# Module 4:

# **Relations** *contd*.:

- ▲ Properties of Relations,
- ▲ Computer Recognition Zero-One Matrices and Directed Graphs,
- ▲ Partial Orders Hasse Diagrams,
- Equivalence Relations and Partitions.

**Definition and Properties** 

A binary relation R from set x to y (written as xRy or R(x,y)) is a subset of the Cartesian product  $x \times y$ . If the ordered pair of G is reversed, the relation also changes.

Generally an n-ary relation R between sets  $A_1$ , ... , and  $A_n$  is a subset of the n-ary product  $A_1 \times ...$ 

 $\times$  A<sub>n</sub>. The minimum cardinality of a relation R is Zero and maximum is n<sup>2</sup> in this case.

A binary relation R on a single set A is a subset of  $A \times A$ .

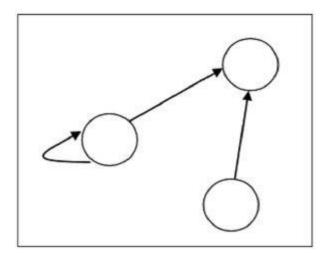
For two distinct sets, A and B, having cardinalities *m* and *n* respectively, the maximum cardinality of a relation R from A to B is *mn*.

Domain and Range

If there are two sets A and B, and relation R have order pair (x, y), then –

- x The **domain** of R is the set {  $x | (x, y) \diamondsuit R$  for some y in B }
- x The **range** of R is the set  $\{ y | (x, y) \diamondsuit R \text{ for some } x \text{ in } A \}$

# Examples


Let,  $A = \{1, 2, 9\}$  and  $B = \{1, 3, 7\}$ 

- x Case 1 If relation R is 'equal to' then  $R = \{(1, 1), (3, 3)\}$
- x Case 2 If relation R is 'less than' then  $R = \{(1, 3), (1, 7), (2, 3), (2, 7)\}$
- x Case 3 If relation R is 'greater than' then  $R = \{(2, 1), (9, 1), (9, 3), (9, 7)\}$

A relation can be represented using a directed graph.

The number of vertices in the graph is equal to the number of elements in the set from which the relation has been defined. For each ordered pair (x, y) in the relation R, there will be a directed edge from the vertex 'x' to vertex 'y'. If there is an ordered pair (x, x), there will be self-loop on vertex 'x'.

Suppose, there is a relation  $R = \{(1, 1), (1,2), (3, 2)\}$  on set  $S = \{1, 2, 3\}$ , it can be represented by the following graph –



Types of Relations

- x The **Empty Relation** between sets X and Y, or on E, is the empty set  $\clubsuit$
- x The **Full Relation** between sets X and Y is the set  $X \times Y$
- x The **Identity Relation** on set X is the set  $\{(x, x) | x \diamondsuit X\}$
- x The Inverse Relation R' of a relation R is defined as − R' = {(b, a) | (a, b) 
  R} Example − If R = {(1, 2), (2, 3)} then R' will be {(2, 1), (3, 2)}
- xA relation R on set A is called **Reflexive** if a A is related to a (aRa holds).**Example** The relation R = {(a, a), (b, b)} on set X = {a, b} is reflexive
- x A relation R on set A is called **Irreflexive** if no a  $\clubsuit$  A is related to a (aRa does not hold). **Example** The relation R = {(a, b), (b, a)} on set X = {a, b} is irreflexive

x A relation R on set A is called **Symmetric** if xRy implies yRx,  $\mathbf{\hat{\psi}} \times \mathbf{\hat{\psi}} A$  and  $\mathbf{\hat{\psi}} \times \mathbf{\hat{\psi}} A$ .

**Example** – The relation R =  $\{(1, 2), (2, 1), (3, 2), (2, 3)\}$  on set A =  $\{1, 2, 3\}$  is symmetric.

x A relation R on set A is called **Anti-Symmetric** if xRy and yRx implies  $x = y \diamondsuit x \diamondsuit A$  and  $\diamondsuit y \diamondsuit A$ .

**Example** – The relation  $R = \{(1, 2), (3, 2)\}$  on set  $A = \{1, 2, 3\}$  is antisymmetric.

- x A relation R on set A is called **Transitive** if xRy and yRz implies xRz,  $\clubsuit$ x,y,z  $\diamondsuit$  A. **Example** – The relation R = {(1, 2), (2, 3), (1, 3)} on set A = {1, 2, 3} is transitive
- x A relation is an **Equivalence Relation** if it is reflexive, symmetric, and transitive.

**Example** – The relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)} on set A = {1, 2, 3} is an equivalence relation since it is reflexive, symmetric, and transitive.

