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Module 5:

Groups:

 Definitions, properties,

 Homomrphisms,

 Isomorphisms,

 Cyclic Groups,

 Cosets, and Lagrange’s Theorem.

Coding Theory and Rings:

 Elements of CodingTheory,

 The Hamming Metric,

 The Parity Check, and Generator Matrices.

Group Codes:

 Decoding with Coset Leaders,

 Hamming Matrices.

Rings and Modular Arithmetic:

 The Ring Structure – Definition and Examples,

 Ring Properties and Substructures, The Integer modulo – n
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GROUPS

Introduction:

Definitions, Examples, and Elementary Properties:

In  m athematics, a  discrete group is a  group G equipped with the  discrete topology. With
this topology G becomes a topological group. A discrete subgroup of a topological group G
is a  subgroup H whose  relative topology is the discrete one. For example, the  integers,  Z,
form a discrete subgroup of the reals, R, but the rational numbers, Q, do not.

Any group can be given the discrete topology. Since every map from a discrete space is
continuous, the topological homomorphisms between discrete groups are exactly the  group
homomorphisms between the underlying groups. Hence, there is an  isomorphism between
the category of groups and the category of discrete groups. Discrete groups can therefore be
identified  with  their  underlying  (non-topological)  groups.  With  this  in  mind,  the  term
discrete group theory is used to refer to the study of groups without topological structure, in
contradistinction  to  topological  or  Lie  group  theory.  It  is  divided,  logically  but  also
technically, into finite group theory, and infinite group theory.

There are some occasions when a topological group or Lie group is usefully endowed with
the discrete topology, 'against nature'. This happens for example in the theory of the  Bohr
com pactification, and in group cohomology theory of Lie groups.

Properties:

Since topological groups are homogeneous, one need only look at a single point to determine

if  the  group  is  discrete.  In  particular,  a  topological  group is  discrete  if  and  only  if  the
singleton containing the identity is an open set.

A discrete group is the same thing as a zero-dimensional  Lie group (uncountable discrete
groups are not second-co untable so authors who require Lie groups to satisfy this axiom do
not regard these groups as Lie groups). The identity component of a discrete group is just the
trivial subgroup while the group of components is isomorphic to the group itself.

Since the only  Hausdorff  topology on a  finite  set  is  the discrete  one,  a  finite  Hausdorff
topological group must necessarily be discrete.  It follows that every finite subgroup of a

Hausdorff group is discrete.

A discrete subgroup H of G is co compact if there is a compact subset K of G such that HK =

G.
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Discrete  normal  subgroups play  an  important  role  in  the  theory  of  covering  groups and
locally isomorphic groups. A discrete normal subgroup of a  connected group G necessarily
lies in the center of G and is therefore abelian.

Other p roperties:

• every discrete group is totally di sconnected
• every subgroup of a discrete group is discrete.
• every quotient of a discrete group is discrete.
• the product of a finite number of discrete groups is discrete.
• a discrete group is compact if and only if it is finite.
• every discrete group is locally compact.
• every discrete subgroup of a Hausdorff group is closed.
• every discrete subgroup of a compact Hausdorff group is finite.

Examples:

• Frieze groups and wallpaper groups are discrete subgroups of the i sometry group of

the Euclidean plane. Wallpaper groups are cocompact, but Frieze groups are not.

• A space group is a discrete subgroup of the i sometry group of Euclidean space of 
some dimension.

• A  crystallographic  group usually  means  a  cocompact,  discrete  subgroup  of  the
isometries of some Euclidean space. Sometimes, however, a crystallographic

group can be a cocompact discrete subgroup of a n ilpotent or solvable Lie group.
• Every  triangle group T is a discrete subgroup of the isometry group of the sphere

(when T is finite), the Euclidean plane (when T has a Z + Z subgroup of finite index),
or the hyperbolic plane.

• Fuchsian groups are, by definition, discrete subgroups of the isometry group of the 
hyperbolic plane.

o  A Fuchsian group that preserves orientation and acts on the upper half-plane

model of the hyperbolic plane is a discrete subgroup of the Lie

group PSL(2,R), the group of orientation preserving isometries of the upper 
half-plane model of the hyperbolic plane.

o A Fuchsian group is sometimes considered as a s pecial case of a Kleinian
group,  by  embedding  the  hyperbolic  plane  isometrically  into  three
dimensional hyperbolic space and ex tending the group action on the plane
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to the whole space.
o The  modular  group is  PSL(2,Z),  thought  of  as  a  discrete  subgroup  of

PSL(2,R).  The  modular  group  is  a  lattice  in  PSL(2,R),  but  it  is  not
cocompact.

• Kleinian groups are, by definition, discrete subgroups of the isometry group of 
hyperbolic 3-space. These include quasi- Fuchsian groups.

o A Kleinian group that preserves orientation and acts on the upper half space
model  of  h  yperbolic  3-space  is  a  discrete  s  ubgroup  of  the  Lie  group
PSL(2,C), the group of o rientation preserving isometries of the upper half-
space model of h yperbolic 3-space.

• A lattice in a Lie group is a discrete subgroup such that the Haar measure of the 

quotient space is finite.

Group homomorphism:

Image of a Group homomorphism(h) from G(left) to H(right). The smaller oval inside H is 

the image of h. N is the kernel of h and aN is a coset of h.

In mathematics, given two groups (G, *) and (H, ·), a group homomorphism from (G, *) to 

(H, ·) is a function h : G → H such that for all u and v in G it holds that

where the group operation on the left hand side of the equation is that of G and on the right 

hand side that of H.

From this property, one can deduce that h maps the identity element eG of G to the identity 

element eH of H, and it also maps inverses to inverses in the sense that
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h(u - 1) = h(u) - 1.

Hence one can say that h "is compatible with the group s tructure".

Older notations for the homomorphism h(x) may be xh, though this may be confused as an
index or a general subscript. A more recent trend is to write group homomorphisms on the
right of their arguments, omitting brackets, so that h( x) becomes simply x h. This approach is
especially prevalent in areas of group theory where  automata play a role, since it accords
better with the convention that automata read words from left to right.

In areas of mathematics where one considers groups endowed with additional structure, a
homomorphism  sometimes  means a  map which  respects  not  only the group structure (as
above) but also the extra structure. For example, a homomorphism of topological groups is
often required to be continuous.

