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Module 2:

Fundamentals of Logic contd.:

 The Use of Quantifiers, Quantifiers,

 Definitions and the Proofs of Theorems,

Properties of the Integers:

 Mathematical Induction,

 The Well Ordering Principle

 Mathematical Induction,

 Recursive Definitions.
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Fundamentals of Logic contd.:
Qua ntifiers:

Given a predicate  P (x),  the statement “for some x,  P (x)”  (or  “there  is some  x

such that p(x)”), represented “∃x P (x)”, has a definite truth value, so it is a proposition in the
usual sense. For instance if P (x) is “x + 2 = 7” with the integers as

universe of discourse, then ∃x P (x) is true,  since there is indeed  an integer, namely
5, such that P (5) is a true statement. However, if

Q(x)  is “2x = 7” and the universe of discourse is still the integers, then ∃x Q(x) is
false. On the other hand, ∃x Q(x) would be true if we extend the universe of discourse to the 
rational numbers. The symbol
∃ is called the existential  quantifier.

Analogously, the sentence “for all x, P (x)”—also “for any x, P (x)”, “for every x, P (x)”,

“for each x, P (x)”—, represented “∀x P (x)”,  has a definite truth value. For instance,
if P (x) is “x + 2 = 7” and the

∀x P (x)universe of discourse is the integers, then is false. However if Q(x) represents

“(x + 1)2 = x2
+ 2x + 1” then ∀x Q(x) is true. The symbol ∀ is called the universal

quantifier.

In predicates with more than one variable it is possible to use several quantifiers at the

same time, for instance ∀x∀y∃z P (x, y, z), meaning “for all x and all y there is some z
such that P (x, y, z)”.

Note that in general the existential and universal quantifiers cannot be swapped, i.e.,

in general ∀x∃y P (x, y) means something different from ∃y∀x P (x, y). For instance if

x and y represent human beings and P (x, y) represents “x is a friend of y”, then ∀x∃y

P (x, y) means that everybody is a friend of someone, but ∃y∀x P (x, y)  means that
there is someone such that everybody is his or her friend.

A predicate can be partially quantified, e.g. ∀x∃y P (x, y, z, t). The variables quan tified
(x and y in the example) are called bound variables, and the  rest (z and t in the
example)  are called free variables. A
partially quantified predicate is still  a predicate, but depending  on
fewer variables.

Proofs

M ath ematic al Sy st ems, Proofs:

A Mathematical Sys- tem consists of:
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1. Axioms : propositions  that are assumed  true.
2. Definitions : used to create new concepts from old ones.

3. Undefined terms : corresponding to the primitive concepts of the system (for instance
in set theory  the term “set” is undefined).

A theorem  is a proposition that can be proved to be true. An
argument that establishes the truth of a proposition is called a proof.

Example : Prove that if x > 2 and y > 3 then x + y > 5.

Answer : Assuming x > 2 and  y > 3 and  adding the inequalities term by term we
get: x + y > 2 + 3 = 5.

That is an example of direct proof. In a direct proof we assume the hypothesis together with

axioms and other theorems previously proved and we derive the conclusion from them.

An indirect proof or proof by contrapositive consists of proving the contrapositive of the desi 

red impli cation, i.e., instead of proving p → q we prove ¬q → ¬p.

Example : Prove that if x + y > 5 then x > 2 or y > 3.

Answer : We must prove that x + y > 5 → (x  > 2) � (y > 3).  An indirect proof

consists of proving ¬((x > 2) � (y > 3)) → ¬(x + y > 5). In fact:  ¬((x > 2) � (y > 3))

is the same as (x ≤ 2) �(y ≤ 3), so adding both inequalities we get x + y ≤ 5, which is the

same as ¬(x + y > 5).

Proof by Contradiction. In a proof by contradiction or (Reductio  ad Absurdum ) we
assume  the  hypotheses  and  the negation  of the  conclu- sion, and  try  to  derive a

contradiction, i.e., a proposition of the form r � ¬r.

Example : Prove by co ntradiction that if x + y > 5 then either x > 2 or y > 3.