# COMPUTER RECOGNITION-ZERO-ONE MATRICES AND DIRECTED GRAPHS

In this section, we will discuss two alternative methods for representing relation, one method used (ZERO-ONE) matrices, the other method uses directed graphs. These methods are recognised in Computer Science.

# (i) Method (Using Zero-one Matrices)

Suppose A and B are both finite sets and R is a relation from A to B, then R may be represented as a matrix called the relation matrix of R.

Definition: (Relation Matrix)

m

 $A = \{a_1, a_2, ..., a_m\}$  and  $B = \{b_1, b_2, ..., b_n\}$ If

are finite sets containing m and n elements respectively and R is a relation from A to B, then we can represent the relation R by an  $m \times n$  matrix, called relation matrix, denoted by

where

$$M_{R} = [m_{ij}]_{m \times n};$$
  
$$m_{ij} = \begin{cases} 1, \text{ if } (a_{i} \ b_{j}) \in R\\ 0, \text{ if } (a_{i} \ b_{j}) \notin R \end{cases}$$

where  $m_{ij}$  is the element in the i<sup>th</sup> now j<sup>th</sup> column. The matrix representing R has a '1' as its  $i \equiv j$  entry when a, is related to b, and a '0' in this position if a, is not related to b<sub>r</sub>

(Such a representation depends on the orderings used for A and B).

## **Definition:**

Let  $A = (a_n)$  and  $B = (b_n)$  be  $m \times n$  (zero-one) matrices. Then the join of A are B is the zero-one matrix  $(i, j)^{\text{th}}$  entry  $a_{ij} \vee b_{ij}$ .

The join of A and B is denoted by  $A \vee B$ . The meet of A and B is the zero matrix with (i, j)th entry.

 $a_{ij} \wedge b_{ij}$  The meet of A and B is denoted by  $A \wedge B$ .

For example,

If 
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ 

Then the joint of A and B is

$$(A \lor B) = \begin{bmatrix} 1 \lor 0 & 0 \lor 1 & 1 \lor 0 \\ 0 \lor 1 & 1 \lor 1 & 0 \lor 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

and meet of A and B is  $(A \land B) = \begin{bmatrix} 1 \land 0 & 0 \land 1 & 1 \land 0 \\ 0 \land 1 & 1 \land 1 & 0 \land 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ 

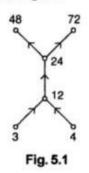
Note: A relation matrix reflects some of the properties of a relation: .

- (a) The matrix of a reflexive relation has a '1' on all its principal diagonal elements.
- (b) R is symmetric iff m<sub>ij</sub> = 1 whenever m<sub>ij</sub> = 1, This also means m<sub>ji</sub> = 0 whenever m<sub>ij</sub> = 0. Consequently R is symmetric if and only if m<sub>ij</sub> = m<sub>ji</sub> for all pairs of integers i and j with i = 1 to n and j = 1 to n. R is symmetric iff M<sub>R</sub> = (M<sub>R</sub>)<sup>T</sup>
- (c) R is antisymmetric of  $m_{ij} = 1$  with  $i \neq j$ , then  $m_{ij} = 0$ . In other words, either  $m_{ij} = 0$  or  $m_{ji} = 0$ when  $i \neq j$

### **Working Rule**

To write the relation matrix for a given relation:

"From a rectangular array whose rows are labelled by the elements of A and whose columns are labelled by the elements of B. Then put the integer '1' in each position of the array where  $a \in A$  is related to  $b \in B$  i.e., when  $(a, b) \in R$  and put 0 in the remaining positions i.e., where  $(a, b) \notin R$ . This final array, is the matrix  $M_R$  of the relation R".


