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POWER SYSTEM CONTROL

INTRODUCTION:

The preceding chapters were devoted to problems associated with the selection of

a normal operating state for the power system and optimum scheduling of generation.

The present chapter deals with the continuous control of active and reactive power in

order to keep the system in steady state. The power system being dynamic, the demand

continuously deviates from its normal value. This leads to a small change in the state of

the system. The automatic control should act in a closed loop manner, to detect these

changes and initiate actions to eliminate the deviations. Briefly stated, the control strategy

should be designed to deliver power to an interconnected system economically and

reliably, while maintaining the voltage and frequency within the permissible limits.

Changes in real power mainly affect the system frequency and changes in reactive

power mainly depend on changes in voltage magnitude and are relatively less sensitive to

changes in frequency. Thus, real and reactive powers can be controlled separately. The

Automatic Load Frequency Control (ALFC) controls the real power and the Automatic

Voltage Regulator (AVR) regulates the voltage magnitude and hence the reactive power.

The two controls, along with the generator and prime mover are shown in Fig.1. Unlike

the AVR, ALFC is not a single loop. A fast primary loop responds to the frequency

changes and regulates the steam (water) flow via the speed governor and control valves to

match the active power output with that of the load. The time period here is a few

seconds. The frequency is controlled via control of the active power.

A slower secondary loop maintains fine frequency adjustment to maintain proper

active power exchange with other interconnected networks via tie-lines. This loop does

not respond to fast load changes but instead focuses on changes, which lead to frequency

drifting over several minutes.



- 2 -

Fig.1 ALFC and AVR

Since the AVR loop is much faster than the ALFC loop, the AVR dynamics settle

down before they affect the ALFC control loop. Hence, cross-coupling between the

controls can be neglected. With the growth of large interconnected systems, ALFC has

gained importance in recent times. This chapter presents an introduction to power system

controls.

AUTOMATIC LOAD FREQUENCY CONTROL:

The functions of the ALFC are to maintain steady frequency, control tie-line

power exchange and divide the load between the generators. The tie-line power deviation

is given by ΔPtie and the change in frequency ∆f, is measured by Δδ, the change in the

rotor angle δ. The error signals Δf and ΔPtie are amplified, mixed and transformed to a
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real power signal, which controls the valve position to generate a command signal ΔPv.

ΔPv is sent to the prime mover to initiate change in its torque. The prime mover changes

the generator output by ΔPG , so as to bring Δf and ΔPtie within acceptable limits. The

next step in the analysis is to build the mathematical model for the ALFC.

Generator Model:

We can apply the swing equation to a small perturbation  to obtain the linearized

equation.
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Load Model:

The details of load modeling are covered in chapter 11. In general, the loads are

composite. Resistive loads such as lighting and heating loads are independent of

frequency. However, in case of electric motors, the power is dependent on frequency. We

can arrive at a composite frequency dependent load characteristic given by

ΔPe = ΔPL + DΔω

where ΔPL = non frequency sensitive load change

D = Load damping constant

DΔω = frequency sensitive load change

The damping constant is expressed as percent change in load for one percent

change in frequency. A value of D = 1.2 means a change in frequency by 1% causes the

load to change by 1.2%.
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Turbine Model:

The prime mover for the generator is the turbine, which is mostly a steam turbine

or a hydro turbine. In the simplified model, the turbine can be represented by a first order,

single time constant transfer  function given by
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where ΔPV = Change in valve output

 T = turbine time constant

 T varies from 0.2 – 2 secs. The exact value of  T , depends on the type of turbine.

Governor Model:

If the electrical load on the generator suddenly increases, the output electrical

power exceeds the input mechanical power. The difference is supplied by the kinetic

energy stored in the system. The reduction in the kinetic energy causes the turbine speed

and frequency to fall. The turbine governor reacts to this change in speed, and adjusts the

turbine input valve/gate to change the mechanical power output to match the increased

power demand and bring the frequency to its steady state value. Such a governor which

brings back the frequency to its nominal value is called as isochronous governor. The

essential elements of a conventional governor system are shown in Fig

Fig Conventional governor

The major parts are
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(i) Speed Governor: This consists of centrifugal flyballs driven directly or

through gears by the turbine shaft, to provide upward and downward

vertical movements proportional to the change in speed.

(ii) Linkage mechanism: This transforms the flyball movement to the turbine

valve through a hydraulic amplifier and provides a feed back from turbine

valve movement.

