (-i): the -i option warns the user before overwriting the destination file.

Ex: $ cp -i chap01 unit1
cp: overwrite unit1(yes/no)? y
A y at this prompt will overwrite the file.

Copying directory structure(-R) : the -R command behaves recursively to copy an entire directory
structure say progs to newprogs.
Ex say progs directory contains three files kernel, bash, korn. To copy all three files under progs to
newprogs directory

$ cp -R progs newprogs
10. rm : deleting files
The rm command deletes one or more files.
 Ex 1: The following command deletes three files chap01, chap02, chap03.

$ rm chap01 chap02 chap03
 Ex 2: to delete files named chap01 and chap02 under progs directory

$ rm progs/chap01 progs/chap02
 Ex 3: to remove all file

$ rm*

10.1 rm options:
Interactive deletion (-i): the –i optin makes the command ask the user for confirmation before
removing each file.
 $rm -i chap01 chap02 chap03
rm: remove chap01(yes/no)?y
rm: remove chap01(yes/no)?y
rm: remove chap01(yes/no)?y

Recursive deletion(-r or -R) deletes all subdirectories and files recursively. Rm wont normally

Sandeepa G S, Asst Prof, Page 39
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

remove directories but when used with -r or -R option it will.
$ rm -r *

Forcing removal: rm prompts for removal, if a file is write protected. The -f option overrides this minor
protection and forces removal.

$ rm -rf * /*(deletes everything in the current directory and below)

11. mv: RENAMING FILES.
 The mv command renames or moves files. It has two distinct functions:

a. It renames a file or directory
b. it moves a group of files to a different directory

To rename a file chap01 to man01
$ mv chap01 man01

mv replace the filename in the existing directory entry with the new name.
No additional space is consumed on disk during renaming.

To rename a directory:
$ mv pts perdir
pts directory is renamed as perdir

To move group of files to a directory
mv chap01 chap02 chap03 progs
to move three files chap01, chap02, chap03 to directory named progs

12.wc command: COUNTING LINES,WORDS,CHARACTERS
wc command takes one or more filenames as arguments and displays four columnar output.

 First we will create a file named infile
$ cat > infile
I am the wc command
I count characters,words and lines
[ctrl+D]

$wc infile
2 10 55 infile

wc counts lines in first column ,words in second column,characters in third column and filename in
fourth column..
A line is any group of characters not containing a newline
A word is group of characters not containing a space tab or newline.
A character is the smallest unit of information and includes a space, tab and newline
wc options:
$ wc -l infile
2
$wc -w infile
10
$wc -c infile
55

 When two filenames are passed as wc argument

Sandeepa G S, Asst Prof, Page 40
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

First line : number of lines, words and characters of chap01
Second line: number of lines, words and characters of chap02
Third line: Total number of lines, words and characters of both.
13. od Command: DISPLAYING DATA IN OCTAL.

$ cat odfile
White space includes a
The ^G character rings a bell

$ od -b odfile
The -b option displays the octal values for each character.
000000 127 150 151 164 145 040 163 160 141 143 145 040 151 156 143 154
000000 165 144 145 163 040 141 040 011 012 124 150 145 040 007 040 143
Each line displays 16 bytes of data in octal , preceded by the offset in the file of the first byte in the
line.

$od -bc odfile
The -b and -c option combined
Each line is now replaced with two.
The octal values are shown in first line and printable characters and escape sequences are shown in
second line
000000 127 150 151 164 145 040 163 160 141 143 145 040 151

 W h i t e s p a c e i
156 143 154
n c l

000000 165 144 145 163 040 141 040 011 012 124 150 145 040
 u d e s a \t \n T h e

 007 040 143
007 c

The octal equivalent of characters are displayed ex for W- 127, i-151, \t (tab)-011, \n(newline)-012
^G(Bell character)- 007