The category of groups

If h : G → H and k : H → K are group homomorphisms, then so is k o h : G → K. This shows

that  the  class of all  groups,  together  with group homomorphisms as morphisms, forms a

category.

Types of homomorphic maps

If the homomorphism  h is a  bijection, then one can show that its inverse is also a group
homomorphism, and h is called a group isomorphism; in this case, the groups G and H are
called is omorphic: they differ only in the notation of their elements and are identical for all p
ractical purposes.

If h: G → G is a group h omomorphism, we call it an endomorphism of G. If furthermore
it is bijective and hence an isomorphism, it is called an automorphism. The set of all

automorphisms of a group G, with functional composition as operation, forms itself a
group, the automorphism  group of G. It is denoted by Aut(G). As an example, the
automorphism group of (Z, +) contains only two elements, the identity transformation
and mu ltiplication with -1; it is isomorphic to Z/2Z.

DEPT. OF CSE, ACE Page 81



DISCRETE MATHEMATICAL STRUCTURES
15CS3
6

An epimorphism is a surjective homomorphism, that is, a homomorphism which is onto as a

function. A monomorphism is an injective homomorphism, that is, a homomorphism which

is one-to-one as a function.

Homomorphisms of abelian groups

If  G and  H are  abelian (i.e.  commutative)  groups,  then the set  Hom(G,  H)  of all  group

homomorphisms  from  G to  H is  itself  an  abelian  group:  the  sum  h +  k of  two

homomorphisms is defined by

(h + k)(u) = h(u) + k(u) for all u in G.

The commutativity of H is needed to prove that h + k is again a group homomorphism. The
addition of homomorphisms is compatible with the composition of homomorphisms in the
following sense: if f is in Hom(K, G), h, k are elements of Hom(G, H), and g is in Hom(H,L),
then

(h + k) o f = (h o f) + (k o f)  and g o (h + k) = (g o h) + (g o k).

This shows that the set End(G) of all endomorphisms of an abelian group forms a ring, the
endomorphism  ring of  G.  For  example,  the  endomorphism  ring  of  the  abelian  group
consisting  of  the  direct  sum of  m copies  of  Z/nZ is  isomorphic  to  the  ring  of  m-by-m
matrices with entries in  Z/nZ. The above compatibility also shows that the category of all
abelian groups with group ho momorphisms forms a preadditive category; the existence of
direct sums and well-behaved kernels makes this category the prototypical example of an
abelian category.

Cyclic group

In group theory, a cyclic group is a group that can be generated by a single element, in the
sense that the group has an element  g (called a "generator" of the group) such that, when
written multiplicatively, every element of the group is a power of g (a multiple of g when the
notation is additive).
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Definition

The six 6th complex roots of unity form a cyclic group under multiplication. z is a primitive 

element, but z2 is not, because the odd powers of z are not a power of z2.

A group G is called cyclic if there exists an element g in G such that G = <g> = { gn | n is an
integer }. Since any group generated by an element in a group is a subgroup of that group,
showing that the only subgroup of a group G that contains g is G itself suffices to show that
G is cyclic.

For example, if G = { g0, g1, g2, g3, g4, g5 } is a group, then g6 = g0, and G is cyclic. In fact,
G is essentially the same as (that is, isomorphic to) the set { 0, 1, 2, 3, 4, 5 } with addition

modulo 6. For example, 1 + 2 = 3 (mod 6) cor responds to g1·g2 = g3, and 2 + 5 = 1 (mod 6)

corresponds to g2·g5 = g7 = g1, and so on. One can use the isomorphism φ defined by φ(gi) =
i.

For every positive integer  n there is exactly one cyclic group (up to isomorphism) whose
order is n, and there is exactly one infinite cyclic group (the integers under addition). Hence,
the cyclic groups are the simplest groups and they are completely classified.

The name "cyclic" may be m isleading: it is possible to generate infinitely many elements

and not form any literal cycles; that is, every  gn is distinct. (It can be said that it has one
infinitely long cycle.) A group generated in this way is called an infinite cyclic group, and is
isomorphic to the additive group of integers Z.

Furthermore,  the circle group (whose elements are uncountable) is  not a cyclic group—a

cyclic group always has countable elements.
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Since  the  cyclic  groups  are  abelian,  they  are  often  written  additively  and  denoted  Zn.
However, this notation can be problematic for number theorists because it conflicts with the
usual notation for p  -adic number rings or localization at a prime ideal. The quotient notations
Z/nZ, Z/n, and Z/(n) are standard alternatives. We adopt the first of these here to avoid the
collision of notation. See also the section Subgroups and notation below.

One may write the group multiplicatively, and denote it by Cn, where n is the order (which 

can be ∞). For example, g3g4 = g2 in C5, whereas 3 + 4 = 2 in Z/5Z.

Properties

The fundamental theorem of cyclic groups states that if  G is a cyclic group of order n then
every subgroup of G is cyclic. Moreover, the order of any subgroup of G is a divisor of n and
for  each positive  divisor  k of  n the  group  G has  exactly  one subgroup of  order  k.  This
property characterizes finite cyclic groups: a group of order n is cyclic if and only if for every
divisor  d of  n the group has at most one subgroup of order  d. Sometimes the e quivalent s
tatement is used: a group of order n is cyclic if and only if for every divisor d of n the group
has exactly one subgroup of order d.

Every finite cyclic group is i somorphic to the group { [0], [1], [2], ..., [n - 1] } of integers
modulo  n under addition,  and any infinite cyclic group is isomorphic to  Z (the set of all
integers)  under addition.  Thus,  one only needs  to look at  such groups to  understand the
properties of cyclic groups in general. Hence, cyclic groups are one of the simplest groups to
study and a number of nice p roperties are known.

Given a cyclic group G of order n (n may be infinity) and for every g in G,

• G is abelian; that is, their group operation is com mutative: gh = hg (for all h in G). 
This is so since g + h mod n = h + g mod n.

• If n is finite, then gn = g0 is the identity element of the group, since kn mod n = 0 for 
any integer k.

• If n = ∞, then there are exactly two elements that generate the group on their own: 
namely 1 and -1 for Z

• If n is finite, then there are exactly φ(n) elements that generate the group on their 
own, where φ is the Euler totient function

• Every subgroup of G is cyclic. Indeed, each finite subgroup of G is a group of { 0,
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1, 2, 3, ... m - 1} with addition m odulo m. And each infinite subgroup of G is mZ for 
some m, which is bijective to (so is omorphic to) Z.