Answer : We assume the hypothesis x + y > 5. From here we must conclude that x > 2 or y > 3.
Assume to the contrary that “x > 2 or y > 3” is false, so x ≤ 2 and y ≤
3. Adding those inequalities  we get
x ≤ 2 + 3 = 5, which contradicts the hypothesis x + y > 5. From here we conclude that
the assumption “x ≤ 2 and y ≤ 3” cannot be right, so “x > 2 or y > 3” must be true.
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Remark : Sometimes it is difficult to distinguish between an indirect proof and a proof
by contradiction. In an indirect proof we prove an implication of the form p → q

by proving the contrapositive ¬q →¬p. In an proof by c  ontr adi ction we pro ve an
s (which may or may not  be an implication) by  assuming ¬s and
contradiction. In fact proofs by contradiction are more general than indirect
proofs.
Exerc CSE : Prove by contradiction that 2 is not a rational number, i.e., there are no
integers a, b such that 2 = a/b.
Answer : Assume that 2 is rational, i.e., 2 = a/b, where a and b are integers and the

fraction is written in least terms. Squaring both sides we have 2 = a2 /b2 , hence 2 b2

= a2. Since the left hand side is even, then a2  is even, but this implies that a itself is

even, so a = 2 a!. Hence: 2 b2 = 4 a!2, and simplifying: b2 = 2 a!2. This implies that
b2 is even, so b is even: b = 2b!. Consequently a/b = 2a!/2b!

= a!/b!, contradicting
the hypothesis that a/b was in least terms.

Arguments, Ru les of I nfe rence:

An argument is a se- quence of  propositions p1, p2, . . . , pn called hypotheses (or

premCSEs ) followed by  a  proposition q called conclusion. An argument is  usually
written:

p1

p2

.
pn

� q

or

p1 , p2, . . . , pn / � q

The argument is called valid if q is true whenever p1 , p2, . . . , pn   are true; otherwCSE it

is called invalid.
Rules of inference  are certain  simple arguments  known to be valid and  used to make
a proof step by step. For instance  the following argument is called modus ponens or
rule of detachment :

p → q p
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�q

In order to check whether it is valid we must examine the following truth table:

p q p → p q
T T T T T
T F F T F
F T T F T
F F T F F

If we look now at the rows in w hich both p → q and p are true (just the first row) we see that 

also q is true, so the argument is val id.

Other  rules of inference are the following:

Arguments are usually written using three columns. Each row con- tains a label, a statement
and  the  reason  that  justifies  the  introduction  of  that  statement  in  the  argument.  That

justification can be one of the following:

1. The statement is a prem CSE.
2. The statement can be derived from statements occurring earlier in the argument by using a 

rule of inference.
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Example : Consider the following statements:  “I take the bus or I walk. If I walk I
get tired. I do not get tired. Therefore  I take the bus.” We can formalize this by
calling B = “I take the bus”, W = “I walk” and T = “I get tired”. The premCSEs are B

�W , W → T  and

¬T , and the conclusion is B. The argument can be described in the 
following steps:

step statemenreason
t

1) W → T
P remC SE2) ¬T P    i

3) ¬W 1,2, Modus Tollens
4) Prem CSE
5) B � W 4,3, Disjunctive  Syllogism

� B

Qua ntifi ed Sta tements:
We state the rules for predicates with one variable, but they can be gener- alized to pre dicates 

with two or more variables.

1. Universal Instantiation. If �x p(x) is true, then p(a) is true for each specific element a in the

universe of discourse; i.e.:

�x p(x)

� p(a)

For instance, from �x (x + 1 = 1 + x) we can derive 7 + 1 = 1 + 7.

2. Existential Inst antia tion. If �x p(x) is true, then p(a) is true for some specific element a in 

the universe of discourse; i.e.:

�x p(x)

� p(a)

The  difference respect to the previous  rule  is the  restriction in the meaning of a,

which now represents some (not any) element of the universe of discourse. So, for instance, 
from �x (x2 = 2) (the universe of discourse is the real numbers) we derive
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the existence of some element, which we may represent ±  2, such that (±  2)2   = 2.
3. Universal Generalization. If p(x)  is proved to  be true
for a generic

element in the  universe of discourse, then �x p(x) is true; i.e.:

p(x)

� �x p(x)

By “generic” we mean an element for which we do not make any assumption other than

its b elonging to the universe of discourse. So, for instance,  we can prove �x [(x + 1)2
=

x2 + 2x + 1] (say, for real numbers) 

using algebra to prove (x + 1)2 = x2

by assuming that x is a generic real number and + 2x 

+ 1.