| Solution:                              | 1, 2, 3}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                  |                      | .,               |     |     |         |         |         |     |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|------------------|-----|-----|---------|---------|---------|-----|
| Given: R=                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                      |                  |     |     |         |         |         |     |
| The table an                           | id corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | espon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ding re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | elation                                            | n ma                 | atrix for        | the | rel | ation / | ? are g | iven be | low |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                  |                      | ÷.,              | _   |     |         |         |         |     |
|                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                  |                      | $M_R =$          | 0   | 1   | 1       |         |         |     |
|                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                  | ;                    | $M_R =$          | 0   | 0   | 1       |         |         |     |
|                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                  |                      |                  | 0   | 0   | 0       |         |         |     |
|                                        | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | (b)                  |                  |     |     |         |         |         |     |
| and I                                  | R = {(1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2, 3, 4<br>y), (1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $B = \{ (z), (3, z), (3, z), (3, z), (3, z) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y), (4,                                            |                      | (4, <i>z</i> )}  |     | (b) |         |         |         |     |
| Define math<br>Solution:<br>Given: R = | $R = \{(1, x), (1, y), (1, y),$ | (1, z), $(2, 3, 4)(2, 3, 4)(2, 3, 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $B = \{(x, z), (3, y), (3, y),$ | y), (4, fR.<br>(4, x),                             | (4, z                | :)}              |     |     |         |         |         |     |
| Define math<br>Solution:<br>Given: R=  | $R = \{(1, x), (1, y), (1, y),$ | (1, z), $(2, 3, 4)(2, 3, 4)(2, 3, 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $B = \{(x, z), (3, y), (3, y),$ | y), (4, fR.<br>(4, x),                             | (4, z                | :)}              |     |     | iven l  | below:  |         |     |
| Define math<br>Solution:<br>Given: R=  | $R = \{(1, y), (1, y),$ | (1, z),<br>(1, z),<br>(1, z),<br>(1, z),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $B = \{ z, z, (3, y), (3, y), (3, y), ding red y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y), (4,<br>f $R$ .<br>(4, $x$ ), (<br>elation<br>z | (4, <i>z</i><br>n ma | :)}<br>atrix for | the | Rg  | -       | below:  |         |     |
| Define mate<br>Solution:               | $R = \{(1, y), (1, y),$ | (1, z),<br>(1, z),<br>(1, z),<br>(1, z),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $B = \{ z, z, (3, y), (3, y), (3, y), ding red y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y), (4,<br>f $R$ .<br>(4, $x$ ), (<br>elation<br>z | (4, <i>z</i><br>n ma | :)}<br>atrix for | the | Rg  | -       | below:  |         |     |
| Define math<br>Solution:<br>Given: R=  | $R = \{(1, y), (1, y),$ | (1, z), $(2, 3, 4, 4)$ , $(1, y)$ , $(1, z)$ , | $B = \{ z, z, (3, y), (3, y), (3, y), ding red y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{y}{fR},$ $(4, x), 6$ elation $\frac{z}{1}$  | (4, <i>z</i><br>n ma | :)}              | the | Rg  | -       | below:  |         |     |

# 5.5 HASSE DIAGRAM

A Hasse diagram is a pictorial representation of a finite partial order on a set. In this representation, the objects i.e., the elements are shown as vertices (or dots).

Two related vertices in the Hasse diagram of a partial order are connected by a line if and only if they are related.

*Example 1* Let  $A = \{3, 4, 12, 24, 48, 72\}$  and the relation  $\leq$  be such that  $a \leq b$  if a divides b. The Hasse diagram of  $(A, \leq)$  is shown in Fig. 5.1.



## 12.2.2 Equivalence Relations and Partitions

Equivalence relations merit additional exposition. One notable application of equivalence relations occurs when the chain of familiar number systems,  $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$ , is carefully constructed. In particular, when moving from the integers,  $\mathbb{Z}$ , to the set of rational numbers,  $\mathbb{Q}$ , it is common to define the elements of  $\mathbb{Q}$  by starting with ordered pairs of integers such that the second coordinate is not 0. The first coordinate represents the numerator and the second coordinate represents the denominator. One complication is that the ordered pairs (1, 2) and (2, 4) really represent the same rational number (the fraction  $\frac{1}{2}$ ). Equivalence relations provide a mechanism for combining the infinitely many representations for the same number into a single element of the new set,  $\mathbb{Q}$ . Additional details will be presented later in this section.

A previous example from a Quick Check will motivate the major new idea.

# EXAMPLE 12.9 Congruence Classes mod 5

Quick Check 12.3 on page 739 introduced the equivalence relation

 $\mathcal{R}_4 = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \mod 5) = (y \mod 5)\}$ 

It is easy to see that if  $(x, y) \in \mathcal{R}_4$ , then x - y = 5n, for some integer, n. Definition 3.19 on page 98 provides an alternate description:  $(x \mod 5) = (y \mod 5)$  if and only if  $x \equiv y \pmod{5}$ .

There is a natural partitioning<sup>15</sup> of ℕ into the *congruence classes* mod 5:

Remainder 0 {0, 5, 10, 15, 20, 25, ... } Remainder 1 {1, 6, 11, 16, 21, 26, ... } Remainder 2 {2, 7, 12, 17, 22, 27, ... } Remainder 3 {3, 8, 13, 18, 23, 28, ... } Remainder 4 {4, 9, 14, 19, 24, 29, ... }

Every pair of natural numbers from the same congruence class is in the relation,  $\mathcal{R}_4$ . Any two numbers from different congruence classes are not in the relation.

The phenomenon of being able to partition the elements of a set into natural subsets defined by an equivalence relation is not unique to congruences in  $\mathbb{N}$ . It happens with every equivalence relation.

**DEFINITION 12.17** Equivalence Class

Let  $\mathcal{R}$  be an equivalence relation on a set,  $\mathcal{A}$ , and let  $x \in \mathcal{A}$ . The *equivalence class* of x is denoted by [x] and is defined as

 $[x] = \{a \in \mathcal{A} \mid (x, a) \in \mathcal{R}\}$ 

The set  $\{[x] \mid x \in A\}$  is referred to as the set of equivalence classes *induced by* R on A. The element, x, that appears in the notation "[x]" is called a *class representative*.