• Gn is isomorphic to Z/nZ (factor group of Z over nZ) since Z/nZ = {0 + nZ, 1 +
nZ, 2 + nZ, 3 + nZ, 4 + nZ, ..., n - 1 + nZ} { 0, 1, 2, 3, 4, ..., n - 1} under 

addition modulo n.

More generally, if d is a divisor of n, then the number of elements in Z/n which have order d

is φ(d). The order of the residue class of m is n / gcd(n,m).

If p is a prime number, then the only group (up to isomorphism) with p elements is the cyclic

group Cp or Z/pZ.

The direct product of two cyclic groups Z /nZ and Z/mZ is cyclic if and only if n and m are

coprime. Thus e.g. Z/12Z is the direct product of Z/3Z and Z/4Z, but not the direct product
of Z/6Z and Z/2Z.

The definition immediately implies that cyclic groups have very simple group presentation 

C∞ = < x | > and Cn = < x | xn > for finite n.

A primary cyclic group is a group of the form  Z/pk where  p is a  prime number. The  fun
damental theorem of abelian groups states that every finitely generated abelian group is the
direct p roduct of finitely many finite primary cyclic and infinite cyclic groups.

Z/nZ  and Z  are also commutative rings. If p is a prime, then Z/pZ  is a finite field, also

denoted by Fp or GF(p). Every field with p elements is isomorphic to this one.

The  units of  the  ring  Z/nZ are  the  numbers  coprime to  n.  They  form  a  group  under

multiplication  modulo n with  φ(n)  elements  (see  above).  It  is  written  as  (Z/nZ)×.  For

example, when n = 6, we get (Z/nZ)× = {1,5}. When n = 8, we get (Z/nZ)× = {1,3,5,7}.

In fact, it is known that (Z/nZ)× is cyclic if and only if n is 1 or 2 or 4 or pk or 2 pk for an odd

prime number p and  k ≥ 1, in which case every generator of (Z/nZ)× is called a  primitive

root modulo n. Thus, (Z/nZ)× is cyclic for  n = 6, but not for  n = 8, where it is instead i
somorphic to the Klein four-group.

The group (Z/pZ)× is  cyclic  with  p -  1 elements  for every prime  p,  and is  also written

(Z/pZ)* because it consists of the non-zero elements. More generally, every finite
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s ubgroup of the mu ltiplicative group of any field is cyclic.

Examples

In 2D and 3D the symmetry group for n-fold rotational symmetry is Cn, of abstract group
type Zn. In 3D there are also other symmetry groups which are algebraically the same, see 
Symmetry groups in 3D that are cyclic as abstract group.

Note that the group S1 of all rotations of a circle (the circle group) is not cyclic, since it is not
even countable.

The nth roots of unity form a cyclic group of order n under multiplication. e.g., 0 = z3 - 1

= (z - s0)(z - s1)(z - s2) where si = e2πi / 3 and a group of {s0,s1,s2} under mul tiplication is 
cyclic.

The  Galois  group of  every  finite  field  extension of  a  finite  field is  finite  and  cyclic;
conversely, given a finite field F and a finite cyclic group G, there is a finite field extension
of F whose Galois group is G.

Representation

The  cycle graphs of finite cyclic groups are all  n-sided polygons with the elements at the
vertices. The dark vertex in the cycle graphs below stand for the identity element, and the
other vertices are the other elements of the group. A cycle consists of successive powers of
either of the elements connected to the identity element.

C1   C2   C3   C4   C5   C6   C7    C8 

The  rep resentation theory of the cyclic group is a critical base case for the representation

theory of more general finite groups. In the complex case, a representation of a cyclic group

d ecomposes into a direct sum of linear c haracters, making the connection between
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character theory and repre sentation theory transparent. In the  positive ch aracteristic case,
the indecomposable repre sentations of the cyclic group form a model and inductive basis for
the rep resentation theory of groups with cyclic  Sylow subgroups and more generally the
representation theory of blocks of cyclic defect.

Subgroups and notation

All subgroups and quotient groups of cyclic groups are cyclic. Specifically, all subgroups of Z 
are of the form mZ, with m an integer ≥0. All of these subgroups are different, and apart from 
the trivial group (for m=0) all are isomorphic to Z. The lattice of subgroups of Z is isomorphic 
to the dual of the lattice of natural numbers ordered by divisibility. All factor groups of Z are 
finite, except for the trivial exception Z/{0} = Z/0Z. For every positive divisor d of n, the 
quotient group Z/nZ has precCSEly one subgroup of order d, the one generated by the residue 
class of n/d. There are no other subgroups. The lattice of subgroups is thus isomorphic to the 
set of divisors of n, ordered by divisibility. In particular, a cyclic group is simple if and only if 
its order (the number of its elements) is prime.

Using the quotient group formalism, Z/nZ is a standard notation for the additive cyclic group
with n elements. In ring terminology, the s ubgroup nZ is also the ideal (n), so the quotient
can also be written Z/(n) or Z/n without abuse of notation. These alternatives do not conflict
with  the  notation  for  the  p-adic  integers.  The  last  form  is  very  common  in  informal
calculations; it has the additional advantage that it reads the same way that the group or ring
is often described verbally, "Zee mod en".

As a p ractical problem, one may be given a finite subgroup C of order n, generated by an

element g, and asked to find the size m of the subgroup generated by gk for some integer k.
Here m  will be the smallest integer > 0 such that mk  is divisible by n. It is therefore n/m
where m = (k, n) is the greatest common divisor of k and n. Put another way, the index of the

subgroup generated by gk is m. This reasoning is known as the index calculus algorithm, in
number theory.

Endomorphisms

The endomorphism ring of the abelian group  Z/nZ is  isomorphic to  Z/nZ itself as a  ring.

Under this isomorphism, the number r corresponds to the endomorphism of Z/nZ that maps

each element to the sum of r copies of it. This is a bijection if and only if r is
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coprime with n, so the automorphism group of Z/nZ is isomorphic to the unit group (Z/nZ)× 

(see above).

Similarly, the endomorphism ring of the additive group  Z is isomorphic to the ring  Z. Its

automorphism group is iso morphic to the group of units of the ring Z, i.e. to {-1, +1}  C2.