(iii) Hydraulic amplifiers: These transform the governor movements into

high power forces via several stages of hydraulic amplifiers to build

mechanical forces large enough to operate the steam valves or water gates.

(iv) Speed changer: This consists of  a servomotor which is used to schedule

the load at nominal frequency. By adjusting its set point, a desired load

dispatch can be scheduled.

An isochronous governor works satisfactorily only when a generator is supplying

an isolated load, or when only one generator is required to respond to change in load in

a multi generator system. For proper power sharing between a number of generators

connected to the system, the governors are designed to permit the speed to drop as the

load is increased. This provides the speed – output characteristic a droop as shown in

Fig. The speed regulation R is given by the slope of the speed – output characteristic.
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Governor % speed regulation is defined as
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where  ωNL = No–load speed

ωFL = Full load speed

ωO = Nominal speed
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To illustrate how load is shared between two generators, consider two generators

with droop characteristics as shown in Fig below
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Let the initial frequency be fo and the outputs of the two generators be P10 and P20

respectively. If now the load increases by an amount ΔPL, the units slow down and the

governors increase the output until a common operating frequency f1 is reached. The

amount of load picked up by each generator to meet the increased demand ΔPL depends

on the value of the regulation.

ΔP1 =
1R

f

ΔP2 =
2R

f

1

2

2
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R

R

P

P





The output is shared in the inverse ratio of their speed regulation. The output of the speed

governor is ΔPg , which is the difference between the set power ΔPref and the power
R



which is given by the governor speed characteristic.
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ΔPg = ΔPref
R




ΔPg(s) = ΔPref (s)
R

s)(


The hydraulic amplifier transforms the command into valve/gate position ΔPV.

Assuming a time constant  g for the governor,

ΔPV(s) = )(
1

1
sP

s g
g


 

Complete ALFC block diagram:

Fig Block diagram of complete governor system

The Figure shows the complete load frequency control for an isolated generator

supplying a load. Since we are interested in the change in speed for change in load, we

can obtain the transfer function
)(
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from Fig below which is a reduced order

model.
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Reduced block diagram

The closed loop transfer function is obtained from Fig






































)1()1(

1

2

1
1

2

1

)(

)(

ssRDHs

DHs

sP

s

Tg

L





=

R
ssDHs

ss

Tg

Tg

1
)1()1()2(

)1()1(









We can write

Δω(s) =  ΔPL(s) T(s)

If we consider a step change ΔPL in the load,

ΔPL(s) =
s

PL

The steady state frequency deviation Δωss is given by the limit of ∆ω as t→∞. This can

be obtained by application of the final value thereon

Δωss = t
lim Δω  = 0
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Now 0
lim
s T(s) =

R
D

1
1



Δωss = (ΔPL)

R
D

1
1



If there are no frequency sensitive loads, D = 0; in which case

Δωss =

R

PL

1


The steady state speed deviation thus, depends on the governor speed regulation.

If several generators are connected to the system, the composite frequency – power

characteristics depends on the combined effect of the droops of all the generator speed

governors. If we consider n generators with a composite load damping coefficient D, the

steady state speed deviation after a load change ΔPL is given by

Δωss =
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The stiffness of the system, β is given by

β = D
R

P

eqss

L 

 1


MW/Hz

β is also called the frequency bias factor and is indicative of the change in

frequency which would occur for a change in the load.

(* The pu speed deviation Δω is same as pu frequency deviation Δf)

Example 1: A system consists of 4 identical 250 MVA generators feeding a load of 510

MW. The inertia constant H of each unit is 2.5 on the machine base. The total load varies

by 1.4% for a 1% change in frequency. If there is a drop in load of 10MW, determine the

system block diagram expressing H and D on a base of 1000MVA. Give expression for

the speed deviation, assuming there is no speed governor.

Solution:
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H for 4 units on 1000MVA base = 4 × 2.5 ×
1000

250
= 2.5

Load after drop of 10 MW = 510  10 = 500 MW

D for load on base of 1000 MVA is given by

D = 1.4 ×
1000

500
= 0.7%

[note that a change of load of 1.4% on base 500 MW corresponds to 0.7% on base of

1000MVA]

The standard first order transfer function form is given by
sT

K

1
. In the reduced

order model, the feedback loop is zero, since no governor is modeled. Substituting the

values, and expressing in standard form we get

The gain = 1.428 and time constant = 7.14 secs.