4. E xistential Generalization. If p(a) is true for some specific ele- ment a in the universe of 

discourse, then �x p(x) is true; i.e.:

p(a)

x p(x)

For instance: from 7 + 1 = 8 we can derive �x (x + 1 = 8).

Example : Show that a counterexample can be used to disprove a universal statement, i.e., if a 

is an element in the universe of discourse,

then from ¬p(a) we can derive ¬�x p(x). An swer : The argument is as follows:

step  statement reason

1) ¬p(a) Prem CSE

2) �x ¬p(x) Existential Generalization

3) ¬�x p(x) Negation Universal Statement
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Properties of the Integers

MATHEMA TICAL INDUCTION:

The method of mathematical induction is based on a principle called the induction 
principle .

I NDUCTION PRINCIPLE:
The induction principle states as follows : let S(n) denote an open statement that involves a 

positive integer n .suppose that the following conditions hold ;

1. S(1) is true

2. If whenever S(k) is true for some particular , but arbitrarily chosen k €Z+   , then
S(k+1) is true. Then S(n) is true for all n € Z+ . Z+ denotes the set of all positive 

integers .

Suppose we wish to prove that a certain statement S(n) is true for all integers n ≥1 , the

method of proving such a statement on the basis of the induction principle is calledd the 
method of mathematical induction. This method consist of the following two steps,
re spectively called the basis step and the induction step

1) Basis step: verify that the statement S(1) is true ; i.e. verify that S(n) is true for n=1.
2) Induction step: assuming that S(k) is true , where k is an integer≥1, show that S(k+1) is

true.

Many properties of positive integers can be proved by mathematical induction.

Principle of Mathematical Induction:
Let P be a prop- erty of positive integers such that:

1. Basis Step: P (1) is true,  and

2.Inductive Step: if P (n) is true, then P (n + 1) is true. Then 

P (n) is true for all positive integers.

Remark : The prem CSE P (n) in the inductive step is called Induction 

Hypothesis.

The validity of the Principle of Mathematical Induction is obvious. The basis step states
that P (1) is true. Then the inductive step implies that P (2) is also true. By the inductive step
again we see that P (3) is true, and so on. Consequently the property is true for all positive
integers.

Remark : In the basis step we may replace 1 with some other integer m. Then  the
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conclusion is that the property is true for every integer n greater than or equal to m.

Example : Prove that the sum of the n first odd positive integers is

n2, i.e., 1 + 3 + 5 + ••• + (2n — 1) ‘ n2.
Answer : Let S(n) ‘ 1 + 3 + 5 + ••• + (2n — 1). We w ant to prove by induction that

for every positive integer n, S(n) ‘ n2.

1. Basis Step: If n ‘ 1 we have S(1) ‘ 1 ‘ 12, so the property is true for 1.
2. Inductive  Step:  Assume (Induction Hypothesis ) that  the prop- erty is true for some

positive integer n, i.e.: S(n) ‘ n2. We must prove that it is also true for n + 1, i.e., S(n

+ 1) ‘ (n + 1)2 . In fact:

S(n + 1) ‘ 1 + 3 + 5 + ••• + (2n + 1) ‘ S(n) + 2n + 1 .

But by induction hypothesis, S (n) ‘ n2, hence:

S(n + 1) ‘ n2 + 2n + 1 ‘ (n + 1)2 .
This  completes the  induction, and shows that the  property  is true for all
positive integers.

Example : Prove that 2n + 1 ≤ 2m  for n ≥ 3.

Answer : This is an example in which the property is not true for all positive 

integers but only for integers greater than or equal to 3.

1. Basis Step: If n ‘ 3 we have 2n + 1 ‘ 2 • 3 + 1 ‘ 7 and

2m ‘ 23
‘ 8, so the property is true  in this case.

2. Inductive  Step: Assume (Induction  Hypothesis ) that the prop- erty  is

true for some positive integer n, i.e.:  2n + 1 ≤ 2m . We must prove that

it is also true for n + 1, i.e., 2(n + 1) + 1 ≤ 2m+1 . By the induction

hypothesis we know that 2n ≤ 2m , and we also have that 3 ≤ 2m  if n ≥
3, hence

2(n + 1) + 1 ‘ 2n + 3 ≤ 2m + 2m ‘ 2m+1 .