Virtually cyclic groups

A group is called virtually cyclic if it contains a cyclic subgroup of finite index (the number
of cosets that the subgroup has). In other words, any element in a virtually cyclic group can
be arrived at by applying a member of the cyclic subgroup to a member in a certain finite set.
Every cyclic group is virtually cyclic, as is every finite group. It is known that a finitely
generated discrete group with exactly two ends is virtually cyclic

(for instance the  product of  Z/n and  Z). Every abelian subgroup of a  Gromov hyperbolic

group is virtually cyclic.

Group isomorphism

In  abstract algebra, a  group isomorphism is a function between two groups that sets up a
one-to-one corre spondence between the elements of the groups in a way that respects the
given group operations. If there exists an isomorphism between two groups, then the groups
are called  isomorphic.  From the standpoint of group theory,  isomorphic groups have the
same p roperties and need not be distinguished.

Definition and notation

Given two groups (G, *) and (H, ), a group isomorphism from (G, *) to (H, ) is a
bijective group homomorphism from G to H. Spelled out, this means that a group

such that for all u and v in G it holdsi somorphism is a bijective function
that

.

The two groups (G, *) and (H, ) are isomorphic if an isomorphism exists. This is
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written:

Often shorter and more simple notations can be used. Often there is no ambiguity about the

group operation, and it can be omitted:

Sometimes one can even simply write  G = H. Whether such a notation is possible without

confusion or ambiguity depends on context. For example, the equals sign is not very suitable

when the groups are both subgroups of the same group. See also the examples.

Conversely, given a group (G, *), a set H, and a bijection , we can make H

a group (H, ) by defining

.

If H = G and = * then the bijection is an automorphism (q.v.)

In tuitively, group theorists view two iso morphic groups as follows: For every element g of a
group G, there exists an element h of H such that h 'behaves in the same way' as g (operates
with other elements of the group in the same way as g). For instance, if g generates G, then
so does  h. This implies in particular that  G and  H are in bijective cor respondence. So the
definition of an isomorphism is quite natural.

An i somorphism of groups may equivalently be defined as an i nvertible morphism in the

category of groups.

Examples

•  The group of all real numbers with addition, (
,+), is isomorphic to the

group of
+

,×):all positive real numbers with multiplication (
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via the isomorphism

f(x) = ex

(see ex ponential function).

• The group of integers (with addition) is a subgroup of  ,  and the factor group

/  is is omorphic to the group S1 of complex numbers of absolute value 1 (with 
mul tiplication):

An isomorphism is given by

for every x in   .

The Klein four-group is isomorphic to the direct product of two copies of

(see modular arithmetic), and can therefore be written .
Another notation is Dih2, because it is a dihedral group .

• Generalizing this, for all odd n, Dih2n is isomorphic with the direct product of Dihn 

and Z2.

• If (G, *) is an infinite cyclic group, then (G, *) is isomorphic to the integers (with the
addition operation). From an algebraic point of view, this means that the set of all
integers (with the addition operation) is the 'only' infinite cyclic group.

Some groups can be proven to be isomorphic, relying on the axiom of choice, while it is 

even theoretically impossible to construct concrete isomorphisms. Examples:
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• The group ( , + ) is isomorphic to the group ( , +) of all complex numbers with 
addition.

• The group ( , ·)* of non-zero complex numbers with multiplication as operation is 

isomorphic to the group S1 mentioned above.

Properties

• The kernel of an isomorphism from (G, *) to (H, ) ,  is always {eG} where eG is the 

identity of the group (G, *)

• If (G, *) is isomorphic to (H,  ) , and if G is abelian then so is H.

• If (G, *) is a group that is isomorphic to (H,   ) [where f is the isomorphism],
then if a belongs to G and has order n, then so does f(a).

• If (G, *) is a locally finite group that is isomorphic to (H, ), then (H,   ) is also

locally finite.

• The previous examples illustrate that 'group properties' are always preserved by
i somorphisms.

Cyclic groups

All cyclic groups of a given order are i somorphic to .
Let G be a cyclic group and n be the order of G. G is then the group generated by < x > =

{e,x,...,xn - 1}. We will show that

Define

,  so  that .  Clearly, is
bijective.
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Then

which proves that

.

Consequences

From the definition, it follows that any isomorphism will map the identity
element of G to the identity element of H,

f(eG) = eH

that it will map inverses to inverses,

and more generally, nth powers to nth powers,

for all u in G, and that the inverse map is also a group isomorphism.

The relation "being isomorphic" satisfies all the axioms of an equivalence relation. If f is an
isomorphism between two groups G and H, then everything that is true about G that is only
related to the group s tructure can be translated via f into a true ditto s tatement about H, and
vice versa.
Automorphisms
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An isomorphism from a group (G,*) to itself is called an automorphism of this group.

Thus it is a bijection such that

f(u) * f(v) = f(u * v).

An au tomorphism always maps the identity to itself. The image under an au tomorphism of a
conjugacy class is always a conjugacy class (the same or another). The image of an element
has the same order as that element.

The composition of two automorphisms is again an automorphism, and with this operation
the set of all automorphisms of a group G, denoted by Aut(G), forms itself a group, the au
tomorphism group of G.

For all Abelian groups there is at least the automorphism that replaces the group elements by
their inverses. However, in groups where all elements are equal to their inverse this is the
trivial  automorphism, e.g. in the  Klein four-group. For that group all permutations of the
three non-identity elements are automorphisms, so the automorphism group is i somorphic to
S3 and Dih3.

In Zp for a prime number p, one non-identity element can be replaced by any other, with cor
responding changes in the other elements. The automorphism group is isomorphic to Zp - 1.
For example, for n = 7, multiplying all elements of Z7 by 3, modulo 7, is an automorphism of

order 6 in the automorphism group, because 36 = 1 ( modulo 7 ), while lower powers do not
give 1. Thus this automorphism generates Z6.  There is one more automorphism with this
property: multiplying all elements of Z7 by 5, modulo 7. Therefore, these two correspond to
the elements 1 and 5 of Z6, in that order or conversely.

The automorphism group of Z6 is isomorphic to Z2, because only each of the two elements 1 

and 5 generate Z6, so apart from the identity we can only interchange these.