ΔPL =  10 MW =
1000

10
=  0.01 pu.

ΔPL(s) =
s

01.0
pu

From block diagram
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Taking inverse laplace transform

Δω(t) = 0.01428 (1  e 0.14t)

The pu speed deviation as function of time is shown in Fig below.
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The steady state speed deviation is 0.01428 pu. If frequency is 50 Hz, steady state

frequency deviation = 50 × 0.01428 = 0.714 Hz. The frequency deviation is positive since

a decrease in load leads to increase frequency.

sent.

Example 2.

An isolated generator and its control have following parameters

Generator inertia constant = 5sec

Governor time constant τg = 0.25sec

Turbine time constant τT = 0.6sec

Governor speed regulation = 0.05 pu

D = 0.8

The turbine rated output is 200 MW at 50 Hz. The load suddenly increases by

50 MW. Find the steady state frequency deviation. Plot the frequency deviation as a

function of time.

Solution:
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The transfer function is given by
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ΔPL =
200

50
= 0.25 pu

Δωss =

05.0

1
8.0

25.0
1
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
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
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R
D

PL =  0.01202 pu.

Steady state frequency deviation Δfss =  0.01202 × 50 =  0.601 Hz.

The frequency decreases since the load has increased. The time response to a step

deviation of 0.25 is shown Fig

Frequency deviation for step response for example 2



- 14 -

CONCEPT OF AUTOMATIC GENERATION CONTROL (AGC):

With the primary ALFC, it was seen that a change in the system load results in a

steady state frequency deviation, depending on the regulation and frequency sensitivity

(as indicated by D) of the load. All the connected generator units of the system contribute

to the overall change in generation, irrespective of the location of the load change. Thus,

restoration to nominal system frequency requires additional control action which changes

the load reference set point to match the variations in the system load. This control

scheme is called the Automatic Generation Control (AGC). The main objectives of the

AGC are to regulate the system frequency and maintain the scheduled power inter

changes, between the interconnected areas, via the tie–lines. A secondary objective of the

AGC is to distribute the required change in generation among the various units to obtain

least operating costs. During large transient disturbances and emergencies, AGC is

bypassed and other emergency controls act.

AGC in a single area:

In a single area system since there is no tie–line schedule to be maintained, the

function of AGC is only to bring the frequency to the nominal value. This is achieved by

introducing an integral controller to change the load reference setting so as to change the

speed set point. The integral controller forces the steady state speed deviation to zero.

The gain KI of the integral controller needs to be adjusted for satisfactory

response in terms of over shoot, setting time etc.

The closed loop transfer function with integral controller is given by
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Example 4:

In example 2, an integral controller with gain KI = 6 is added .Obtain the dynamic

response, if all other conditions are same.

Solution:

From the transfer function
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The change in PL, ΔPL = 0.25 pu.

The response of the above function for a step change of 0.25 pu is plotted using

Matlab. The response is shown if Fig below.

Fig: Dynamic response of example 4

It can be seen that the steady state frequency deviation is now zero. However, the

overshoot and setting time are more.

AGC in multi area systems:

In inter connected systems, a group of generators are closely coupled internally

and swing in phase. Such a group is called coherent group. The ALFC loop can be

represented for the whole area, referred to as control area.

Consider two areas interconnected by lossless tie–line of reactance Xtie, with a

power flow P12 from area 1 to area 2 as shown in Fig. a. Let the generators be represented
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by a single equivalent generator for area 1 and area 2. The generators are modeled simply

as constant voltage sources behind reactance as shown in Fig. b. We first consider only

primary ALFC loop as shown in Fig. c.

Fig a : Two area system

Fig 12.19b: Electrical equivalent
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Fig c: Two area system with primary ALFC

H is the equivalent inertia constant of each area. The turbines are represented by the

effective speed droop R and load damping constant D.

Under steady state the power transferred over the tie–line is given by

P12 =
12

1221 sin

X

EE 

where X12 = X1 + Xtie + X2 and δ12 = δ1 – δ2. For a small deviation ΔP12 of the tie line

power flow, we can write

ΔP12 = 12

12012

12 






P

= PS Δδ12
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where
12012

12



P

= PS, is the slope of the power angle curve evaluated at the initial

operating point (δ120 = δ10 δ20) and is the synchronizing power coefficient..

