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Module 4:

Relations contd.:
~ Properties of Relations,

~ Computer Recognition — Zero-One Matrices and Directed Graphs,
a~ Partial Orders — Hasse Diagrams,

a Equivalence Relations and Partitions.

Definition and Properties

A binary relation R from set x to y (written as xRy or R(x,y)) is a subset of the Cartesian product

x % y. If the ordered pair of G is reversed, the relation also changes.

Generally an n-ary relation R between sets A1, ..., and An is a subset of the n-ary product A1 X ...
X An. The minimum cardinality of a relation R is Zero and maximum is n in this case.

A binary relation R on a single set A is a subset of A x A.

For two distinct sets, A and B, having cardinalities m and n respectively, the maximum

cardinality of a relation R from A to B is mn.

Domain and Range

If there are two sets A and B, and relation R have order pair (x, y), then —

x The domain of R is the set { x | (x, y) € R for some y in B }

x The range of R is the set { y | (x, y) @ R for some x in A }

Examples

Let, A={1,2,9}and B={1, 3,7}

x Case 1 — If relation R is ‘equal to’ then R = {(1, 1), (3, 3)}
x Case 2 — If relation R is ‘less than’ then R = {(1, 3), (1, 7), (2, 3), (2, 7)}
x Case 3 — If relation R is ‘greater than’ then R = {(2, 1), (9, 1), (9, 3), (9, 7)}
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A relation can be represented using a directed graph.

The number of vertices in the graph is equal to the number of elements in the set from which the
relation has been defined. For each ordered pair (X, y) in the relation R, there will be a directed
edge from the vertex ‘x’ to vertex ‘y’. If there is an ordered pair (x, x), there will be self- loop

on vertex ‘x’.

Suppose, there is a relation R = {(1, 1), (1,2), (3, 2)} on set S = {1, 2, 3}, it can be represented
by the following graph —

i

Types of Relations

x The Empty Relation between sets X and Y, or on E, is the empty set €

x The Full Relation between sets X and Y is the set X xY

x The Identity Relation on set X is the set {(x, x) | x € X}

x The Inverse Relation R' of a relation R is defined as — R’ = {(b, a) | (a, b) @
R} Example - If R = {(1, 2), (2, 3)} then R’ will be {(2, 1), (3, 2)}

x Arelation R on set A is called Reflexive if € a€pA is related to a (aRa holds).

Example — The relation R = {(a, a), (b, b)} on set X = {a, b} is reflexive

x Arelation R on set A is called Irreflexive if no a € A is related to a (aRa does not

hold). Example — The relation R = {(a, b), (b, a)} on set X = {a, b} is irreflexive
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A relation R on set A is called Symmetric if xRy implies yRx, @x€A and @y@A.

Example — The relation R = {(1, 2), (2, 1), (3, 2), (2, 3)} onset A= {1, 2, 3} is

symmetric.

A relation R on set A is called Anti-Symmetric if xRy and yRx implies x = y @x € A
and @y @ A.

Example — The relation R = {(1, 2), (3, 2)} on set A = {1, 2, 3} is antisymmetric.
A relation R on set A is called Transitive if xRy and yRz implies xRz, Qx,y,z @ A
Example — The relation R = {(1, 2), (2, 3), (1, 3)} on set A = {1, 2, 3} is transitive

A relation is an Equivalence Relation if it is reflexive, symmetric, and transitive.

Example — The relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2,1), (2,3), (3,2), (1,3), (3,1)}
on set A = {1, 2, 3} is an equivalence relation since it is reflexive, symmetric, and

transitive.
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COMPUTER RECOGNITION-ZERO-ONE
MATRICES AND DIRECTED GRAPHS

In this section, we will discuss two alternative methods for representing relation,
one method used (ZERO-ONE) matrices, the other method uses directed graphs.
These methods are recognised in Computer Science.

(i) Method (Using Zero-one Matrices)

Suppose A and B are both finite sets and R is a relation from A to B, then R may be
represented as a matrix called the relation matrix of R.