The automorphism group of Z2 × Z2 × Z2 = Dih2 × Z2 has order 168, as can be found as
follows. All 7 non-identity elements play the same role, so we can choose which plays the
role  of  (1,0,0).  Any of  the  remaining  6  can  be  chosen to  play  the  role  of  (0,1,0).  This
determines  which  corresponds  to  (1,1,0).  For  (0,0,1)  we  can  choose  from  4,  which
determines the rest. Thus we have 7 × 6 × 4 = 168 automorphisms. They correspond to those
of the Fano plane, of which the 7 points correspond to the 7 non-identity elements
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The lines connecting three points correspond to the group operation: a, b, and c on one line

means a+b=c, a+c=b, and b+c=a. See also general linear group over finite fields.

For Abelian groups all automorphisms except the trivial one are called outer automorphisms.

Non-Abelian groups have a non-trivial  inner automorphism group, and possibly also outer

automorphisms.

Coding Theory and Rings

Elements of Coding Theory

Coding theory is studied by various scientific di sciplines — such as info rmation theory,
electrical engineering,  mathematics, and computer science — for the purpose of designing
efficient  and reliable  data transmission methods. This typically involves the removal of r
edundancy and the correction (or detection) of errors in the transmitted data. It also includes
the study of the properties of codes and their fitness for a specific application.

Thus, there are es sentially two aspects to Coding theory:

1. Data compression (or, source coding)
2. Error correction (or, channel coding')

These two aspects may be studied in combination.

The first, source encoding, attempts to compress the data from a source in order to transmit it
more efficiently. This practice is found every day on the Internet where the common "Zip"
data compression is used to reduce the network load and make files smaller. The second,
channel encoding, adds extra data bits to make the transmission of

data more robust to dis turbances present on the transmission channel. The ordinary user may
not be aware of many applications using channel coding. A typical music CD uses the Reed-
Solomon code to correct for scratches and dust. In this application the transmission channel
is the CD itself. Cell phones also use coding techniques to correct
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for the fading and noCSE of high frequency radio transmission. Data modems, t elephone 
transmissions, and NASA all employ channel coding techniques to get the bits through, for 
example the turbo code and LDPC codes.

The hamming metric:

3-bit  binary  cube  for finding Two example distances: 100->011 has distance 3 (red

Hamming distance path); 010->111 has distance 2 (blue path)
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4-bit binary h ypercube for finding Hamming distance

Two example dis tances: 0100->1001 has distance 3 (red path); 0110->1110 has distance 1

(blue path)

In  information theory, the  Hamming distance between two  strings of equal length is the

number of positions at which the corresponding symbols are different. Put another way, it

Parity-check matrix

In coding theory, a parity-check matrix of a linear block code C is a generator matrix of

the dual code. As such, a codeword c is in C if and only if the matrix-vector product HTc=0.

The rows of a parity check matrix are parity checks on the codewords of a code. That is, they
show how linear combinations of certain digits of each codeword equal zero. For example,
the parity check matrix
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specifies that for each codeword, digits 1 and 2 should sum to zero and digits 3 and 4 should

sum to zero.

Creating a parity check matrix

The parity check matrix for a given code can be derived from its generator matrix (and vice-
versa). If the generator matrix for an [n,k]-code is in standard form

,

then the parity check matrix is given by

,

because
GHT = P - P = 0.

Negation  is  performed  in  the  finite  field  mod  q.  Note  that  if  the  characteristic of  the

underlying field is 2 (i.e., 1 + 1 = 0 in that field), as in binary codes, then -  P = P, so the

negation is unnecessary.

For example, if a binary code has the generator matrix

The parity check matrix becomes
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For any valid codeword x, Hx = 0. For any invalid codeword  , the syndrome S satisfies
.

Parity check

If no error occurs during transmission, then the received codeword r is identical to the t 

ransmitted codeword x:

The  receiver  multiplies  H and  r to  obtain  the

whether an error has occurred, and if so, for mul

tiplication (again, entries modulo 2):

syndrome vector , which indicates 

which codeword bit. Performing this

Since the syndrome z is the null vector, the receiver can conclude that no error has occurred.
This conclusion is based on the observation that when the data vector is multiplied by , a
change of basis occurs into a vector subspace that is the kernel of  . As long as nothing
happens during transmission, will remain in the kernel of and the mul tiplication will yield
the null vector.

Coset

In mathematics, if G is a group, H is a subgroup of G, and g is an element of G, then

gH = {gh : h an element of H� is} a left coset of H in G, and
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Hg = {hg : h an element of H� is} a right coset of H in G.

Only when H is normal will the right and left cosets of H coincide, which is one definition of

normality of a subgroup.

A coset is a left or right coset of some subgroup in G. Since Hg = g�
(
g
�-1Hg�), the right

cosets Hg (of H� and the left cosets g �(�-1Hg� (of the conjugate subgroup g-1Hg� are the

) g ) )
same. Hence it is not meaningful to speak of a coset as being left or right unless one first 

specifies the underlying s ubgroup.

For abelian groups or groups written additively, the notation used changes to g+H and H+g 

respectively.

Examples

The additive cyclic group Z4 = {0, 1, 2, 3} = G has a subgroup H = {0, 2} (isomorphic to Z2).

The left cosets of H in G are

0 + H = {0, 2} = H

1 + H = {1, 3}

2 + H = {2, 0} = H

3 + H = {3, 1}.

There are therefore two distinct cosets, H itself, and 1 + H = 3 + H. Note that every

element of G is either in H or in 1 + H, that is, H � (1 + H� )= G, so the distinct cosets of

H in G partition G. Since Z4 is an abelian group, the right cosets will be the same as the left.

Another example of a coset comes from the theory of vector spaces. The  elements
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(vectors) of a vector space form an  Abelian group under vector addition. It is not hard to
show that subspaces of a vector space are subgroups of this group. For a vector space V, a s
ubspace W, and a fixed vector a in V, the sets

are called affine subspaces, and are cosets (both left and right, since the group is Abelian). In

terms of geometric vectors, these affine subspaces are all the "lines" or "planes" parallel to
the subspace, which is a line or plane going through the origin.

General properties

We have gH = H if and only if  g is an element of  H, since as  H is a subgroup, it must be

closed and must contain the identity.

Any two left cosets of H in G are either identical or disjoint — i.e., the left cosets form a 

partition of G such that every element of G belongs to one and only one left coset.[1] In 
particular the identity is in precCSEly one coset, and that coset is H itself; this is also the only 
coset that is a subgroup. We can see this clearly in the above examples.

The left cosets of H in G are the equivalence classes under the equivalence relation on G 

given by x ~ y if and only if x -1y � H. Similar statements are also true for right cosets.