PS =
12012

12



P

= 120
12

21 cos
X

EE

ΔP12 = PS (Δδ1 Δδ2)

A positive ΔP12 occurs when Δδ1 > Δδ2 and indicates a flow of real power from

area 1 to area 2. This has the effect of increasing load on area 1 and decreasing load on

area 2. Hence ΔP12 has negative sign for area 1 and positive sign for area 2 in Fig c.

Consider a change in load ΔPL1 in area 1. The steady state frequency deviation Δf

is same for both the areas. Hence

Δf = Δf1 = Δf2.

For area 1,

ΔPm1 ΔP12 ΔPL1 = ΔfD1

For area 2,

ΔPm2 + ΔP12 = ΔfD2

The change in mechanical powers depends on the respective regulations.

ΔPm1 =
1R

f

ΔPm2 =
2R

f

Substituting we get

Δf 







 1

1

1
D

R
= −ΔP12 − ΔPL1

1
1

1
D

R
 = β1, the frequency bias factor for area 1.

Δf β1 = −ΔP12 − ΔPL1

Similarly

Δf β2 = ΔP12

Solving for Δf we get
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Δf =
21

1

 
 LP

ΔP12 =
21

21





 LP

Thus

an increase of load in area 1 reduces frequency in both areas. Similarly for a change in

load ΔPL2 in area 2,

Δf =
21

2

 
 LP

and    ΔP12 = ΔP21 =
21

12





 LP

Example 5

A two area system connected by a tie–line has following parameters on

1000 MVA base;

R1 = 4.5%; D1 = 0.6; H1 = 4.5;

R2 = 6%; D2 = 0.85; H2 = 5.0;

The units are running in parallel at a frequency of 50 Hz. The synchronizing

power coefficient is 1.9 pu at the initial operating angle. A load change of 150 MW

occurs in area 1. Determine the new steady state frequency and the change in tie–line

power flow.

Solution:

ΔPL1 =
1000

150
= 0.15 pu.

Steady state frequency deviation is

Δf =
21

1

 
 LP

β1 = 1
1

1
D

R
 = 6.0

045.0

1
 = 22.822

β2 = 2
2

1
D

R
 = 85.0

06.0

1
 = 17.516

Δf =
516.17822.22

15.0




=  0.0037 pu

Steady state frequency = 50  (0.0037 × 50) = 49.815 Hz.
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ΔP12 = Δf β2 =  0.0037 × 17.516 = 0.0648 pu = 64.8 MW.

Since ΔP12 is negative, it implies that 64.8 MW flows from area 2 to area 1.

Change in mechanical powers is given by

ΔPm1 =
1R

f
=  






 

045.0

0037.0
= 0.082 pu = 82 MW

ΔPm2 =
2R

f
=  






 

06.0

0037.0
= 0.0617 pu = 61.7 MW

Change in load in area 1 due to frequency sensitive loads is

ΔfD1 = (0.0037) (0.6) =  0.0022 pu =  2.2MW. Similarly for area 2

ΔfD2 = (0.0037) (0.85) =  0.0031 pu =  3.1MW. Total change in load is  5.3 MW.

The power flow of 64.8 MW from area 2 to area 1 is contributed by an increase in

generation of area 2 by 61.7 MW and reduction in load of area 2 by 3.1 MW.

Tie–line bias control:

From discussion it can be seen that, if the areas are equipped only with primary

control of the ALFC, a change in load in one area met is with change in generation in

both areas, change in tie–line power and a change in the frequency. Hence, a

supplementary control is necessary to maintain

 Frequency at the nominal value

 Maintain net interchange power with other areas at the scheduled values

 Let each area absorb its own load

Hence, the supplementary control should act only for the areas where there is a

change in load. To achieve this, the control signal should be made up of the tie–line flow

deviation plus a signal proportional to the frequency deviation. A suitable proportional

weight for the frequency deviation is the frequency – response characteristic β. This is the

reason why β is also called the frequency bias factor. This control signal is called the area

control error (ACE). In a two area system

ACE1 = ΔP12 + B1 Δf ; B1 = β1

ACE2 = ΔP21 + B2 Δf ; B2 = β2

The ACE represents the required change in area generation and its unit is MW.

ACEs are used as control signals to activate changes in the reference set points. Under
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steady state ΔP12 and Δf will be zero. The block diagram with the supplementary control

is shown below. It is applied to selected units in each area.