Definition: (Relation Matrix)

If A={a,a,...,a }and B={b,b,....b }

are finite sets containing m and n elements respectively and R is arelation from A to
B, then we can represent the relation R by an m * n matrix, called relation matrix,

denoted by
M,=[m],.;
_fLif(a b)) R
where  m, = [o. if (a, b,) ¢ R

where m_ is the element in the / now /* column. The matrix representing R hasa ‘1’
asits i = jentry when g, is related to b, and a *0” in this position if g, is not related
tob
(Sughamptummiun depends on the orderings used for 4 and B).
Definition:
LetA=(a)and B=(b ) be m x n(zero-one) matrices. Then the join of A are B is the
zero-one matrix (i, /)* entry @, v b, .

The join of A and B is denoted by A4 v B . The meet of A and B is the zero matrix
with (i, /)* entry.

a; A b; The meet of A and B is denotedby 4 A B.

For example,
1o 01 0]

|f 'A.= d =
[Olo]mﬂ[llo_
Then the joint of 4 and B is

(AVB)-[IVO ov1 1vo] ¥ 1 1]

Ovi Ivl ovof [1 10

andmeetoanndBis(A,\B)=[le oAl IAO]

0Al 1Al OaO|

0 00
010
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Note: A relation matrix reflects some of the properties of a relation: .

(a) The matrix of a reflexive relation has a ‘1’ on all its principal diagonal
elements.

(b) Riss;muneu'iciﬂ'm’ﬂwhmeverm'=l.1hisalsonmmp=0whmeva
m, = 0. Consequently R is symmetric if and only if m = m , for all pairs of
integers i and j with i = 1 to nand j = 1 to n. R is symmetric iff M, = (M,)"

(c) Risantisymmetric of m, = | with i = j, then m, =0.

In other words, eithermy-l)ormﬂ-o
when i)

Working Rule
To write the relation matrix fora given relation:

“From a rectangular array whose rows are labelled by the elements of A and
whose columns are labelled by the elements of B. Then put the integer ‘1" in each
position of the array where @ e A isrelatedto b e Bi.e., when(a, b) e Rand put
0 in the remaining positions i.e., where (a, b) ¢ R. This final array, is the matrix M,
of the relation R”.

7.LetA={1,2,3} and R={"'J%<y} find M,

Solution:
Given: R={(1,2),(1,3),(2,3)}
The table and corresponding relation matrix for the relation R are given below:

1 2 3

1 0
2 0
3 0

11 0
0 1|; My=|0
0 | 0

(a) (b)

8. Let A={1,2,3,4} B={x,y,z}
and R={(1,).(1,2),3,).(4,x).(4,2)}
Define matrix representation of R.

Solution:
Given: R= {(1,),(1,2),(3,»),(4,x),(4,2)}
The table and corresponding relation matrix for the R given below:

ol P 4

Mut

S W N -

©—=0=

—0 0 =|n
o c o
© © -
O =
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55 HASSE DIAGRAM

A Hasse diagram is a pictorial representation of a finite partial order on a set. In
this representation, the objects i.e., the elements are shown as vertices (or dots).

Two related vertices in the Hasse diagram of a partial order are connected by
a line if and only if they are related.

Example] leiA=[34,12,24,48,72) and the relation < besuchthata < bifadivides b.
The Hasse diagram of (4, <) isshownin Fig. 5.1.

48 72

24

12.2.2 Equivalence Relations and Partitions

Equivalence relations merit additional exposition. One notable application of equiva-
lence reluiions occurs when the chain of familior number sysiems, N € £ < {§
R € C, is carefully constructed. In panticular, when moving from the integers, £, to the
st of rational numbers, 0, it is common o define the elements of 0 by starting with
ordered pairs of integers such that the second coordinate is not 0. The first coordinate
represents the numeraior and the second coordinaie represenis the denominaior, One
complication is that the ordered pairs (1, 2) and (2, 4) really represent the same rational
number (the fraction ;]. Eguivalence relations provide a mechanism for combining the
mfinitcly many represeniations for the same number inio a single element of the new
set, 0}, Additional details will be presented later in this section.
A previows example from a Quick Check will motivate the major new idea,

EXAMPLE 129 Congruence Classes mod 3

Quick Check 12.3 on page 739 introduced the eguivalence relation

Ra=l{x.,vieNxN | (v modS5) = (v mod 5))