A  coset  representative is  a  representative  in  the  equivalence  class  sense.  A  set  of
representatives of all the cosets is called a transversal. There are other types of equivalence
relations in a group, such as conjugacy, that form different classes which do not have the
properties discussed here. Some books on very applied group theory erroneously identify the
conjugacy class as 'the' equivalence class as opposed to a particular type of equivalence class.

Index of a subgroup

All left cosets and all right cosets have the same order (number of elements, or cardinality in

the case of an infinite H), equal to the order of H (because H is itself a coset). Furthermore,

the number of left cosets is equal to the number of right cosets and is
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known as the index of H in G, written as [G : H�. ]Lagrange's theorem allows us to 

compute the index in the case where G and H are finite, as per the formula:

|G�= [|G : H� · |H] �

This equation also holds in the case where the groups are infinite, although the meaning may

be less clear.

Cosets and normality

If H is not normal in G, then its left cosets are different from its right cosets. That is, there is
an a in G such that no element b satisfies aH = Hb. This means that the partition of G into the
left cosets of  H is a different partition than the partition of  G into right cosets of  H. (It is
important to note that some cosets may coincide. For example, if a is in the center of G, then
aH = Ha.)

On the other hand, the subgroup N is normal if and only if gN = Ng for all g in G. In this 

Lagrange's theorem (group theory)

Lagrange's theorem, in the mat hematics of group theory, states that for any finite group G,

the order (number  of  elements)  of  every subgroup H  of G  divides  the  order  of G.  The

theorem is named after Joseph Lagrange.

Proof of Lagrange's Theorem

This can be shown using the concept of left cosets of H in G. The left cosets are the 
equivalence classes of a certain equivalence relation on G and therefore form a partition of G. 
Specifically, x and y in G are related if and only if there exists h in H such that x = yh. If we 
can show that all cosets of H have the same number of elements, then each coset of H has 
precCSEly |H| elements. We are then done since the order of H times the number of cosets is 
equal to the number of elements in G, thereby proving that the order H divides the order of G. 
Now, if aH and bH are two left cosets of H, we can define a map f : aH → bH by setting f(x) = 

ba-1x. This map is b ijective because its inverse is given by

f -1(y) = ab-1y.

This proof also shows that the quotient of the orders |G| / |H| is equal to the index [G : H]
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(the number of left cosets of H in G). If we write this statement as

|G| = [G : H] · |H|,

then, seen as a statement about cardinal numbers, it is equivalent to the Axiom of choice.

Using the theorem
A consequence of the theorem is that the  order of any element a of a finite group (i.e. the

smallest positive integer number k with ak = e, where e is the identity element of the group)
divides  the  order  of  that  group,  since  the  order  of  a is  equal  to  the  order  of  the  cyclic
subgroup generated by a. If the group has n elements, it follows

an = e.

This can be used to prove Fermat's little theorem and its generalization, Euler's theorem.
These special cases were known long before the general theorem was proved.

The theorem also shows that any group of prime order is cyclic and simple.

E xistence of subgroups of given order

Lagrange's theorem raCSEs the converse question as to whether every divisor of the order of a 
group is the order of some subgroup. This does not hold in general: given a finite group G and 
a divisor d of |G|, there does not necessarily exist a subgroup of G with order d. The smallest 
example is the alternating group G = A4 which has 12 elements but no subgroup of order 6. A 
CLT group is a finite group with the property that for every divisor of the order of the group, 
there is a subgroup of that order. It is known that a CLT group must be solvable and that every 
supersolvable group is a CLT group: however there exists solvable groups which are not CLT 
and CLT groups which are not super solvable.

There are partial  converses to Lagrange's theorem. For general groups, Cauchy's theorem
guarantees the existence of an element, and hence of a cyclic subgroup, of order any prime
dividing the group order;  Sylow's theorem extends this to the existence of a s ubgroup of
order equal to the maximal power of any prime dividing the group order. For
s olvable groups, Hall's theorems assert the existence of a subgroup of order equal to any
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unitary divisor of the group order (that is, a divisor coprime to its cofactor).

Group Co des: Deco ding wthi Coset L ead ers, Hamming Matrices

R ings a nd Mod ular Arithmetic: The Ring Structure – Definition and E xampl es, Ring P 

ro pe rt ies and Sub str uctures, The I ntegers Mod ulo n

In computer science, group codes are a type of code. Group codes consist of n linear block 

codes which are subgroups of Gn, where G is a finite Abelian group.

A systematic group code  C is a code over  Gn of order defined by  n -  k homomorphisms

which  determine  the  parity  check  bits.  The  remaining  k bits  are  the  in  formation  bits

themselves.

Construction

Group codes  can be constructed by special  generator  matrices  which resemble generator
matrices of linear block codes except that the elements of those matrices are endomorphisms
of  the  group  instead  of  symbols  from  the  code's  alphabet.  For  example,  consider  the
generator matrix

The elements of this matrix are 2x2 matrices which are endomorphisms. In this scenario,

each codeword can be represented as where g1,...gr are the generators of

G.

Decoding with Coset leader

In the field of coding theory, a coset leader is defined as a word of minimum weight in any

particular coset - that is, a word with the lowest amount of non-zero entries. Sometimes there

are several words of equal minimum weight in a coset, and in that case,
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any one of those words may be chosen to be the coset leader.
Coset leaders are used in the construction of a standard array for a linear code, which can
then be used to decode received vectors. For a received vector y, the decoded message is y -
e, where e is the coset leader of y. Coset leaders can also be used to construct a fast decoding
strategy. For each coset leader  u we calculate the syndrome  uH′.  When we receive  v we
evaluate  vH′ and find the matching  syndrome. The corresponding coset leader is the most
likely error pattern and we assume that v+u was the codeword sent.

Example

A standard array for an [n,k]-code is a qn - k by qk array where:

1. The first row lists all codewords (with the 0 codeword on the extreme left)
2. Each row is a coset with the coset leader in the first column
3. The entry in the i-th row and j-th column is the sum of the i-th coset leader and the j-

th codeword.