BASIC FILE ATTRIBUTES
1. ls –l: LISTING FILE ATTRIBUTES
 ls command is used to obtain a list of all filenames in the current directory. The output in UNIX lingo
is often referred to as the listing. Sometimes we combine this option with other options for displaying
other attributes, or ordering the list in a different sequence. ls look up the file’s inode to fetch its
attributes. It lists seven attributes of all files in the current directory and they are:
1.1File type and Permissions

Sandeepa G S, Asst Prof, Page 41
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

1.2 Links
1.3 Ownership
1.4 Group ownership
1.5 File size
1.6 Last Modification date and time
1.7 File name

1.1 The file type and its permissions: The first column shows the type and permissions associated with
each file.The first character in this column is mostly a – which indicates that the file is an ordinary one.
In unix, file system has three types of permissions- read, write and execute.

1.2 Links: The second column indicates the number of links associated with the file. This is actually
the number of filenames maintained by the system of that file.
1.3 Ownership: The third column shows the owner of files. The owner has full authority to tamper with
files content and permissions. Similarly, you can create, modify or remove files in a directory if you are
the owner of the directory.

1.4 Group ownership: The fourth column represents the group owner of the file. When opening a user
account, the system admin also assigns the user to some group. The concept of a group of users also
owning a file has acquired importance today as group members often need to work on the same file.

1.5 File size: The fifth column shows the size of the file in bytes. The important thing to remember
here is that it only a character count of the file and not a measure of the disk space that it occupies.

1.6 Last modification time: The sixth, seventh and eighth columns indicate the last modification time
of the file, which is stored to the nearest second. A file is said to be modified only if its content have
changed in any way.If the file is less than a year old since its last modification time, the year won’t be
displayed.

1.7 Filename: The last column displays the filename arranged in ASCII collating sequence.
For example, $ ls –l
total 72
 -rw-r--r-- 1 kumar metal 19514 may 10 13:45 chap01
-rw-r--r-- 1 kumar metal 4174 may 10 15:01 chap02
 -rw-rw-rw- 1 kumar metal 84 feb 12 12:30 dept.lst
 -rw-r--r-- 1 kumar metal 9156 mar 12 1999 genie.sh
 drwxr-xr-x 2 kumar metal 512 may 09 10:31 helpdir
 drwxr-xr-x 2 kumar metal 512 may 09 09:57 progs

2. LISTING DIRECTORY ATTRIBUTES (-d option)
 ls -d will not list all subdirectories in the current directory

 For example,
$ls –ld helpdir progs
drwxr-xr-x 2 kumar metal 512 may 9 10:31 helpdir
drwxr-xr-x 2 kumar metal 512 may 9 09:57 progs

 Directories are easily identified in the listing by the first character of the first column, which
here shows a d.

Sandeepa G S, Asst Prof, Page 42
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

 To see the attributes of a directory rather than the files contained in it, use ls –ld with the direc-
tory name.

3. FILE OWNERSHIP
 When you create a file, you become its owner and it shows up in the third column of the files

listing.
 Group name is seen in the fourth column; your group is the group owner of the file.
 Every owner is attached to a group owner. Several users may belong to a single group, but the

privileges of the group are set by the owner of the file and not by the group members.
 When the system administrator creates a user account, he has to assign these parameters to the

user:
The user-id (UID) – both its name and numeric representation
The group-id (GID) – both its name and numeric representation

4. FILE PERMISSIONS
 UNIX has a simple and well defined system of assigning permissions to files.
 Lets issue the ls –l command once again to view the permissions of a few lines .
$ls -l chap02 dept.lst dateval.sh
-rwxr-xr-- 1 kumar metal 25000 May 10 19:21 chap02
-rwxr-xr-x 1 kumar metal 890 Jan 10 23:17 dept.lst
-rw-rw-rw- 1 kumar metal 84 Feb 18 12:20 dateval.sh

Consider the first column.
- rwx r-x r—

Each group here represents the category and contain three slots representing the read, write and
execute permissions of the file.
r indicates the read permission; w indicates write permission; x indicates execute permission
- (hyphen) indicates the absence of the corresponding permission.
In the above example, the file permissions of chap02 file is
 - rwx r-x r - -
 File owner/user group others

First group(rwx) has all the three permissions.
 The file is readable, writable and executable by the owner of the file, kumar.
 The third column shows the owner of the file.
 The first permissions group applies to kumar.
 You have to login with the name kumar for the privileges to apply to you.