It ix easy to see that i (x, v) € Ry, then © = v = 5n, for some integer, n. Defini-
tion 3.19 on page 98 provides an aliernate descaption: (x mod 5) = (v mod 53 if and
only if v = v (maxd 5.
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There is a natural partitioning'® of N into the congruence classes mod 5:

Remainder 0 (0.5, 10, 15,20, 25, ...}
Remainder 1 (1.6, 11,16,21,26,...)
Remainder 2 (2.7,12,17,22,27,...)
Remainder 3 (3.8, 13, 18,23,28, ...)
Remainder 4 (4,9, 14, 19,24, 29, ...

Every pair of natural numbers from the same congruence class is in the relation, Ry,
Any two numbers from different congruence classes are not in the relation, a

The phenomenon of being able to partition the elements of a set into natural subsets
detined by an equivalence relation is not unigue to congruences in M. It happens with
every equivalence relation.

DEFINITION 12.17 Equivalence Class

Let R be an equivalence relation on a set, A, and let x € A. The equivalence class
of x is denoted by [x] and is defined as

[x]=lae A|(x.a) e R)

The set [[x] | x € A} is referred to as the set of equivalence classes induced by R on
A. The element. x. that appears in the notation “[x]" is called a class representative.

v/ Quick Check 12.5
Let A be the set of all students who reside on campus at a particular college or university,
Let R © A x A be the relation defined by (x, v) € R if and only if x and y live in the
same residence hall (dorm).
1. Show that R is an equivalence rela- 2. Determine the equivalence classes of
tion. R. v

PROPOSITION 12.18 Eguivalence Classes Are Disjoint

Let R be an equivalence relation on a set, A, If x and y are two elements in A,
then either [x] = |v]orelse [x]N|v] =4

Proof:

CaseI: (x,y) e R

If (x, v) € R.then v € [x] (by Definition [2.17). Since R is symmetric, it is also true
that (v, x) € R.sox € |v]. R is reflexive. so x € [x]. Thus, [x] N [y] # @.

Suppose that a € [x]. Then (x,a) € R. Since R is symmetric, (a. x) € R is also
truc. But then the transitivity of R, combined with (a, v) € R and (x, ¥) € R implies
that (a. v) € R and (by symmetry) (v.a) € R. Consequently, a € [v] and [x] € [v].
A similar argument shows that [v] € |x]. The conclusion is that [x] = [y] whenever
IRyv.

Case2: (x,y) § R

Suppose that (x. v)  Rbut thata € [v]and a € |v]. Then (x.a) € Rand (v.a) € R.
Using the symmetry and transitivity of R, it is then true that (x, v) € R, a contradiction.
The contradiction arose by assuming that [x] and [v] had a common element. The
conclusion is that [x] N [y] =@ ‘

1%See Defintion 2.13 on page 24
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Since an cguivatence relation s reflexive, (v, x) € R for every x € A Conse-
quently, r € |x]. The pantitioning phenomenon that was observed in Example 129 15
fully developed in the nexi theorem.

Cine consequence of Proposition 12,18 is that any one of the elements in an aguiy-
alence class may be unambiguously used as the class representative,

m Equivalence Relativns and Partitions

Let A be a set.
= |If R is an equivalence relation on A, then the equivalence clisses of R form a
partition of 4.
« Every partition of .4 determines an equivalence relation on .,

Proof:

Egquivalence Relation Implies Partition
Let R be an eguivalence relation on 4. Proposition 12,18 implies that the equivalence
classes induced by T are disjoint. Since every element, x, in A i5 in an equivalence
class, [x]. every element of A is in some equivalence class, Therelore, the cquivalence
classes form a partition of A: they are disjoint and their union is all of A,
Partition fmplies Eguivalence Relation
let Py = |4 S A|i & T) for some set of indices, T Assume also that
Ain Ay =Wifi & jand A = UWer A Py is apartition of A,

Define a relation. R, on A by

(v, vl e Riland only if x € A; and v € A, foracommoni € T
It is an easy exercise o show that R is an equivalence relation whose equivalence
classes are the members of P 4.

It is mow time o provide the missing details for deriving the rational numbers from
the infegers.
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