This completes the induction, and shows that the property  is true  for all n ≥
3.
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Exerc CSE : Prove the following identi ties by induction:

n (n + 1)
• 1 + 2 + 3 + •• • + n ‘ .

2n (n + 1) (2n + 1)

• 12  + 22  + 32  + • • • + n2   ‘ .6

• 13 + 23 + 33 + ••• + n3  ‘ (1 + 2 + 3 + •• • + n)2.
Strong Form of M athemati cal Induct ion:
Let P  be a property of positive integers such that:
1. Basis Step: P (1) is true,  and

2. Inductive Step: if P (k) is true for all 1 ≤ k ≤ n then P (n + 1)
is true.

Then P (n) is true  for all positive integers.

Example : Prove that every integer n ≥ 2 is prime or a product of primes. Answer
:

1. Basis Step:  2 is a prime number,  so the property  holdsfor
n ‘ 2.

2. Inductive Step: Assume that if 2 ≤ k ≤ n, then k is a prime number or a product of primes.
Now, either n + 1 is a prime number or it is not. If it is a prime number

then itverifies the property. If it is not a prime number, then it can be written as the
product of two positive integers, n + 1 ‘ k1 k2 , such that 1 2

1 < 
k

,
k < n + 1. By

induction  hypothesis each of k1 a nd k2 must be a prime or a product  of primes,
product of primes.

hence n + 1 is a

This completes the proof.

The W ell-Orde ring Pr inci ple
Every nonempty set of positive integers has a smallest element.

√ √
a quotient  of

Example : Prove that 2 is irrational (i.e., 2 cannot be written as
positive integers) using the well-ordering principle.

√ √
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Hence starting with a fractional representation of 2 ‘ a/b we end up with another

fractional representation 2 ‘ b/a!
with a smaller numerator b < a. Repeating the

same  argument with the fraction b/a!   we getanother fraction with an even smaller

numerator, and so on. So the set of possible numerators of a fraction representing 
√

cann
ot

hav
e a

smalle
st contra dicting the

well-
ordering

principle
.

Consequent
ly, our assumption

√

has to be false.that 2 is rational
Reccurence relations

Here we look at recursive definitions under a d ifferent point of view. Rather than
definitions they will be considered as equations that we must solve. The point is
that a recursive definition is actually a def- inition  when there is one and only one
object  satisfying  it,  i.e., when the equations involved in that  definition  have a
unique solution. Also, the solution to thoseequations may provide a closed-form
(explicit) formula for the object defined.

The recursive step in a recursive definition is also called a recurrence relation. We will

focus on kth-order linear recurrence relations, which are of the form

C0 xm  + C1 xm-1 + C2 xm-2 + ••• + Ck xm-k ‘ bm ,

where C0 ‘ O. If bm ‘ O the recurrence relation is called homogeneous. OtherwCSE it is called

non-homogeneous.

The basis of the recursive definition is also called initial conditions of the recurrence.

So, for instance, in the recursive definition of the Fibonacci sequence, the recurrence is

Fm  ‘ Fm-1 + Fm-2

or

Fm — Fm-1 — Fm-2 ‘ O ,

and the initial conditions are

F0  ‘ O, F1  ‘ 1 .
One way to solve some recurrence relations is by iteration, i.e., by using the recurrence

repeatedly  until  obtaining  a  explicit  close-form  formula.  For  instance  consider  the
following recurrence relation:

xm  ‘ r xm-1 (n > O) ; x0  ‘ A .

By using the recurrence repeatedly  we get:

xm   ‘ r xm-1   ‘ r
3

xm-3

‘ ••• ‘ 
rm

2

xm-2 x
0

‘ A 
r

m
,

‘ r
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hence the solution is xm ‘ A rm .
Example : Assume that a country  with  currently

population  growth rate (birth rate minus death rate) of 1% per year,  and it also
receives  1OO thousand i mmigrants per year (which are quickly assimilated and
reproduce at the same rate as the native population). Find its population in 1O
years from now. (Assume  that all the immigrants  arrive in a single batch at the
end of the year.)

Answer : If we call xn   ‘ population in year n from now, we have:

xn  ‘ 1.O1 xn—1 + 1OO, OOO (n > O); x0 ‘ 1OO, OOO, OOO .