Fig : Block diagram with supplementary control

The operation of the ACE can be explained as follows. Consider an increase in load of

area 1, which leads to a decrease in system frequency. The primary ALFC loop limits the

frequency deviation to

Δf =
21

1

 
 LP

The tie–line power has a deviation ΔP12 = β2Δf . The slower acting supplementary

control, starts responding now.
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ACE1 = ΔP12 + B1 Δf =  
   1

21

21
LP







= ΔPL1

and      ACE2 = ΔP12 + B2 Δf =  
   22

21

1 




 LP

= 0

Thus only supplementary control of area 1 responds to ΔPL1 and the generation

changed so that ACE1 becomes zero.

Example 6:

Two areas are connected via an inter tie. The load at 50Hz, is 15,000 MW in area

1and 35,000 MW in area 2. Area 1 is importing 1500 MW from area 2. The load damping

constant in each area is D = 1.0 and the regulation R = 6% for all units. Area 1 has a

spinning reserve of 800 MW spread over 4000 MW of generation capacity and area 2 has

a spinning reserve of 1000 MW spread over 10,000 MW generation. Determine the

steady state frequency, generation and load of each area and tie–line power for

(a) Loss of 1000 MW in area 1, with no supplementary control

(b) Loss of 1000 MW in area 1, with supplementary controls provided on

generators with reserve.

β1 = 250 MW/0.1 Hz and β2 = 400 MW/0.1 Hz

Solution:

(a) Assume a lossless system

Area 1: Load = 15,000 MW

Power import from area 2 = 1,500 MW

Generation = 15,000 – 1500 = 13,500 MW

Reserve = 800 MW

Total generation capacity = 13,500 + 800 = 14,300 MW

Area 2: Load = 35,000 MW

Export to area 1 = 1,500 MW

Generation = 35,000 + 1,500 = 36,500 MW

Reserve = 1000 MW

Total generation capacity = 36,500 + 1000 = 37,500 MW
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Regulation of 6% on a generation capacity of 14,300 MW (including reserve)

corresponds to

R1 =
14300

5006.0 

50

14300

06.0

11

1


R

= 4,766.67 MW/Hz

Similarly

50

37500

06.0

11

2


R

= 12,500 MW/Hz

21

111

RRReq

 = 17,266.6 MW/Hz.

Load damping D = 1.0, which means a 1% change in load occurs for a 1% change

in frequency. D1 is computed for area 1 on a total load of 14000 MW, considering the

loss of 1000 MW.

D1 = 1 ×
50

100

100

14000
 = 280 MW/Hz.

Similarly D2 is calculated on a load of 35,000 MW since there is no change in

load of area 2.

D2 = 1 ×
50

100

100

35000
 = 700 MW/Hz.

Deq = D1 + D2 = 980 MW/Hz.

The change in system frequency is given by

Δf =  
9806.266,17

1000
1 








eqeq

L

DR

P
= 0.0548 Hz.

Load changes due to load damping are,

ΔPD1 = D1 Δf = 280 × 0.0548 = 15.344 MW

ΔPD2 = D2 Δf = 700 × 0.0548 = 38.36 MW

Change in generations are

ΔPG1 =
1R

f
=  4766.6 × 0.0548 =  261.2 MW
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ΔPG2 =
2R

f
=  12500 × 0.0548 =  685 MW

We recalculate powers as follows

Area 1: New load = 15,000  1,000.00 + 15.344 = 14,015.344 MW

New generation = 13,500 – 261.2 = 13,238.8 MW

Deficit = 14,015.34  13,238.8 = 776 MW

Area 2: New load = 35,000 + 38.36 = 35,038.36 MW

New generation = 36,500 – 685 = 35,815 MW

Excess = 35,815  35,038.36 = 776 MW

Thus tie–line power is 776 MW and flows from area 2 to area 1.

Steady state frequency = 50 + 0.0548 = 50.0548 Hz

(b) With supplementary control and β1 = 250 MW/0.1 Hz and β2 = 400 MW/0.1 Hz

Generating capacity with supplementary control in area 1 is 4000 MW

(on reserve) and in area 2 it is 1000 MW. These supplementary controls will keep ACE1

and ACE2 at zero.

ACE1 = β1 Δf + ΔP12 = 0

ACE2 = β2 Δf + ΔP21 = β2 Δf  ΔP12 = 0

This means ΔP12 = 0 and Δf  = 0

Thus the load and generation in area 1 are reduced by 1000 MW. There is no

steady state deviation of tie–line power flow and frequency. The generation and load of

area 2 also do not change.