For example, the [n,k]-code C3 = {0, 01101, 10110, 11011} has a standard array as follows:

0 01101 10110 11011

10000 11101 00110 01011

01000 00101 11110 10011

00100 01001 10010 11111

00010 01111 10100 11001

00001 01100 10111 11010

11000 10101 01110 00011

10001 11100 00111 01010
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Note that the above is only one possibility for the standard array; had 00011 been chosen as
the first coset leader of weight two, another standard array rep resenting the code would have
been con structed.
Note  that  the  first  row contains  the 0 vector  and the codewords  of  C3 (0  itself  being a
codeword). Also, the leftmost column contains the vectors of minimum weight enumerating
vectors of weight 1 first and then using vectors of weight 2. Note also that each possible
vector in the vector space appears exactly once.

Because each possible vector can appear only once in a standard array some care must be 

taken during cons truction. A s tandard array can be created as follows:

1. List the codewords of C, starting with 0, as the first row
2. Choose any vector of minimum weight not already in the array. Write this as the first 

entry of the next row. This vector is denoted the 'coset leader'.
3. Fill out the row by adding the coset leader to the codeword at the top of each column.

The sum of the i-th coset leader and the j-th codeword becomes the entry in row i,
column j.

4. Repeat steps 2 and 3 until all rows/cosets are listed and each vector appears exactly 

once.

Hamming matrices

Hamming codes can be computed in linear algebra terms through matrices because Hamming
codes are linear codes. For the purposes of Hamming codes, two Hamming matrices can be
defined: the code generator matrix and the parity-check matrix 

:
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and

Bit position of the data and parity bits

As mentioned above, rows 1, 2, & 4 of should look familiar as they map the data bits
to their parity bits:

• p1 covers d1, d2, d4

• p2 covers d1, d3, d4

• p3 covers d2, d3, d4

The remaining rows (3, 5, 6, 7) map the data to their position in encoded form and there is
only 1 in that row so it is an identical copy. In fact, these four rows are linearly independent
and form the identity matrix (by design, not coincidence).

Also as mentioned above, the three rows of  should be familiar.  These rows are used to

compute the syndrome vector at the receiving end and if the s yndrome vector is the null

DEPT. OF CSE, ACE Page 
106



DISCRETE MATHEMATICAL STRUCTURES
15CS3
6

vector (all zeros) then the received word is error-free; if non-zero then the value indicates

which bit has been flipped.

The 4 data bits — assembled as a vector — is pre-multiplied by (i.e., ) and taken modulo 2 to
yield the encoded value that is transmitted. The original 4 data bits are converted to 7 bits
(hence the name "Hamming(7,4)") with 3 parity bits added to ensure even parity using the
above data bit coverages. The first table above shows the mapping between each data and
parity bit into its final bit position (1 through 7) but this can also be presented in a  Venn
diagram. The first diagram in this article shows three circles (one for each parity bit) and
encloses data bits that each parity bit covers. The second diagram (shown to the right) is
identical but, instead, the bit positions are marked.

For the remainder of this section, the following 4 bits (shown as a column vector) will be

used as a running example:

Rings and Modular Arithmetic

Ring theory

In mathematics,  ring theory is the study of rings— algebraic s tructures in which addition
and multiplication are defined and have similar properties to those familiar from the integers.
Ring theory studies the structure of rings, their  representations, or,  in different  language,
modules, special classes of rings (group rings, division rings, universal enveloping algebras),
as well as an array of properties that proved to be of interest both within the theory itself and
for its applications, such as homological properties and pol ynomial identities.

Commutative  rings are  much  better  understood  than  noncommutative  ones.  Due  to  its

intimate connections with algebraic geometry and algebraic number theory, which provide
many natural examples of co mmutative rings, their theory, which is considered to
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be part of commutative algebra and field theory rather than of general ring theory, is quite
different in flavour from the theory of their nonco mmutative counterparts. A fairly recent
trend, started in the 1980s with the development of noncommutative geometry and with the
discovery of  quantum groups, attempts to turn the situation around and build the theory of
certain classes of noncom mutative rings in a geometric  fashion as if  they were rings of
functions on (non-existent) 'noncommutative spaces'.

Elementary introduction
Definition

Formally, a ring is an Abelian group (R, +), together with a second binary operation * such 

that for all a, b and c in R,

a * (b * c) = (a * b) * c

a * (b + c) = (a * b) + (a * c)

(a + b) * c = (a * c) + (b * c)

also, if there exists a mult iplicative identity in the ring, that is, an element e such that for all 

a in R,

a * e = e * a = a

then it is said to be a ring with unity. The number 1 is a common example of a unity.

The ring in which e is equal to the additive identity must have only one element. This ring is 

called the trivial ring.

Rings that sit inside other rings are called subrings. Maps between rings which respect the ring 
operations are called ring homomorphisms. Rings, together with ring homomorphisms, form a 
category (the category of rings). Closely related is the notion of ideals, certain subsets of rings 
which arCSE as kernels of homomorphisms and can serve to define factor rings. Basic facts 
about ideals, homomorphisms and factor rings are recorded in the i somorphism theorems and 
in the Chinese remainder theorem.

A ring is called commutative if its multiplication is commutative. Commutative rings
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resemble  familiar  number  systems,  and  various  definitions  for  commutative  rings  are
designed  to  recover  properties  known  from  the  integers.  Commutative  rings  are  also
important in algebraic geometry. In co mmutative ring theory, numbers are often replaced by
ideals,  and  the  definition  of  prime  ideal tries  to  capture  the  essence  of  prime  numbers.
Integral domains, non-trivial commutative rings where no two non-zero elements multiply to
give zero, generalize another property of the integers and serve as the proper realm to study
divisibility.  Principal  ideal  domains are  integral  domains  in  which  every  ideal  can  be
generated by a single element, another property shared by the integers.  E uclidean domains
are integral  domains in which the  E uclidean algorithm can be carried out. Important  ex
amples of co mmutative rings can be constructed as rings of  pol ynomials and their factor
rings.  Summary:  Euclidean  domain =>  p  rincipal  ideal  domain =>  unique factorization
domain => integral domain => Com mutative ring.

Non-commutative rings resemble rings of matrices in many respects. Following the model of
algebraic  geometry,  attempts  have  been  made  recently  at  defining  non-commutative
geometry based on non-commutative rings. Non-commutative rings and associative algebras
(rings that are also vector spaces) are often studied via their categories of modules. A module
over a ring is an Abelian group that the ring acts on as a ring of endomorphisms, very much
akin to the way fields (integral domains in which every non-zero element is invertible) act on
vector spaces. Examples of non- commutative

rings are given by rings of square matrices or more generally by rings of endomorphisms of

Abelian groups or modules, and by monoid rings.