This is the equation above with r ‘ 1.O1, c ‘ 1OO, OOO and A ‘
1OO, OOO, OO, hence:

1.O1n —
1

xn n
+ 1OO, OOO

1.O1 —
1

‘ 1OO, OOO, OOO • 1.O1
‘
   

1OO,
 + 1OOO (1.O1n  — 1) .

OOO,    So:
OOO   •

 462, 317 .

1.O1n

The second particular case is for r ‘ 1 and  cm  ‘ c + d n, where c

and d are constant (so cm   is an arithmetic sequence):

xm  ‘ xm—1  + c + d n (n > O) ; x0  ‘ A .

The solution is now

m d  n (n +
1)X

xm   ‘ A + (c + d k) ‘ A + c n + .

k=1 2

Second Order Recurrence Relations.
relation

C0 xm + C1 xm—1 + C2 xm—2 ‘ O .

First  we will look for solutions  of the  form xm   ‘ c rm . By plugging in the
equation we get:

C0 c rm + C1 c rm—1 + C2 c rm—2 ‘ O ,
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hence  r  must be  a  solution of the following equation, called the  char-
acteristic equation of the recurrence:

C0 r2 + C1 r + C2  ‘ O .

Let r1 , r2 be the two (in general complex) roots of the above equation. They

are called characteristic roots. We distinguish  three cases:

1. Distinct Real Roots. In this case the general solution of the recurrence 

relation is

xm  ‘ c1 rm + c2 rm ,
1 2

w here c1 , c2  are ar bitrary constants.

2. Double Real  Root.  If  r1    ‘  r2    ‘ r,  the  general  solution  of the

recurrence relation is

xm  ‘ c1 rm + c2 n rm ,

w here c1 , c2  are ar bitrary constants.

3. Complex Roots. In this case the solution could be expressed in the same way 

as in the case of distinct real roots, but in

order to avoid the use of complex numbers we write ri — r eαi ,

r2   — r e—αi , ki — ci  + c2, k2   — (ci   — c2) i, which yields:i

xm — ki rm cos nα + k2 rm
sin nα .

—
RE CURSIVE DEFINITIONS:

RECURRENCE RELAT IONS:- The important methods to express the recurrance 
formula in explict form are

1) BACKTRACKING METHOD
2) CHARACTERISTIC EQUATION METHOD

BACKTRACKING METHOD:
This is suitable method for linear non-homogenous recurrence relation of the type 

xn= r x n-1 +s
The general method to find explicit formula

xn = r n-1 x1 + s(r n-1-1)/ (r-1) where r≠1 is the general explicit
CHARACTERISTIC EQUATION METHOD:
This is suitable method to find an explicit formula for a linear homogenous 

recurrance relation
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LINEAR HOMOGENOUS RELATION :

A recurrence relation of the type a n = r1 a n-1 +r2 a n-2+…….+ r k a n-k where r i
‘s’ are constants is a linear ho mogenous recurrence relation (LHRR) of degree k

1) A relation cn  = -2 c n-1 is a LHRR of degree 1 .
nd2) A relation xn = 4 x   + 5 is a linear non HRR because 2 term in RHS is a

n-1

constant . It doesn’t contain x n-2 factor .
3) A relation xn = xn-1 +2x n-2 is a LHRR of degree 2

2 st
n-1 is a non linear , non HRR because the 1  term in RHS4) A relation x n = x   + x n-2

is a second degree term.

CHARACTERISTIC EQUATION:

a n = r1 a n-1 + r 2 a n-2+…..+ r k a n-k..(1) is a LHRR of degree K . x k =
r1 x k-1 + r2 x k-2+….+r k is called characteristic equation.

• Let a n = r1 a n-1 + r2 a n-2 be LHRR of degree 2. its characteristic equation is x2 = r1 x

+ r2 or x 2 –r1 x- r2=0. if the characteristic equation has 2 distinct roots e1 , e2

then the explicit formula of the recurrence relation in a n= u e n 1 + v e n 2where u and 
v depends on the initial values.

• Let an = r1 a n -1 + r2 an-2 be a LHRR of degree 2 . Its characteristic equation is x 2 –r1

x – r2 =0 if the characteristic equation has repeated roots e, then the explicit formula

is an =u e n + v n e n where u and v depends on the initial values.
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