## ✔ Quick Check 12.5

Let  $\mathcal{A}$  be the set of all students who reside on campus at a particular college or university. Let  $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$  be the relation defined by  $(x, y) \in \mathcal{R}$  if and only if x and y live in the same residence hall (dorm).

Show that R is an equivalence relation.
 Determine the equivalence classes of R.

#### PROPOSITION 12.18 Equivalence Classes Are Disjoint

Let  $\mathcal{R}$  be an equivalence relation on a set,  $\mathcal{A}$ . If x and y are two elements in  $\mathcal{A}$ , then either [x] = [y] or else  $[x] \cap [y] = \emptyset$ .

## **Proof:**

#### Case 1: $(x, y) \in \mathcal{R}$

If  $(x, y) \in \mathcal{R}$ , then  $y \in [x]$  (by Definition 12.17). Since  $\mathcal{R}$  is symmetric, it is also true that  $(y, x) \in \mathcal{R}$ , so  $x \in [y]$ .  $\mathcal{R}$  is reflexive, so  $x \in [x]$ . Thus,  $[x] \cap [y] \neq \emptyset$ .

Suppose that  $a \in [x]$ . Then  $(x, a) \in \mathcal{R}$ . Since  $\mathcal{R}$  is symmetric,  $(a, x) \in \mathcal{R}$  is also true. But then the transitivity of  $\mathcal{R}$ , combined with  $(a, x) \in \mathcal{R}$  and  $(x, y) \in \mathcal{R}$  implies that  $(a, y) \in \mathcal{R}$  and (by symmetry)  $(y, a) \in \mathcal{R}$ . Consequently,  $a \in [y]$  and  $[x] \subseteq [y]$ . A similar argument shows that  $[y] \subseteq [x]$ . The conclusion is that [x] = [y] whenever  $x\mathcal{R}y$ .

#### Case 2: $(x, y) \notin \mathcal{R}$

Suppose that  $(x, y) \notin \mathcal{R}$  but that  $a \in [x]$  and  $a \in [y]$ . Then  $(x, a) \in \mathcal{R}$  and  $(y, a) \in \mathcal{R}$ . Using the symmetry and transitivity of  $\mathcal{R}$ , it is then true that  $(x, y) \in \mathcal{R}$ , a contradiction. The contradiction arose by assuming that [x] and [y] had a common element. The conclusion is that  $[x] \cap [y] = \emptyset$ .

<sup>15</sup> See Defintion 2.13 on page 24.

Since an equivalence relation is reflexive,  $(x, x) \in \mathcal{R}$  for every  $x \in \mathcal{A}$ . Consequently,  $x \in [x]$ . The partitioning phenomenon that was observed in Example 12.9 is fully developed in the next theorem.

One consequence of Proposition 12.18 is that any one of the elements in an equivalence class may be unambiguously used as the class representative.

## THEOREM 12.19 Equivalence Relations and Partitions

Let A be a set.

- If R is an equivalence relation on A, then the equivalence classes of R form a
  partition of A.
- · Every partition of A determines an equivalence relation on A.

#### **Proof:**

#### Equivalence Relation Implies Partition

Let  $\mathcal{R}$  be an equivalence relation on  $\mathcal{A}$ . Proposition 12.18 implies that the equivalence classes induced by  $\mathcal{R}$  are disjoint. Since every element, x, in  $\mathcal{A}$  is in an equivalence class, [x], every element of  $\mathcal{A}$  is in some equivalence class. Therefore, the equivalence classes form a partition of  $\mathcal{A}$ ; they are disjoint and their union is all of  $\mathcal{A}$ .

#### Partition Implies Equivalence Relation

Let  $P_{\mathcal{A}} = \{\mathcal{A}_i \subseteq \mathcal{A} \mid i \in \Upsilon\}$  for some set of indices,  $\Upsilon$ .<sup>16</sup> Assume also that  $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset$  if  $i \neq j$  and  $\mathcal{A} = \bigcup_{i \in \Upsilon} A_i$ .  $P_{\mathcal{A}}$  is a partition of  $\mathcal{A}$ .

Define a relation, R, on A by

 $(x, y) \in \mathcal{R}$  if and only if  $x \in \mathcal{A}_i$  and  $y \in \mathcal{A}_i$ , for a common  $i \in \Upsilon$ 

It is an easy exercise to show that  $\mathcal{R}$  is an equivalence relation whose equivalence classes are the members of  $P_{\mathcal{A}}$ .

It is now time to provide the missing details for deriving the rational numbers from the integers.