The congruence relation

Modular ar ithmetic can be handled mathematically by introducing a con gruence relation on
the  integers that  is  compatible  with  the  operations  of  the  ring of  integers:  addition,  s
ubtraction, and mult iplication. For a positive integer n, two integers a and b are said to be
congruent modulo n, written:

if their dif ference a - b is an integer multiple of n. The number n is called the modulus of the

co ngruence. An equivalent definition is that both numbers have the same remainder when

divided by n.
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For example,

because 38 - 14 = 24, which is a multiple of 12. For positive  n and non-negative  a and  b,

congruence of a and b can also be thought of as asserting that these two numbers have the
same remainder after dividing by the modulus n. So,

because both numbers, when divided by 12, have the same remainder (2). E quivalently, the
fractional parts of doing a full division of each of the numbers by 12 are the same: 0.1666...
(38/12  =  3.1666...,  2/12  =  0.1666...).  From  the  prior  definition  we  also  see  that  their
difference, a - b = 36, is a whole number (integer) multiple of 12 (n = 12, 36/12 = 3).

The same rule holds for negative values of a:

A remark on the notation: Because it is common to consider several congruence relations for
different moduli at the same time, the modulus is incorporated in the notation. In spite
of the ternary notation, the congruence relation for a given modulus is  binary. This would
have been clearer if the notation a ≡n b had been used, instead of the common traditional
notation.

The properties that make this relation a congruence relation (respecting addition, s 

ubtraction, and mult iplication) are the following.

If

and

then:

•

•

•
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Multiplicative group of integers modulo n

In modular arithmetic the set of congruence classes relatively prime to the modulus n form a
group under multiplication called the multiplicative group of integers modulo n. It is also
called the group of primitive residue classes modulo n. In the theory of rings, a branch of
abstract algebra, it is described as the group of units of the ring of integers modulo n. (Units
refers to elements with a multiplicative inverse.)

This  group is  fundamental  in  number  theory.  It  has  found applications  in  cryptography,
integer factorization, and primality testing. For example, by finding the order (ie. the size) of
the group, one can determine if n is prime: n is prime if and only if the order is n - 1.

Group axioms

It is a straightforward exercCSE to show that under multiplication the congruence classes (mod
n) which are relatively prime to n satisfy the axioms for an abelian group.
Because a ≡ b (mod n) implies that gcd(a, n) = gcd(b, n), the notion of congruence classes 

(mod n) which are relatively prime to n is well- defined.

Since gcd(a,  n) = 1 and gcd(b,  n) = 1 implies gcd(ab,  n) = 1 the set of classes relatively

prime to n is closed under multiplication.

The natural  mapping from the  integers  to  the  congruence  classes  (mod  n)  that  takes  an
integer to its congruence class (mod n) is a ring homomorphism. This implies that the class
containing 1 is the unique multiplicative identity, and also the associative and commutative
laws.

Given a, gcd(a, n) = 1, finding x satisfying ax ≡ 1 (mod n) is the same as solving ax + ny = 1,

which can be done by Bézout's lemma.

Notation

The ring of integers (mod n) is denoted or (i.e., the ring of integers modulo the ideal 

nZ = (n) consisting of the multiples of n) or by .  Depending on the

author  its  group  of  units  may be  written    (for

German  Einheit  =  unit)  or  similar  notations. This  article  uses

DEPT. OF CSE, ACE Page 
111



DISCRETE MATHEMATICAL STRUCTURES
15CS3
6

Structure
Powers of 2

Modulo 2 there is only one relatively prime congruence class, 1, so is

trivial.

Modulo  4  there  are  two  relatively  prime  congruence  classes, 1  and  3,  so

the cyclic group with two elements.

Modulo 8 there are four relatively prime classes, 1, 3, 5 and 7. The square of each of

these is 1, so the Klein four-group.

Modulo 16 there are eight relatively prime classes 1, 3, 5, 7, 9, 11, 13 and 15.

is the 2-torsion subgroup (ie. the square of each element is 1),
so is not cyclic. The powers of 3, {1,3,9,11} are a subgroup of order 4, as are

the powers of 5, {1,5,9,13}.  Thus

The  pattern shown by  8 and  16 holds[1]   for higher powers 2k, k > 2:
is the 2-torsion subgroup (so is not cyclic)

and the powers of 3 are a subgroup of order 2k - 2, so

Powers of odd primes

For powers of odd primes pk the group is cyclic:[2]

General composite numbers

The Chinese  remainder  theorem  [3]  says  that  if then  the  ring

is the    direct product of the rings cor responding to each of its prime power factors:
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Similarly, the group of units
to each of the prime power factors:

is the direct p roduct of the groups corresponding

Order

The order of the group is given by Euler's totient function: This

is the product of the orders of the cyclic groups in the direct product.

Exponent

The exponent is given by the Carmichael function λ(n), the least common multiple of the 

orders of the cyclic groups. This means that if a and n are relatively prime,

Generators

is cyclic if and only if This is the case precCSEly when n is 2, 4, a power of an

odd prime, or twice a power of an odd prime. In this case a generator is called a primitive

root modulo n.

Since all the n = 1, 2, ..., 7 are cyclic, another way to state this is: If n < 8

then has a primitive root. If n ≥ 8 has a primitive root unless n is
divisible by 4 or by two distinct odd primes.

In the general case there is one generator for each cyclic direct factor.

Table
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This table shows the structure and generators of for small values of n. The
generators are not unique (mod  n); e.g. (mod 16) both {-1, 3} and {-1, 5} will work. The

generators are listed in the same order as the direct factors.

For example take n = 20. means that the order of is 8 (i.e. there are 8 numbers less than 20 
and coprime to it); λ(20) = 4 that the fourth power of any number relatively prime to 20 is ≡ 1

(mod 20); and as for the generators, 19 has order 2, 3

has order 4, and every member of 

and b is 0, 1, 2, or 3.

is of the form 19a × 3b, where a is 0 or 1

The powers of 19 are {±1} and the powers of 3 are {3, 9, 7, 1}. The latter and their negatives
(mod 20), {17, 11, 13, 19} are all the numbers less than 20 and prime to it. The fact that the

order of 19 is 2 and the order of 3 is 4 implies that the fourth power of every

member of is ≡ 1 (mod 20).
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