Second group(r-x):
 has a hyphen in the middle slot, which indicates the absence of write permissions by the group

owner of the file.
 The group owner is metal and all users belonging to group metal has only read and execute per-

missions.

Third group(r--):
 has the write and execute bits absent.
 This set is applicable to others i,e those who are neither the owner nor group.
 This category is referred to as the world.

Sandeepa G S, Asst Prof, Page 43
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

5. CHANGING FILE PERMISSIONS- chmod command.
A file or a directory is created with a default set of permissions, which can be determined by umask.
Let us assume that the file permission for the created file is -rw-r--r--. Using chmod command, we can
change the file permissions and allow the owner to execute his file. The command can be used in two
ways:

5.1 In a relative manner by specifying the changes to the current permissions
5.2 In an absolute manner by specifying the final permissions

5.1 RELATIVE PERMISSIONS
chmod only changes the permissions specified in the command line and leaves the other permissions
unchanged.
 Its syntax is:

chmod category operation permission filename(s)
chmod takes an expression as its argument which contains:

user category (user, group, others)
operation to be performed (assign or remove a permission)
type of permission (read, write, execute)

The below shows the abbreviations used by chmod command
Category operation permission
u - user + assign r - read
g – group - remove w - write
o - others = absolute x - execute
a - all (ugo)

Ex 1:
$ls –l xstart
-rw-r--r-- 1 kumar metal 1906 sep 23:38 xstart
Here user is having the only read and execute permission .

Using relative file permission need to add the execute permission to user
chmod category operation(+,-) permission filename.
$chmod u + x xstart
 $chmod u+x xstart

 $ ls –l xstart
-rwxr--r-- 1 kumar metal 1906 sep 23:38 xstart
After executing the chmod command, the command assigns (+) execute (x) permission to the user (u),
other permissions remain unchanged.

Ex 2: To remove execute permission from all and assign read permission to group and others
$chmod a-x, go+r xstart /*to remove execute permission from all(a)ie user, group, others

/*to assign read permission to group and others (go+r)

Ex 3: To assign write and execute permissions for others.
$chmod o+wx xstart

Sandeepa G S, Asst Prof, Page 44
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

5.2 ABSOLUTE PERMISSIONS
 A string of three octal digits is used as an expression. The permission can be represented by one octal
digit for each category. For each category, we add octal digits. If we represent the permissions of each
category by one octal digit, this is how the permission can be represented:

Read permission – 4 (octal 100)
Write permission – 2 (octal 010)
Execute permission – 1 (octal 001)

Octal Permissions Significance
0 - - - no permissions
1 - - x execute only
2 - w - write only
3 - w x write and execute
4 r - - read only
5 r - x read and execute
6 r w - read and write
7 r w x read, write and execute

We have three categories and three permissions for each category, so three octal digits can describe a
file’s permissions completely. The most significant digit represents user and the least one represents
others. chmod can use this three-digit string as the expression.

Ex 1: To assign read,write permissions to all .Using relative permission, we have,
$chmod a+rw xstart

Using absolute permission, we have,
$chmod 666 xstart /* 6 for r-w

/* first digit 6 for user, second 6 for group and third 6 for others

Ex 2:
To assign read and write for user and remove write, execute permissions from group and others

 Here to assign rw- corresponds to digit 6
 Remove write , execute permissions is nothing but assigning only read option to group and oth-

ers
 Only read permission is r—corresponds to 4

$chmod 644 xstart

Ex 3:
To assign all permissions to the owner, read and write to group and only execute for others.

$chmod 761 xstart

Ex 4
To assign all permissions to all categories.

$chmod 777 xstart

5.3 The Security Implications
Let the default permission for the file xstart is
-rw-r—r--

Sandeepa G S, Asst Prof, Page 45
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

$chmod u-rw, go-r xstart or
$chmod 000 xstart
After Executing above any one command the output will be removes the all permission from all
categories as shown below

This is simply useless but still the user can delete this file
On the other hand,
chmod a+rwx xstart or
chmod 777 xstart
After Executing either of the one command it adds the all permission to all categories as shown
below
-rwxrwxrwx

The UNIX system by default, never allows this situation as you can never have a secure system. Hence,
directory permissions also play a very vital role here.

5.4 use chmod Recursively.(-R)
 It possible to make chmod descend directory hierarchy and apply the expression to every file

and sub directory it finds. This is done by using -R option
$chmod -R a+x shell_scripts

This makes all the files and subdirectories found in the shell_scripts directory, executable by all users.

6. DIRECTORY PERMISSIONS
 Directories also have their own permissions and the significance of these permissions differ

from those of ordinary files.
 The default permissions of a directory are,

rwxr-xr-x (755)
 A directory must never be writable by group and others

Ex1:
$mkdir c_progs ; ls –ld c_progs
drwxr-xr-x 2 kumar metal 512 may 9 09:57 c_progs
Here the c_progs directory is created (mkdir c_progs) and then the attributes of directory is listed out(ls
–ld c_progs)

If a directory has write permission for group and others also, be assured that every user can remove
every file in the directory. As a rule, you must not make directories universally writable unless you
have definite reasons to do so.

7. CHANGING FILE OWNERSHIP
There are two commands meant to change the ownership of a file or directory.

chown changing file owner and
chgrp changing group owner

Sandeepa G S, Asst Prof, Page 46
Dept of CSE, GMIT

UNIX AND SHELL PROGRAMMING

7.1 chown : Changing file owner
 The syntax is

chown options owner [:group] file(s)
 For changing ownership requires super user permission. So let’s first change our status to that

of super user with the su command:
$su
Password: ******
#_

 After the password is successfully entered, su returns a # prompt, the prompt used by root. su
lets us acquire super user status if we know the root password.

 Consider the file note owned by kumar.To now renounce the ownership of the file note to Shar-
ma, use chown in the following way:
ls -l note
-rwxr----x 1 kumar metal 347 may 10 20:30 note

#chown sharma note; ls -l note
-rwxr----x 1 sharma metal 347 may 10 20:30 note

Once ownership of the file has been given away to sharma, the user file permissions that previously
applied to Kumar now apply to sharma. Thus, Kumar can no longer edit note since there is no write
privilege for group and others. He cannot get back the ownership either. But he can copy the file to his
own directory, in which case he becomes the owner of the copy.

7.2 chgrp :Changing Group Owner
 This command changes the file’s group owner. No superuser permission is required.
$ ls –l dept.lst
-rw-r--r-- 1 kumar metal 139 jun 8 16:43 dept.lst
Here the group owner of dept.lst is metal

$chgrp dba dept.lst; ls –l dept.lst
-rw-r--r-- 1 kumar dba 139 jun 8 16:43 dept.lst

The group owner of the file dept.lst is changed from metal to dba by issuing the command
$chgrp dba dept.lst

The file attributes of dept.lst is listed by issuing the command
$ls –l dept.lst

 Using chown to change both file owner and group :
The syntax requires two arguments to be separated by :
chown sharma:dba dept.lst
 Here the ownership of dept.lst is changed to sharma and group to dba

Sandeepa G S, Asst Prof, Page 47
Dept of CSE, GMIT

